SemaStmt.cpp revision 35e12c90c1b107a75c5615aa76fdbd403661aaa6
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallVector.h"
28using namespace clang;
29
30Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
31  Expr *E = expr->takeAs<Expr>();
32  assert(E && "ActOnExprStmt(): missing expression");
33  if (E->getType()->isObjCObjectType()) {
34    if (LangOpts.ObjCNonFragileABI)
35      Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
36             << E->getType();
37    else
38      Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
39             << E->getType();
40    return StmtError();
41  }
42  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
43  // void expression for its side effects.  Conversion to void allows any
44  // operand, even incomplete types.
45
46  // Same thing in for stmt first clause (when expr) and third clause.
47  return Owned(static_cast<Stmt*>(E));
48}
49
50
51Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
52  return Owned(new (Context) NullStmt(SemiLoc));
53}
54
55Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
56                                           SourceLocation StartLoc,
57                                           SourceLocation EndLoc) {
58  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
59
60  // If we have an invalid decl, just return an error.
61  if (DG.isNull()) return StmtError();
62
63  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
64}
65
66void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
67  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
68
69  // If we have an invalid decl, just return.
70  if (DG.isNull() || !DG.isSingleDecl()) return;
71  // suppress any potential 'unused variable' warning.
72  DG.getSingleDecl()->setUsed();
73}
74
75void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
76  const Expr *E = dyn_cast_or_null<Expr>(S);
77  if (!E)
78    return;
79
80  SourceLocation Loc;
81  SourceRange R1, R2;
82  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
83    return;
84
85  // Okay, we have an unused result.  Depending on what the base expression is,
86  // we might want to make a more specific diagnostic.  Check for one of these
87  // cases now.
88  unsigned DiagID = diag::warn_unused_expr;
89  E = E->IgnoreParens();
90  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
91    DiagID = diag::warn_unused_property_expr;
92
93  if (const CXXExprWithTemporaries *Temps = dyn_cast<CXXExprWithTemporaries>(E))
94    E = Temps->getSubExpr();
95
96  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
97    if (E->getType()->isVoidType())
98      return;
99
100    // If the callee has attribute pure, const, or warn_unused_result, warn with
101    // a more specific message to make it clear what is happening.
102    if (const Decl *FD = CE->getCalleeDecl()) {
103      if (FD->getAttr<WarnUnusedResultAttr>()) {
104        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
105        return;
106      }
107      if (FD->getAttr<PureAttr>()) {
108        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
109        return;
110      }
111      if (FD->getAttr<ConstAttr>()) {
112        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
113        return;
114      }
115    }
116  }
117  else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
118    const ObjCMethodDecl *MD = ME->getMethodDecl();
119    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
120      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
121      return;
122    }
123  } else if (const CXXFunctionalCastExpr *FC
124                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
125    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
126        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
127      return;
128  }
129  // Diagnose "(void*) blah" as a typo for "(void) blah".
130  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
131    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
132    QualType T = TI->getType();
133
134    // We really do want to use the non-canonical type here.
135    if (T == Context.VoidPtrTy) {
136      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
137
138      Diag(Loc, diag::warn_unused_voidptr)
139        << FixItHint::CreateRemoval(TL.getStarLoc());
140      return;
141    }
142  }
143
144  DiagRuntimeBehavior(Loc, PDiag(DiagID) << R1 << R2);
145}
146
147Action::OwningStmtResult
148Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
149                        MultiStmtArg elts, bool isStmtExpr) {
150  unsigned NumElts = elts.size();
151  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
152  // If we're in C89 mode, check that we don't have any decls after stmts.  If
153  // so, emit an extension diagnostic.
154  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
155    // Note that __extension__ can be around a decl.
156    unsigned i = 0;
157    // Skip over all declarations.
158    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
159      /*empty*/;
160
161    // We found the end of the list or a statement.  Scan for another declstmt.
162    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
163      /*empty*/;
164
165    if (i != NumElts) {
166      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
167      Diag(D->getLocation(), diag::ext_mixed_decls_code);
168    }
169  }
170  // Warn about unused expressions in statements.
171  for (unsigned i = 0; i != NumElts; ++i) {
172    // Ignore statements that are last in a statement expression.
173    if (isStmtExpr && i == NumElts - 1)
174      continue;
175
176    DiagnoseUnusedExprResult(Elts[i]);
177  }
178
179  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
180}
181
182Action::OwningStmtResult
183Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
184                    SourceLocation DotDotDotLoc, ExprArg rhsval,
185                    SourceLocation ColonLoc) {
186  assert((lhsval.get() != 0) && "missing expression in case statement");
187
188  // C99 6.8.4.2p3: The expression shall be an integer constant.
189  // However, GCC allows any evaluatable integer expression.
190  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
191  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
192      VerifyIntegerConstantExpression(LHSVal))
193    return StmtError();
194
195  // GCC extension: The expression shall be an integer constant.
196
197  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
198  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
199      VerifyIntegerConstantExpression(RHSVal)) {
200    RHSVal = 0;  // Recover by just forgetting about it.
201    rhsval = 0;
202  }
203
204  if (getSwitchStack().empty()) {
205    Diag(CaseLoc, diag::err_case_not_in_switch);
206    return StmtError();
207  }
208
209  // Only now release the smart pointers.
210  lhsval.release();
211  rhsval.release();
212  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
213                                        ColonLoc);
214  getSwitchStack().back()->addSwitchCase(CS);
215  return Owned(CS);
216}
217
218/// ActOnCaseStmtBody - This installs a statement as the body of a case.
219void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
220  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
221  Stmt *SubStmt = subStmt.takeAs<Stmt>();
222  CS->setSubStmt(SubStmt);
223}
224
225Action::OwningStmtResult
226Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
227                       StmtArg subStmt, Scope *CurScope) {
228  Stmt *SubStmt = subStmt.takeAs<Stmt>();
229
230  if (getSwitchStack().empty()) {
231    Diag(DefaultLoc, diag::err_default_not_in_switch);
232    return Owned(SubStmt);
233  }
234
235  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
236  getSwitchStack().back()->addSwitchCase(DS);
237  return Owned(DS);
238}
239
240Action::OwningStmtResult
241Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
242                     SourceLocation ColonLoc, StmtArg subStmt) {
243  Stmt *SubStmt = subStmt.takeAs<Stmt>();
244  // Look up the record for this label identifier.
245  LabelStmt *&LabelDecl = getLabelMap()[II];
246
247  // If not forward referenced or defined already, just create a new LabelStmt.
248  if (LabelDecl == 0)
249    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
250
251  assert(LabelDecl->getID() == II && "Label mismatch!");
252
253  // Otherwise, this label was either forward reference or multiply defined.  If
254  // multiply defined, reject it now.
