SemaStmt.cpp revision 4a2e2041edc63db687677325e113b39b9d123c40
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/StmtObjC.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/TargetInfo.h"
22using namespace clang;
23
24Sema::OwningStmtResult Sema::ActOnExprStmt(ExprArg expr) {
25  Expr *E = expr.takeAs<Expr>();
26  assert(E && "ActOnExprStmt(): missing expression");
27
28  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
29  // void expression for its side effects.  Conversion to void allows any
30  // operand, even incomplete types.
31
32  // Same thing in for stmt first clause (when expr) and third clause.
33  return Owned(static_cast<Stmt*>(E));
34}
35
36
37Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
38  return Owned(new (Context) NullStmt(SemiLoc));
39}
40
41Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
42                                           SourceLocation StartLoc,
43                                           SourceLocation EndLoc) {
44  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
45
46  // If we have an invalid decl, just return an error.
47  if (DG.isNull()) return StmtError();
48
49  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
50}
51
52Action::OwningStmtResult
53Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
54                        MultiStmtArg elts, bool isStmtExpr) {
55  unsigned NumElts = elts.size();
56  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
57  // If we're in C89 mode, check that we don't have any decls after stmts.  If
58  // so, emit an extension diagnostic.
59  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
60    // Note that __extension__ can be around a decl.
61    unsigned i = 0;
62    // Skip over all declarations.
63    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
64      /*empty*/;
65
66    // We found the end of the list or a statement.  Scan for another declstmt.
67    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
68      /*empty*/;
69
70    if (i != NumElts) {
71      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
72      Diag(D->getLocation(), diag::ext_mixed_decls_code);
73    }
74  }
75  // Warn about unused expressions in statements.
76  for (unsigned i = 0; i != NumElts; ++i) {
77    Expr *E = dyn_cast<Expr>(Elts[i]);
78    if (!E) continue;
79
80    // Warn about expressions with unused results if they are non-void and if
81    // this not the last stmt in a stmt expr.
82    if (E->getType()->isVoidType() || (isStmtExpr && i == NumElts-1))
83      continue;
84
85    SourceLocation Loc;
86    SourceRange R1, R2;
87    if (!E->isUnusedResultAWarning(Loc, R1, R2))
88      continue;
89
90    Diag(Loc, diag::warn_unused_expr) << R1 << R2;
91  }
92
93  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
94}
95
96Action::OwningStmtResult
97Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
98                    SourceLocation DotDotDotLoc, ExprArg rhsval,
99                    SourceLocation ColonLoc) {
100  assert((lhsval.get() != 0) && "missing expression in case statement");
101
102  // C99 6.8.4.2p3: The expression shall be an integer constant.
103  // However, GCC allows any evaluatable integer expression.
104  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
105  if (VerifyIntegerConstantExpression(LHSVal))
106    return StmtError();
107
108  // GCC extension: The expression shall be an integer constant.
109
110  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
111  if (RHSVal && VerifyIntegerConstantExpression(RHSVal)) {
112    RHSVal = 0;  // Recover by just forgetting about it.
113    rhsval = 0;
114  }
115
116  if (getSwitchStack().empty()) {
117    Diag(CaseLoc, diag::err_case_not_in_switch);
118    return StmtError();
119  }
120
121  // Only now release the smart pointers.
122  lhsval.release();
123  rhsval.release();
124  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc);
125  getSwitchStack().back()->addSwitchCase(CS);
126  return Owned(CS);
127}
128
129/// ActOnCaseStmtBody - This installs a statement as the body of a case.
130void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
131  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
132  Stmt *SubStmt = subStmt.takeAs<Stmt>();
133  CS->setSubStmt(SubStmt);
134}
135
136Action::OwningStmtResult
137Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
138                       StmtArg subStmt, Scope *CurScope) {
139  Stmt *SubStmt = subStmt.takeAs<Stmt>();
140
141  if (getSwitchStack().empty()) {
142    Diag(DefaultLoc, diag::err_default_not_in_switch);
143    return Owned(SubStmt);
144  }
145
146  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, SubStmt);
147  getSwitchStack().back()->addSwitchCase(DS);
148  return Owned(DS);
149}
150
151Action::OwningStmtResult
152Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
153                     SourceLocation ColonLoc, StmtArg subStmt) {
154  Stmt *SubStmt = subStmt.takeAs<Stmt>();
155  // Look up the record for this label identifier.
156  LabelStmt *&LabelDecl = getLabelMap()[II];
157
158  // If not forward referenced or defined already, just create a new LabelStmt.
159  if (LabelDecl == 0)
160    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
161
162  assert(LabelDecl->getID() == II && "Label mismatch!");
163
164  // Otherwise, this label was either forward reference or multiply defined.  If
165  // multiply defined, reject it now.
166  if (LabelDecl->getSubStmt()) {
167    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
168    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
169    return Owned(SubStmt);
170  }
171
172  // Otherwise, this label was forward declared, and we just found its real
173  // definition.  Fill in the forward definition and return it.
