SemaStmt.cpp revision 3af708ff19e4ae2bf9e40550548361b00e5916bf
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/StmtObjC.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24using namespace clang;
25
26Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
27  Expr *E = expr->takeAs<Expr>();
28  assert(E && "ActOnExprStmt(): missing expression");
29
30  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
31  // void expression for its side effects.  Conversion to void allows any
32  // operand, even incomplete types.
33
34  // Same thing in for stmt first clause (when expr) and third clause.
35  return Owned(static_cast<Stmt*>(E));
36}
37
38
39Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
40  return Owned(new (Context) NullStmt(SemiLoc));
41}
42
43Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
44                                           SourceLocation StartLoc,
45                                           SourceLocation EndLoc) {
46  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
47
48  // If we have an invalid decl, just return an error.
49  if (DG.isNull()) return StmtError();
50
51  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
52}
53
54void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
55  const Expr *E = dyn_cast_or_null<Expr>(S);
56  if (!E)
57    return;
58
59  // Ignore expressions that have void type.
60  if (E->getType()->isVoidType())
61    return;
62
63  SourceLocation Loc;
64  SourceRange R1, R2;
65  if (!E->isUnusedResultAWarning(Loc, R1, R2))
66    return;
67
68  Diag(Loc, diag::warn_unused_expr) << R1 << R2;
69}
70
71Action::OwningStmtResult
72Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
73                        MultiStmtArg elts, bool isStmtExpr) {
74  unsigned NumElts = elts.size();
75  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
76  // If we're in C89 mode, check that we don't have any decls after stmts.  If
77  // so, emit an extension diagnostic.
78  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
79    // Note that __extension__ can be around a decl.
80    unsigned i = 0;
81    // Skip over all declarations.
82    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
83      /*empty*/;
84
85    // We found the end of the list or a statement.  Scan for another declstmt.
86    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
87      /*empty*/;
88
89    if (i != NumElts) {
90      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
91      Diag(D->getLocation(), diag::ext_mixed_decls_code);
92    }
93  }
94  // Warn about unused expressions in statements.
95  for (unsigned i = 0; i != NumElts; ++i) {
96    // Ignore statements that are last in a statement expression.
97    if (isStmtExpr && i == NumElts - 1)
98      continue;
99
100    DiagnoseUnusedExprResult(Elts[i]);
101  }
102
103  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
104}
105
106Action::OwningStmtResult
107Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
108                    SourceLocation DotDotDotLoc, ExprArg rhsval,
109                    SourceLocation ColonLoc) {
110  assert((lhsval.get() != 0) && "missing expression in case statement");
111
112  // C99 6.8.4.2p3: The expression shall be an integer constant.
113  // However, GCC allows any evaluatable integer expression.
114  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
115  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
116      VerifyIntegerConstantExpression(LHSVal))
117    return StmtError();
118
119  // GCC extension: The expression shall be an integer constant.
120
121  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
122  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
123      VerifyIntegerConstantExpression(RHSVal)) {
124    RHSVal = 0;  // Recover by just forgetting about it.
125    rhsval = 0;
126  }
127
128  if (getSwitchStack().empty()) {
129    Diag(CaseLoc, diag::err_case_not_in_switch);
130    return StmtError();
131  }
132
133  // Only now release the smart pointers.
134  lhsval.release();
135  rhsval.release();
136  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
137                                        ColonLoc);
138  getSwitchStack().back()->addSwitchCase(CS);
139  return Owned(CS);
140}
141
142/// ActOnCaseStmtBody - This installs a statement as the body of a case.
143void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
144  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
145  Stmt *SubStmt = subStmt.takeAs<Stmt>();
146  CS->setSubStmt(SubStmt);
147}
148
149Action::OwningStmtResult
150Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
151                       StmtArg subStmt, Scope *CurScope) {
152  Stmt *SubStmt = subStmt.takeAs<Stmt>();
153
154  if (getSwitchStack().empty()) {
155    Diag(DefaultLoc, diag::err_default_not_in_switch);
156    return Owned(SubStmt);
157  }
158
159  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
160  getSwitchStack().back()->addSwitchCase(DS);
161  return Owned(DS);
162}
163
164Action::OwningStmtResult
165Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
166                     SourceLocation ColonLoc, StmtArg subStmt) {
167  Stmt *SubStmt = subStmt.takeAs<Stmt>();
168  // Look up the record for this label identifier.
169  LabelStmt *&LabelDecl = getLabelMap()[II];
170
171  // If not forward referenced or defined already, just create a new LabelStmt.
172  if (LabelDecl == 0)
173    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
174
175  assert(LabelDecl->getID() == II && "Label mismatch!");
176
177  // Otherwise, this label was either forward reference or multiply defined.  If
178  // multiply defined, reject it now.
179  if (LabelDecl->getSubStmt()) {
180    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
181    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
182    return Owned(SubStmt);
183  }
184
185  // Otherwise, this label was forward declared, and we just found its real
186  // definition.  Fill in the forward definition and return it.
187  LabelDecl->setIdentLoc(IdentLoc);
188  LabelDecl->setSubStmt(SubStmt);
189  return Owned(LabelDecl);
190}
191
192Action::OwningStmtResult
193Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal,
194                  StmtArg ThenVal, SourceLocation ElseLoc,
195                  StmtArg ElseVal) {
196  OwningExprResult CondResult(CondVal.release());
197
198  Expr *condExpr = CondResult.takeAs<Expr>();
199
200  assert(condExpr && "ActOnIfStmt(): missing expression");
201
202  if (!condExpr->isTypeDependent()) {
203    DefaultFunctionArrayConversion(condExpr);
204    // Take ownership again until we're past the error checking.