255  if (LabelDecl->getSubStmt()) {
256    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
257    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
258    return Owned(SubStmt);
259  }
260
261  // Otherwise, this label was forward declared, and we just found its real
262  // definition.  Fill in the forward definition and return it.
263  LabelDecl->setIdentLoc(IdentLoc);
264  LabelDecl->setSubStmt(SubStmt);
265  return Owned(LabelDecl);
266}
267
268Action::OwningStmtResult
269Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar,
270                  StmtArg ThenVal, SourceLocation ElseLoc,
271                  StmtArg ElseVal) {
272  OwningExprResult CondResult(CondVal.release());
273
274  VarDecl *ConditionVar = 0;
275  if (CondVar.get()) {
276    ConditionVar = CondVar.getAs<VarDecl>();
277    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
278    if (CondResult.isInvalid())
279      return StmtError();
280  }
281  Expr *ConditionExpr = CondResult.takeAs<Expr>();
282  if (!ConditionExpr)
283    return StmtError();
284
285  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
286  DiagnoseUnusedExprResult(thenStmt);
287
288  // Warn if the if block has a null body without an else value.
289  // this helps prevent bugs due to typos, such as
290  // if (condition);
291  //   do_stuff();
292  if (!ElseVal.get()) {
293    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
294      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
295  }
296
297  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
298  DiagnoseUnusedExprResult(elseStmt);
299
300  CondResult.release();
301  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
302                                    thenStmt, ElseLoc, elseStmt));
303}
304
305/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
306/// the specified width and sign.  If an overflow occurs, detect it and emit
307/// the specified diagnostic.
308void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
309                                              unsigned NewWidth, bool NewSign,
310                                              SourceLocation Loc,
311                                              unsigned DiagID) {
312  // Perform a conversion to the promoted condition type if needed.
313  if (NewWidth > Val.getBitWidth()) {
314    // If this is an extension, just do it.
315    Val.extend(NewWidth);
316    Val.setIsSigned(NewSign);
317
318    // If the input was signed and negative and the output is
319    // unsigned, don't bother to warn: this is implementation-defined
320    // behavior.
321    // FIXME: Introduce a second, default-ignored warning for this case?
322  } else if (NewWidth < Val.getBitWidth()) {
323    // If this is a truncation, check for overflow.
324    llvm::APSInt ConvVal(Val);
325    ConvVal.trunc(NewWidth);
326    ConvVal.setIsSigned(NewSign);
327    ConvVal.extend(Val.getBitWidth());
328    ConvVal.setIsSigned(Val.isSigned());
329    if (ConvVal != Val)
330      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
331
332    // Regardless of whether a diagnostic was emitted, really do the
333    // truncation.
334    Val.trunc(NewWidth);
335    Val.setIsSigned(NewSign);
336  } else if (NewSign != Val.isSigned()) {
337    // Convert the sign to match the sign of the condition.  This can cause
338    // overflow as well: unsigned(INTMIN)
339    // We don't diagnose this overflow, because it is implementation-defined
340    // behavior.
341    // FIXME: Introduce a second, default-ignored warning for this case?
342    llvm::APSInt OldVal(Val);
343    Val.setIsSigned(NewSign);
344  }
345}
346
347namespace {
348  struct CaseCompareFunctor {
349    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
350                    const llvm::APSInt &RHS) {
351      return LHS.first < RHS;
352    }
353    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
354                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
355      return LHS.first < RHS.first;
356    }
357    bool operator()(const llvm::APSInt &LHS,
358                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
359      return LHS < RHS.first;
360    }
361  };
362}
363
364/// CmpCaseVals - Comparison predicate for sorting case values.
365///
366static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
367                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
368  if (lhs.first < rhs.first)
369    return true;
370
371  if (lhs.first == rhs.first &&
372      lhs.second->getCaseLoc().getRawEncoding()
373       < rhs.second->getCaseLoc().getRawEncoding())
374    return true;
375  return false;
376}
377
378/// CmpEnumVals - Comparison predicate for sorting enumeration values.
379///
380static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
381                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
382{
383  return lhs.first < rhs.first;
384}
385
386/// EqEnumVals - Comparison preficate for uniqing enumeration values.
387///
388static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
389                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
390{
391  return lhs.first == rhs.first;
392}
393
394/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
395/// potentially integral-promoted expression @p expr.
396static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
397  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
398    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
399    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
400    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
401      return TypeBeforePromotion;
402    }
403  }
404  return expr->getType();
405}
406
407Action::OwningStmtResult
408Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, ExprArg Cond,
409                             DeclPtrTy CondVar) {
410  VarDecl *ConditionVar = 0;
411  if (CondVar.get()) {
412    ConditionVar = CondVar.getAs<VarDecl>();
413    OwningExprResult CondE = CheckConditionVariable(ConditionVar, SourceLocation(), false);
414    if (CondE.isInvalid())
415      return StmtError();
416
417    Cond = move(CondE);
418  }
419
420  if (!Cond.get())
421    return StmtError();
422
423  Expr *CondExpr = static_cast<Expr *>(Cond.get());
424  OwningExprResult ConvertedCond
425    = ConvertToIntegralOrEnumerationType(SwitchLoc, move(Cond),
426                          PDiag(diag::err_typecheck_statement_requires_integer),
427                                   PDiag(diag::err_switch_incomplete_class_type)
428                                     << CondExpr->getSourceRange(),
429                                   PDiag(diag::err_switch_explicit_conversion),
430                                         PDiag(diag::note_switch_conversion),
431                                   PDiag(diag::err_switch_multiple_conversions),
432                                         PDiag(diag::note_switch_conversion),
433                                         PDiag(0));
434  if (ConvertedCond.isInvalid())
435    return StmtError();
436
437  CondExpr = ConvertedCond.takeAs<Expr>();
438
439  if (!CondVar.get()) {
440    CondExpr = MaybeCreateCXXExprWithTemporaries(CondExpr);
441    if (!CondExpr)
442      return StmtError();
443  }
444
445  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, CondExpr);
446  getSwitchStack().push_back(SS);
447  return Owned(SS);
448}
449
450Action::OwningStmtResult
451Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
452                            StmtArg Body) {
453  Stmt *BodyStmt = Body.takeAs<Stmt>();
454
455  SwitchStmt *SS = getSwitchStack().back();
456  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
457
458  SS->setBody(BodyStmt, SwitchLoc);
459  getSwitchStack().pop_back();
460
461  if (SS->getCond() == 0) {
462    SS->Destroy(Context);
463    return StmtError();
464  }
465
466  Expr *CondExpr = SS->getCond();
467  Expr *CondExprBeforePromotion = CondExpr;
468  QualType CondTypeBeforePromotion =
469      GetTypeBeforeIntegralPromotion(CondExpr);
470
471  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
472  UsualUnaryConversions(CondExpr);
473  QualType CondType = CondExpr->getType();
474  SS->setCond(CondExpr);
475
476  // C++ 6.4.2.p2:
477  // Integral promotions are performed (on the switch condition).