174  LabelDecl->setIdentLoc(IdentLoc);
175  LabelDecl->setSubStmt(SubStmt);
176  return Owned(LabelDecl);
177}
178
179Action::OwningStmtResult
180Sema::ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal,
181                  StmtArg ThenVal, SourceLocation ElseLoc,
182                  StmtArg ElseVal) {
183  Expr *condExpr = CondVal.takeAs<Expr>();
184
185  assert(condExpr && "ActOnIfStmt(): missing expression");
186
187  if (!condExpr->isTypeDependent()) {
188    DefaultFunctionArrayConversion(condExpr);
189    // Take ownership again until we're past the error checking.
190    CondVal = condExpr;
191    QualType condType = condExpr->getType();
192
193    if (getLangOptions().CPlusPlus) {
194      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
195        return StmtError();
196    } else if (!condType->isScalarType()) // C99 6.8.4.1p1
197      return StmtError(Diag(IfLoc,
198                            diag::err_typecheck_statement_requires_scalar)
199                       << condType << condExpr->getSourceRange());
200  }
201
202  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
203
204  // Warn if the if block has a null body without an else value.
205  // this helps prevent bugs due to typos, such as
206  // if (condition);
207  //   do_stuff();
208  if (!ElseVal.get()) {
209    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
210      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
211  }
212
213  CondVal.release();
214  return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
215                                    ElseLoc, ElseVal.takeAs<Stmt>()));
216}
217
218Action::OwningStmtResult
219Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
220  Expr *Cond = cond.takeAs<Expr>();
221
222  if (getLangOptions().CPlusPlus) {
223    // C++ 6.4.2.p2:
224    // The condition shall be of integral type, enumeration type, or of a class
225    // type for which a single conversion function to integral or enumeration
226    // type exists (12.3). If the condition is of class type, the condition is
227    // converted by calling that conversion function, and the result of the
228    // conversion is used in place of the original condition for the remainder
229    // of this section. Integral promotions are performed.
230
231    QualType Ty = Cond->getType();
232
233    // FIXME: Handle class types.
234
235    // If the type is wrong a diagnostic will be emitted later at
236    // ActOnFinishSwitchStmt.
237    if (Ty->isIntegralType() || Ty->isEnumeralType()) {
238      // Integral promotions are performed.
239      // FIXME: Integral promotions for C++ are not complete.
240      UsualUnaryConversions(Cond);
241    }
242  } else {
243    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
244    UsualUnaryConversions(Cond);
245  }
246
247  SwitchStmt *SS = new (Context) SwitchStmt(Cond);
248  getSwitchStack().push_back(SS);
249  return Owned(SS);
250}
251
252/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
253/// the specified width and sign.  If an overflow occurs, detect it and emit
254/// the specified diagnostic.
255void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
256                                              unsigned NewWidth, bool NewSign,
257                                              SourceLocation Loc,
258                                              unsigned DiagID) {
259  // Perform a conversion to the promoted condition type if needed.
260  if (NewWidth > Val.getBitWidth()) {
261    // If this is an extension, just do it.
262    llvm::APSInt OldVal(Val);
263    Val.extend(NewWidth);
264
265    // If the input was signed and negative and the output is unsigned,
266    // warn.
267    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
268      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
269
270    Val.setIsSigned(NewSign);
271  } else if (NewWidth < Val.getBitWidth()) {
272    // If this is a truncation, check for overflow.
273    llvm::APSInt ConvVal(Val);
274    ConvVal.trunc(NewWidth);
275    ConvVal.setIsSigned(NewSign);
276    ConvVal.extend(Val.getBitWidth());
277    ConvVal.setIsSigned(Val.isSigned());
278    if (ConvVal != Val)
279      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
280
281    // Regardless of whether a diagnostic was emitted, really do the
282    // truncation.
283    Val.trunc(NewWidth);
284    Val.setIsSigned(NewSign);
285  } else if (NewSign != Val.isSigned()) {
286    // Convert the sign to match the sign of the condition.  This can cause
287    // overflow as well: unsigned(INTMIN)
288    llvm::APSInt OldVal(Val);
289    Val.setIsSigned(NewSign);
290
291    if (Val.isNegative())  // Sign bit changes meaning.
292      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
293  }
294}
295
296namespace {
297  struct CaseCompareFunctor {
298    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
299                    const llvm::APSInt &RHS) {
300      return LHS.first < RHS;
301    }
302    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
303                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
304      return LHS.first < RHS.first;
305    }
306    bool operator()(const llvm::APSInt &LHS,
307                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
308      return LHS < RHS.first;
309    }
310  };
311}
312
313/// CmpCaseVals - Comparison predicate for sorting case values.