205    CondResult = condExpr;
206    QualType condType = condExpr->getType();
207
208    if (getLangOptions().CPlusPlus) {
209      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
210        return StmtError();
211    } else if (!condType->isScalarType()) // C99 6.8.4.1p1
212      return StmtError(Diag(IfLoc,
213                            diag::err_typecheck_statement_requires_scalar)
214                       << condType << condExpr->getSourceRange());
215  }
216
217  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
218  DiagnoseUnusedExprResult(thenStmt);
219
220  // Warn if the if block has a null body without an else value.
221  // this helps prevent bugs due to typos, such as
222  // if (condition);
223  //   do_stuff();
224  if (!ElseVal.get()) {
225    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
226      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
227  }
228
229  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
230  DiagnoseUnusedExprResult(elseStmt);
231
232  CondResult.release();
233  return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
234                                    ElseLoc, elseStmt));
235}
236
237Action::OwningStmtResult
238Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
239  Expr *Cond = cond.takeAs<Expr>();
240
241  if (getLangOptions().CPlusPlus) {
242    // C++ 6.4.2.p2:
243    // The condition shall be of integral type, enumeration type, or of a class
244    // type for which a single conversion function to integral or enumeration
245    // type exists (12.3). If the condition is of class type, the condition is
246    // converted by calling that conversion function, and the result of the
247    // conversion is used in place of the original condition for the remainder
248    // of this section. Integral promotions are performed.
249    if (!Cond->isTypeDependent()) {
250      QualType Ty = Cond->getType();
251
252      // FIXME: Handle class types.
253
254      // If the type is wrong a diagnostic will be emitted later at
255      // ActOnFinishSwitchStmt.
256      if (Ty->isIntegralType() || Ty->isEnumeralType()) {
257        // Integral promotions are performed.
258        // FIXME: Integral promotions for C++ are not complete.
259        UsualUnaryConversions(Cond);
260      }
261    }
262  } else {
263    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
264    UsualUnaryConversions(Cond);
265  }
266
267  SwitchStmt *SS = new (Context) SwitchStmt(Cond);
268  getSwitchStack().push_back(SS);
269  return Owned(SS);
270}
271
272/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
273/// the specified width and sign.  If an overflow occurs, detect it and emit
274/// the specified diagnostic.
275void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
276                                              unsigned NewWidth, bool NewSign,
277                                              SourceLocation Loc,
278                                              unsigned DiagID) {
279  // Perform a conversion to the promoted condition type if needed.
280  if (NewWidth > Val.getBitWidth()) {
281    // If this is an extension, just do it.
282    llvm::APSInt OldVal(Val);
283    Val.extend(NewWidth);
284
285    // If the input was signed and negative and the output is unsigned,
286    // warn.
287    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
288      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
289
290    Val.setIsSigned(NewSign);
291  } else if (NewWidth < Val.getBitWidth()) {
292    // If this is a truncation, check for overflow.
293    llvm::APSInt ConvVal(Val);
294    ConvVal.trunc(NewWidth);
295    ConvVal.setIsSigned(NewSign);
296    ConvVal.extend(Val.getBitWidth());
297    ConvVal.setIsSigned(Val.isSigned());
298    if (ConvVal != Val)
299      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
300
301    // Regardless of whether a diagnostic was emitted, really do the
302    // truncation.
303    Val.trunc(NewWidth);
304    Val.setIsSigned(NewSign);
305  } else if (NewSign != Val.isSigned()) {
306    // Convert the sign to match the sign of the condition.  This can cause
307    // overflow as well: unsigned(INTMIN)
308    llvm::APSInt OldVal(Val);
309    Val.setIsSigned(NewSign);
310
311    if (Val.isNegative())  // Sign bit changes meaning.
312      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
313  }
314}
315
316namespace {
317  struct CaseCompareFunctor {
318    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
319                    const llvm::APSInt &RHS) {
320      return LHS.first < RHS;
321    }
322    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
323                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
324      return LHS.first < RHS.first;
325    }
326    bool operator()(const llvm::APSInt &LHS,
327                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
328      return LHS < RHS.first;
329    }
330  };
331}
332
333/// CmpCaseVals - Comparison predicate for sorting case values.
334///
335static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
336                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
337  if (lhs.first < rhs.first)
338    return true;
339
340  if (lhs.first == rhs.first &&
341      lhs.second->getCaseLoc().getRawEncoding()
342       < rhs.second->getCaseLoc().getRawEncoding())
343    return true;
344  return false;
345}
346
347Action::OwningStmtResult
348Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
349                            StmtArg Body) {
350  Stmt *BodyStmt = Body.takeAs<Stmt>();
351
352  SwitchStmt *SS = getSwitchStack().back();
353  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
354
355  SS->setBody(BodyStmt, SwitchLoc);
356  getSwitchStack().pop_back();
357
358  Expr *CondExpr = SS->getCond();
359  QualType CondType = CondExpr->getType();
360
361  if (!CondExpr->isTypeDependent() &&
362      !CondType->isIntegerType()) { // C99 6.8.4.2p1
363    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
364      << CondType << CondExpr->getSourceRange();
365    return StmtError();
366  }
367
368  // Get the bitwidth of the switched-on value before promotions.  We must
369  // convert the integer case values to this width before comparison.
