SemaStmt.cpp revision 50bf68fc9698742e36c311fc37e6e4b7de235c4b
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               SourceLocation LeadingEmptyMacroLoc) {
51  return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacroLoc));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose '==' and '!=' in top-level statements as likely
96/// typos for '=' or '|=' (resp.).
97///
98/// This function looks through common stand-alone statements to dig out the
99/// substatement of interest. It should be viable to call on any direct member
100/// of a CompoundStmt.
101///
102/// Adding a cast to void (or other expression wrappers) will prevent the
103/// warning from firing.
104static void DiagnoseTopLevelComparison(Sema &S, const Stmt *Statement) {
105  if (!Statement) return;
106  const Expr *E = dyn_cast<Expr>(Statement);
107  if (!E) {
108    // Descend to sub-statements where they remain "top-level" in that they're
109    // unused.
110    switch (Statement->getStmtClass()) {
111    default:
112      // Skip statements which don't have a direct substatement of interest.
113      // Compound statements are handled by the caller.
114      return;
115
116    case Stmt::CaseStmtClass:
117    case Stmt::DefaultStmtClass:
118      DiagnoseTopLevelComparison(S, cast<SwitchCase>(Statement)->getSubStmt());
119      return;
120    case Stmt::LabelStmtClass:
121      DiagnoseTopLevelComparison(S, cast<LabelStmt>(Statement)->getSubStmt());
122      return;
123
124    case Stmt::DoStmtClass:
125      DiagnoseTopLevelComparison(S, cast<DoStmt>(Statement)->getBody());
126      return;
127    case Stmt::IfStmtClass: {
128      const IfStmt *If = cast<IfStmt>(Statement);
129      DiagnoseTopLevelComparison(S, If->getThen());
130      DiagnoseTopLevelComparison(S, If->getElse());
131      return;
132    }
133    case Stmt::ForStmtClass: {
134      const ForStmt *ForLoop = cast<ForStmt>(Statement);
135      DiagnoseTopLevelComparison(S, ForLoop->getInit());
136      DiagnoseTopLevelComparison(S, ForLoop->getInc());
137      DiagnoseTopLevelComparison(S, ForLoop->getBody());
138      return;
139    }
140    case Stmt::SwitchStmtClass:
141      DiagnoseTopLevelComparison(S, cast<SwitchStmt>(Statement)->getBody());
142      return;
143    case Stmt::WhileStmtClass:
144      DiagnoseTopLevelComparison(S, cast<WhileStmt>(Statement)->getBody());
145      return;
146    }
147  }
148
149  SourceLocation Loc;
150  bool IsNotEqual, CanAssign;
151
152  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
153    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
154      return;
155
156    Loc = Op->getOperatorLoc();
157    IsNotEqual = Op->getOpcode() == BO_NE;
158    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
159  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
160    if (Op->getOperator() != OO_EqualEqual &&
161        Op->getOperator() != OO_ExclaimEqual)
162      return;
163
164    Loc = Op->getOperatorLoc();
165    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
166    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
167  } else {
168    // Not a typo-prone comparison.
169    return;
170  }
171
172  // Suppress warnings when the operator, suspicious as it may be, comes from
173  // a macro expansion.
174  if (Loc.isMacroID())
175    return;
176
177  S.Diag(Loc, diag::warn_comparison_top_level_stmt)
178    << (unsigned)IsNotEqual << E->getSourceRange();
179
180  SourceLocation Open = E->getSourceRange().getBegin();
181  SourceLocation Close = S.PP.getLocForEndOfToken(E->getSourceRange().getEnd());
182  S.Diag(Loc, diag::note_top_level_comparison_void_cast_silence)
183        << FixItHint::CreateInsertion(Open, "(void)(")
184        << FixItHint::CreateInsertion(Close, ")");
185
186  // If the LHS is a plausible entity to assign to, provide a fixit hint to
187  // correct common typos.
188  if (CanAssign) {
189    if (IsNotEqual)
190      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
191        << FixItHint::CreateReplacement(Loc, "|=");
192    else
193      S.Diag(Loc, diag::note_equality_comparison_to_assign)
194        << FixItHint::CreateReplacement(Loc, "=");
195  }
196}
197
198void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
199  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
200    return DiagnoseUnusedExprResult(Label->getSubStmt());
201
202  const Expr *E = dyn_cast_or_null<Expr>(S);
203  if (!E)
204    return;
205
206  SourceLocation Loc;
207  SourceRange R1, R2;
208  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
209    return;
210
211  // Okay, we have an unused result.  Depending on what the base expression is,
212  // we might want to make a more specific diagnostic.  Check for one of these
213  // cases now.
214  unsigned DiagID = diag::warn_unused_expr;
215  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
216    E = Temps->getSubExpr();
217  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
218    E = TempExpr->getSubExpr();
219
220  E = E->IgnoreParenImpCasts();
221  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
222    if (E->getType()->isVoidType())
223      return;
224
225    // If the callee has attribute pure, const, or warn_unused_result, warn with
226    // a more specific message to make it clear what is happening.
227    if (const Decl *FD = CE->getCalleeDecl()) {
228      if (FD->getAttr<WarnUnusedResultAttr>()) {
229        Diag(Loc, diag::warn_unused_result) << R1 << R2;
230        return;
231      }
232      if (FD->getAttr<PureAttr>()) {
233        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
234        return;
235      }
236      if (FD->getAttr<ConstAttr>()) {
237        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
238        return;
239      }
240    }
241  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
242    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
243      Diag(Loc, diag::err_arc_unused_init_message) << R1;
244      return;
245    }
246    const ObjCMethodDecl *MD = ME->getMethodDecl();
247    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
248      Diag(Loc, diag::warn_unused_result) << R1 << R2;
249      return;
250    }
251  } else if (isa<ObjCPropertyRefExpr>(E)) {
252    DiagID = diag::warn_unused_property_expr;
253  } else if (const CXXFunctionalCastExpr *FC
254                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
255    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
256        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
257      return;
258  }
259  // Diagnose "(void*) blah" as a typo for "(void) blah".
260  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
261    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
262    QualType T = TI->getType();
263
264    // We really do want to use the non-canonical type here.
265    if (T == Context.VoidPtrTy) {
266      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
267
268      Diag(Loc, diag::warn_unused_voidptr)
269        << FixItHint::CreateRemoval(TL.getStarLoc());
270      return;
271    }
272  }
273
274  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
275}
276
277StmtResult
278Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
279                        MultiStmtArg elts, bool isStmtExpr) {
280  unsigned NumElts = elts.size();
281  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
282  // If we're in C89 mode, check that we don't have any decls after stmts.  If
283  // so, emit an extension diagnostic.
284  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
285    // Note that __extension__ can be around a decl.
286    unsigned i = 0;
287    // Skip over all declarations.
288    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
289      /*empty*/;
290
291    // We found the end of the list or a statement.  Scan for another declstmt.
292    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
293      /*empty*/;
294
295    if (i != NumElts) {
296      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
297      Diag(D->getLocation(), diag::ext_mixed_decls_code);
298    }
299  }
300  // Warn about unused expressions in statements.
301  for (unsigned i = 0; i != NumElts; ++i) {
302    // Ignore statements that are last in a statement expression.
303    if (isStmtExpr && i == NumElts - 1)
304      continue;
305
306    // FIXME: It'd be nice to not show both of these. The first is a more
307    // precise (and more likely to be enabled) warning. We should suppress the
308    // second when the first fires.
309    DiagnoseTopLevelComparison(*this, Elts[i]);
310    DiagnoseUnusedExprResult(Elts[i]);
311  }
312
313  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
314}
315
316StmtResult
317Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
318                    SourceLocation DotDotDotLoc, Expr *RHSVal,
319                    SourceLocation ColonLoc) {
320  assert((LHSVal != 0) && "missing expression in case statement");
321
322  // C99 6.8.4.2p3: The expression shall be an integer constant.
323  // However, GCC allows any evaluatable integer expression.
324  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
325      VerifyIntegerConstantExpression(LHSVal))
326    return StmtError();
327
328  // GCC extension: The expression shall be an integer constant.
329
330  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
331      VerifyIntegerConstantExpression(RHSVal)) {
332    RHSVal = 0;  // Recover by just forgetting about it.
333  }
334
335  if (getCurFunction()->SwitchStack.empty()) {
336    Diag(CaseLoc, diag::err_case_not_in_switch);
337    return StmtError();
338  }
339
340  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
341                                        ColonLoc);
342  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
343  return Owned(CS);
344}
345
346/// ActOnCaseStmtBody - This installs a statement as the body of a case.
347void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
348  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
349  CS->setSubStmt(SubStmt);
350}
351
352StmtResult
353Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
354                       Stmt *SubStmt, Scope *CurScope) {
355  if (getCurFunction()->SwitchStack.empty()) {
356    Diag(DefaultLoc, diag::err_default_not_in_switch);
357    return Owned(SubStmt);
358  }
359
360  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
361  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
362  return Owned(DS);
363}
364
365StmtResult
366Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
367                     SourceLocation ColonLoc, Stmt *SubStmt) {
368
369  // If the label was multiply defined, reject it now.
370  if (TheDecl->getStmt()) {
371    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
372    Diag(TheDecl->getLocation(), diag::note_previous_definition);
373    return Owned(SubStmt);
374  }
375
376  // Otherwise, things are good.  Fill in the declaration and return it.