314///
315static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
316                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
317  if (lhs.first < rhs.first)
318    return true;
319
320  if (lhs.first == rhs.first &&
321      lhs.second->getCaseLoc().getRawEncoding()
322       < rhs.second->getCaseLoc().getRawEncoding())
323    return true;
324  return false;
325}
326
327Action::OwningStmtResult
328Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
329                            StmtArg Body) {
330  Stmt *BodyStmt = Body.takeAs<Stmt>();
331
332  SwitchStmt *SS = getSwitchStack().back();
333  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
334
335  SS->setBody(BodyStmt, SwitchLoc);
336  getSwitchStack().pop_back();
337
338  Expr *CondExpr = SS->getCond();
339  QualType CondType = CondExpr->getType();
340
341  if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
342    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
343      << CondType << CondExpr->getSourceRange();
344    return StmtError();
345  }
346
347  // Get the bitwidth of the switched-on value before promotions.  We must
348  // convert the integer case values to this width before comparison.
349  unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
350  bool CondIsSigned = CondType->isSignedIntegerType();
351
352  // Accumulate all of the case values in a vector so that we can sort them
353  // and detect duplicates.  This vector contains the APInt for the case after
354  // it has been converted to the condition type.
355  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
356  CaseValsTy CaseVals;
357
358  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
359  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
360
361  DefaultStmt *TheDefaultStmt = 0;
362
363  bool CaseListIsErroneous = false;
364
365  for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
366       SC = SC->getNextSwitchCase()) {
367
368    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
369      if (TheDefaultStmt) {
370        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
371        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
372
373        // FIXME: Remove the default statement from the switch block so that
374        // we'll return a valid AST.  This requires recursing down the
375        // AST and finding it, not something we are set up to do right now.  For
376        // now, just lop the entire switch stmt out of the AST.
377        CaseListIsErroneous = true;
378      }
379      TheDefaultStmt = DS;
380
381    } else {
382      CaseStmt *CS = cast<CaseStmt>(SC);
383
384      // We already verified that the expression has a i-c-e value (C99
385      // 6.8.4.2p3) - get that value now.
386      Expr *Lo = CS->getLHS();
387      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
388
389      // Convert the value to the same width/sign as the condition.
390      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
391                                         CS->getLHS()->getLocStart(),
392                                         diag::warn_case_value_overflow);
393
394      // If the LHS is not the same type as the condition, insert an implicit
395      // cast.
396      ImpCastExprToType(Lo, CondType);
397      CS->setLHS(Lo);
398
399      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
400      if (CS->getRHS())
401        CaseRanges.push_back(std::make_pair(LoVal, CS));
402      else
403        CaseVals.push_back(std::make_pair(LoVal, CS));
404    }
405  }
406
407  // Sort all the scalar case values so we can easily detect duplicates.
408  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
409
410  if (!CaseVals.empty()) {
411    for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
412      if (CaseVals[i].first == CaseVals[i+1].first) {
413        // If we have a duplicate, report it.
414        Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
415             diag::err_duplicate_case) << CaseVals[i].first.toString(10);
416        Diag(CaseVals[i].second->getLHS()->getLocStart(),
417             diag::note_duplicate_case_prev);
418        // FIXME: We really want to remove the bogus case stmt from the substmt,
419        // but we have no way to do this right now.
420        CaseListIsErroneous = true;
421      }
422    }
423  }
424
425  // Detect duplicate case ranges, which usually don't exist at all in the first
426  // place.
427  if (!CaseRanges.empty()) {
428    // Sort all the case ranges by their low value so we can easily detect
429    // overlaps between ranges.
430    std::stable_sort(CaseRanges.begin(), CaseRanges.end());
431
432    // Scan the ranges, computing the high values and removing empty ranges.
433    std::vector<llvm::APSInt> HiVals;
434    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
435      CaseStmt *CR = CaseRanges[i].second;
436      Expr *Hi = CR->getRHS();
437      llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
438
439      // Convert the value to the same width/sign as the condition.
440      ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
441                                         CR->getRHS()->getLocStart(),
442                                         diag::warn_case_value_overflow);
443
444      // If the LHS is not the same type as the condition, insert an implicit
445      // cast.
446      ImpCastExprToType(Hi, CondType);
447      CR->setRHS(Hi);
448
449      // If the low value is bigger than the high value, the case is empty.
450      if (CaseRanges[i].first > HiVal) {
451        Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
452          << SourceRange(CR->getLHS()->getLocStart(),
453                         CR->getRHS()->getLocEnd());
454        CaseRanges.erase(CaseRanges.begin()+i);
455        --i, --e;
456        continue;
457      }
458      HiVals.push_back(HiVal);
459    }
460
461    // Rescan the ranges, looking for overlap with singleton values and other
462    // ranges.  Since the range list is sorted, we only need to compare case
463    // ranges with their neighbors.
464    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
465      llvm::APSInt &CRLo = CaseRanges[i].first;
466      llvm::APSInt &CRHi = HiVals[i];
467      CaseStmt *CR = CaseRanges[i].second;
468
469      // Check to see whether the case range overlaps with any singleton cases.
470      CaseStmt *OverlapStmt = 0;
471      llvm::APSInt OverlapVal(32);
472
473      // Find the smallest value >= the lower bound.  If I is in the case range,
474      // then we have overlap.