370  bool HasDependentValue
371    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
372  unsigned CondWidth
373    = HasDependentValue? 0
374                       : static_cast<unsigned>(Context.getTypeSize(CondType));
375  bool CondIsSigned = CondType->isSignedIntegerType();
376
377  // Accumulate all of the case values in a vector so that we can sort them
378  // and detect duplicates.  This vector contains the APInt for the case after
379  // it has been converted to the condition type.
380  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
381  CaseValsTy CaseVals;
382
383  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
384  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
385
386  DefaultStmt *TheDefaultStmt = 0;
387
388  bool CaseListIsErroneous = false;
389
390  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
391       SC = SC->getNextSwitchCase()) {
392
393    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
394      if (TheDefaultStmt) {
395        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
396        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
397
398        // FIXME: Remove the default statement from the switch block so that
399        // we'll return a valid AST.  This requires recursing down the AST and
400        // finding it, not something we are set up to do right now.  For now,
401        // just lop the entire switch stmt out of the AST.
402        CaseListIsErroneous = true;
403      }
404      TheDefaultStmt = DS;
405
406    } else {
407      CaseStmt *CS = cast<CaseStmt>(SC);
408
409      // We already verified that the expression has a i-c-e value (C99
410      // 6.8.4.2p3) - get that value now.
411      Expr *Lo = CS->getLHS();
412
413      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
414        HasDependentValue = true;
415        break;
416      }
417
418      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
419
420      // Convert the value to the same width/sign as the condition.
421      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
422                                         CS->getLHS()->getLocStart(),
423                                         diag::warn_case_value_overflow);
424
425      // If the LHS is not the same type as the condition, insert an implicit
426      // cast.
427      ImpCastExprToType(Lo, CondType);
428      CS->setLHS(Lo);
429
430      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
431      if (CS->getRHS()) {
432        if (CS->getRHS()->isTypeDependent() ||
433            CS->getRHS()->isValueDependent()) {
434          HasDependentValue = true;
435          break;
436        }
437        CaseRanges.push_back(std::make_pair(LoVal, CS));
438      } else
439        CaseVals.push_back(std::make_pair(LoVal, CS));
440    }
441  }
442
443  if (!HasDependentValue) {
444    // Sort all the scalar case values so we can easily detect duplicates.
445    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
446
447    if (!CaseVals.empty()) {
448      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
449        if (CaseVals[i].first == CaseVals[i+1].first) {
450          // If we have a duplicate, report it.
451          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
452               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
453          Diag(CaseVals[i].second->getLHS()->getLocStart(),
454               diag::note_duplicate_case_prev);
455          // FIXME: We really want to remove the bogus case stmt from the
456          // substmt, but we have no way to do this right now.
457          CaseListIsErroneous = true;
458        }
459      }
460    }
461
462    // Detect duplicate case ranges, which usually don't exist at all in
463    // the first place.
464    if (!CaseRanges.empty()) {
465      // Sort all the case ranges by their low value so we can easily detect
466      // overlaps between ranges.
467      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
468
469      // Scan the ranges, computing the high values and removing empty ranges.
470      std::vector<llvm::APSInt> HiVals;
471      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
472        CaseStmt *CR = CaseRanges[i].second;
473        Expr *Hi = CR->getRHS();
474        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
475
476        // Convert the value to the same width/sign as the condition.
477        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
478                                           CR->getRHS()->getLocStart(),
479                                           diag::warn_case_value_overflow);
480
481        // If the LHS is not the same type as the condition, insert an implicit
482        // cast.
483        ImpCastExprToType(Hi, CondType);
484        CR->setRHS(Hi);
485
486        // If the low value is bigger than the high value, the case is empty.
487        if (CaseRanges[i].first > HiVal) {
488          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
489            << SourceRange(CR->getLHS()->getLocStart(),
490                           CR->getRHS()->getLocEnd());
491          CaseRanges.erase(CaseRanges.begin()+i);
492          --i, --e;
493          continue;
494        }
495        HiVals.push_back(HiVal);
496      }
497
498      // Rescan the ranges, looking for overlap with singleton values and other
499      // ranges.  Since the range list is sorted, we only need to compare case
500      // ranges with their neighbors.
501      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
502        llvm::APSInt &CRLo = CaseRanges[i].first;
503        llvm::APSInt &CRHi = HiVals[i];
504        CaseStmt *CR = CaseRanges[i].second;
505
506        // Check to see whether the case range overlaps with any
507        // singleton cases.
508        CaseStmt *OverlapStmt = 0;
509        llvm::APSInt OverlapVal(32);
510
511        // Find the smallest value >= the lower bound.  If I is in the
512        // case range, then we have overlap.
513        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
514                                                  CaseVals.end(), CRLo,
515                                                  CaseCompareFunctor());
516        if (I != CaseVals.end() && I->first < CRHi) {
517          OverlapVal  = I->first;   // Found overlap with scalar.
518          OverlapStmt = I->second;
519        }
520
521        // Find the smallest value bigger than the upper bound.
522        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
523        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
524          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
525          OverlapStmt = (I-1)->second;
526        }
527
528        // Check to see if this case stmt overlaps with the subsequent
529        // case range.
530        if (i && CRLo <= HiVals[i-1]) {
531          OverlapVal  = HiVals[i-1];       // Found overlap with range.
532          OverlapStmt = CaseRanges[i-1].second;
533        }
534
535        if (OverlapStmt) {
536          // If we have a duplicate, report it.