377  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
378  TheDecl->setStmt(LS);
379  if (!TheDecl->isGnuLocal())
380    TheDecl->setLocation(IdentLoc);
381  return Owned(LS);
382}
383
384StmtResult
385Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
386                  Stmt *thenStmt, SourceLocation ElseLoc,
387                  Stmt *elseStmt) {
388  ExprResult CondResult(CondVal.release());
389
390  VarDecl *ConditionVar = 0;
391  if (CondVar) {
392    ConditionVar = cast<VarDecl>(CondVar);
393    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
394    if (CondResult.isInvalid())
395      return StmtError();
396  }
397  Expr *ConditionExpr = CondResult.takeAs<Expr>();
398  if (!ConditionExpr)
399    return StmtError();
400
401  DiagnoseUnusedExprResult(thenStmt);
402
403  // Warn if the if block has a null body without an else value.
404  // this helps prevent bugs due to typos, such as
405  // if (condition);
406  //   do_stuff();
407  //
408  if (!elseStmt) {
409    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
410      // But do not warn if the body is a macro that expands to nothing, e.g:
411      //
412      // #define CALL(x)
413      // if (condition)
414      //   CALL(0);
415      //
416      if (!stmt->hasLeadingEmptyMacro())
417        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
418  }
419
420  DiagnoseUnusedExprResult(elseStmt);
421
422  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
423                                    thenStmt, ElseLoc, elseStmt));
424}
425
426/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
427/// the specified width and sign.  If an overflow occurs, detect it and emit
428/// the specified diagnostic.
429void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
430                                              unsigned NewWidth, bool NewSign,
431                                              SourceLocation Loc,
432                                              unsigned DiagID) {
433  // Perform a conversion to the promoted condition type if needed.
434  if (NewWidth > Val.getBitWidth()) {
435    // If this is an extension, just do it.
436    Val = Val.extend(NewWidth);
437    Val.setIsSigned(NewSign);
438
439    // If the input was signed and negative and the output is
440    // unsigned, don't bother to warn: this is implementation-defined
441    // behavior.
442    // FIXME: Introduce a second, default-ignored warning for this case?
443  } else if (NewWidth < Val.getBitWidth()) {
444    // If this is a truncation, check for overflow.
445    llvm::APSInt ConvVal(Val);
446    ConvVal = ConvVal.trunc(NewWidth);
447    ConvVal.setIsSigned(NewSign);
448    ConvVal = ConvVal.extend(Val.getBitWidth());
449    ConvVal.setIsSigned(Val.isSigned());
450    if (ConvVal != Val)
451      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
452
453    // Regardless of whether a diagnostic was emitted, really do the
454    // truncation.
455    Val = Val.trunc(NewWidth);
456    Val.setIsSigned(NewSign);
457  } else if (NewSign != Val.isSigned()) {
458    // Convert the sign to match the sign of the condition.  This can cause
459    // overflow as well: unsigned(INTMIN)
460    // We don't diagnose this overflow, because it is implementation-defined
461    // behavior.
462    // FIXME: Introduce a second, default-ignored warning for this case?
463    llvm::APSInt OldVal(Val);
464    Val.setIsSigned(NewSign);
465  }
466}
467
468namespace {
469  struct CaseCompareFunctor {
470    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
471                    const llvm::APSInt &RHS) {
472      return LHS.first < RHS;
473    }
474    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
475                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
476      return LHS.first < RHS.first;
477    }
478    bool operator()(const llvm::APSInt &LHS,
479                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
480      return LHS < RHS.first;
481    }
482  };
483}
484
485/// CmpCaseVals - Comparison predicate for sorting case values.
486///
487static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
488                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
489  if (lhs.first < rhs.first)
490    return true;
491
492  if (lhs.first == rhs.first &&
493      lhs.second->getCaseLoc().getRawEncoding()
494       < rhs.second->getCaseLoc().getRawEncoding())
495    return true;
496  return false;
497}
498
499/// CmpEnumVals - Comparison predicate for sorting enumeration values.
500///
501static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
502                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
503{
504  return lhs.first < rhs.first;
505}
506
507/// EqEnumVals - Comparison preficate for uniqing enumeration values.
508///
509static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
510                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
511{
512  return lhs.first == rhs.first;
513}
514
515/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
516/// potentially integral-promoted expression @p expr.
517static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
518  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
519    expr = cleanups->getSubExpr();
520  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
521    if (impcast->getCastKind() != CK_IntegralCast) break;
522    expr = impcast->getSubExpr();
523  }
524  return expr->getType();
525}
526
527StmtResult
528Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
529                             Decl *CondVar) {
530  ExprResult CondResult;
531
532  VarDecl *ConditionVar = 0;
533  if (CondVar) {
534    ConditionVar = cast<VarDecl>(CondVar);
535    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
536    if (CondResult.isInvalid())
537      return StmtError();
538
539    Cond = CondResult.release();
540  }
541
542  if (!Cond)
543    return StmtError();
544
545  CondResult
546    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
547                          PDiag(diag::err_typecheck_statement_requires_integer),
548                                   PDiag(diag::err_switch_incomplete_class_type)
549                                     << Cond->getSourceRange(),
550                                   PDiag(diag::err_switch_explicit_conversion),
551                                         PDiag(diag::note_switch_conversion),
552                                   PDiag(diag::err_switch_multiple_conversions),
553                                         PDiag(diag::note_switch_conversion),
554                                         PDiag(0));
555  if (CondResult.isInvalid()) return StmtError();
556  Cond = CondResult.take();
557
558  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
559  CondResult = UsualUnaryConversions(Cond);
560  if (CondResult.isInvalid()) return StmtError();
561  Cond = CondResult.take();
562
563  if (!CondVar) {
564    CheckImplicitConversions(Cond, SwitchLoc);
565    CondResult = MaybeCreateExprWithCleanups(Cond);
566    if (CondResult.isInvalid())
567      return StmtError();
568    Cond = CondResult.take();
569  }
570
571  getCurFunction()->setHasBranchIntoScope();
572
573  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
574  getCurFunction()->SwitchStack.push_back(SS);
575  return Owned(SS);
576}
577
578static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
579  if (Val.getBitWidth() < BitWidth)
580    Val = Val.extend(BitWidth);
581  else if (Val.getBitWidth() > BitWidth)
582    Val = Val.trunc(BitWidth);
583  Val.setIsSigned(IsSigned);
584}
585
586StmtResult
587Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
588                            Stmt *BodyStmt) {
589  SwitchStmt *SS = cast<SwitchStmt>(Switch);
590  assert(SS == getCurFunction()->SwitchStack.back() &&
591         "switch stack missing push/pop!");
592
593  SS->setBody(BodyStmt, SwitchLoc);
594  getCurFunction()->SwitchStack.pop_back();
595
596  Expr *CondExpr = SS->getCond();
597  if (!CondExpr) return StmtError();
598
599  QualType CondType = CondExpr->getType();
600
601  Expr *CondExprBeforePromotion = CondExpr;
602  QualType CondTypeBeforePromotion =
603      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
604
605  // C++ 6.4.2.p2:
606  // Integral promotions are performed (on the switch condition).
607  //
608  // A case value unrepresentable by the original switch condition
609  // type (before the promotion) doesn't make sense, even when it can
610  // be represented by the promoted type.  Therefore we need to find
611  // the pre-promotion type of the switch condition.
612  if (!CondExpr->isTypeDependent()) {
613    // We have already converted the expression to an integral or enumeration
614    // type, when we started the switch statement. If we don't have an
615    // appropriate type now, just return an error.
616    if (!CondType->isIntegralOrEnumerationType())
617      return StmtError();
618
619    if (CondExpr->isKnownToHaveBooleanValue()) {
620      // switch(bool_expr) {...} is often a programmer error, e.g.
621      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
622      // One can always use an if statement instead of switch(bool_expr).
623      Diag(SwitchLoc, diag::warn_bool_switch_condition)
624          << CondExpr->getSourceRange();
625    }
626  }
627
628  // Get the bitwidth of the switched-on value before promotions.  We must
629  // convert the integer case values to this width before comparison.
630  bool HasDependentValue
631    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
632  unsigned CondWidth
633    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
634  bool CondIsSigned
635    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
636
637  // Accumulate all of the case values in a vector so that we can sort them
638  // and detect duplicates.  This vector contains the APInt for the case after
639  // it has been converted to the condition type.
640  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
641  CaseValsTy CaseVals;
642
643  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
644  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
645  CaseRangesTy CaseRanges;
646
647  DefaultStmt *TheDefaultStmt = 0;
648
649  bool CaseListIsErroneous = false;
650
651  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
652       SC = SC->getNextSwitchCase()) {
653
654    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
655      if (TheDefaultStmt) {
656        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
657        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
658
659        // FIXME: Remove the default statement from the switch block so that
660        // we'll return a valid AST.  This requires recursing down the AST and
661        // finding it, not something we are set up to do right now.  For now,
662        // just lop the entire switch stmt out of the AST.
663        CaseListIsErroneous = true;
664      }
665      TheDefaultStmt = DS;
666
667    } else {
668      CaseStmt *CS = cast<CaseStmt>(SC);
669
670      // We already verified that the expression has a i-c-e value (C99
671      // 6.8.4.2p3) - get that value now.
672      Expr *Lo = CS->getLHS();
673
674      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
675        HasDependentValue = true;
676        break;
677      }
678
679      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
680
681      // Convert the value to the same width/sign as the condition.
682      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
683                                         Lo->getLocStart(),
684                                         diag::warn_case_value_overflow);
685
686      // If the LHS is not the same type as the condition, insert an implicit
687      // cast.