475      CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
476                                                CaseVals.end(), CRLo,
477                                                CaseCompareFunctor());
478      if (I != CaseVals.end() && I->first < CRHi) {
479        OverlapVal  = I->first;   // Found overlap with scalar.
480        OverlapStmt = I->second;
481      }
482
483      // Find the smallest value bigger than the upper bound.
484      I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
485      if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
486        OverlapVal  = (I-1)->first;      // Found overlap with scalar.
487        OverlapStmt = (I-1)->second;
488      }
489
490      // Check to see if this case stmt overlaps with the subsequent case range.
491      if (i && CRLo <= HiVals[i-1]) {
492        OverlapVal  = HiVals[i-1];       // Found overlap with range.
493        OverlapStmt = CaseRanges[i-1].second;
494      }
495
496      if (OverlapStmt) {
497        // If we have a duplicate, report it.
498        Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
499          << OverlapVal.toString(10);
500        Diag(OverlapStmt->getLHS()->getLocStart(),
501             diag::note_duplicate_case_prev);
502        // FIXME: We really want to remove the bogus case stmt from the substmt,
503        // but we have no way to do this right now.
504        CaseListIsErroneous = true;
505      }
506    }
507  }
508
509  // FIXME: If the case list was broken is some way, we don't have a good system
510  // to patch it up.  Instead, just return the whole substmt as broken.
511  if (CaseListIsErroneous)
512    return StmtError();
513
514  Switch.release();
515  return Owned(SS);
516}
517
518Action::OwningStmtResult
519Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprArg Cond, StmtArg Body) {
520  Expr *condExpr = Cond.takeAs<Expr>();
521  assert(condExpr && "ActOnWhileStmt(): missing expression");
522
523  if (!condExpr->isTypeDependent()) {
524    DefaultFunctionArrayConversion(condExpr);
525    Cond = condExpr;
526    QualType condType = condExpr->getType();
527
528    if (getLangOptions().CPlusPlus) {
529      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
530        return StmtError();
531    } else if (!condType->isScalarType()) // C99 6.8.5p2
532      return StmtError(Diag(WhileLoc,
533                            diag::err_typecheck_statement_requires_scalar)
534                       << condType << condExpr->getSourceRange());
535  }
536
537  Cond.release();
538  return Owned(new (Context) WhileStmt(condExpr, Body.takeAs<Stmt>(),
539                                       WhileLoc));
540}
541
542Action::OwningStmtResult
543Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
544                  SourceLocation WhileLoc, ExprArg Cond) {
545  Expr *condExpr = Cond.takeAs<Expr>();
546  assert(condExpr && "ActOnDoStmt(): missing expression");
547
548  DefaultFunctionArrayConversion(condExpr);
549  Cond = condExpr;
550  QualType condType = condExpr->getType();
551
552  if (getLangOptions().CPlusPlus) {
553    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
554      return StmtError();
555  } else if (!condType->isScalarType()) // C99 6.8.5p2
556    return StmtError(Diag(DoLoc, diag::err_typecheck_statement_requires_scalar)
557      << condType << condExpr->getSourceRange());
558
559  Cond.release();
560  return Owned(new (Context) DoStmt(Body.takeAs<Stmt>(), condExpr, DoLoc));
561}
562
563Action::OwningStmtResult
564Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
565                   StmtArg first, ExprArg second, ExprArg third,
566                   SourceLocation RParenLoc, StmtArg body) {
567  Stmt *First  = static_cast<Stmt*>(first.get());
568  Expr *Second = static_cast<Expr*>(second.get());
569  Expr *Third  = static_cast<Expr*>(third.get());
570  Stmt *Body  = static_cast<Stmt*>(body.get());
571
572  if (!getLangOptions().CPlusPlus) {
573    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
574      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
575      // declare identifiers for objects having storage class 'auto' or
576      // 'register'.
577      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
578           DI!=DE; ++DI) {
579        VarDecl *VD = dyn_cast<VarDecl>(*DI);
580        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
581          VD = 0;
582        if (VD == 0)
583          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
584        // FIXME: mark decl erroneous!
585      }
586    }
587  }
588  if (Second) {
589    DefaultFunctionArrayConversion(Second);
590    QualType SecondType = Second->getType();
591
592    if (getLangOptions().CPlusPlus) {
593      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
594        return StmtError();
595    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
596      return StmtError(Diag(ForLoc,
597                            diag::err_typecheck_statement_requires_scalar)
598        << SecondType << Second->getSourceRange());
599  }
600  first.release();
601  second.release();
602  third.release();
603  body.release();
604  return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc));
605}
606
607Action::OwningStmtResult
608Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
609                                 SourceLocation LParenLoc,
610                                 StmtArg first, ExprArg second,
611                                 SourceLocation RParenLoc, StmtArg body) {
612  Stmt *First  = static_cast<Stmt*>(first.get());
613  Expr *Second = static_cast<Expr*>(second.get());
614  Stmt *Body  = static_cast<Stmt*>(body.get());
615  if (First) {
616    QualType FirstType;
617    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
618      if (!DS->isSingleDecl())
619        return StmtError(Diag((*DS->decl_begin())->getLocation(),
620                         diag::err_toomany_element_decls));
621
622      Decl *D = DS->getSingleDecl();
623      FirstType = cast<ValueDecl>(D)->getType();
624      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
625      // declare identifiers for objects having storage class 'auto' or
626      // 'register'.