537          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
538            << OverlapVal.toString(10);
539          Diag(OverlapStmt->getLHS()->getLocStart(),
540               diag::note_duplicate_case_prev);
541          // FIXME: We really want to remove the bogus case stmt from the
542          // substmt, but we have no way to do this right now.
543          CaseListIsErroneous = true;
544        }
545      }
546    }
547  }
548
549  // FIXME: If the case list was broken is some way, we don't have a good system
550  // to patch it up.  Instead, just return the whole substmt as broken.
551  if (CaseListIsErroneous)
552    return StmtError();
553
554  Switch.release();
555  return Owned(SS);
556}
557
558Action::OwningStmtResult
559Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, StmtArg Body) {
560  ExprArg CondArg(Cond.release());
561  Expr *condExpr = CondArg.takeAs<Expr>();
562  assert(condExpr && "ActOnWhileStmt(): missing expression");
563
564  if (!condExpr->isTypeDependent()) {
565    DefaultFunctionArrayConversion(condExpr);
566    CondArg = condExpr;
567    QualType condType = condExpr->getType();
568
569    if (getLangOptions().CPlusPlus) {
570      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
571        return StmtError();
572    } else if (!condType->isScalarType()) // C99 6.8.5p2
573      return StmtError(Diag(WhileLoc,
574                            diag::err_typecheck_statement_requires_scalar)
575                       << condType << condExpr->getSourceRange());
576  }
577
578  Stmt *bodyStmt = Body.takeAs<Stmt>();
579  DiagnoseUnusedExprResult(bodyStmt);
580
581  CondArg.release();
582  return Owned(new (Context) WhileStmt(condExpr, bodyStmt, WhileLoc));
583}
584
585Action::OwningStmtResult
586Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
587                  SourceLocation WhileLoc, SourceLocation CondLParen,
588                  ExprArg Cond, SourceLocation CondRParen) {
589  Expr *condExpr = Cond.takeAs<Expr>();
590  assert(condExpr && "ActOnDoStmt(): missing expression");
591
592  if (!condExpr->isTypeDependent()) {
593    DefaultFunctionArrayConversion(condExpr);
594    Cond = condExpr;
595    QualType condType = condExpr->getType();
596
597    if (getLangOptions().CPlusPlus) {
598      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
599        return StmtError();
600    } else if (!condType->isScalarType()) // C99 6.8.5p2
601      return StmtError(Diag(DoLoc,
602                            diag::err_typecheck_statement_requires_scalar)
603                       << condType << condExpr->getSourceRange());
604  }
605
606  Stmt *bodyStmt = Body.takeAs<Stmt>();
607  DiagnoseUnusedExprResult(bodyStmt);
608
609  Cond.release();
610  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
611                                    WhileLoc, CondRParen));
612}
613
614Action::OwningStmtResult
615Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
616                   StmtArg first, ExprArg second, ExprArg third,
617                   SourceLocation RParenLoc, StmtArg body) {
618  Stmt *First  = static_cast<Stmt*>(first.get());
619  Expr *Second = static_cast<Expr*>(second.get());
620  Expr *Third  = static_cast<Expr*>(third.get());
621  Stmt *Body  = static_cast<Stmt*>(body.get());
622
623  if (!getLangOptions().CPlusPlus) {
624    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
625      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
626      // declare identifiers for objects having storage class 'auto' or
627      // 'register'.
628      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
629           DI!=DE; ++DI) {
630        VarDecl *VD = dyn_cast<VarDecl>(*DI);
631        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
632          VD = 0;
633        if (VD == 0)
634          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
635        // FIXME: mark decl erroneous!
636      }
637    }
638  }
639  if (Second && !Second->isTypeDependent()) {
640    DefaultFunctionArrayConversion(Second);
641    QualType SecondType = Second->getType();
642
643    if (getLangOptions().CPlusPlus) {
644      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
645        return StmtError();
646    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
647      return StmtError(Diag(ForLoc,
648                            diag::err_typecheck_statement_requires_scalar)
649        << SecondType << Second->getSourceRange());
650  }
651
652  DiagnoseUnusedExprResult(First);
653  DiagnoseUnusedExprResult(Third);
654  DiagnoseUnusedExprResult(Body);
655
656  first.release();
657  second.release();
658  third.release();
659  body.release();
660  return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc,
661                                     LParenLoc, RParenLoc));
662}
663
664Action::OwningStmtResult
665Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
666                                 SourceLocation LParenLoc,
667                                 StmtArg first, ExprArg second,
668                                 SourceLocation RParenLoc, StmtArg body) {
669  Stmt *First  = static_cast<Stmt*>(first.get());
670  Expr *Second = static_cast<Expr*>(second.get());
671  Stmt *Body  = static_cast<Stmt*>(body.get());
672  if (First) {
673    QualType FirstType;
674    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
675      if (!DS->isSingleDecl())
676        return StmtError(Diag((*DS->decl_begin())->getLocation(),
677                         diag::err_toomany_element_decls));
678
679      Decl *D = DS->getSingleDecl();
680      FirstType = cast<ValueDecl>(D)->getType();
681      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
682      // declare identifiers for objects having storage class 'auto' or
683      // 'register'.