688      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
689      CS->setLHS(Lo);
690
691      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
692      if (CS->getRHS()) {
693        if (CS->getRHS()->isTypeDependent() ||
694            CS->getRHS()->isValueDependent()) {
695          HasDependentValue = true;
696          break;
697        }
698        CaseRanges.push_back(std::make_pair(LoVal, CS));
699      } else
700        CaseVals.push_back(std::make_pair(LoVal, CS));
701    }
702  }
703
704  if (!HasDependentValue) {
705    // If we don't have a default statement, check whether the
706    // condition is constant.
707    llvm::APSInt ConstantCondValue;
708    bool HasConstantCond = false;
709    bool ShouldCheckConstantCond = false;
710    if (!HasDependentValue && !TheDefaultStmt) {
711      Expr::EvalResult Result;
712      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
713      if (HasConstantCond) {
714        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
715        ConstantCondValue = Result.Val.getInt();
716        ShouldCheckConstantCond = true;
717
718        assert(ConstantCondValue.getBitWidth() == CondWidth &&
719               ConstantCondValue.isSigned() == CondIsSigned);
720      }
721    }
722
723    // Sort all the scalar case values so we can easily detect duplicates.
724    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
725
726    if (!CaseVals.empty()) {
727      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
728        if (ShouldCheckConstantCond &&
729            CaseVals[i].first == ConstantCondValue)
730          ShouldCheckConstantCond = false;
731
732        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
733          // If we have a duplicate, report it.
734          Diag(CaseVals[i].second->getLHS()->getLocStart(),
735               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
736          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
737               diag::note_duplicate_case_prev);
738          // FIXME: We really want to remove the bogus case stmt from the
739          // substmt, but we have no way to do this right now.
740          CaseListIsErroneous = true;
741        }
742      }
743    }
744
745    // Detect duplicate case ranges, which usually don't exist at all in
746    // the first place.
747    if (!CaseRanges.empty()) {
748      // Sort all the case ranges by their low value so we can easily detect
749      // overlaps between ranges.
750      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
751
752      // Scan the ranges, computing the high values and removing empty ranges.
753      std::vector<llvm::APSInt> HiVals;
754      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
755        llvm::APSInt &LoVal = CaseRanges[i].first;
756        CaseStmt *CR = CaseRanges[i].second;
757        Expr *Hi = CR->getRHS();
758        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
759
760        // Convert the value to the same width/sign as the condition.
761        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
762                                           Hi->getLocStart(),
763                                           diag::warn_case_value_overflow);
764
765        // If the LHS is not the same type as the condition, insert an implicit
766        // cast.
767        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
768        CR->setRHS(Hi);
769
770        // If the low value is bigger than the high value, the case is empty.
771        if (LoVal > HiVal) {
772          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
773            << SourceRange(CR->getLHS()->getLocStart(),
774                           Hi->getLocEnd());
775          CaseRanges.erase(CaseRanges.begin()+i);
776          --i, --e;
777          continue;
778        }
779
780        if (ShouldCheckConstantCond &&
781            LoVal <= ConstantCondValue &&
782            ConstantCondValue <= HiVal)
783          ShouldCheckConstantCond = false;
784
785        HiVals.push_back(HiVal);
786      }
787
788      // Rescan the ranges, looking for overlap with singleton values and other
789      // ranges.  Since the range list is sorted, we only need to compare case
790      // ranges with their neighbors.
791      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
792        llvm::APSInt &CRLo = CaseRanges[i].first;
793        llvm::APSInt &CRHi = HiVals[i];
794        CaseStmt *CR = CaseRanges[i].second;
795
796        // Check to see whether the case range overlaps with any
797        // singleton cases.
798        CaseStmt *OverlapStmt = 0;
799        llvm::APSInt OverlapVal(32);
800
801        // Find the smallest value >= the lower bound.  If I is in the
802        // case range, then we have overlap.
803        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
804                                                  CaseVals.end(), CRLo,
805                                                  CaseCompareFunctor());
806        if (I != CaseVals.end() && I->first < CRHi) {
807          OverlapVal  = I->first;   // Found overlap with scalar.
808          OverlapStmt = I->second;
809        }
810
811        // Find the smallest value bigger than the upper bound.
812        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
813        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
814          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
815          OverlapStmt = (I-1)->second;
816        }
817
818        // Check to see if this case stmt overlaps with the subsequent
819        // case range.
820        if (i && CRLo <= HiVals[i-1]) {
821          OverlapVal  = HiVals[i-1];       // Found overlap with range.
822          OverlapStmt = CaseRanges[i-1].second;
823        }
824
825        if (OverlapStmt) {
826          // If we have a duplicate, report it.
827          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
828            << OverlapVal.toString(10);
829          Diag(OverlapStmt->getLHS()->getLocStart(),
830               diag::note_duplicate_case_prev);
831          // FIXME: We really want to remove the bogus case stmt from the
832          // substmt, but we have no way to do this right now.
833          CaseListIsErroneous = true;
834        }
835      }
836    }
837
838    // Complain if we have a constant condition and we didn't find a match.
839    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
840      // TODO: it would be nice if we printed enums as enums, chars as
841      // chars, etc.
842      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
843        << ConstantCondValue.toString(10)
844        << CondExpr->getSourceRange();
845    }
846
847    // Check to see if switch is over an Enum and handles all of its
848    // values.  We only issue a warning if there is not 'default:', but
849    // we still do the analysis to preserve this information in the AST
850    // (which can be used by flow-based analyes).
851    //
852    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
853
854    // If switch has default case, then ignore it.
855    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
856      const EnumDecl *ED = ET->getDecl();
857      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
858        EnumValsTy;
859      EnumValsTy EnumVals;
860
861      // Gather all enum values, set their type and sort them,
862      // allowing easier comparison with CaseVals.
863      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
864           EDI != ED->enumerator_end(); ++EDI) {
865        llvm::APSInt Val = EDI->getInitVal();
866        AdjustAPSInt(Val, CondWidth, CondIsSigned);
867        EnumVals.push_back(std::make_pair(Val, *EDI));
868      }
869      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
870      EnumValsTy::iterator EIend =
871        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
872
873      // See which case values aren't in enum.
874      // TODO: we might want to check whether case values are out of the
875      // enum even if we don't want to check whether all cases are handled.
876      if (!TheDefaultStmt) {
877        EnumValsTy::const_iterator EI = EnumVals.begin();
878        for (CaseValsTy::const_iterator CI = CaseVals.begin();
879             CI != CaseVals.end(); CI++) {
880          while (EI != EIend && EI->first < CI->first)
881            EI++;
882          if (EI == EIend || EI->first > CI->first)
883            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
884              << ED->getDeclName();
885        }
886        // See which of case ranges aren't in enum
887        EI = EnumVals.begin();
888        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
889             RI != CaseRanges.end() && EI != EIend; RI++) {
890          while (EI != EIend && EI->first < RI->first)
891            EI++;
892
893          if (EI == EIend || EI->first != RI->first) {
894            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
895              << ED->getDeclName();
896          }
897
898          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
899          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
900          while (EI != EIend && EI->first < Hi)
901            EI++;
902          if (EI == EIend || EI->first != Hi)
903            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
904              << ED->getDeclName();
905        }
906      }
907
908      // Check which enum vals aren't in switch
909      CaseValsTy::const_iterator CI = CaseVals.begin();
910      CaseRangesTy::const_iterator RI = CaseRanges.begin();
911      bool hasCasesNotInSwitch = false;
912
913      SmallVector<DeclarationName,8> UnhandledNames;
914
915      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
916        // Drop unneeded case values
917        llvm::APSInt CIVal;
918        while (CI != CaseVals.end() && CI->first < EI->first)
919          CI++;
920
921        if (CI != CaseVals.end() && CI->first == EI->first)
922          continue;
923
924        // Drop unneeded case ranges
925        for (; RI != CaseRanges.end(); RI++) {
926          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
927          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
928          if (EI->first <= Hi)
929            break;
930        }
931
932        if (RI == CaseRanges.end() || EI->first < RI->first) {
933          hasCasesNotInSwitch = true;
934          if (!TheDefaultStmt)
935            UnhandledNames.push_back(EI->second->getDeclName());
936        }
937      }
938
939      // Produce a nice diagnostic if multiple values aren't handled.
940      switch (UnhandledNames.size()) {
941      case 0: break;
942      case 1:
943        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
944          << UnhandledNames[0];
945        break;
946      case 2:
947        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
948          << UnhandledNames[0] << UnhandledNames[1];
949        break;
950      case 3:
951        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
952          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
953        break;
954      default:
955        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
956          << (unsigned)UnhandledNames.size()
957          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
958        break;
959      }
960
961      if (!hasCasesNotInSwitch)
962        SS->setAllEnumCasesCovered();
963    }
964  }
965
966  // FIXME: If the case list was broken is some way, we don't have a good system
967  // to patch it up.  Instead, just return the whole substmt as broken.