627      VarDecl *VD = cast<VarDecl>(D);
628      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
629        return StmtError(Diag(VD->getLocation(),
630                              diag::err_non_variable_decl_in_for));
631    } else {
632      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
633        return StmtError(Diag(First->getLocStart(),
634                   diag::err_selector_element_not_lvalue)
635          << First->getSourceRange());
636
637      FirstType = static_cast<Expr*>(First)->getType();
638    }
639    if (!Context.isObjCObjectPointerType(FirstType))
640        Diag(ForLoc, diag::err_selector_element_type)
641          << FirstType << First->getSourceRange();
642  }
643  if (Second) {
644    DefaultFunctionArrayConversion(Second);
645    QualType SecondType = Second->getType();
646    if (!Context.isObjCObjectPointerType(SecondType))
647      Diag(ForLoc, diag::err_collection_expr_type)
648        << SecondType << Second->getSourceRange();
649  }
650  first.release();
651  second.release();
652  body.release();
653  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
654                                                   ForLoc, RParenLoc));
655}
656
657Action::OwningStmtResult
658Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
659                    IdentifierInfo *LabelII) {
660  // If we are in a block, reject all gotos for now.
661  if (CurBlock)
662    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
663
664  // Look up the record for this label identifier.
665  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
666
667  // If we haven't seen this label yet, create a forward reference.
668  if (LabelDecl == 0)
669    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
670
671  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
672}
673
674Action::OwningStmtResult
675Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
676                            ExprArg DestExp) {
677  // Convert operand to void*
678  Expr* E = DestExp.takeAs<Expr>();
679  QualType ETy = E->getType();
680  AssignConvertType ConvTy =
681        CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
682  if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
683                               E, "passing"))
684    return StmtError();
685  return Owned(new (Context) IndirectGotoStmt(GotoLoc, E));
686}
687
688Action::OwningStmtResult
689Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
690  Scope *S = CurScope->getContinueParent();
691  if (!S) {
692    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
693    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
694  }
695
696  return Owned(new (Context) ContinueStmt(ContinueLoc));
697}
698
699Action::OwningStmtResult
700Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
701  Scope *S = CurScope->getBreakParent();
702  if (!S) {
703    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
704    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
705  }
706
707  return Owned(new (Context) BreakStmt(BreakLoc));
708}
709
710/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
711///
712Action::OwningStmtResult
713Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
714  // If this is the first return we've seen in the block, infer the type of
715  // the block from it.
716  if (CurBlock->ReturnType == 0) {
717    if (RetValExp) {
718      // Don't call UsualUnaryConversions(), since we don't want to do
719      // integer promotions here.
720      DefaultFunctionArrayConversion(RetValExp);
721      CurBlock->ReturnType = RetValExp->getType().getTypePtr();
722    } else
723      CurBlock->ReturnType = Context.VoidTy.getTypePtr();
724  }
725  QualType FnRetType = QualType(CurBlock->ReturnType, 0);
726
727  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
728    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
729      << getCurFunctionOrMethodDecl()->getDeclName();
730    return StmtError();
731  }
732
733  // Otherwise, verify that this result type matches the previous one.  We are
734  // pickier with blocks than for normal functions because we don't have GCC
735  // compatibility to worry about here.
736  if (CurBlock->ReturnType->isVoidType()) {
737    if (RetValExp) {
738      Diag(ReturnLoc, diag::err_return_block_has_expr);
739      RetValExp->Destroy(Context);
740      RetValExp = 0;
741    }
742    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
743  }
744
745  if (!RetValExp)
746    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
747
748  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
749    // we have a non-void block with an expression, continue checking
750    QualType RetValType = RetValExp->getType();
751
752    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
753    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
754    // function return.
755
756    // In C++ the return statement is handled via a copy initialization.
757    // the C version of which boils down to CheckSingleAssignmentConstraints.
758    // FIXME: Leaks RetValExp.
759    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
760      return StmtError();
761
762    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
763  }
764
765  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
766}
767
768/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
769/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
770static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
771                                 Expr *RetExpr) {
772  QualType ExprType = RetExpr->getType();
773  // - in a return statement in a function with ...
774  // ... a class return type ...
775  if (!RetType->isRecordType())
776    return false;
777  // ... the same cv-unqualified type as the function return type ...
778  if (Ctx.getCanonicalType(RetType).getUnqualifiedType() !=
779      Ctx.getCanonicalType(ExprType).getUnqualifiedType())
780    return false;
781  // ... the expression is the name of a non-volatile automatic object ...
782  // We ignore parentheses here.
783  // FIXME: Is this compliant?