684      VarDecl *VD = cast<VarDecl>(D);
685      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
686        return StmtError(Diag(VD->getLocation(),
687                              diag::err_non_variable_decl_in_for));
688    } else {
689      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
690        return StmtError(Diag(First->getLocStart(),
691                   diag::err_selector_element_not_lvalue)
692          << First->getSourceRange());
693
694      FirstType = static_cast<Expr*>(First)->getType();
695    }
696    if (!FirstType->isObjCObjectPointerType())
697        Diag(ForLoc, diag::err_selector_element_type)
698          << FirstType << First->getSourceRange();
699  }
700  if (Second) {
701    DefaultFunctionArrayConversion(Second);
702    QualType SecondType = Second->getType();
703    if (!SecondType->isObjCObjectPointerType())
704      Diag(ForLoc, diag::err_collection_expr_type)
705        << SecondType << Second->getSourceRange();
706  }
707  first.release();
708  second.release();
709  body.release();
710  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
711                                                   ForLoc, RParenLoc));
712}
713
714Action::OwningStmtResult
715Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
716                    IdentifierInfo *LabelII) {
717  // If we are in a block, reject all gotos for now.
718  if (CurBlock)
719    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
720
721  // Look up the record for this label identifier.
722  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
723
724  // If we haven't seen this label yet, create a forward reference.
725  if (LabelDecl == 0)
726    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
727
728  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
729}
730
731Action::OwningStmtResult
732Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
733                            ExprArg DestExp) {
734  // Convert operand to void*
735  Expr* E = DestExp.takeAs<Expr>();
736  if (!E->isTypeDependent()) {
737    QualType ETy = E->getType();
738    AssignConvertType ConvTy =
739      CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
740    if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
741                                 E, "passing"))
742      return StmtError();
743  }
744  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
745}
746
747Action::OwningStmtResult
748Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
749  Scope *S = CurScope->getContinueParent();
750  if (!S) {
751    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
752    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
753  }
754
755  return Owned(new (Context) ContinueStmt(ContinueLoc));
756}
757
758Action::OwningStmtResult
759Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
760  Scope *S = CurScope->getBreakParent();
761  if (!S) {
762    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
763    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
764  }
765
766  return Owned(new (Context) BreakStmt(BreakLoc));
767}
768
769/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
770///
771Action::OwningStmtResult
772Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
773  // If this is the first return we've seen in the block, infer the type of
774  // the block from it.
775  if (CurBlock->ReturnType.isNull()) {
776    if (RetValExp) {
777      // Don't call UsualUnaryConversions(), since we don't want to do
778      // integer promotions here.
779      DefaultFunctionArrayConversion(RetValExp);
780      CurBlock->ReturnType = RetValExp->getType();
781      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
782        // We have to remove a 'const' added to copied-in variable which was
783        // part of the implementation spec. and not the actual qualifier for
784        // the variable.
785        if (CDRE->isConstQualAdded())
786           CurBlock->ReturnType.removeConst();
787      }
788    } else
789      CurBlock->ReturnType = Context.VoidTy;
790  }
791  QualType FnRetType = CurBlock->ReturnType;
792
793  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
794    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
795      << getCurFunctionOrMethodDecl()->getDeclName();
796    return StmtError();
797  }
798
799  // Otherwise, verify that this result type matches the previous one.  We are
800  // pickier with blocks than for normal functions because we don't have GCC
801  // compatibility to worry about here.
802  if (CurBlock->ReturnType->isVoidType()) {
803    if (RetValExp) {
804      Diag(ReturnLoc, diag::err_return_block_has_expr);
805      RetValExp->Destroy(Context);
806      RetValExp = 0;
807    }
808    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
809  }
810
811  if (!RetValExp)
812    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
813
814  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
815    // we have a non-void block with an expression, continue checking
816    QualType RetValType = RetValExp->getType();
817
818    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
819    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
820    // function return.
821
822    // In C++ the return statement is handled via a copy initialization.
823    // the C version of which boils down to CheckSingleAssignmentConstraints.
824    // FIXME: Leaks RetValExp.
825    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
826      return StmtError();
827
828    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
829  }
830
831  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
832}
833
834/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
835/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
836static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
837                                 Expr *RetExpr) {
838  QualType ExprType = RetExpr->getType();
839  // - in a return statement in a function with ...
840  // ... a class return type ...
841  if (!RetType->isRecordType())
842    return false;
843  // ... the same cv-unqualified type as the function return type ...
844  if (Ctx.getCanonicalType(RetType).getUnqualifiedType() !=
845      Ctx.getCanonicalType(ExprType).getUnqualifiedType())
846    return false;
847  // ... the expression is the name of a non-volatile automatic object ...
848  // We ignore parentheses here.
849  // FIXME: Is this compliant?
850  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
851  if (!DR)
852    return false;
853  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
854  if (!VD)
855    return false;
856  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
857    && !VD->getType().isVolatileQualified();
858}
859
860Action::OwningStmtResult
861Sema::ActOnReturnStmt(SourceLocation ReturnLoc, FullExprArg rex) {
862  Expr *RetValExp = rex->takeAs<Expr>();
863  if (CurBlock)
864    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
865
866  QualType FnRetType;
867  if (const FunctionDecl *FD = getCurFunctionDecl()) {
868    FnRetType = FD->getResultType();
869    if (FD->hasAttr<NoReturnAttr>())
870      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
871        << getCurFunctionOrMethodDecl()->getDeclName();
872  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
873    FnRetType = MD->getResultType();
874  else // If we don't have a function/method context, bail.