968  if (CaseListIsErroneous)
969    return StmtError();
970
971  return Owned(SS);
972}
973
974StmtResult
975Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
976                     Decl *CondVar, Stmt *Body) {
977  ExprResult CondResult(Cond.release());
978
979  VarDecl *ConditionVar = 0;
980  if (CondVar) {
981    ConditionVar = cast<VarDecl>(CondVar);
982    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
983    if (CondResult.isInvalid())
984      return StmtError();
985  }
986  Expr *ConditionExpr = CondResult.take();
987  if (!ConditionExpr)
988    return StmtError();
989
990  DiagnoseUnusedExprResult(Body);
991
992  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
993                                       Body, WhileLoc));
994}
995
996StmtResult
997Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
998                  SourceLocation WhileLoc, SourceLocation CondLParen,
999                  Expr *Cond, SourceLocation CondRParen) {
1000  assert(Cond && "ActOnDoStmt(): missing expression");
1001
1002  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1003  if (CondResult.isInvalid() || CondResult.isInvalid())
1004    return StmtError();
1005  Cond = CondResult.take();
1006
1007  CheckImplicitConversions(Cond, DoLoc);
1008  CondResult = MaybeCreateExprWithCleanups(Cond);
1009  if (CondResult.isInvalid())
1010    return StmtError();
1011  Cond = CondResult.take();
1012
1013  DiagnoseUnusedExprResult(Body);
1014
1015  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1016}
1017
1018StmtResult
1019Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1020                   Stmt *First, FullExprArg second, Decl *secondVar,
1021                   FullExprArg third,
1022                   SourceLocation RParenLoc, Stmt *Body) {
1023  if (!getLangOptions().CPlusPlus) {
1024    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1025      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1026      // declare identifiers for objects having storage class 'auto' or
1027      // 'register'.
1028      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1029           DI!=DE; ++DI) {
1030        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1031        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1032          VD = 0;
1033        if (VD == 0)
1034          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1035        // FIXME: mark decl erroneous!
1036      }
1037    }
1038  }
1039
1040  ExprResult SecondResult(second.release());
1041  VarDecl *ConditionVar = 0;
1042  if (secondVar) {
1043    ConditionVar = cast<VarDecl>(secondVar);
1044    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1045    if (SecondResult.isInvalid())
1046      return StmtError();
1047  }
1048
1049  Expr *Third  = third.release().takeAs<Expr>();
1050
1051  DiagnoseUnusedExprResult(First);
1052  DiagnoseUnusedExprResult(Third);
1053  DiagnoseUnusedExprResult(Body);
1054
1055  return Owned(new (Context) ForStmt(Context, First,
1056                                     SecondResult.take(), ConditionVar,
1057                                     Third, Body, ForLoc, LParenLoc,
1058                                     RParenLoc));
1059}
1060
1061/// In an Objective C collection iteration statement:
1062///   for (x in y)
1063/// x can be an arbitrary l-value expression.  Bind it up as a
1064/// full-expression.
1065StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1066  CheckImplicitConversions(E);
1067  ExprResult Result = MaybeCreateExprWithCleanups(E);
1068  if (Result.isInvalid()) return StmtError();
1069  return Owned(static_cast<Stmt*>(Result.get()));
1070}
1071
1072ExprResult
1073Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1074  assert(collection);
1075
1076  // Bail out early if we've got a type-dependent expression.
1077  if (collection->isTypeDependent()) return Owned(collection);
1078
1079  // Perform normal l-value conversion.
1080  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1081  if (result.isInvalid())
1082    return ExprError();
1083  collection = result.take();
1084
1085  // The operand needs to have object-pointer type.
1086  // TODO: should we do a contextual conversion?
1087  const ObjCObjectPointerType *pointerType =
1088    collection->getType()->getAs<ObjCObjectPointerType>();
1089  if (!pointerType)
1090    return Diag(forLoc, diag::err_collection_expr_type)
1091             << collection->getType() << collection->getSourceRange();
1092
1093  // Check that the operand provides
1094  //   - countByEnumeratingWithState:objects:count:
1095  const ObjCObjectType *objectType = pointerType->getObjectType();
1096  ObjCInterfaceDecl *iface = objectType->getInterface();
1097
1098  // If we have a forward-declared type, we can't do this check.
1099  if (iface && iface->isForwardDecl()) {
1100    // This is ill-formed under ARC.
1101    if (getLangOptions().ObjCAutoRefCount) {
1102      Diag(forLoc, diag::err_arc_collection_forward)
1103        << pointerType->getPointeeType() << collection->getSourceRange();
1104    }
1105
1106    // Otherwise, if we have any useful type information, check that
1107    // the type declares the appropriate method.
1108  } else if (iface || !objectType->qual_empty()) {
1109    IdentifierInfo *selectorIdents[] = {
1110      &Context.Idents.get("countByEnumeratingWithState"),
1111      &Context.Idents.get("objects"),
1112      &Context.Idents.get("count")
1113    };
1114    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1115
1116    ObjCMethodDecl *method = 0;
1117
1118    // If there's an interface, look in both the public and private APIs.
1119    if (iface) {
1120      method = iface->lookupInstanceMethod(selector);
1121      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1122    }
1123
1124    // Also check protocol qualifiers.
1125    if (!method)
1126      method = LookupMethodInQualifiedType(selector, pointerType,
1127                                           /*instance*/ true);
1128
1129    // If we didn't find it anywhere, give up.
1130    if (!method) {
1131      Diag(forLoc, diag::warn_collection_expr_type)
1132        << collection->getType() << selector << collection->getSourceRange();
1133    }
1134
1135    // TODO: check for an incompatible signature?
1136  }
1137
1138  // Wrap up any cleanups in the expression.
1139  return Owned(MaybeCreateExprWithCleanups(collection));
1140}
1141
1142StmtResult
1143Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1144                                 SourceLocation LParenLoc,
1145                                 Stmt *First, Expr *Second,
1146                                 SourceLocation RParenLoc, Stmt *Body) {
1147  if (First) {
1148    QualType FirstType;
1149    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1150      if (!DS->isSingleDecl())
1151        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1152                         diag::err_toomany_element_decls));
1153
1154      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1155      FirstType = D->getType();
1156      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1157      // declare identifiers for objects having storage class 'auto' or
1158      // 'register'.
1159      if (!D->hasLocalStorage())
1160        return StmtError(Diag(D->getLocation(),
1161                              diag::err_non_variable_decl_in_for));
1162    } else {
1163      Expr *FirstE = cast<Expr>(First);
1164      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1165        return StmtError(Diag(First->getLocStart(),
1166                   diag::err_selector_element_not_lvalue)
1167          << First->getSourceRange());
1168
1169      FirstType = static_cast<Expr*>(First)->getType();
1170    }
1171    if (!FirstType->isDependentType() &&
1172        !FirstType->isObjCObjectPointerType() &&
1173        !FirstType->isBlockPointerType())
1174        Diag(ForLoc, diag::err_selector_element_type)
1175          << FirstType << First->getSourceRange();
1176  }
1177
1178  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1179                                                   ForLoc, RParenLoc));
1180}
1181
1182namespace {
1183
1184enum BeginEndFunction {
1185  BEF_begin,
1186  BEF_end
1187};
1188
1189/// Build a variable declaration for a for-range statement.
1190static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1191                                     QualType Type, const char *Name) {
1192  DeclContext *DC = SemaRef.CurContext;
1193  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1194  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1195  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1196                                  TInfo, SC_Auto, SC_None);
1197  Decl->setImplicit();
1198  return Decl;
1199}
1200
1201/// Finish building a variable declaration for a for-range statement.
1202/// \return true if an error occurs.
1203static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1204                                  SourceLocation Loc, int diag) {
1205  // Deduce the type for the iterator variable now rather than leaving it to
1206  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1207  TypeSourceInfo *InitTSI = 0;
1208  if (Init->getType()->isVoidType() ||
1209      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1210    SemaRef.Diag(Loc, diag) << Init->getType();
1211  if (!InitTSI) {
1212    Decl->setInvalidDecl();
1213    return true;
1214  }
1215  Decl->setTypeSourceInfo(InitTSI);
1216  Decl->setType(InitTSI->getType());
1217
1218  // In ARC, infer lifetime.
1219  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1220  // we're doing the equivalent of fast iteration.
1221  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1222      SemaRef.inferObjCARCLifetime(Decl))
1223    Decl->setInvalidDecl();
1224
1225  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1226                               /*TypeMayContainAuto=*/false);
1227  SemaRef.FinalizeDeclaration(Decl);
1228  SemaRef.CurContext->addHiddenDecl(Decl);
1229  return false;
1230}
1231
1232/// Produce a note indicating which begin/end function was implicitly called
1233/// by a C++0x for-range statement. This is often not obvious from the code,
1234/// nor from the diagnostics produced when analysing the implicit expressions
1235/// required in a for-range statement.
1236void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1237                                  BeginEndFunction BEF) {
1238  CallExpr *CE = dyn_cast<CallExpr>(E);
1239  if (!CE)
1240    return;
1241  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1242  if (!D)
1243    return;
1244  SourceLocation Loc = D->getLocation();
1245
1246  std::string Description;
1247  bool IsTemplate = false;
1248  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1249    Description = SemaRef.getTemplateArgumentBindingsText(
1250      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1251    IsTemplate = true;
1252  }
1253
1254  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1255    << BEF << IsTemplate << Description << E->getType();
1256}
1257
1258/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1259/// given LookupResult is non-empty, it is assumed to describe a member which
1260/// will be invoked. Otherwise, the function will be found via argument
1261/// dependent lookup.
1262static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1263                                            SourceLocation Loc,
1264                                            VarDecl *Decl,
1265                                            BeginEndFunction BEF,
1266                                            const DeclarationNameInfo &NameInfo,
1267                                            LookupResult &MemberLookup,
1268                                            Expr *Range) {
1269  ExprResult CallExpr;
1270  if (!MemberLookup.empty()) {
1271    ExprResult MemberRef =
1272      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1273                                       /*IsPtr=*/false, CXXScopeSpec(),
1274                                       /*Qualifier=*/0, MemberLookup,
1275                                       /*TemplateArgs=*/0);
1276    if (MemberRef.isInvalid())
1277      return ExprError();
1278    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1279                                     Loc, 0);
1280    if (CallExpr.isInvalid())
1281      return ExprError();
1282  } else {
1283    UnresolvedSet<0> FoundNames;
1284    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1285    // std is an associated namespace.