478  //
479  // A case value unrepresentable by the original switch condition
480  // type (before the promotion) doesn't make sense, even when it can
481  // be represented by the promoted type.  Therefore we need to find
482  // the pre-promotion type of the switch condition.
483  if (!CondExpr->isTypeDependent()) {
484    // We have already converted the expression to an integral or enumeration
485    // type, when we started the switch statement. If we don't have an
486    // appropriate type now, just return an error.
487    if (!CondType->isIntegralOrEnumerationType())
488      return StmtError();
489
490    if (CondExpr->isKnownToHaveBooleanValue()) {
491      // switch(bool_expr) {...} is often a programmer error, e.g.
492      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
493      // One can always use an if statement instead of switch(bool_expr).
494      Diag(SwitchLoc, diag::warn_bool_switch_condition)
495          << CondExpr->getSourceRange();
496    }
497  }
498
499  // Get the bitwidth of the switched-on value before promotions.  We must
500  // convert the integer case values to this width before comparison.
501  bool HasDependentValue
502    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
503  unsigned CondWidth
504    = HasDependentValue? 0
505      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
506  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
507
508  // Accumulate all of the case values in a vector so that we can sort them
509  // and detect duplicates.  This vector contains the APInt for the case after
510  // it has been converted to the condition type.
511  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
512  CaseValsTy CaseVals;
513
514  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
515  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
516  CaseRangesTy CaseRanges;
517
518  DefaultStmt *TheDefaultStmt = 0;
519
520  bool CaseListIsErroneous = false;
521
522  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
523       SC = SC->getNextSwitchCase()) {
524
525    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
526      if (TheDefaultStmt) {
527        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
528        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
529
530        // FIXME: Remove the default statement from the switch block so that
531        // we'll return a valid AST.  This requires recursing down the AST and
532        // finding it, not something we are set up to do right now.  For now,
533        // just lop the entire switch stmt out of the AST.
534        CaseListIsErroneous = true;
535      }
536      TheDefaultStmt = DS;
537
538    } else {
539      CaseStmt *CS = cast<CaseStmt>(SC);
540
541      // We already verified that the expression has a i-c-e value (C99
542      // 6.8.4.2p3) - get that value now.
543      Expr *Lo = CS->getLHS();
544
545      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
546        HasDependentValue = true;
547        break;
548      }
549
550      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
551
552      // Convert the value to the same width/sign as the condition.
553      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
554                                         CS->getLHS()->getLocStart(),
555                                         diag::warn_case_value_overflow);
556
557      // If the LHS is not the same type as the condition, insert an implicit
558      // cast.
559      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
560      CS->setLHS(Lo);
561
562      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
563      if (CS->getRHS()) {
564        if (CS->getRHS()->isTypeDependent() ||
565            CS->getRHS()->isValueDependent()) {
566          HasDependentValue = true;
567          break;
568        }
569        CaseRanges.push_back(std::make_pair(LoVal, CS));
570      } else
571        CaseVals.push_back(std::make_pair(LoVal, CS));
572    }
573  }
574
575  if (!HasDependentValue) {
576    // If we don't have a default statement, check whether the
577    // condition is constant.
578    llvm::APSInt ConstantCondValue;
579    bool HasConstantCond = false;
580    bool ShouldCheckConstantCond = false;
581    if (!HasDependentValue && !TheDefaultStmt) {
582      Expr::EvalResult Result;
583      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
584      if (HasConstantCond) {
585        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
586        ConstantCondValue = Result.Val.getInt();
587        ShouldCheckConstantCond = true;
588
589        assert(ConstantCondValue.getBitWidth() == CondWidth &&
590               ConstantCondValue.isSigned() == CondIsSigned);
591      }
592    }
593
594    // Sort all the scalar case values so we can easily detect duplicates.
595    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
596
597    if (!CaseVals.empty()) {
598      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
599        if (ShouldCheckConstantCond &&
600            CaseVals[i].first == ConstantCondValue)
601          ShouldCheckConstantCond = false;
602
603        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
604          // If we have a duplicate, report it.
605          Diag(CaseVals[i].second->getLHS()->getLocStart(),
606               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
607          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
608               diag::note_duplicate_case_prev);
609          // FIXME: We really want to remove the bogus case stmt from the
610          // substmt, but we have no way to do this right now.
611          CaseListIsErroneous = true;
612        }
613      }
614    }
615
616    // Detect duplicate case ranges, which usually don't exist at all in
617    // the first place.
618    if (!CaseRanges.empty()) {
619      // Sort all the case ranges by their low value so we can easily detect
620      // overlaps between ranges.
621      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
622
623      // Scan the ranges, computing the high values and removing empty ranges.
624      std::vector<llvm::APSInt> HiVals;
625      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
626        llvm::APSInt &LoVal = CaseRanges[i].first;
627        CaseStmt *CR = CaseRanges[i].second;
628        Expr *Hi = CR->getRHS();
629        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
630
631        // Convert the value to the same width/sign as the condition.
632        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
633                                           CR->getRHS()->getLocStart(),
634                                           diag::warn_case_value_overflow);
635
636        // If the LHS is not the same type as the condition, insert an implicit
637        // cast.
638        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
639        CR->setRHS(Hi);
640
641        // If the low value is bigger than the high value, the case is empty.
642        if (LoVal > HiVal) {
643          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
644            << SourceRange(CR->getLHS()->getLocStart(),
645                           CR->getRHS()->getLocEnd());
646          CaseRanges.erase(CaseRanges.begin()+i);
647          --i, --e;
648          continue;
649        }
650
651        if (ShouldCheckConstantCond &&
652            LoVal <= ConstantCondValue &&
653            ConstantCondValue <= HiVal)
654          ShouldCheckConstantCond = false;
655
656        HiVals.push_back(HiVal);
657      }
658
659      // Rescan the ranges, looking for overlap with singleton values and other
660      // ranges.  Since the range list is sorted, we only need to compare case
661      // ranges with their neighbors.
662      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
663        llvm::APSInt &CRLo = CaseRanges[i].first;
664        llvm::APSInt &CRHi = HiVals[i];
665        CaseStmt *CR = CaseRanges[i].second;
666
667        // Check to see whether the case range overlaps with any
668        // singleton cases.
669        CaseStmt *OverlapStmt = 0;
670        llvm::APSInt OverlapVal(32);
671
672        // Find the smallest value >= the lower bound.  If I is in the
673        // case range, then we have overlap.