784  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
785  if (!DR)
786    return false;
787  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
788  if (!VD)
789    return false;
790  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
791    && !VD->getType().isVolatileQualified();
792}
793
794Action::OwningStmtResult
795Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
796  Expr *RetValExp = rex.takeAs<Expr>();
797  if (CurBlock)
798    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
799
800  QualType FnRetType;
801  if (const FunctionDecl *FD = getCurFunctionDecl()) {
802    FnRetType = FD->getResultType();
803    if (FD->hasAttr<NoReturnAttr>()) {
804      Diag(ReturnLoc, diag::err_noreturn_function_has_return_expr)
805        << getCurFunctionOrMethodDecl()->getDeclName();
806      return StmtError();
807    }
808  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
809    FnRetType = MD->getResultType();
810  else // If we don't have a function/method context, bail.
811    return StmtError();
812
813  if (FnRetType->isVoidType()) {
814    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
815      unsigned D = diag::ext_return_has_expr;
816      if (RetValExp->getType()->isVoidType())
817        D = diag::ext_return_has_void_expr;
818
819      // return (some void expression); is legal in C++.
820      if (D != diag::ext_return_has_void_expr ||
821          !getLangOptions().CPlusPlus) {
822        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
823        Diag(ReturnLoc, D)
824          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
825          << RetValExp->getSourceRange();
826      }
827    }
828    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
829  }
830
831  if (!RetValExp && !FnRetType->isDependentType()) {
832    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
833    // C99 6.8.6.4p1 (ext_ since GCC warns)
834    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
835
836    if (FunctionDecl *FD = getCurFunctionDecl())
837      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
838    else
839      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
840    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
841  }
842
843  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
844    // we have a non-void function with an expression, continue checking
845
846    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
847    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
848    // function return.
849
850    // C++0x 12.8p15: When certain criteria are met, an implementation is
851    //   allowed to omit the copy construction of a class object, [...]
852    //   - in a return statement in a function with a class return type, when
853    //     the expression is the name of a non-volatile automatic object with
854    //     the same cv-unqualified type as the function return type, the copy
855    //     operation can be omitted [...]
856    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
857    //   and the object to be copied is designated by an lvalue, overload
858    //   resolution to select the constructor for the copy is first performed
859    //   as if the object were designated by an rvalue.
860    // Note that we only compute Elidable if we're in C++0x, since we don't
861    // care otherwise.
862    bool Elidable = getLangOptions().CPlusPlus0x ?
863                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
864                      false;
865
866    // In C++ the return statement is handled via a copy initialization.
867    // the C version of which boils down to CheckSingleAssignmentConstraints.
868    // FIXME: Leaks RetValExp on error.
869    if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable))
870      return StmtError();
871
872    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
873  }
874
875  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
876}
877
878/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
879/// ignore "noop" casts in places where an lvalue is required by an inline asm.
880/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
881/// provide a strong guidance to not use it.
882///
883/// This method checks to see if the argument is an acceptable l-value and
884/// returns false if it is a case we can handle.
885static bool CheckAsmLValue(const Expr *E, Sema &S) {
886  if (E->isLvalue(S.Context) == Expr::LV_Valid)
887    return false;  // Cool, this is an lvalue.
888
889  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
890  // are supposed to allow.
891  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
892  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
893    if (!S.getLangOptions().HeinousExtensions)
894      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
895        << E->getSourceRange();
896    else
897      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
898        << E->getSourceRange();
899    // Accept, even if we emitted an error diagnostic.
900    return false;
901  }
902
903  // None of the above, just randomly invalid non-lvalue.
904  return true;
905}
906
907
908Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
909                                          bool IsSimple,
910                                          bool IsVolatile,
911                                          unsigned NumOutputs,
912                                          unsigned NumInputs,
913                                          std::string *Names,
914                                          MultiExprArg constraints,
915                                          MultiExprArg exprs,
916                                          ExprArg asmString,
917                                          MultiExprArg clobbers,
918                                          SourceLocation RParenLoc) {
919  unsigned NumClobbers = clobbers.size();
920  StringLiteral **Constraints =
921    reinterpret_cast<StringLiteral**>(constraints.get());
922  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
923  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
924  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
925
926  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
927
928  // The parser verifies that there is a string literal here.
929  if (AsmString->isWide())
930    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
931      << AsmString->getSourceRange());
932
933  for (unsigned i = 0; i != NumOutputs; i++) {
934    StringLiteral *Literal = Constraints[i];
935    if (Literal->isWide())
936      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
937        << Literal->getSourceRange());
938
939    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
940                                    Literal->getByteLength(),
941                                    Names[i]);
942    if (!Context.Target.validateOutputConstraint(Info))
943      return StmtError(Diag(Literal->getLocStart(),
944                            diag::err_asm_invalid_output_constraint)
945                       << Info.getConstraintStr());
946
947    // Check that the output exprs are valid lvalues.