1286    UnresolvedLookupExpr *Fn =
1287      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1288                                   NestedNameSpecifierLoc(), NameInfo,
1289                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1290                                   FoundNames.begin(), FoundNames.end(),
1291                                   /*LookInStdNamespace=*/true);
1292    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1293                                               0);
1294    if (CallExpr.isInvalid()) {
1295      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1296        << Range->getType();
1297      return ExprError();
1298    }
1299  }
1300  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1301                            diag::err_for_range_iter_deduction_failure)) {
1302    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1303    return ExprError();
1304  }
1305  return CallExpr;
1306}
1307
1308}
1309
1310/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1311///
1312/// C++0x [stmt.ranged]:
1313///   A range-based for statement is equivalent to
1314///
1315///   {
1316///     auto && __range = range-init;
1317///     for ( auto __begin = begin-expr,
1318///           __end = end-expr;
1319///           __begin != __end;
1320///           ++__begin ) {
1321///       for-range-declaration = *__begin;
1322///       statement
1323///     }
1324///   }
1325///
1326/// The body of the loop is not available yet, since it cannot be analysed until
1327/// we have determined the type of the for-range-declaration.
1328StmtResult
1329Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1330                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1331                           SourceLocation RParenLoc) {
1332  if (!First || !Range)
1333    return StmtError();
1334
1335  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1336  assert(DS && "first part of for range not a decl stmt");
1337
1338  if (!DS->isSingleDecl()) {
1339    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1340    return StmtError();
1341  }
1342  if (DS->getSingleDecl()->isInvalidDecl())
1343    return StmtError();
1344
1345  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1346    return StmtError();
1347
1348  // Build  auto && __range = range-init
1349  SourceLocation RangeLoc = Range->getLocStart();
1350  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1351                                           Context.getAutoRRefDeductType(),
1352                                           "__range");
1353  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1354                            diag::err_for_range_deduction_failure))
1355    return StmtError();
1356
1357  // Claim the type doesn't contain auto: we've already done the checking.
1358  DeclGroupPtrTy RangeGroup =
1359    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1360  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1361  if (RangeDecl.isInvalid())
1362    return StmtError();
1363
1364  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1365                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1366                              RParenLoc);
1367}
1368
1369/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1370StmtResult
1371Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1372                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1373                           Expr *Inc, Stmt *LoopVarDecl,
1374                           SourceLocation RParenLoc) {
1375  Scope *S = getCurScope();
1376
1377  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1378  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1379  QualType RangeVarType = RangeVar->getType();
1380
1381  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1382  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1383
1384  StmtResult BeginEndDecl = BeginEnd;
1385  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1386
1387  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1388    SourceLocation RangeLoc = RangeVar->getLocation();
1389
1390    ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
1391                                           RangeVarType.getNonReferenceType(),
1392                                           VK_LValue, ColonLoc);
1393    if (RangeRef.isInvalid())
1394      return StmtError();
1395
1396    QualType AutoType = Context.getAutoDeductType();
1397    Expr *Range = RangeVar->getInit();
1398    if (!Range)
1399      return StmtError();
1400    QualType RangeType = Range->getType();
1401
1402    if (RequireCompleteType(RangeLoc, RangeType,
1403                            PDiag(diag::err_for_range_incomplete_type)))
1404      return StmtError();
1405
1406    // Build auto __begin = begin-expr, __end = end-expr.
1407    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1408                                             "__begin");
1409    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1410                                           "__end");
1411
1412    // Build begin-expr and end-expr and attach to __begin and __end variables.
1413    ExprResult BeginExpr, EndExpr;
1414    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1415      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1416      //   __range + __bound, respectively, where __bound is the array bound. If
1417      //   _RangeT is an array of unknown size or an array of incomplete type,
1418      //   the program is ill-formed;
1419
1420      // begin-expr is __range.
1421      BeginExpr = RangeRef;
1422      if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
1423                                diag::err_for_range_iter_deduction_failure)) {
1424        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1425        return StmtError();
1426      }
1427
1428      // Find the array bound.
1429      ExprResult BoundExpr;
1430      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1431        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1432                                                 Context.getPointerDiffType(),
1433                                                 RangeLoc));
1434      else if (const VariableArrayType *VAT =
1435               dyn_cast<VariableArrayType>(UnqAT))
1436        BoundExpr = VAT->getSizeExpr();
1437      else {
1438        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1439        // UnqAT is not incomplete and Range is not type-dependent.
1440        assert(0 && "Unexpected array type in for-range");
1441        return StmtError();
1442      }
1443
1444      // end-expr is __range + __bound.
1445      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
1446                           BoundExpr.get());
1447      if (EndExpr.isInvalid())
1448        return StmtError();
1449      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1450                                diag::err_for_range_iter_deduction_failure)) {
1451        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1452        return StmtError();
1453      }
1454    } else {
1455      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1456                                        ColonLoc);
1457      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1458                                      ColonLoc);
1459
1460      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1461      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1462
1463      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1464        // - if _RangeT is a class type, the unqualified-ids begin and end are
1465        //   looked up in the scope of class _RangeT as if by class member access
1466        //   lookup (3.4.5), and if either (or both) finds at least one
1467        //   declaration, begin-expr and end-expr are __range.begin() and
1468        //   __range.end(), respectively;
1469        LookupQualifiedName(BeginMemberLookup, D);
1470        LookupQualifiedName(EndMemberLookup, D);
1471
1472        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1473          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1474            << RangeType << BeginMemberLookup.empty();
1475          return StmtError();
1476        }
1477      } else {
1478        // - otherwise, begin-expr and end-expr are begin(__range) and
1479        //   end(__range), respectively, where begin and end are looked up with
1480        //   argument-dependent lookup (3.4.2). For the purposes of this name
1481        //   lookup, namespace std is an associated namespace.
1482      }
1483
1484      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1485                                            BEF_begin, BeginNameInfo,
1486                                            BeginMemberLookup, RangeRef.get());
1487      if (BeginExpr.isInvalid())
1488        return StmtError();
1489
1490      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1491                                          BEF_end, EndNameInfo,
1492                                          EndMemberLookup, RangeRef.get());
1493      if (EndExpr.isInvalid())
1494        return StmtError();
1495    }
1496
1497    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1498    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1499    if (!Context.hasSameType(BeginType, EndType)) {
1500      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1501        << BeginType << EndType;
1502      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1503      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1504    }
1505
1506    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1507    // Claim the type doesn't contain auto: we've already done the checking.
1508    DeclGroupPtrTy BeginEndGroup =
1509      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1510    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1511
1512    ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
1513                                           BeginType.getNonReferenceType(),
1514                                           VK_LValue, ColonLoc);
1515    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1516                                         VK_LValue, ColonLoc);
1517
1518    // Build and check __begin != __end expression.
1519    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1520                           BeginRef.get(), EndRef.get());
1521    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1522    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1523    if (NotEqExpr.isInvalid()) {
1524      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1525      if (!Context.hasSameType(BeginType, EndType))
1526        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1527      return StmtError();
1528    }
1529
1530    // Build and check ++__begin expression.
1531    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1532    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1533    if (IncrExpr.isInvalid()) {
1534      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1535      return StmtError();
1536    }
1537
1538    // Build and check *__begin  expression.
1539    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1540    if (DerefExpr.isInvalid()) {
1541      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1542      return StmtError();
1543    }
1544
1545    // Attach  *__begin  as initializer for VD.
1546    if (!LoopVar->isInvalidDecl()) {
1547      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1548                           /*TypeMayContainAuto=*/true);
1549      if (LoopVar->isInvalidDecl())
1550        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1551    }
1552  } else {
1553    // The range is implicitly used as a placeholder when it is dependent.
1554    RangeVar->setUsed();
1555  }
1556
1557  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1558                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1559                                             NotEqExpr.take(), IncrExpr.take(),
1560                                             LoopVarDS, /*Body=*/0, ForLoc,
1561                                             ColonLoc, RParenLoc));
1562}
1563
1564/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1565/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1566/// body cannot be performed until after the type of the range variable is
1567/// determined.
1568StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1569  if (!S || !B)
1570    return StmtError();
1571
1572  cast<CXXForRangeStmt>(S)->setBody(B);
1573  return S;
1574}
1575
1576StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1577                               SourceLocation LabelLoc,
1578                               LabelDecl *TheDecl) {
1579  getCurFunction()->setHasBranchIntoScope();
1580  TheDecl->setUsed();
1581  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1582}
1583
1584StmtResult
1585Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1586                            Expr *E) {
1587  // Convert operand to void*
1588  if (!E->isTypeDependent()) {
1589    QualType ETy = E->getType();
1590    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1591    ExprResult ExprRes = Owned(E);
1592    AssignConvertType ConvTy =
1593      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1594    if (ExprRes.isInvalid())
1595      return StmtError();
1596    E = ExprRes.take();
1597    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1598      return StmtError();
1599  }
1600
1601  getCurFunction()->setHasIndirectGoto();
1602
1603  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1604}
1605
1606StmtResult
1607Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1608  Scope *S = CurScope->getContinueParent();
1609  if (!S) {
1610    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1611    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1612  }
1613
1614  return Owned(new (Context) ContinueStmt(ContinueLoc));
1615}
1616
1617StmtResult
1618Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1619  Scope *S = CurScope->getBreakParent();
1620  if (!S) {
1621    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1622    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1623  }
1624
1625  return Owned(new (Context) BreakStmt(BreakLoc));
1626}
1627
1628/// \brief Determine whether the given expression is a candidate for
1629/// copy elision in either a return statement or a throw expression.