674        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
675                                                  CaseVals.end(), CRLo,
676                                                  CaseCompareFunctor());
677        if (I != CaseVals.end() && I->first < CRHi) {
678          OverlapVal  = I->first;   // Found overlap with scalar.
679          OverlapStmt = I->second;
680        }
681
682        // Find the smallest value bigger than the upper bound.
683        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
684        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
685          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
686          OverlapStmt = (I-1)->second;
687        }
688
689        // Check to see if this case stmt overlaps with the subsequent
690        // case range.
691        if (i && CRLo <= HiVals[i-1]) {
692          OverlapVal  = HiVals[i-1];       // Found overlap with range.
693          OverlapStmt = CaseRanges[i-1].second;
694        }
695
696        if (OverlapStmt) {
697          // If we have a duplicate, report it.
698          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
699            << OverlapVal.toString(10);
700          Diag(OverlapStmt->getLHS()->getLocStart(),
701               diag::note_duplicate_case_prev);
702          // FIXME: We really want to remove the bogus case stmt from the
703          // substmt, but we have no way to do this right now.
704          CaseListIsErroneous = true;
705        }
706      }
707    }
708
709    // Complain if we have a constant condition and we didn't find a match.
710    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
711      // TODO: it would be nice if we printed enums as enums, chars as
712      // chars, etc.
713      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
714        << ConstantCondValue.toString(10)
715        << CondExpr->getSourceRange();
716    }
717
718    // Check to see if switch is over an Enum and handles all of its
719    // values.  We don't need to do this if there's a default
720    // statement or if we have a constant condition.
721    //
722    // TODO: we might want to check whether case values are out of the
723    // enum even if we don't want to check whether all cases are handled.
724    const EnumType* ET = CondTypeBeforePromotion->getAs<EnumType>();
725    // If switch has default case, then ignore it.
726    if (!CaseListIsErroneous && !TheDefaultStmt && !HasConstantCond && ET) {
727      const EnumDecl *ED = ET->getDecl();
728      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
729      EnumValsTy EnumVals;
730
731      // Gather all enum values, set their type and sort them,
732      // allowing easier comparison with CaseVals.
733      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
734             EDI != ED->enumerator_end(); EDI++) {
735        llvm::APSInt Val = (*EDI)->getInitVal();
736        if(Val.getBitWidth() < CondWidth)
737          Val.extend(CondWidth);
738        else if (Val.getBitWidth() > CondWidth)
739          Val.trunc(CondWidth);
740        Val.setIsSigned(CondIsSigned);
741        EnumVals.push_back(std::make_pair(Val, (*EDI)));
742      }
743      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
744      EnumValsTy::iterator EIend =
745        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
746      // See which case values aren't in enum
747      EnumValsTy::const_iterator EI = EnumVals.begin();
748      for (CaseValsTy::const_iterator CI = CaseVals.begin();
749             CI != CaseVals.end(); CI++) {
750        while (EI != EIend && EI->first < CI->first)
751          EI++;
752        if (EI == EIend || EI->first > CI->first)
753            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
754              << ED->getDeclName();
755      }
756      // See which of case ranges aren't in enum
757      EI = EnumVals.begin();
758      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
759             RI != CaseRanges.end() && EI != EIend; RI++) {
760        while (EI != EIend && EI->first < RI->first)
761          EI++;
762
763        if (EI == EIend || EI->first != RI->first) {
764          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
765            << ED->getDeclName();
766        }
767
768        llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
769        while (EI != EIend && EI->first < Hi)
770          EI++;
771        if (EI == EIend || EI->first != Hi)
772          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
773            << ED->getDeclName();
774      }
775      //Check which enum vals aren't in switch
776      CaseValsTy::const_iterator CI = CaseVals.begin();
777      CaseRangesTy::const_iterator RI = CaseRanges.begin();
778      EI = EnumVals.begin();
779      for (; EI != EIend; EI++) {
780        //Drop unneeded case values
781        llvm::APSInt CIVal;
782        while (CI != CaseVals.end() && CI->first < EI->first)
783          CI++;
784
785        if (CI != CaseVals.end() && CI->first == EI->first)
786          continue;
787
788        //Drop unneeded case ranges
789        for (; RI != CaseRanges.end(); RI++) {
790          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
791          if (EI->first <= Hi)
792            break;
793        }
794
795        if (RI == CaseRanges.end() || EI->first < RI->first)
796          Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
797            << EI->second->getDeclName();
798      }
799    }
800  }
801
802  // FIXME: If the case list was broken is some way, we don't have a good system
803  // to patch it up.  Instead, just return the whole substmt as broken.
804  if (CaseListIsErroneous)
805    return StmtError();
806
807  Switch.release();
808  return Owned(SS);
809}
810
811Action::OwningStmtResult
812Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
813                     DeclPtrTy CondVar, StmtArg Body) {
814  OwningExprResult CondResult(Cond.release());
815
816  VarDecl *ConditionVar = 0;
817  if (CondVar.get()) {
818    ConditionVar = CondVar.getAs<VarDecl>();
819    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
820    if (CondResult.isInvalid())
821      return StmtError();
822  }
823  Expr *ConditionExpr = CondResult.takeAs<Expr>();
824  if (!ConditionExpr)
825    return StmtError();
826
827  Stmt *bodyStmt = Body.takeAs<Stmt>();
828  DiagnoseUnusedExprResult(bodyStmt);
829
830  CondResult.release();
831  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
832                                       bodyStmt, WhileLoc));
833}
834
835Action::OwningStmtResult
836Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
837                  SourceLocation WhileLoc, SourceLocation CondLParen,
838                  ExprArg Cond, SourceLocation CondRParen) {
839  Expr *condExpr = Cond.takeAs<Expr>();
840  assert(condExpr && "ActOnDoStmt(): missing expression");
841
842  if (CheckBooleanCondition(condExpr, DoLoc)) {
843    Cond = condExpr;
844    return StmtError();
845  }
846
847  condExpr = MaybeCreateCXXExprWithTemporaries(condExpr);
848  if (!condExpr)
849    return StmtError();
850
851  Stmt *bodyStmt = Body.takeAs<Stmt>();
852  DiagnoseUnusedExprResult(bodyStmt);
853
854  Cond.release();
855  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
856                                    WhileLoc, CondRParen));
857}
858
859Action::OwningStmtResult
860Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
861                   StmtArg first, FullExprArg second, DeclPtrTy secondVar,
862                   FullExprArg third,
863                   SourceLocation RParenLoc, StmtArg body) {
864  Stmt *First  = static_cast<Stmt*>(first.get());
865
866  if (!getLangOptions().CPlusPlus) {
867    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
868      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
869      // declare identifiers for objects having storage class 'auto' or
870      // 'register'.
