SemaStmt.cpp revision 5f1e0942a32657b625702aa52f82430d0120f424
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallVector.h"
29using namespace clang;
30
31StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
32  Expr *E = expr.get();
33  assert(E && "ActOnExprStmt(): missing expression");
34  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
35  // void expression for its side effects.  Conversion to void allows any
36  // operand, even incomplete types.
37
38  // Same thing in for stmt first clause (when expr) and third clause.
39  return Owned(static_cast<Stmt*>(E));
40}
41
42
43StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
44  return Owned(new (Context) NullStmt(SemiLoc));
45}
46
47StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
48                                           SourceLocation StartLoc,
49                                           SourceLocation EndLoc) {
50  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
51
52  // If we have an invalid decl, just return an error.
53  if (DG.isNull()) return StmtError();
54
55  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
56}
57
58void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
59  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
60
61  // If we have an invalid decl, just return.
62  if (DG.isNull() || !DG.isSingleDecl()) return;
63  // suppress any potential 'unused variable' warning.
64  DG.getSingleDecl()->setUsed();
65}
66
67void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
68  const Expr *E = dyn_cast_or_null<Expr>(S);
69  if (!E)
70    return;
71
72  SourceLocation Loc;
73  SourceRange R1, R2;
74  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
75    return;
76
77  // Okay, we have an unused result.  Depending on what the base expression is,
78  // we might want to make a more specific diagnostic.  Check for one of these
79  // cases now.
80  unsigned DiagID = diag::warn_unused_expr;
81  E = E->IgnoreParens();
82  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
83    DiagID = diag::warn_unused_property_expr;
84
85  if (const CXXExprWithTemporaries *Temps = dyn_cast<CXXExprWithTemporaries>(E))
86    E = Temps->getSubExpr();
87
88  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
89    if (E->getType()->isVoidType())
90      return;
91
92    // If the callee has attribute pure, const, or warn_unused_result, warn with
93    // a more specific message to make it clear what is happening.
94    if (const Decl *FD = CE->getCalleeDecl()) {
95      if (FD->getAttr<WarnUnusedResultAttr>()) {
96        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
97        return;
98      }
99      if (FD->getAttr<PureAttr>()) {
100        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
101        return;
102      }
103      if (FD->getAttr<ConstAttr>()) {
104        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
105        return;
106      }
107    }
108  }
109  else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
110    const ObjCMethodDecl *MD = ME->getMethodDecl();
111    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
112      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
113      return;
114    }
115  } else if (const CXXFunctionalCastExpr *FC
116                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
117    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
118        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
119      return;
120  }
121  // Diagnose "(void*) blah" as a typo for "(void) blah".
122  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
123    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
124    QualType T = TI->getType();
125
126    // We really do want to use the non-canonical type here.
127    if (T == Context.VoidPtrTy) {
128      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
129
130      Diag(Loc, diag::warn_unused_voidptr)
131        << FixItHint::CreateRemoval(TL.getStarLoc());
132      return;
133    }
134  }
135
136  DiagRuntimeBehavior(Loc, PDiag(DiagID) << R1 << R2);
137}
138
139StmtResult
140Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
141                        MultiStmtArg elts, bool isStmtExpr) {
142  unsigned NumElts = elts.size();
143  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
144  // If we're in C89 mode, check that we don't have any decls after stmts.  If
145  // so, emit an extension diagnostic.
146  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
147    // Note that __extension__ can be around a decl.
148    unsigned i = 0;
149    // Skip over all declarations.
150    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
151      /*empty*/;
152
153    // We found the end of the list or a statement.  Scan for another declstmt.
154    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
155      /*empty*/;
156
157    if (i != NumElts) {
158      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
159      Diag(D->getLocation(), diag::ext_mixed_decls_code);
160    }
161  }
162  // Warn about unused expressions in statements.
163  for (unsigned i = 0; i != NumElts; ++i) {
164    // Ignore statements that are last in a statement expression.
165    if (isStmtExpr && i == NumElts - 1)
166      continue;
167
168    DiagnoseUnusedExprResult(Elts[i]);
169  }
170
171  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
172}
173
174StmtResult
175Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
176                    SourceLocation DotDotDotLoc, Expr *RHSVal,
177                    SourceLocation ColonLoc) {
178  assert((LHSVal != 0) && "missing expression in case statement");
179
180  // C99 6.8.4.2p3: The expression shall be an integer constant.