1630///
1631/// \param ReturnType If we're determining the copy elision candidate for
1632/// a return statement, this is the return type of the function. If we're
1633/// determining the copy elision candidate for a throw expression, this will
1634/// be a NULL type.
1635///
1636/// \param E The expression being returned from the function or block, or
1637/// being thrown.
1638///
1639/// \param AllowFunctionParameter Whether we allow function parameters to
1640/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1641/// we re-use this logic to determine whether we should try to move as part of
1642/// a return or throw (which does allow function parameters).
1643///
1644/// \returns The NRVO candidate variable, if the return statement may use the
1645/// NRVO, or NULL if there is no such candidate.
1646const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1647                                             Expr *E,
1648                                             bool AllowFunctionParameter) {
1649  QualType ExprType = E->getType();
1650  // - in a return statement in a function with ...
1651  // ... a class return type ...
1652  if (!ReturnType.isNull()) {
1653    if (!ReturnType->isRecordType())
1654      return 0;
1655    // ... the same cv-unqualified type as the function return type ...
1656    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1657      return 0;
1658  }
1659
1660  // ... the expression is the name of a non-volatile automatic object
1661  // (other than a function or catch-clause parameter)) ...
1662  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1663  if (!DR)
1664    return 0;
1665  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1666  if (!VD)
1667    return 0;
1668
1669  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1670      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1671      !VD->getType().isVolatileQualified() &&
1672      ((VD->getKind() == Decl::Var) ||
1673       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1674    return VD;
1675
1676  return 0;
1677}
1678
1679/// \brief Perform the initialization of a potentially-movable value, which
1680/// is the result of return value.
1681///
1682/// This routine implements C++0x [class.copy]p33, which attempts to treat
1683/// returned lvalues as rvalues in certain cases (to prefer move construction),
1684/// then falls back to treating them as lvalues if that failed.
1685ExprResult
1686Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1687                                      const VarDecl *NRVOCandidate,
1688                                      QualType ResultType,
1689                                      Expr *Value,
1690                                      bool AllowNRVO) {
1691  // C++0x [class.copy]p33:
1692  //   When the criteria for elision of a copy operation are met or would
1693  //   be met save for the fact that the source object is a function
1694  //   parameter, and the object to be copied is designated by an lvalue,
1695  //   overload resolution to select the constructor for the copy is first
1696  //   performed as if the object were designated by an rvalue.
1697  ExprResult Res = ExprError();
1698  if (AllowNRVO &&
1699      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1700    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1701                              Value->getType(), CK_LValueToRValue,
1702                              Value, VK_XValue);
1703
1704    Expr *InitExpr = &AsRvalue;
1705    InitializationKind Kind
1706      = InitializationKind::CreateCopy(Value->getLocStart(),
1707                                       Value->getLocStart());
1708    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1709
1710    //   [...] If overload resolution fails, or if the type of the first
1711    //   parameter of the selected constructor is not an rvalue reference
1712    //   to the object's type (possibly cv-qualified), overload resolution
1713    //   is performed again, considering the object as an lvalue.
1714    if (Seq) {
1715      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1716           StepEnd = Seq.step_end();
1717           Step != StepEnd; ++Step) {
1718        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1719          continue;
1720
1721        CXXConstructorDecl *Constructor
1722        = cast<CXXConstructorDecl>(Step->Function.Function);
1723
1724        const RValueReferenceType *RRefType
1725          = Constructor->getParamDecl(0)->getType()
1726                                                 ->getAs<RValueReferenceType>();
1727
1728        // If we don't meet the criteria, break out now.
1729        if (!RRefType ||
1730            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1731                            Context.getTypeDeclType(Constructor->getParent())))
1732          break;
1733
1734        // Promote "AsRvalue" to the heap, since we now need this
1735        // expression node to persist.
1736        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1737                                         CK_LValueToRValue, Value, 0,
1738                                         VK_XValue);
1739
1740        // Complete type-checking the initialization of the return type
1741        // using the constructor we found.
1742        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1743      }
1744    }
1745  }
1746
1747  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1748  // above, or overload resolution failed. Either way, we need to try
1749  // (again) now with the return value expression as written.
1750  if (Res.isInvalid())
1751    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1752
1753  return Res;
1754}
1755
1756/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1757///
1758StmtResult
1759Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1760  // If this is the first return we've seen in the block, infer the type of
1761  // the block from it.
1762  BlockScopeInfo *CurBlock = getCurBlock();
1763  if (CurBlock->ReturnType.isNull()) {
1764    if (RetValExp) {
1765      // Don't call UsualUnaryConversions(), since we don't want to do
1766      // integer promotions here.
1767      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1768      if (Result.isInvalid())
1769        return StmtError();
1770      RetValExp = Result.take();
1771
1772      if (!RetValExp->isTypeDependent()) {
1773        CurBlock->ReturnType = RetValExp->getType();
1774        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1775          // We have to remove a 'const' added to copied-in variable which was
1776          // part of the implementation spec. and not the actual qualifier for
1777          // the variable.
1778          if (CDRE->isConstQualAdded())
1779            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1780        }
1781      } else
1782        CurBlock->ReturnType = Context.DependentTy;
1783    } else
1784      CurBlock->ReturnType = Context.VoidTy;
1785  }
1786  QualType FnRetType = CurBlock->ReturnType;
1787
1788  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1789    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1790      << getCurFunctionOrMethodDecl()->getDeclName();
1791    return StmtError();
1792  }
1793
1794  // Otherwise, verify that this result type matches the previous one.  We are
1795  // pickier with blocks than for normal functions because we don't have GCC
1796  // compatibility to worry about here.
1797  ReturnStmt *Result = 0;
1798  if (CurBlock->ReturnType->isVoidType()) {
1799    if (RetValExp && !RetValExp->isTypeDependent() &&
1800        (!getLangOptions().CPlusPlus || !RetValExp->getType()->isVoidType())) {
1801      Diag(ReturnLoc, diag::err_return_block_has_expr);
1802      RetValExp = 0;
1803    }
1804    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1805  } else if (!RetValExp) {
1806    if (!CurBlock->ReturnType->isDependentType())
1807      return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1808
1809    Result = new (Context) ReturnStmt(ReturnLoc, 0, 0);
1810  } else {
1811    const VarDecl *NRVOCandidate = 0;
1812
1813    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1814      // we have a non-void block with an expression, continue checking
1815
1816      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1817      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1818      // function return.
1819
1820      // In C++ the return statement is handled via a copy initialization.
1821      // the C version of which boils down to CheckSingleAssignmentConstraints.
1822      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1823      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1824                                                                     FnRetType,
1825                                                           NRVOCandidate != 0);
1826      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1827                                                       FnRetType, RetValExp);
1828      if (Res.isInvalid()) {
1829        // FIXME: Cleanup temporaries here, anyway?
1830        return StmtError();
1831      }
1832
1833      if (RetValExp) {
1834        CheckImplicitConversions(RetValExp, ReturnLoc);
1835        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1836      }
1837
1838      RetValExp = Res.takeAs<Expr>();
1839      if (RetValExp)
1840        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1841    }
1842
1843    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1844  }
1845
1846  // If we need to check for the named return value optimization, save the
1847  // return statement in our scope for later processing.
1848  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1849      !CurContext->isDependentContext())
1850    FunctionScopes.back()->Returns.push_back(Result);
1851
1852  return Owned(Result);
1853}
1854
1855StmtResult
1856Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1857  // Check for unexpanded parameter packs.
1858  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1859    return StmtError();
1860
1861  if (getCurBlock())
1862    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1863
1864  QualType FnRetType;
1865  QualType DeclaredRetType;
1866  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1867    FnRetType = FD->getResultType();
1868    DeclaredRetType = FnRetType;
1869    if (FD->hasAttr<NoReturnAttr>() ||
1870        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1871      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1872        << getCurFunctionOrMethodDecl()->getDeclName();
1873  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1874    DeclaredRetType = MD->getResultType();
1875    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1876      // In the implementation of a method with a related return type, the
1877      // type used to type-check the validity of return statements within the
1878      // method body is a pointer to the type of the class being implemented.
1879      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1880      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1881    } else {
1882      FnRetType = DeclaredRetType;
1883    }
1884  } else // If we don't have a function/method context, bail.
1885    return StmtError();
1886
1887  ReturnStmt *Result = 0;
1888  if (FnRetType->isVoidType()) {
1889    if (RetValExp) {
1890      if (!RetValExp->isTypeDependent()) {
1891        // C99 6.8.6.4p1 (ext_ since GCC warns)
1892        unsigned D = diag::ext_return_has_expr;
1893        if (RetValExp->getType()->isVoidType())
1894          D = diag::ext_return_has_void_expr;
1895        else {
1896          ExprResult Result = Owned(RetValExp);
1897          Result = IgnoredValueConversions(Result.take());
1898          if (Result.isInvalid())
1899            return StmtError();
1900          RetValExp = Result.take();
1901          RetValExp = ImpCastExprToType(RetValExp,
1902                                        Context.VoidTy, CK_ToVoid).take();
1903        }
1904
1905        // return (some void expression); is legal in C++.