871      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
872           DI!=DE; ++DI) {
873        VarDecl *VD = dyn_cast<VarDecl>(*DI);
874        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
875          VD = 0;
876        if (VD == 0)
877          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
878        // FIXME: mark decl erroneous!
879      }
880    }
881  }
882
883  OwningExprResult SecondResult(second.release());
884  VarDecl *ConditionVar = 0;
885  if (secondVar.get()) {
886    ConditionVar = secondVar.getAs<VarDecl>();
887    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
888    if (SecondResult.isInvalid())
889      return StmtError();
890  }
891
892  Expr *Third  = third.release().takeAs<Expr>();
893  Stmt *Body  = static_cast<Stmt*>(body.get());
894
895  DiagnoseUnusedExprResult(First);
896  DiagnoseUnusedExprResult(Third);
897  DiagnoseUnusedExprResult(Body);
898
899  first.release();
900  body.release();
901  return Owned(new (Context) ForStmt(Context, First,
902                                     SecondResult.takeAs<Expr>(), ConditionVar,
903                                     Third, Body, ForLoc, LParenLoc,
904                                     RParenLoc));
905}
906
907Action::OwningStmtResult
908Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
909                                 SourceLocation LParenLoc,
910                                 StmtArg first, ExprArg second,
911                                 SourceLocation RParenLoc, StmtArg body) {
912  Stmt *First  = static_cast<Stmt*>(first.get());
913  Expr *Second = static_cast<Expr*>(second.get());
914  Stmt *Body  = static_cast<Stmt*>(body.get());
915  if (First) {
916    QualType FirstType;
917    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
918      if (!DS->isSingleDecl())
919        return StmtError(Diag((*DS->decl_begin())->getLocation(),
920                         diag::err_toomany_element_decls));
921
922      Decl *D = DS->getSingleDecl();
923      FirstType = cast<ValueDecl>(D)->getType();
924      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
925      // declare identifiers for objects having storage class 'auto' or
926      // 'register'.
927      VarDecl *VD = cast<VarDecl>(D);
928      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
929        return StmtError(Diag(VD->getLocation(),
930                              diag::err_non_variable_decl_in_for));
931    } else {
932      Expr *FirstE = cast<Expr>(First);
933      if (!FirstE->isTypeDependent() &&
934          FirstE->isLvalue(Context) != Expr::LV_Valid)
935        return StmtError(Diag(First->getLocStart(),
936                   diag::err_selector_element_not_lvalue)
937          << First->getSourceRange());
938
939      FirstType = static_cast<Expr*>(First)->getType();
940    }
941    if (!FirstType->isDependentType() &&
942        !FirstType->isObjCObjectPointerType() &&
943        !FirstType->isBlockPointerType())
944        Diag(ForLoc, diag::err_selector_element_type)
945          << FirstType << First->getSourceRange();
946  }
947  if (Second && !Second->isTypeDependent()) {
948    DefaultFunctionArrayLvalueConversion(Second);
949    QualType SecondType = Second->getType();
950    if (!SecondType->isObjCObjectPointerType())
951      Diag(ForLoc, diag::err_collection_expr_type)
952        << SecondType << Second->getSourceRange();
953  }
954  first.release();
955  second.release();
956  body.release();
957  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
958                                                   ForLoc, RParenLoc));
959}
960
961Action::OwningStmtResult
962Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
963                    IdentifierInfo *LabelII) {
964  // Look up the record for this label identifier.
965  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
966
967  // If we haven't seen this label yet, create a forward reference.
968  if (LabelDecl == 0)
969    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
970
971  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
972}
973
974Action::OwningStmtResult
975Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
976                            ExprArg DestExp) {
977  // Convert operand to void*
978  Expr* E = DestExp.takeAs<Expr>();
979  if (!E->isTypeDependent()) {
980    QualType ETy = E->getType();
981    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
982    AssignConvertType ConvTy =
983      CheckSingleAssignmentConstraints(DestTy, E);
984    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
985      return StmtError();
986  }
987  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
988}
989
990Action::OwningStmtResult
991Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
992  Scope *S = CurScope->getContinueParent();
993  if (!S) {
994    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
995    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
996  }
997
998  return Owned(new (Context) ContinueStmt(ContinueLoc));
999}
1000
1001Action::OwningStmtResult
1002Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1003  Scope *S = CurScope->getBreakParent();
1004  if (!S) {
1005    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1006    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1007  }
1008
1009  return Owned(new (Context) BreakStmt(BreakLoc));
1010}
1011
1012/// \brief Determine whether a return statement is a candidate for the named
1013/// return value optimization (C++0x 12.8p34, bullet 1).
1014///
1015/// \param Ctx The context in which the return expression and type occur.
1016///
1017/// \param RetType The return type of the function or block.
1018///
1019/// \param RetExpr The expression being returned from the function or block.
1020///
1021/// \returns The NRVO candidate variable, if the return statement may use the
1022/// NRVO, or NULL if there is no such candidate.
1023static const VarDecl *getNRVOCandidate(ASTContext &Ctx, QualType RetType,
1024                                       Expr *RetExpr) {
1025  QualType ExprType = RetExpr->getType();
1026  // - in a return statement in a function with ...
1027  // ... a class return type ...
1028  if (!RetType->isRecordType())
1029    return 0;
1030  // ... the same cv-unqualified type as the function return type ...
1031  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
1032    return 0;
1033  // ... the expression is the name of a non-volatile automatic object ...
1034  // We ignore parentheses here.
1035  // FIXME: Is this compliant? (Everyone else does it)
1036  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
1037  if (!DR)
1038    return 0;
1039  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1040  if (!VD)
1041    return 0;
1042
1043  if (VD->getKind() == Decl::Var && VD->hasLocalStorage() &&
1044      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1045      !VD->getType().isVolatileQualified())
1046    return VD;
1047
1048  return 0;
1049}
1050
1051/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1052///
1053Action::OwningStmtResult
1054Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1055  // If this is the first return we've seen in the block, infer the type of
1056  // the block from it.
1057  BlockScopeInfo *CurBlock = getCurBlock();
1058  if (CurBlock->ReturnType.isNull()) {
1059    if (RetValExp) {
1060      // Don't call UsualUnaryConversions(), since we don't want to do
1061      // integer promotions here.
1062      DefaultFunctionArrayLvalueConversion(RetValExp);
1063      CurBlock->ReturnType = RetValExp->getType();
1064      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1065        // We have to remove a 'const' added to copied-in variable which was
1066        // part of the implementation spec. and not the actual qualifier for
1067        // the variable.