181  // However, GCC allows any evaluatable integer expression.
182  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
183      VerifyIntegerConstantExpression(LHSVal))
184    return StmtError();
185
186  // GCC extension: The expression shall be an integer constant.
187
188  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
189      VerifyIntegerConstantExpression(RHSVal)) {
190    RHSVal = 0;  // Recover by just forgetting about it.
191  }
192
193  if (getSwitchStack().empty()) {
194    Diag(CaseLoc, diag::err_case_not_in_switch);
195    return StmtError();
196  }
197
198  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
199                                        ColonLoc);
200  getSwitchStack().back()->addSwitchCase(CS);
201  return Owned(CS);
202}
203
204/// ActOnCaseStmtBody - This installs a statement as the body of a case.
205void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
206  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
207  CS->setSubStmt(SubStmt);
208}
209
210StmtResult
211Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
212                       Stmt *SubStmt, Scope *CurScope) {
213  if (getSwitchStack().empty()) {
214    Diag(DefaultLoc, diag::err_default_not_in_switch);
215    return Owned(SubStmt);
216  }
217
218  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
219  getSwitchStack().back()->addSwitchCase(DS);
220  return Owned(DS);
221}
222
223StmtResult
224Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
225                     SourceLocation ColonLoc, Stmt *SubStmt) {
226  // Look up the record for this label identifier.
227  LabelStmt *&LabelDecl = getLabelMap()[II];
228
229  // If not forward referenced or defined already, just create a new LabelStmt.
230  if (LabelDecl == 0)
231    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
232
233  assert(LabelDecl->getID() == II && "Label mismatch!");
234
235  // Otherwise, this label was either forward reference or multiply defined.  If
236  // multiply defined, reject it now.
237  if (LabelDecl->getSubStmt()) {
238    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
239    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
240    return Owned(SubStmt);
241  }
242
243  // Otherwise, this label was forward declared, and we just found its real
244  // definition.  Fill in the forward definition and return it.
245  LabelDecl->setIdentLoc(IdentLoc);
246  LabelDecl->setSubStmt(SubStmt);
247  return Owned(LabelDecl);
248}
249
250StmtResult
251Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
252                  Stmt *thenStmt, SourceLocation ElseLoc,
253                  Stmt *elseStmt) {
254  ExprResult CondResult(CondVal.release());
255
256  VarDecl *ConditionVar = 0;
257  if (CondVar) {
258    ConditionVar = cast<VarDecl>(CondVar);
259    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
260    if (CondResult.isInvalid())
261      return StmtError();
262  }
263  Expr *ConditionExpr = CondResult.takeAs<Expr>();
264  if (!ConditionExpr)
265    return StmtError();
266
267  DiagnoseUnusedExprResult(thenStmt);
268
269  // Warn if the if block has a null body without an else value.
270  // this helps prevent bugs due to typos, such as
271  // if (condition);
272  //   do_stuff();
273  if (!elseStmt) {
274    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
275      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
276  }
277
278  DiagnoseUnusedExprResult(elseStmt);
279
280  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
281                                    thenStmt, ElseLoc, elseStmt));
282}
283
284/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
285/// the specified width and sign.  If an overflow occurs, detect it and emit
286/// the specified diagnostic.
287void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
288                                              unsigned NewWidth, bool NewSign,
289                                              SourceLocation Loc,
290                                              unsigned DiagID) {
291  // Perform a conversion to the promoted condition type if needed.
292  if (NewWidth > Val.getBitWidth()) {
293    // If this is an extension, just do it.
294    Val.extend(NewWidth);
295    Val.setIsSigned(NewSign);
296
297    // If the input was signed and negative and the output is
298    // unsigned, don't bother to warn: this is implementation-defined
299    // behavior.
300    // FIXME: Introduce a second, default-ignored warning for this case?
301  } else if (NewWidth < Val.getBitWidth()) {
302    // If this is a truncation, check for overflow.