948    Expr *OutputExpr = Exprs[i];
949    if (CheckAsmLValue(OutputExpr, *this)) {
950      return StmtError(Diag(OutputExpr->getLocStart(),
951                  diag::err_asm_invalid_lvalue_in_output)
952        << OutputExpr->getSourceRange());
953    }
954
955    OutputConstraintInfos.push_back(Info);
956  }
957
958  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
959
960  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
961    StringLiteral *Literal = Constraints[i];
962    if (Literal->isWide())
963      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
964        << Literal->getSourceRange());
965
966    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
967                                    Literal->getByteLength(),
968                                    Names[i]);
969    if (!Context.Target.validateInputConstraint(&OutputConstraintInfos[0],
970                                                NumOutputs, Info)) {
971      return StmtError(Diag(Literal->getLocStart(),
972                            diag::err_asm_invalid_input_constraint)
973                       << Info.getConstraintStr());
974    }
975
976    Expr *InputExpr = Exprs[i];
977
978    // Only allow void types for memory constraints.
979    if (Info.allowsMemory() && !Info.allowsRegister()) {
980      if (CheckAsmLValue(InputExpr, *this))
981        return StmtError(Diag(InputExpr->getLocStart(),
982                              diag::err_asm_invalid_lvalue_in_input)
983                         << Info.getConstraintStr()
984                         << InputExpr->getSourceRange());
985    }
986
987    if (Info.allowsRegister()) {
988      if (InputExpr->getType()->isVoidType()) {
989        return StmtError(Diag(InputExpr->getLocStart(),
990                              diag::err_asm_invalid_type_in_input)
991          << InputExpr->getType() << Info.getConstraintStr()
992          << InputExpr->getSourceRange());
993      }
994    }
995
996    DefaultFunctionArrayConversion(Exprs[i]);
997
998    InputConstraintInfos.push_back(Info);
999  }
1000
1001  // Check that the clobbers are valid.
1002  for (unsigned i = 0; i != NumClobbers; i++) {
1003    StringLiteral *Literal = Clobbers[i];
1004    if (Literal->isWide())
1005      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1006        << Literal->getSourceRange());
1007
1008    llvm::SmallString<16> Clobber(Literal->getStrData(),
1009                                  Literal->getStrData() +
1010                                  Literal->getByteLength());
1011
1012    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
1013      return StmtError(Diag(Literal->getLocStart(),
1014                  diag::err_asm_unknown_register_name) << Clobber.c_str());
1015  }
1016
1017  constraints.release();
1018  exprs.release();
1019  asmString.release();
1020  clobbers.release();
1021  AsmStmt *NS =
1022    new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
1023                          Names, Constraints, Exprs, AsmString, NumClobbers,
1024                          Clobbers, RParenLoc);
1025  // Validate the asm string, ensuring it makes sense given the operands we
1026  // have.
1027  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1028  unsigned DiagOffs;
1029  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1030    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1031           << AsmString->getSourceRange();
1032    DeleteStmt(NS);
1033    return StmtError();
1034  }
1035
1036  // Validate tied input operands for type mismatches.
1037  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1038    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1039
1040    // If this is a tied constraint, verify that the output and input have
1041    // either exactly the same type, or that they are int/ptr operands with the
1042    // same size (int/long, int*/long, are ok etc).
1043    if (!Info.hasTiedOperand()) continue;
1044
1045    unsigned TiedTo = Info.getTiedOperand();
1046    Expr *OutputExpr = Exprs[TiedTo];
1047    Expr *InputExpr = Exprs[i+NumOutputs];
1048    QualType InTy = InputExpr->getType();
1049    QualType OutTy = OutputExpr->getType();
1050    if (Context.hasSameType(InTy, OutTy))
1051      continue;  // All types can be tied to themselves.
1052
1053    // Int/ptr operands have some special cases that we allow.
1054    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1055        (InTy->isIntegerType() || InTy->isPointerType())) {
1056
1057      // They are ok if they are the same size.  Tying void* to int is ok if
1058      // they are the same size, for example.  This also allows tying void* to
1059      // int*.
1060      uint64_t OutSize = Context.getTypeSize(OutTy);
1061      uint64_t InSize = Context.getTypeSize(InTy);
1062      if (OutSize == InSize)
1063        continue;
1064
1065      // If the smaller input/output operand is not mentioned in the asm string,
1066      // then we can promote it and the asm string won't notice.  Check this
1067      // case now.
1068      bool SmallerValueMentioned = false;
1069      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1070        AsmStmt::AsmStringPiece &Piece = Pieces[p];
1071        if (!Piece.isOperand()) continue;
1072
1073        // If this is a reference to the input and if the input was the smaller
1074        // one, then we have to reject this asm.
1075        if (Piece.getOperandNo() == i+NumOutputs) {
1076          if (InSize < OutSize) {
1077            SmallerValueMentioned = true;
1078            break;
1079          }
1080        }
1081
1082        // If this is a reference to the input and if the input was the smaller
1083        // one, then we have to reject this asm.
1084        if (Piece.getOperandNo() == TiedTo) {
1085          if (InSize > OutSize) {
1086            SmallerValueMentioned = true;
1087            break;
1088          }
1089        }
1090      }
1091
1092      // If the smaller value wasn't mentioned in the asm string, and if the
1093      // output was a register, just extend the shorter one to the size of the
1094      // larger one.