1068        if (CDRE->isConstQualAdded())
1069           CurBlock->ReturnType.removeConst();
1070      }
1071    } else
1072      CurBlock->ReturnType = Context.VoidTy;
1073  }
1074  QualType FnRetType = CurBlock->ReturnType;
1075
1076  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
1077    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1078      << getCurFunctionOrMethodDecl()->getDeclName();
1079    return StmtError();
1080  }
1081
1082  // Otherwise, verify that this result type matches the previous one.  We are
1083  // pickier with blocks than for normal functions because we don't have GCC
1084  // compatibility to worry about here.
1085  ReturnStmt *Result = 0;
1086  if (CurBlock->ReturnType->isVoidType()) {
1087    if (RetValExp) {
1088      Diag(ReturnLoc, diag::err_return_block_has_expr);
1089      RetValExp->Destroy(Context);
1090      RetValExp = 0;
1091    }
1092    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1093  } else if (!RetValExp) {
1094    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1095  } else {
1096    const VarDecl *NRVOCandidate = 0;
1097
1098    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1099      // we have a non-void block with an expression, continue checking
1100
1101      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1102      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1103      // function return.
1104
1105      // In C++ the return statement is handled via a copy initialization.
1106      // the C version of which boils down to CheckSingleAssignmentConstraints.
1107      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1108      OwningExprResult Res = PerformCopyInitialization(
1109                               InitializedEntity::InitializeResult(ReturnLoc,
1110                                                                   FnRetType,
1111                                                            NRVOCandidate != 0),
1112                               SourceLocation(),
1113                               Owned(RetValExp));
1114      if (Res.isInvalid()) {
1115        // FIXME: Cleanup temporaries here, anyway?
1116        return StmtError();
1117      }
1118
1119      if (RetValExp)
1120        RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1121
1122      RetValExp = Res.takeAs<Expr>();
1123      if (RetValExp)
1124        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1125    }
1126
1127    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1128  }
1129
1130  // If we need to check for the named return value optimization, save the
1131  // return statement in our scope for later processing.
1132  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1133      !CurContext->isDependentContext())
1134    FunctionScopes.back()->Returns.push_back(Result);
1135
1136  return Owned(Result);
1137}
1138
1139Action::OwningStmtResult
1140Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
1141  Expr *RetValExp = rex.takeAs<Expr>();
1142  if (getCurBlock())
1143    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1144
1145  QualType FnRetType;
1146  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1147    FnRetType = FD->getResultType();
1148    if (FD->hasAttr<NoReturnAttr>() ||
1149        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1150      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1151        << getCurFunctionOrMethodDecl()->getDeclName();
1152  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1153    FnRetType = MD->getResultType();
1154  else // If we don't have a function/method context, bail.
1155    return StmtError();
1156
1157  ReturnStmt *Result = 0;
1158  if (FnRetType->isVoidType()) {
1159    if (RetValExp && !RetValExp->isTypeDependent()) {
1160      // C99 6.8.6.4p1 (ext_ since GCC warns)
1161      unsigned D = diag::ext_return_has_expr;
1162      if (RetValExp->getType()->isVoidType())
1163        D = diag::ext_return_has_void_expr;
1164
1165      // return (some void expression); is legal in C++.
1166      if (D != diag::ext_return_has_void_expr ||
1167          !getLangOptions().CPlusPlus) {
1168        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1169        Diag(ReturnLoc, D)
1170          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1171          << RetValExp->getSourceRange();
1172      }
1173
1174      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1175    }
1176
1177    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1178  } else if (!RetValExp && !FnRetType->isDependentType()) {
1179    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1180    // C99 6.8.6.4p1 (ext_ since GCC warns)
1181    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1182
1183    if (FunctionDecl *FD = getCurFunctionDecl())
1184      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1185    else
1186      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1187    Result = new (Context) ReturnStmt(ReturnLoc);
1188  } else {
1189    const VarDecl *NRVOCandidate = 0;
1190    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1191      // we have a non-void function with an expression, continue checking
1192
1193      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1194      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1195      // function return.
1196
1197      // In C++ the return statement is handled via a copy initialization.
1198      // the C version of which boils down to CheckSingleAssignmentConstraints.
1199      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1200      OwningExprResult Res = PerformCopyInitialization(
1201                               InitializedEntity::InitializeResult(ReturnLoc,
1202                                                                   FnRetType,
1203                                                            NRVOCandidate != 0),
1204                               SourceLocation(),
1205                               Owned(RetValExp));
1206      if (Res.isInvalid()) {
1207        // FIXME: Cleanup temporaries here, anyway?
1208        return StmtError();
1209      }
1210
1211      RetValExp = Res.takeAs<Expr>();
1212      if (RetValExp)
1213        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1214    }
1215
1216    if (RetValExp)
1217      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1218    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1219  }
1220
1221  // If we need to check for the named return value optimization, save the
1222  // return statement in our scope for later processing.
1223  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1224      !CurContext->isDependentContext())
1225    FunctionScopes.back()->Returns.push_back(Result);
1226
1227  return Owned(Result);
1228}
1229
1230/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1231/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1232/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1233/// provide a strong guidance to not use it.
1234///
1235/// This method checks to see if the argument is an acceptable l-value and
1236/// returns false if it is a case we can handle.
1237static bool CheckAsmLValue(const Expr *E, Sema &S) {
1238  // Type dependent expressions will be checked during instantiation.
1239  if (E->isTypeDependent())
1240    return false;
1241
1242  if (E->isLvalue(S.Context) == Expr::LV_Valid)
1243    return false;  // Cool, this is an lvalue.
1244
1245  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1246  // are supposed to allow.
1247  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1248  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
1249    if (!S.getLangOptions().HeinousExtensions)
1250      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1251        << E->getSourceRange();
1252    else
1253      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1254        << E->getSourceRange();
1255    // Accept, even if we emitted an error diagnostic.
1256    return false;
1257  }
1258
1259  // None of the above, just randomly invalid non-lvalue.
1260  return true;
1261}
1262
1263
1264Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
1265                                          bool IsSimple,
1266                                          bool IsVolatile,
1267                                          unsigned NumOutputs,
1268                                          unsigned NumInputs,
1269                                          IdentifierInfo **Names,
1270                                          MultiExprArg constraints,
1271                                          MultiExprArg exprs,
1272                                          ExprArg asmString,
1273                                          MultiExprArg clobbers,
1274                                          SourceLocation RParenLoc,
1275                                          bool MSAsm) {
1276  unsigned NumClobbers = clobbers.size();
1277  StringLiteral **Constraints =
1278    reinterpret_cast<StringLiteral**>(constraints.get());
1279  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
1280  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
1281  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1282
1283  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1284
1285  // The parser verifies that there is a string literal here.