1906        if (D != diag::ext_return_has_void_expr ||
1907            !getLangOptions().CPlusPlus) {
1908          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1909
1910          int FunctionKind = 0;
1911          if (isa<ObjCMethodDecl>(CurDecl))
1912            FunctionKind = 1;
1913          else if (isa<CXXConstructorDecl>(CurDecl))
1914            FunctionKind = 2;
1915          else if (isa<CXXDestructorDecl>(CurDecl))
1916            FunctionKind = 3;
1917
1918          Diag(ReturnLoc, D)
1919            << CurDecl->getDeclName() << FunctionKind
1920            << RetValExp->getSourceRange();
1921        }
1922      }
1923
1924      CheckImplicitConversions(RetValExp, ReturnLoc);
1925      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1926    }
1927
1928    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1929  } else if (!RetValExp && !FnRetType->isDependentType()) {
1930    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1931    // C99 6.8.6.4p1 (ext_ since GCC warns)
1932    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1933
1934    if (FunctionDecl *FD = getCurFunctionDecl())
1935      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1936    else
1937      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1938    Result = new (Context) ReturnStmt(ReturnLoc);
1939  } else {
1940    const VarDecl *NRVOCandidate = 0;
1941    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1942      // we have a non-void function with an expression, continue checking
1943
1944      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1945      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1946      // function return.
1947
1948      // In C++ the return statement is handled via a copy initialization,
1949      // the C version of which boils down to CheckSingleAssignmentConstraints.
1950      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1951      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1952                                                                     FnRetType,
1953                                                            NRVOCandidate != 0);
1954      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1955                                                       FnRetType, RetValExp);
1956      if (Res.isInvalid()) {
1957        // FIXME: Cleanup temporaries here, anyway?
1958        return StmtError();
1959      }
1960
1961      RetValExp = Res.takeAs<Expr>();
1962      if (RetValExp)
1963        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1964    }
1965
1966    if (RetValExp) {
1967      // If we type-checked an Objective-C method's return type based
1968      // on a related return type, we may need to adjust the return
1969      // type again. Do so now.
1970      if (DeclaredRetType != FnRetType) {
1971        ExprResult result = PerformImplicitConversion(RetValExp,
1972                                                      DeclaredRetType,
1973                                                      AA_Returning);
1974        if (result.isInvalid()) return StmtError();
1975        RetValExp = result.take();
1976      }
1977
1978      CheckImplicitConversions(RetValExp, ReturnLoc);
1979      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1980    }
1981    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1982  }
1983
1984  // If we need to check for the named return value optimization, save the
1985  // return statement in our scope for later processing.
1986  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1987      !CurContext->isDependentContext())
1988    FunctionScopes.back()->Returns.push_back(Result);
1989
1990  return Owned(Result);
1991}
1992
1993/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1994/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1995/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1996/// provide a strong guidance to not use it.
1997///
1998/// This method checks to see if the argument is an acceptable l-value and
1999/// returns false if it is a case we can handle.
2000static bool CheckAsmLValue(const Expr *E, Sema &S) {
2001  // Type dependent expressions will be checked during instantiation.
2002  if (E->isTypeDependent())
2003    return false;
2004
2005  if (E->isLValue())
2006    return false;  // Cool, this is an lvalue.
2007
2008  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2009  // are supposed to allow.
2010  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2011  if (E != E2 && E2->isLValue()) {
2012    if (!S.getLangOptions().HeinousExtensions)
2013      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2014        << E->getSourceRange();
2015    else
2016      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2017        << E->getSourceRange();
2018    // Accept, even if we emitted an error diagnostic.
2019    return false;
2020  }
2021
2022  // None of the above, just randomly invalid non-lvalue.
2023  return true;
2024}
2025
2026/// isOperandMentioned - Return true if the specified operand # is mentioned
2027/// anywhere in the decomposed asm string.
2028static bool isOperandMentioned(unsigned OpNo,
2029                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2030  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2031    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2032    if (!Piece.isOperand()) continue;
2033
2034    // If this is a reference to the input and if the input was the smaller
2035    // one, then we have to reject this asm.
2036    if (Piece.getOperandNo() == OpNo)
2037      return true;
2038  }
2039
2040  return false;
2041}
2042
2043StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2044                              bool IsVolatile, unsigned NumOutputs,
2045                              unsigned NumInputs, IdentifierInfo **Names,
2046                              MultiExprArg constraints, MultiExprArg exprs,
2047                              Expr *asmString, MultiExprArg clobbers,
2048                              SourceLocation RParenLoc, bool MSAsm) {
2049  unsigned NumClobbers = clobbers.size();
2050  StringLiteral **Constraints =
2051    reinterpret_cast<StringLiteral**>(constraints.get());
2052  Expr **Exprs = exprs.get();
2053  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2054  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2055
2056  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2057
2058  // The parser verifies that there is a string literal here.
2059  if (!AsmString->isAscii())
2060    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2061      << AsmString->getSourceRange());
2062
2063  for (unsigned i = 0; i != NumOutputs; i++) {
2064    StringLiteral *Literal = Constraints[i];
2065    if (!Literal->isAscii())
2066      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2067        << Literal->getSourceRange());
2068
2069    StringRef OutputName;
2070    if (Names[i])
2071      OutputName = Names[i]->getName();
2072
2073    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2074    if (!Context.Target.validateOutputConstraint(Info))
2075      return StmtError(Diag(Literal->getLocStart(),
2076                            diag::err_asm_invalid_output_constraint)
2077                       << Info.getConstraintStr());
2078
2079    // Check that the output exprs are valid lvalues.
2080    Expr *OutputExpr = Exprs[i];
2081    if (CheckAsmLValue(OutputExpr, *this)) {
2082      return StmtError(Diag(OutputExpr->getLocStart(),
2083                  diag::err_asm_invalid_lvalue_in_output)
2084        << OutputExpr->getSourceRange());
2085    }
2086
2087    OutputConstraintInfos.push_back(Info);
2088  }
2089
2090  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2091
2092  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2093    StringLiteral *Literal = Constraints[i];
2094    if (!Literal->isAscii())
2095      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2096        << Literal->getSourceRange());
2097
2098    StringRef InputName;
2099    if (Names[i])
2100      InputName = Names[i]->getName();
2101
2102    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2103    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
2104                                                NumOutputs, Info)) {
2105      return StmtError(Diag(Literal->getLocStart(),
2106                            diag::err_asm_invalid_input_constraint)
2107                       << Info.getConstraintStr());
2108    }
2109
2110    Expr *InputExpr = Exprs[i];
2111
2112    // Only allow void types for memory constraints.
2113    if (Info.allowsMemory() && !Info.allowsRegister()) {
2114      if (CheckAsmLValue(InputExpr, *this))
2115        return StmtError(Diag(InputExpr->getLocStart(),
2116                              diag::err_asm_invalid_lvalue_in_input)
2117                         << Info.getConstraintStr()
2118                         << InputExpr->getSourceRange());
2119    }
2120
2121    if (Info.allowsRegister()) {
2122      if (InputExpr->getType()->isVoidType()) {
2123        return StmtError(Diag(InputExpr->getLocStart(),
2124                              diag::err_asm_invalid_type_in_input)
2125          << InputExpr->getType() << Info.getConstraintStr()
2126          << InputExpr->getSourceRange());
2127      }
2128    }
2129
2130    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2131    if (Result.isInvalid())
2132      return StmtError();
2133
2134    Exprs[i] = Result.take();
2135    InputConstraintInfos.push_back(Info);
2136  }
2137
2138  // Check that the clobbers are valid.
2139  for (unsigned i = 0; i != NumClobbers; i++) {
2140    StringLiteral *Literal = Clobbers[i];
2141    if (!Literal->isAscii())
2142      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2143        << Literal->getSourceRange());
2144
2145    StringRef Clobber = Literal->getString();
2146
2147    if (!Context.Target.isValidClobber(Clobber))
2148      return StmtError(Diag(Literal->getLocStart(),
2149                  diag::err_asm_unknown_register_name) << Clobber);
2150  }
2151
2152  AsmStmt *NS =
2153    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2154                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2155                          AsmString, NumClobbers, Clobbers, RParenLoc);
2156  // Validate the asm string, ensuring it makes sense given the operands we
2157  // have.
2158  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2159  unsigned DiagOffs;
2160  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2161    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2162           << AsmString->getSourceRange();
2163    return StmtError();
2164  }
2165
2166  // Validate tied input operands for type mismatches.
2167  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2168    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2169
2170    // If this is a tied constraint, verify that the output and input have
2171    // either exactly the same type, or that they are int/ptr operands with the
2172    // same size (int/long, int*/long, are ok etc).
2173    if (!Info.hasTiedOperand()) continue;
2174
2175    unsigned TiedTo = Info.getTiedOperand();
2176    unsigned InputOpNo = i+NumOutputs;
2177    Expr *OutputExpr = Exprs[TiedTo];
2178    Expr *InputExpr = Exprs[InputOpNo];
2179    QualType InTy = InputExpr->getType();
2180    QualType OutTy = OutputExpr->getType();
2181    if (Context.hasSameType(InTy, OutTy))
2182      continue;  // All types can be tied to themselves.
2183
2184    // Decide if the input and output are in the same domain (integer/ptr or
2185    // floating point.
2186    enum AsmDomain {
2187      AD_Int, AD_FP, AD_Other
2188    } InputDomain, OutputDomain;
2189
2190    if (InTy->isIntegerType() || InTy->isPointerType())
2191      InputDomain = AD_Int;
2192    else if (InTy->isRealFloatingType())
2193      InputDomain = AD_FP;
2194    else
2195      InputDomain = AD_Other;
2196
2197    if (OutTy->isIntegerType() || OutTy->isPointerType())
2198      OutputDomain = AD_Int;
2199    else if (OutTy->isRealFloatingType())
2200      OutputDomain = AD_FP;
2201    else
2202      OutputDomain = AD_Other;
2203
2204    // They are ok if they are the same size and in the same domain.  This
2205    // allows tying things like:
2206    //   void* to int*
2207    //   void* to int            if they are the same size.