1095      if (!SmallerValueMentioned &&
1096          OutputConstraintInfos[TiedTo].allowsRegister())
1097        continue;
1098    }
1099
1100    Diag(InputExpr->getLocStart(),
1101         diag::err_asm_tying_incompatible_types)
1102      << InTy << OutTy << OutputExpr->getSourceRange()
1103      << InputExpr->getSourceRange();
1104    DeleteStmt(NS);
1105    return StmtError();
1106  }
1107
1108  return Owned(NS);
1109}
1110
1111Action::OwningStmtResult
1112Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1113                           SourceLocation RParen, DeclPtrTy Parm,
1114                           StmtArg Body, StmtArg catchList) {
1115  Stmt *CatchList = catchList.takeAs<Stmt>();
1116  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1117
1118  // PVD == 0 implies @catch(...).
1119  if (PVD) {
1120    // If we already know the decl is invalid, reject it.
1121    if (PVD->isInvalidDecl())
1122      return StmtError();
1123
1124    if (!Context.isObjCObjectPointerType(PVD->getType()))
1125      return StmtError(Diag(PVD->getLocation(),
1126                       diag::err_catch_param_not_objc_type));
1127    if (PVD->getType()->isObjCQualifiedIdType())
1128      return StmtError(Diag(PVD->getLocation(),
1129                       diag::err_illegal_qualifiers_on_catch_parm));
1130  }
1131
1132  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1133    PVD, Body.takeAs<Stmt>(), CatchList);
1134  return Owned(CatchList ? CatchList : CS);
1135}
1136
1137Action::OwningStmtResult
1138Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1139  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1140                                           static_cast<Stmt*>(Body.release())));
1141}
1142
1143Action::OwningStmtResult
1144Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1145                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
1146  CurFunctionNeedsScopeChecking = true;
1147  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1148                                           Catch.takeAs<Stmt>(),
1149                                           Finally.takeAs<Stmt>()));
1150}
1151
1152Action::OwningStmtResult
1153Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1154  Expr *ThrowExpr = expr.takeAs<Expr>();
1155  if (!ThrowExpr) {
1156    // @throw without an expression designates a rethrow (which much occur
1157    // in the context of an @catch clause).
1158    Scope *AtCatchParent = CurScope;
1159    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1160      AtCatchParent = AtCatchParent->getParent();
1161    if (!AtCatchParent)
1162      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1163  } else {
1164    QualType ThrowType = ThrowExpr->getType();
1165    // Make sure the expression type is an ObjC pointer or "void *".
1166    if (!Context.isObjCObjectPointerType(ThrowType)) {
1167      const PointerType *PT = ThrowType->getAsPointerType();
1168      if (!PT || !PT->getPointeeType()->isVoidType())
1169        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1170                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1171    }
1172  }
1173  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1174}
1175
1176Action::OwningStmtResult
1177Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1178                                  StmtArg SynchBody) {
1179  CurFunctionNeedsScopeChecking = true;
1180
1181  // Make sure the expression type is an ObjC pointer or "void *".
1182  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1183  if (!Context.isObjCObjectPointerType(SyncExpr->getType())) {
1184    const PointerType *PT = SyncExpr->getType()->getAsPointerType();
1185    if (!PT || !PT->getPointeeType()->isVoidType())
1186      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1187                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1188  }
1189
1190  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1191                                                    SynchExpr.takeAs<Stmt>(),
1192                                                    SynchBody.takeAs<Stmt>()));
1193}
1194
1195/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1196/// and creates a proper catch handler from them.
1197Action::OwningStmtResult
1198Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1199                         StmtArg HandlerBlock) {
1200  // There's nothing to test that ActOnExceptionDecl didn't already test.
1201  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1202                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1203                                          HandlerBlock.takeAs<Stmt>()));
1204}
1205
1206/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1207/// handlers and creates a try statement from them.
1208Action::OwningStmtResult
1209Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1210                       MultiStmtArg RawHandlers) {
1211  unsigned NumHandlers = RawHandlers.size();
1212  assert(NumHandlers > 0 &&
1213         "The parser shouldn't call this if there are no handlers.");
1214  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1215
1216  for(unsigned i = 0; i < NumHandlers - 1; ++i) {
1217    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1218    if (!Handler->getExceptionDecl())
1219      return StmtError(Diag(Handler->getLocStart(), diag::err_early_catch_all));
1220  }
1221  // FIXME: We should detect handlers for the same type as an earlier one.
1222  // This one is rather easy.
1223  // FIXME: We should detect handlers that cannot catch anything because an
1224  // earlier handler catches a superclass. Need to find a method that is not
1225  // quadratic for this.
1226  // Neither of these are explicitly forbidden, but every compiler detects them
1227  // and warns.
1228
1229  CurFunctionNeedsScopeChecking = true;
1230  RawHandlers.release();
1231  return Owned(new (Context) CXXTryStmt(TryLoc,
1232                                        static_cast<Stmt*>(TryBlock.release()),
1233                                        Handlers, NumHandlers));
1234}
1235