875    return StmtError();
876
877  if (FnRetType->isVoidType()) {
878    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
879      unsigned D = diag::ext_return_has_expr;
880      if (RetValExp->getType()->isVoidType())
881        D = diag::ext_return_has_void_expr;
882
883      // return (some void expression); is legal in C++.
884      if (D != diag::ext_return_has_void_expr ||
885          !getLangOptions().CPlusPlus) {
886        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
887        Diag(ReturnLoc, D)
888          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
889          << RetValExp->getSourceRange();
890      }
891    }
892    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
893  }
894
895  if (!RetValExp && !FnRetType->isDependentType()) {
896    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
897    // C99 6.8.6.4p1 (ext_ since GCC warns)
898    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
899
900    if (FunctionDecl *FD = getCurFunctionDecl())
901      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
902    else
903      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
904    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
905  }
906
907  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
908    // we have a non-void function with an expression, continue checking
909
910    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
911    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
912    // function return.
913
914    // C++0x 12.8p15: When certain criteria are met, an implementation is
915    //   allowed to omit the copy construction of a class object, [...]
916    //   - in a return statement in a function with a class return type, when
917    //     the expression is the name of a non-volatile automatic object with
918    //     the same cv-unqualified type as the function return type, the copy
919    //     operation can be omitted [...]
920    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
921    //   and the object to be copied is designated by an lvalue, overload
922    //   resolution to select the constructor for the copy is first performed
923    //   as if the object were designated by an rvalue.
924    // Note that we only compute Elidable if we're in C++0x, since we don't
925    // care otherwise.
926    bool Elidable = getLangOptions().CPlusPlus0x ?
927                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
928                      false;
929
930    // In C++ the return statement is handled via a copy initialization.
931    // the C version of which boils down to CheckSingleAssignmentConstraints.
932    // FIXME: Leaks RetValExp on error.
933    if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable))
934      return StmtError();
935
936    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
937  }
938
939  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
940}
941
942/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
943/// ignore "noop" casts in places where an lvalue is required by an inline asm.
944/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
945/// provide a strong guidance to not use it.
946///
947/// This method checks to see if the argument is an acceptable l-value and
948/// returns false if it is a case we can handle.
949static bool CheckAsmLValue(const Expr *E, Sema &S) {
950  if (E->isLvalue(S.Context) == Expr::LV_Valid)
951    return false;  // Cool, this is an lvalue.
952
953  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
954  // are supposed to allow.
955  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
956  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
957    if (!S.getLangOptions().HeinousExtensions)
958      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
959        << E->getSourceRange();
960    else
961      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
962        << E->getSourceRange();
963    // Accept, even if we emitted an error diagnostic.
964    return false;
965  }
966
967  // None of the above, just randomly invalid non-lvalue.
968  return true;
969}
970
971
972Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
973                                          bool IsSimple,
974                                          bool IsVolatile,
975                                          unsigned NumOutputs,
976                                          unsigned NumInputs,
977                                          std::string *Names,
978                                          MultiExprArg constraints,
979                                          MultiExprArg exprs,
980                                          ExprArg asmString,
981                                          MultiExprArg clobbers,
982                                          SourceLocation RParenLoc) {
983  unsigned NumClobbers = clobbers.size();
984  StringLiteral **Constraints =
985    reinterpret_cast<StringLiteral**>(constraints.get());
986  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
987  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
988  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
989
990  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
991
992  // The parser verifies that there is a string literal here.
993  if (AsmString->isWide())
994    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
995      << AsmString->getSourceRange());
996
997  for (unsigned i = 0; i != NumOutputs; i++) {
998    StringLiteral *Literal = Constraints[i];
999    if (Literal->isWide())
1000      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1001        << Literal->getSourceRange());
1002
1003    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
1004                                    Literal->getByteLength(),
1005                                    Names[i]);
1006    if (!Context.Target.validateOutputConstraint(Info))
1007      return StmtError(Diag(Literal->getLocStart(),
1008                            diag::err_asm_invalid_output_constraint)
1009                       << Info.getConstraintStr());
1010
1011    // Check that the output exprs are valid lvalues.
1012    Expr *OutputExpr = Exprs[i];
1013    if (CheckAsmLValue(OutputExpr, *this)) {
1014      return StmtError(Diag(OutputExpr->getLocStart(),
1015                  diag::err_asm_invalid_lvalue_in_output)
1016        << OutputExpr->getSourceRange());
1017    }
1018
1019    OutputConstraintInfos.push_back(Info);
1020  }
1021
1022  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1023
1024  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1025    StringLiteral *Literal = Constraints[i];
1026    if (Literal->isWide())
1027      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1028        << Literal->getSourceRange());
1029
1030    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
1031                                    Literal->getByteLength(),
1032                                    Names[i]);
1033    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1034                                                NumOutputs, Info)) {
1035      return StmtError(Diag(Literal->getLocStart(),
1036                            diag::err_asm_invalid_input_constraint)
1037                       << Info.getConstraintStr());
1038    }
1039
1040    Expr *InputExpr = Exprs[i];
1041
1042    // Only allow void types for memory constraints.