2208    //   double to long double   if they are the same size.
2209    //
2210    uint64_t OutSize = Context.getTypeSize(OutTy);
2211    uint64_t InSize = Context.getTypeSize(InTy);
2212    if (OutSize == InSize && InputDomain == OutputDomain &&
2213        InputDomain != AD_Other)
2214      continue;
2215
2216    // If the smaller input/output operand is not mentioned in the asm string,
2217    // then we can promote the smaller one to a larger input and the asm string
2218    // won't notice.
2219    bool SmallerValueMentioned = false;
2220
2221    // If this is a reference to the input and if the input was the smaller
2222    // one, then we have to reject this asm.
2223    if (isOperandMentioned(InputOpNo, Pieces)) {
2224      // This is a use in the asm string of the smaller operand.  Since we
2225      // codegen this by promoting to a wider value, the asm will get printed
2226      // "wrong".
2227      SmallerValueMentioned |= InSize < OutSize;
2228    }
2229    if (isOperandMentioned(TiedTo, Pieces)) {
2230      // If this is a reference to the output, and if the output is the larger
2231      // value, then it's ok because we'll promote the input to the larger type.
2232      SmallerValueMentioned |= OutSize < InSize;
2233    }
2234
2235    // If the smaller value wasn't mentioned in the asm string, and if the
2236    // output was a register, just extend the shorter one to the size of the
2237    // larger one.
2238    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2239        OutputConstraintInfos[TiedTo].allowsRegister())
2240      continue;
2241
2242    // Either both of the operands were mentioned or the smaller one was
2243    // mentioned.  One more special case that we'll allow: if the tied input is
2244    // integer, unmentioned, and is a constant, then we'll allow truncating it
2245    // down to the size of the destination.
2246    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2247        !isOperandMentioned(InputOpNo, Pieces) &&
2248        InputExpr->isEvaluatable(Context)) {
2249      CastKind castKind =
2250        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2251      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2252      Exprs[InputOpNo] = InputExpr;
2253      NS->setInputExpr(i, InputExpr);
2254      continue;
2255    }
2256
2257    Diag(InputExpr->getLocStart(),
2258         diag::err_asm_tying_incompatible_types)
2259      << InTy << OutTy << OutputExpr->getSourceRange()
2260      << InputExpr->getSourceRange();
2261    return StmtError();
2262  }
2263
2264  return Owned(NS);
2265}
2266
2267StmtResult
2268Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2269                           SourceLocation RParen, Decl *Parm,
2270                           Stmt *Body) {
2271  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2272  if (Var && Var->isInvalidDecl())
2273    return StmtError();
2274
2275  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2276}
2277
2278StmtResult
2279Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2280  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2281}
2282
2283StmtResult
2284Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2285                         MultiStmtArg CatchStmts, Stmt *Finally) {
2286  if (!getLangOptions().ObjCExceptions)
2287    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2288
2289  getCurFunction()->setHasBranchProtectedScope();
2290  unsigned NumCatchStmts = CatchStmts.size();
2291  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2292                                     CatchStmts.release(),
2293                                     NumCatchStmts,
2294                                     Finally));
2295}
2296
2297StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2298                                                  Expr *Throw) {
2299  if (Throw) {
2300    Throw = MaybeCreateExprWithCleanups(Throw);
2301    ExprResult Result = DefaultLvalueConversion(Throw);
2302    if (Result.isInvalid())
2303      return StmtError();
2304
2305    Throw = Result.take();
2306    QualType ThrowType = Throw->getType();
2307    // Make sure the expression type is an ObjC pointer or "void *".
2308    if (!ThrowType->isDependentType() &&
2309        !ThrowType->isObjCObjectPointerType()) {
2310      const PointerType *PT = ThrowType->getAs<PointerType>();
2311      if (!PT || !PT->getPointeeType()->isVoidType())
2312        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2313                         << Throw->getType() << Throw->getSourceRange());
2314    }
2315  }
2316
2317  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2318}
2319
2320StmtResult
2321Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2322                           Scope *CurScope) {
2323  if (!getLangOptions().ObjCExceptions)
2324    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2325
2326  if (!Throw) {
2327    // @throw without an expression designates a rethrow (which much occur
2328    // in the context of an @catch clause).
2329    Scope *AtCatchParent = CurScope;
2330    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2331      AtCatchParent = AtCatchParent->getParent();
2332    if (!AtCatchParent)
2333      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2334  }
2335
2336  return BuildObjCAtThrowStmt(AtLoc, Throw);
2337}
2338
2339ExprResult
2340Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2341  ExprResult result = DefaultLvalueConversion(operand);
2342  if (result.isInvalid())
2343    return ExprError();
2344  operand = result.take();
2345
2346  // Make sure the expression type is an ObjC pointer or "void *".
2347  QualType type = operand->getType();
2348  if (!type->isDependentType() &&
2349      !type->isObjCObjectPointerType()) {
2350    const PointerType *pointerType = type->getAs<PointerType>();
2351    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2352      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2353               << type << operand->getSourceRange();
2354  }
2355
2356  // The operand to @synchronized is a full-expression.
2357  return MaybeCreateExprWithCleanups(operand);
2358}
2359
2360StmtResult
2361Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2362                                  Stmt *SyncBody) {
2363  // We can't jump into or indirect-jump out of a @synchronized block.
2364  getCurFunction()->setHasBranchProtectedScope();
2365  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2366}
2367
2368/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2369/// and creates a proper catch handler from them.
2370StmtResult
2371Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2372                         Stmt *HandlerBlock) {
2373  // There's nothing to test that ActOnExceptionDecl didn't already test.
2374  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2375                                          cast_or_null<VarDecl>(ExDecl),
2376                                          HandlerBlock));
2377}
2378
2379StmtResult
2380Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2381  getCurFunction()->setHasBranchProtectedScope();
2382  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2383}
2384
2385namespace {
2386
2387class TypeWithHandler {
2388  QualType t;
2389  CXXCatchStmt *stmt;
2390public:
2391  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2392  : t(type), stmt(statement) {}
2393
2394  // An arbitrary order is fine as long as it places identical
2395  // types next to each other.
2396  bool operator<(const TypeWithHandler &y) const {
2397    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2398      return true;
2399    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2400      return false;
2401    else
2402      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2403  }
2404
2405  bool operator==(const TypeWithHandler& other) const {
2406    return t == other.t;
2407  }
2408
2409  CXXCatchStmt *getCatchStmt() const { return stmt; }
2410  SourceLocation getTypeSpecStartLoc() const {
2411    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2412  }
2413};
2414
2415}
2416
2417/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2418/// handlers and creates a try statement from them.
2419StmtResult
2420Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2421                       MultiStmtArg RawHandlers) {
2422  // Don't report an error if 'try' is used in system headers.
2423  if (!getLangOptions().CXXExceptions &&
2424      !getSourceManager().isInSystemHeader(TryLoc))
2425      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2426
2427  unsigned NumHandlers = RawHandlers.size();
2428  assert(NumHandlers > 0 &&
2429         "The parser shouldn't call this if there are no handlers.");
2430  Stmt **Handlers = RawHandlers.get();
2431
2432  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2433
2434  for (unsigned i = 0; i < NumHandlers; ++i) {
2435    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2436    if (!Handler->getExceptionDecl()) {
2437      if (i < NumHandlers - 1)
2438        return StmtError(Diag(Handler->getLocStart(),
2439                              diag::err_early_catch_all));
2440
2441      continue;
2442    }
2443
2444    const QualType CaughtType = Handler->getCaughtType();
2445    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2446    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2447  }
2448
2449  // Detect handlers for the same type as an earlier one.
2450  if (NumHandlers > 1) {
2451    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2452
2453    TypeWithHandler prev = TypesWithHandlers[0];
2454    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2455      TypeWithHandler curr = TypesWithHandlers[i];
2456
2457      if (curr == prev) {
2458        Diag(curr.getTypeSpecStartLoc(),
2459             diag::warn_exception_caught_by_earlier_handler)
2460          << curr.getCatchStmt()->getCaughtType().getAsString();
2461        Diag(prev.getTypeSpecStartLoc(),
2462             diag::note_previous_exception_handler)
2463          << prev.getCatchStmt()->getCaughtType().getAsString();
2464      }
2465
2466      prev = curr;
2467    }
2468  }
2469
2470  getCurFunction()->setHasBranchProtectedScope();
2471
2472  // FIXME: We should detect handlers that cannot catch anything because an
2473  // earlier handler catches a superclass. Need to find a method that is not
2474  // quadratic for this.
2475  // Neither of these are explicitly forbidden, but every compiler detects them
2476  // and warns.
2477
2478  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2479                                  Handlers, NumHandlers));
2480}
2481
2482StmtResult
2483Sema::ActOnSEHTryBlock(bool IsCXXTry,
2484                       SourceLocation TryLoc,
2485                       Stmt *TryBlock,
2486                       Stmt *Handler) {
2487  assert(TryBlock && Handler);
2488
2489  getCurFunction()->setHasBranchProtectedScope();
2490
2491  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2492}
2493
2494StmtResult
2495Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2496                          Expr *FilterExpr,
2497                          Stmt *Block) {
2498  assert(FilterExpr && Block);
2499
2500  if(!FilterExpr->getType()->isIntegerType()) {
2501    return StmtError(Diag(FilterExpr->getExprLoc(),
2502                     diag::err_filter_expression_integral)
2503                     << FilterExpr->getType());
2504  }
2505
2506  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2507}
2508
2509StmtResult
2510Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2511                           Stmt *Block) {
2512  assert(Block);
2513  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2514}
2515