303    llvm::APSInt ConvVal(Val);
304    ConvVal.trunc(NewWidth);
305    ConvVal.setIsSigned(NewSign);
306    ConvVal.extend(Val.getBitWidth());
307    ConvVal.setIsSigned(Val.isSigned());
308    if (ConvVal != Val)
309      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
310
311    // Regardless of whether a diagnostic was emitted, really do the
312    // truncation.
313    Val.trunc(NewWidth);
314    Val.setIsSigned(NewSign);
315  } else if (NewSign != Val.isSigned()) {
316    // Convert the sign to match the sign of the condition.  This can cause
317    // overflow as well: unsigned(INTMIN)
318    // We don't diagnose this overflow, because it is implementation-defined
319    // behavior.
320    // FIXME: Introduce a second, default-ignored warning for this case?
321    llvm::APSInt OldVal(Val);
322    Val.setIsSigned(NewSign);
323  }
324}
325
326namespace {
327  struct CaseCompareFunctor {
328    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
329                    const llvm::APSInt &RHS) {
330      return LHS.first < RHS;
331    }
332    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
333                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
334      return LHS.first < RHS.first;
335    }
336    bool operator()(const llvm::APSInt &LHS,
337                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
338      return LHS < RHS.first;
339    }
340  };
341}
342
343/// CmpCaseVals - Comparison predicate for sorting case values.
344///
345static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
346                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
347  if (lhs.first < rhs.first)
348    return true;
349
350  if (lhs.first == rhs.first &&
351      lhs.second->getCaseLoc().getRawEncoding()
352       < rhs.second->getCaseLoc().getRawEncoding())
353    return true;
354  return false;
355}
356
357/// CmpEnumVals - Comparison predicate for sorting enumeration values.
358///
359static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
360                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
361{
362  return lhs.first < rhs.first;
363}
364
365/// EqEnumVals - Comparison preficate for uniqing enumeration values.
366///
367static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
368                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
369{
370  return lhs.first == rhs.first;
371}
372
373/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
374/// potentially integral-promoted expression @p expr.
375static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
376  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
377    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
378    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
379    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
380      return TypeBeforePromotion;
381    }
382  }
383  return expr->getType();
384}
385
386StmtResult
387Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
388                             Decl *CondVar) {
389  ExprResult CondResult;
390
391  VarDecl *ConditionVar = 0;
392  if (CondVar) {
393    ConditionVar = cast<VarDecl>(CondVar);
394    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
395    if (CondResult.isInvalid())
396      return StmtError();
397
398    Cond = CondResult.release();
399  }
400
401  if (!Cond)
402    return StmtError();
403
404  CondResult
405    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
406                          PDiag(diag::err_typecheck_statement_requires_integer),
407                                   PDiag(diag::err_switch_incomplete_class_type)
408                                     << Cond->getSourceRange(),
409                                   PDiag(diag::err_switch_explicit_conversion),
410                                         PDiag(diag::note_switch_conversion),
411                                   PDiag(diag::err_switch_multiple_conversions),
412                                         PDiag(diag::note_switch_conversion),
413                                         PDiag(0));
414  if (CondResult.isInvalid()) return StmtError();
415  Cond = CondResult.take();
416
417  if (!CondVar) {
418    CondResult = MaybeCreateCXXExprWithTemporaries(Cond);
419    if (CondResult.isInvalid())
420      return StmtError();
421    Cond = CondResult.take();
422  }
423
424  setFunctionHasBranchIntoScope();
425
426  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
427  getSwitchStack().push_back(SS);
428  return Owned(SS);
429}
430
431StmtResult
432Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
433                            Stmt *BodyStmt) {
434  SwitchStmt *SS = cast<SwitchStmt>(Switch);
435  assert(SS == getSwitchStack().back() && "switch stack missing push/pop!");
436
437  SS->setBody(BodyStmt, SwitchLoc);
438  getSwitchStack().pop_back();
439
440  if (SS->getCond() == 0)
441    return StmtError();
442
443  Expr *CondExpr = SS->getCond();
444  Expr *CondExprBeforePromotion = CondExpr;
445  QualType CondTypeBeforePromotion =
446      GetTypeBeforeIntegralPromotion(CondExpr);
447
448  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
449  UsualUnaryConversions(CondExpr);
450  QualType CondType = CondExpr->getType();
451  SS->setCond(CondExpr);
452
453  // C++ 6.4.2.p2:
454  // Integral promotions are performed (on the switch condition).