1043    if (Info.allowsMemory() && !Info.allowsRegister()) {
1044      if (CheckAsmLValue(InputExpr, *this))
1045        return StmtError(Diag(InputExpr->getLocStart(),
1046                              diag::err_asm_invalid_lvalue_in_input)
1047                         << Info.getConstraintStr()
1048                         << InputExpr->getSourceRange());
1049    }
1050
1051    if (Info.allowsRegister()) {
1052      if (InputExpr->getType()->isVoidType()) {
1053        return StmtError(Diag(InputExpr->getLocStart(),
1054                              diag::err_asm_invalid_type_in_input)
1055          << InputExpr->getType() << Info.getConstraintStr()
1056          << InputExpr->getSourceRange());
1057      }
1058    }
1059
1060    DefaultFunctionArrayConversion(Exprs[i]);
1061
1062    InputConstraintInfos.push_back(Info);
1063  }
1064
1065  // Check that the clobbers are valid.
1066  for (unsigned i = 0; i != NumClobbers; i++) {
1067    StringLiteral *Literal = Clobbers[i];
1068    if (Literal->isWide())
1069      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1070        << Literal->getSourceRange());
1071
1072    llvm::SmallString<16> Clobber(Literal->getStrData(),
1073                                  Literal->getStrData() +
1074                                  Literal->getByteLength());
1075
1076    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
1077      return StmtError(Diag(Literal->getLocStart(),
1078                  diag::err_asm_unknown_register_name) << Clobber.c_str());
1079  }
1080
1081  constraints.release();
1082  exprs.release();
1083  asmString.release();
1084  clobbers.release();
1085  AsmStmt *NS =
1086    new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
1087                          Names, Constraints, Exprs, AsmString, NumClobbers,
1088                          Clobbers, RParenLoc);
1089  // Validate the asm string, ensuring it makes sense given the operands we
1090  // have.
1091  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1092  unsigned DiagOffs;
1093  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1094    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1095           << AsmString->getSourceRange();
1096    DeleteStmt(NS);
1097    return StmtError();
1098  }
1099
1100  // Validate tied input operands for type mismatches.
1101  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1102    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1103
1104    // If this is a tied constraint, verify that the output and input have
1105    // either exactly the same type, or that they are int/ptr operands with the
1106    // same size (int/long, int*/long, are ok etc).
1107    if (!Info.hasTiedOperand()) continue;
1108
1109    unsigned TiedTo = Info.getTiedOperand();
1110    Expr *OutputExpr = Exprs[TiedTo];
1111    Expr *InputExpr = Exprs[i+NumOutputs];
1112    QualType InTy = InputExpr->getType();
1113    QualType OutTy = OutputExpr->getType();
1114    if (Context.hasSameType(InTy, OutTy))
1115      continue;  // All types can be tied to themselves.
1116
1117    // Int/ptr operands have some special cases that we allow.
1118    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1119        (InTy->isIntegerType() || InTy->isPointerType())) {
1120
1121      // They are ok if they are the same size.  Tying void* to int is ok if
1122      // they are the same size, for example.  This also allows tying void* to
1123      // int*.
1124      uint64_t OutSize = Context.getTypeSize(OutTy);
1125      uint64_t InSize = Context.getTypeSize(InTy);
1126      if (OutSize == InSize)
1127        continue;
1128
1129      // If the smaller input/output operand is not mentioned in the asm string,
1130      // then we can promote it and the asm string won't notice.  Check this
1131      // case now.
1132      bool SmallerValueMentioned = false;
1133      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1134        AsmStmt::AsmStringPiece &Piece = Pieces[p];
1135        if (!Piece.isOperand()) continue;
1136
1137        // If this is a reference to the input and if the input was the smaller
1138        // one, then we have to reject this asm.
1139        if (Piece.getOperandNo() == i+NumOutputs) {
1140          if (InSize < OutSize) {
1141            SmallerValueMentioned = true;
1142            break;
1143          }
1144        }
1145
1146        // If this is a reference to the input and if the input was the smaller
1147        // one, then we have to reject this asm.
1148        if (Piece.getOperandNo() == TiedTo) {
1149          if (InSize > OutSize) {
1150            SmallerValueMentioned = true;
1151            break;
1152          }
1153        }
1154      }
1155
1156      // If the smaller value wasn't mentioned in the asm string, and if the
1157      // output was a register, just extend the shorter one to the size of the
1158      // larger one.
1159      if (!SmallerValueMentioned &&
1160          OutputConstraintInfos[TiedTo].allowsRegister())
1161        continue;
1162    }
1163
1164    Diag(InputExpr->getLocStart(),
1165         diag::err_asm_tying_incompatible_types)
1166      << InTy << OutTy << OutputExpr->getSourceRange()
1167      << InputExpr->getSourceRange();
1168    DeleteStmt(NS);
1169    return StmtError();
1170  }
1171
1172  return Owned(NS);
1173}
1174
1175Action::OwningStmtResult
1176Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1177                           SourceLocation RParen, DeclPtrTy Parm,
1178                           StmtArg Body, StmtArg catchList) {
1179  Stmt *CatchList = catchList.takeAs<Stmt>();
1180  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1181
1182  // PVD == 0 implies @catch(...).
1183  if (PVD) {
1184    // If we already know the decl is invalid, reject it.