1286  if (AsmString->isWide())
1287    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1288      << AsmString->getSourceRange());
1289
1290  for (unsigned i = 0; i != NumOutputs; i++) {
1291    StringLiteral *Literal = Constraints[i];
1292    if (Literal->isWide())
1293      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1294        << Literal->getSourceRange());
1295
1296    llvm::StringRef OutputName;
1297    if (Names[i])
1298      OutputName = Names[i]->getName();
1299
1300    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1301    if (!Context.Target.validateOutputConstraint(Info))
1302      return StmtError(Diag(Literal->getLocStart(),
1303                            diag::err_asm_invalid_output_constraint)
1304                       << Info.getConstraintStr());
1305
1306    // Check that the output exprs are valid lvalues.
1307    Expr *OutputExpr = Exprs[i];
1308    if (CheckAsmLValue(OutputExpr, *this)) {
1309      return StmtError(Diag(OutputExpr->getLocStart(),
1310                  diag::err_asm_invalid_lvalue_in_output)
1311        << OutputExpr->getSourceRange());
1312    }
1313
1314    OutputConstraintInfos.push_back(Info);
1315  }
1316
1317  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1318
1319  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1320    StringLiteral *Literal = Constraints[i];
1321    if (Literal->isWide())
1322      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1323        << Literal->getSourceRange());
1324
1325    llvm::StringRef InputName;
1326    if (Names[i])
1327      InputName = Names[i]->getName();
1328
1329    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1330    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1331                                                NumOutputs, Info)) {
1332      return StmtError(Diag(Literal->getLocStart(),
1333                            diag::err_asm_invalid_input_constraint)
1334                       << Info.getConstraintStr());
1335    }
1336
1337    Expr *InputExpr = Exprs[i];
1338
1339    // Only allow void types for memory constraints.
1340    if (Info.allowsMemory() && !Info.allowsRegister()) {
1341      if (CheckAsmLValue(InputExpr, *this))
1342        return StmtError(Diag(InputExpr->getLocStart(),
1343                              diag::err_asm_invalid_lvalue_in_input)
1344                         << Info.getConstraintStr()
1345                         << InputExpr->getSourceRange());
1346    }
1347
1348    if (Info.allowsRegister()) {
1349      if (InputExpr->getType()->isVoidType()) {
1350        return StmtError(Diag(InputExpr->getLocStart(),
1351                              diag::err_asm_invalid_type_in_input)
1352          << InputExpr->getType() << Info.getConstraintStr()
1353          << InputExpr->getSourceRange());
1354      }
1355    }
1356
1357    DefaultFunctionArrayLvalueConversion(Exprs[i]);
1358
1359    InputConstraintInfos.push_back(Info);
1360  }
1361
1362  // Check that the clobbers are valid.
1363  for (unsigned i = 0; i != NumClobbers; i++) {
1364    StringLiteral *Literal = Clobbers[i];
1365    if (Literal->isWide())
1366      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1367        << Literal->getSourceRange());
1368
1369    llvm::StringRef Clobber = Literal->getString();
1370
1371    if (!Context.Target.isValidGCCRegisterName(Clobber))
1372      return StmtError(Diag(Literal->getLocStart(),
1373                  diag::err_asm_unknown_register_name) << Clobber);
1374  }
1375
1376  constraints.release();
1377  exprs.release();
1378  asmString.release();
1379  clobbers.release();
1380  AsmStmt *NS =
1381    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1382                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1383                          AsmString, NumClobbers, Clobbers, RParenLoc);
1384  // Validate the asm string, ensuring it makes sense given the operands we
1385  // have.
1386  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1387  unsigned DiagOffs;
1388  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1389    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1390           << AsmString->getSourceRange();
1391    DeleteStmt(NS);
1392    return StmtError();
1393  }
1394
1395  // Validate tied input operands for type mismatches.
1396  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1397    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1398
1399    // If this is a tied constraint, verify that the output and input have
1400    // either exactly the same type, or that they are int/ptr operands with the
1401    // same size (int/long, int*/long, are ok etc).
1402    if (!Info.hasTiedOperand()) continue;
1403
1404    unsigned TiedTo = Info.getTiedOperand();
1405    Expr *OutputExpr = Exprs[TiedTo];
1406    Expr *InputExpr = Exprs[i+NumOutputs];
1407    QualType InTy = InputExpr->getType();
1408    QualType OutTy = OutputExpr->getType();
1409    if (Context.hasSameType(InTy, OutTy))
1410      continue;  // All types can be tied to themselves.
1411
1412    // Decide if the input and output are in the same domain (integer/ptr or
1413    // floating point.
1414    enum AsmDomain {
1415      AD_Int, AD_FP, AD_Other
1416    } InputDomain, OutputDomain;
1417
1418    if (InTy->isIntegerType() || InTy->isPointerType())
1419      InputDomain = AD_Int;
1420    else if (InTy->isRealFloatingType())
1421      InputDomain = AD_FP;
1422    else
1423      InputDomain = AD_Other;
1424
1425    if (OutTy->isIntegerType() || OutTy->isPointerType())
1426      OutputDomain = AD_Int;
1427    else if (OutTy->isRealFloatingType())
1428      OutputDomain = AD_FP;
1429    else
1430      OutputDomain = AD_Other;
1431
1432    // They are ok if they are the same size and in the same domain.  This
1433    // allows tying things like:
1434    //   void* to int*
1435    //   void* to int            if they are the same size.
1436    //   double to long double   if they are the same size.
1437    //
1438    uint64_t OutSize = Context.getTypeSize(OutTy);
1439    uint64_t InSize = Context.getTypeSize(InTy);
1440    if (OutSize == InSize && InputDomain == OutputDomain &&
1441        InputDomain != AD_Other)
1442      continue;
1443
1444    // If the smaller input/output operand is not mentioned in the asm string,
1445    // then we can promote it and the asm string won't notice.  Check this
1446    // case now.
1447    bool SmallerValueMentioned = false;
1448    for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1449      AsmStmt::AsmStringPiece &Piece = Pieces[p];
1450      if (!Piece.isOperand()) continue;
1451
1452      // If this is a reference to the input and if the input was the smaller
1453      // one, then we have to reject this asm.
1454      if (Piece.getOperandNo() == i+NumOutputs) {
1455        if (InSize < OutSize) {
1456          SmallerValueMentioned = true;
1457          break;
1458        }
1459      }
1460
1461      // If this is a reference to the input and if the input was the smaller
1462      // one, then we have to reject this asm.
1463      if (Piece.getOperandNo() == TiedTo) {
1464        if (InSize > OutSize) {
1465          SmallerValueMentioned = true;
1466          break;
1467        }
1468      }
1469    }
1470
1471    // If the smaller value wasn't mentioned in the asm string, and if the
1472    // output was a register, just extend the shorter one to the size of the
1473    // larger one.