1185    if (PVD->isInvalidDecl())
1186      return StmtError();
1187
1188    if (!PVD->getType()->isObjCObjectPointerType())
1189      return StmtError(Diag(PVD->getLocation(),
1190                       diag::err_catch_param_not_objc_type));
1191    if (PVD->getType()->isObjCQualifiedIdType())
1192      return StmtError(Diag(PVD->getLocation(),
1193                       diag::err_illegal_qualifiers_on_catch_parm));
1194  }
1195
1196  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1197    PVD, Body.takeAs<Stmt>(), CatchList);
1198  return Owned(CatchList ? CatchList : CS);
1199}
1200
1201Action::OwningStmtResult
1202Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1203  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1204                                           static_cast<Stmt*>(Body.release())));
1205}
1206
1207Action::OwningStmtResult
1208Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1209                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
1210  CurFunctionNeedsScopeChecking = true;
1211  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1212                                           Catch.takeAs<Stmt>(),
1213                                           Finally.takeAs<Stmt>()));
1214}
1215
1216Action::OwningStmtResult
1217Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1218  Expr *ThrowExpr = expr.takeAs<Expr>();
1219  if (!ThrowExpr) {
1220    // @throw without an expression designates a rethrow (which much occur
1221    // in the context of an @catch clause).
1222    Scope *AtCatchParent = CurScope;
1223    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1224      AtCatchParent = AtCatchParent->getParent();
1225    if (!AtCatchParent)
1226      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1227  } else {
1228    QualType ThrowType = ThrowExpr->getType();
1229    // Make sure the expression type is an ObjC pointer or "void *".
1230    if (!ThrowType->isObjCObjectPointerType()) {
1231      const PointerType *PT = ThrowType->getAs<PointerType>();
1232      if (!PT || !PT->getPointeeType()->isVoidType())
1233        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1234                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1235    }
1236  }
1237  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1238}
1239
1240Action::OwningStmtResult
1241Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1242                                  StmtArg SynchBody) {
1243  CurFunctionNeedsScopeChecking = true;
1244
1245  // Make sure the expression type is an ObjC pointer or "void *".
1246  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1247  if (!SyncExpr->getType()->isObjCObjectPointerType()) {
1248    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1249    if (!PT || !PT->getPointeeType()->isVoidType())
1250      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1251                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1252  }
1253
1254  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1255                                                    SynchExpr.takeAs<Stmt>(),
1256                                                    SynchBody.takeAs<Stmt>()));
1257}
1258
1259/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1260/// and creates a proper catch handler from them.
1261Action::OwningStmtResult
1262Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1263                         StmtArg HandlerBlock) {
1264  // There's nothing to test that ActOnExceptionDecl didn't already test.
1265  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1266                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1267                                          HandlerBlock.takeAs<Stmt>()));
1268}
1269
1270class TypeWithHandler {
1271  QualType t;
1272  CXXCatchStmt *stmt;
1273public:
1274  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1275  : t(type), stmt(statement) {}
1276
1277  bool operator<(const TypeWithHandler &y) const {
1278    if (t.getTypePtr() < y.t.getTypePtr())
1279      return true;
1280    else if (t.getTypePtr() > y.t.getTypePtr())
1281      return false;
1282    else if (t.getCVRQualifiers() < y.t.getCVRQualifiers())
1283      return true;
1284    else if (t.getCVRQualifiers() < y.t.getCVRQualifiers())
1285      return false;
1286    else
1287      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1288  }
1289
1290  bool operator==(const TypeWithHandler& other) const {
1291    return t.getTypePtr() == other.t.getTypePtr()
1292        && t.getCVRQualifiers() == other.t.getCVRQualifiers();
1293  }
1294
1295  QualType getQualType() const { return t; }
1296  CXXCatchStmt *getCatchStmt() const { return stmt; }
1297  SourceLocation getTypeSpecStartLoc() const {
1298    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1299  }
1300};
1301
1302/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1303/// handlers and creates a try statement from them.
1304Action::OwningStmtResult
1305Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1306                       MultiStmtArg RawHandlers) {
1307  unsigned NumHandlers = RawHandlers.size();
1308  assert(NumHandlers > 0 &&
1309         "The parser shouldn't call this if there are no handlers.");
1310  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1311
1312  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1313
1314  for(unsigned i = 0; i < NumHandlers; ++i) {
1315    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1316    if (!Handler->getExceptionDecl()) {
1317      if (i < NumHandlers - 1)
1318        return StmtError(Diag(Handler->getLocStart(),
1319                              diag::err_early_catch_all));
1320
1321      continue;
1322    }
1323
1324    const QualType CaughtType = Handler->getCaughtType();
1325    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1326    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1327  }
1328
1329  // Detect handlers for the same type as an earlier one.
1330  if (NumHandlers > 1) {
1331    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1332
1333    TypeWithHandler prev = TypesWithHandlers[0];
1334    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1335      TypeWithHandler curr = TypesWithHandlers[i];
1336
1337      if (curr == prev) {
1338        Diag(curr.getTypeSpecStartLoc(),
1339             diag::warn_exception_caught_by_earlier_handler)
1340          << curr.getCatchStmt()->getCaughtType().getAsString();
1341        Diag(prev.getTypeSpecStartLoc(),
1342             diag::note_previous_exception_handler)
1343          << prev.getCatchStmt()->getCaughtType().getAsString();
1344      }
1345
1346      prev = curr;
1347    }
1348  }
1349
1350  // FIXME: We should detect handlers that cannot catch anything because an
1351  // earlier handler catches a superclass. Need to find a method that is not
1352  // quadratic for this.
1353  // Neither of these are explicitly forbidden, but every compiler detects them
1354  // and warns.
1355
1356  CurFunctionNeedsScopeChecking = true;
1357  RawHandlers.release();
1358  return Owned(new (Context) CXXTryStmt(TryLoc,
1359                                        static_cast<Stmt*>(TryBlock.release()),
1360                                        Handlers, NumHandlers));
1361}
1362