1474    if (!SmallerValueMentioned && InputDomain != AD_Other &&
1475        OutputConstraintInfos[TiedTo].allowsRegister())
1476      continue;
1477
1478    Diag(InputExpr->getLocStart(),
1479         diag::err_asm_tying_incompatible_types)
1480      << InTy << OutTy << OutputExpr->getSourceRange()
1481      << InputExpr->getSourceRange();
1482    DeleteStmt(NS);
1483    return StmtError();
1484  }
1485
1486  return Owned(NS);
1487}
1488
1489Action::OwningStmtResult
1490Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1491                           SourceLocation RParen, DeclPtrTy Parm,
1492                           StmtArg Body) {
1493  VarDecl *Var = cast_or_null<VarDecl>(Parm.getAs<Decl>());
1494  if (Var && Var->isInvalidDecl())
1495    return StmtError();
1496
1497  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var,
1498                                             Body.takeAs<Stmt>()));
1499}
1500
1501Action::OwningStmtResult
1502Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1503  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1504                                           static_cast<Stmt*>(Body.release())));
1505}
1506
1507Action::OwningStmtResult
1508Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtArg Try,
1509                         MultiStmtArg CatchStmts, StmtArg Finally) {
1510  FunctionNeedsScopeChecking() = true;
1511  unsigned NumCatchStmts = CatchStmts.size();
1512  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try.takeAs<Stmt>(),
1513                                     (Stmt **)CatchStmts.release(),
1514                                     NumCatchStmts,
1515                                     Finally.takeAs<Stmt>()));
1516}
1517
1518Sema::OwningStmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
1519                                                  ExprArg ThrowE) {
1520  Expr *Throw = static_cast<Expr *>(ThrowE.get());
1521  if (Throw) {
1522    QualType ThrowType = Throw->getType();
1523    // Make sure the expression type is an ObjC pointer or "void *".
1524    if (!ThrowType->isDependentType() &&
1525        !ThrowType->isObjCObjectPointerType()) {
1526      const PointerType *PT = ThrowType->getAs<PointerType>();
1527      if (!PT || !PT->getPointeeType()->isVoidType())
1528        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1529                         << Throw->getType() << Throw->getSourceRange());
1530    }
1531  }
1532
1533  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowE.takeAs<Expr>()));
1534}
1535
1536Action::OwningStmtResult
1537Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg Throw,
1538                           Scope *CurScope) {
1539  if (!Throw.get()) {
1540    // @throw without an expression designates a rethrow (which much occur
1541    // in the context of an @catch clause).
1542    Scope *AtCatchParent = CurScope;
1543    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1544      AtCatchParent = AtCatchParent->getParent();
1545    if (!AtCatchParent)
1546      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1547  }
1548
1549  return BuildObjCAtThrowStmt(AtLoc, move(Throw));
1550}
1551
1552Action::OwningStmtResult
1553Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1554                                  StmtArg SynchBody) {
1555  FunctionNeedsScopeChecking() = true;
1556
1557  // Make sure the expression type is an ObjC pointer or "void *".
1558  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1559  if (!SyncExpr->getType()->isDependentType() &&
1560      !SyncExpr->getType()->isObjCObjectPointerType()) {
1561    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1562    if (!PT || !PT->getPointeeType()->isVoidType())
1563      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1564                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1565  }
1566
1567  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1568                                                    SynchExpr.takeAs<Stmt>(),
1569                                                    SynchBody.takeAs<Stmt>()));
1570}
1571
1572/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1573/// and creates a proper catch handler from them.
1574Action::OwningStmtResult
1575Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1576                         StmtArg HandlerBlock) {
1577  // There's nothing to test that ActOnExceptionDecl didn't already test.
1578  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1579                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1580                                          HandlerBlock.takeAs<Stmt>()));
1581}
1582
1583class TypeWithHandler {
1584  QualType t;
1585  CXXCatchStmt *stmt;
1586public:
1587  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1588  : t(type), stmt(statement) {}
1589
1590  // An arbitrary order is fine as long as it places identical
1591  // types next to each other.
1592  bool operator<(const TypeWithHandler &y) const {
1593    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1594      return true;
1595    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1596      return false;
1597    else
1598      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1599  }
1600
1601  bool operator==(const TypeWithHandler& other) const {
1602    return t == other.t;
1603  }
1604
1605  QualType getQualType() const { return t; }
1606  CXXCatchStmt *getCatchStmt() const { return stmt; }
1607  SourceLocation getTypeSpecStartLoc() const {
1608    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1609  }
1610};
1611
1612/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1613/// handlers and creates a try statement from them.
1614Action::OwningStmtResult
1615Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1616                       MultiStmtArg RawHandlers) {
1617  unsigned NumHandlers = RawHandlers.size();
1618  assert(NumHandlers > 0 &&
1619         "The parser shouldn't call this if there are no handlers.");
1620  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1621
1622  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1623
1624  for (unsigned i = 0; i < NumHandlers; ++i) {
1625    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1626    if (!Handler->getExceptionDecl()) {
1627      if (i < NumHandlers - 1)
1628        return StmtError(Diag(Handler->getLocStart(),
1629                              diag::err_early_catch_all));
1630
1631      continue;
1632    }
1633
1634    const QualType CaughtType = Handler->getCaughtType();
1635    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1636    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1637  }
1638
1639  // Detect handlers for the same type as an earlier one.
1640  if (NumHandlers > 1) {
1641    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1642
1643    TypeWithHandler prev = TypesWithHandlers[0];
1644    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1645      TypeWithHandler curr = TypesWithHandlers[i];
1646
1647      if (curr == prev) {
1648        Diag(curr.getTypeSpecStartLoc(),
1649             diag::warn_exception_caught_by_earlier_handler)
1650          << curr.getCatchStmt()->getCaughtType().getAsString();
1651        Diag(prev.getTypeSpecStartLoc(),
1652             diag::note_previous_exception_handler)
1653          << prev.getCatchStmt()->getCaughtType().getAsString();
1654      }
1655
1656      prev = curr;
1657    }
1658  }
1659
1660  // FIXME: We should detect handlers that cannot catch anything because an
1661  // earlier handler catches a superclass. Need to find a method that is not
1662  // quadratic for this.
1663  // Neither of these are explicitly forbidden, but every compiler detects them
1664  // and warns.
1665
1666  FunctionNeedsScopeChecking() = true;
1667  RawHandlers.release();
1668  return Owned(CXXTryStmt::Create(Context, TryLoc,
1669                                  static_cast<Stmt*>(TryBlock.release()),
1670                                  Handlers, NumHandlers));
1671}
1672