455  //
456  // A case value unrepresentable by the original switch condition
457  // type (before the promotion) doesn't make sense, even when it can
458  // be represented by the promoted type.  Therefore we need to find
459  // the pre-promotion type of the switch condition.
460  if (!CondExpr->isTypeDependent()) {
461    // We have already converted the expression to an integral or enumeration
462    // type, when we started the switch statement. If we don't have an
463    // appropriate type now, just return an error.
464    if (!CondType->isIntegralOrEnumerationType())
465      return StmtError();
466
467    if (CondExpr->isKnownToHaveBooleanValue()) {
468      // switch(bool_expr) {...} is often a programmer error, e.g.
469      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
470      // One can always use an if statement instead of switch(bool_expr).
471      Diag(SwitchLoc, diag::warn_bool_switch_condition)
472          << CondExpr->getSourceRange();
473    }
474  }
475
476  // Get the bitwidth of the switched-on value before promotions.  We must
477  // convert the integer case values to this width before comparison.
478  bool HasDependentValue
479    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
480  unsigned CondWidth
481    = HasDependentValue? 0
482      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
483  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
484
485  // Accumulate all of the case values in a vector so that we can sort them
486  // and detect duplicates.  This vector contains the APInt for the case after
487  // it has been converted to the condition type.
488  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
489  CaseValsTy CaseVals;
490
491  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
492  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
493  CaseRangesTy CaseRanges;
494
495  DefaultStmt *TheDefaultStmt = 0;
496
497  bool CaseListIsErroneous = false;
498
499  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
500       SC = SC->getNextSwitchCase()) {
501
502    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
503      if (TheDefaultStmt) {
504        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
505        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
506
507        // FIXME: Remove the default statement from the switch block so that
508        // we'll return a valid AST.  This requires recursing down the AST and
509        // finding it, not something we are set up to do right now.  For now,
510        // just lop the entire switch stmt out of the AST.
511        CaseListIsErroneous = true;
512      }
513      TheDefaultStmt = DS;
514
515    } else {
516      CaseStmt *CS = cast<CaseStmt>(SC);
517
518      // We already verified that the expression has a i-c-e value (C99
519      // 6.8.4.2p3) - get that value now.
520      Expr *Lo = CS->getLHS();
521
522      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
523        HasDependentValue = true;
524        break;
525      }
526
527      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
528
529      // Convert the value to the same width/sign as the condition.
530      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
531                                         CS->getLHS()->getLocStart(),
532                                         diag::warn_case_value_overflow);
533
534      // If the LHS is not the same type as the condition, insert an implicit
535      // cast.
536      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
537      CS->setLHS(Lo);
538
539      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
540      if (CS->getRHS()) {
541        if (CS->getRHS()->isTypeDependent() ||
542            CS->getRHS()->isValueDependent()) {
543          HasDependentValue = true;
544          break;
545        }
546        CaseRanges.push_back(std::make_pair(LoVal, CS));
547      } else
548        CaseVals.push_back(std::make_pair(LoVal, CS));
549    }
550  }
551
552  if (!HasDependentValue) {
553    // If we don't have a default statement, check whether the
554    // condition is constant.
555    llvm::APSInt ConstantCondValue;
556    bool HasConstantCond = false;
557    bool ShouldCheckConstantCond = false;
558    if (!HasDependentValue && !TheDefaultStmt) {
559      Expr::EvalResult Result;
560      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
561      if (HasConstantCond) {
562        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
563        ConstantCondValue = Result.Val.getInt();
564        ShouldCheckConstantCond = true;
565
566        assert(ConstantCondValue.getBitWidth() == CondWidth &&
567               ConstantCondValue.isSigned() == CondIsSigned);
568      }
569    }
570
571    // Sort all the scalar case values so we can easily detect duplicates.
572    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
573
574    if (!CaseVals.empty()) {
575      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
576        if (ShouldCheckConstantCond &&
577            CaseVals[i].first == ConstantCondValue)
578          ShouldCheckConstantCond = false;
579
580        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
581          // If we have a duplicate, report it.
582          Diag(CaseVals[i].second->getLHS()->getLocStart(),
583               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
584          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
585               diag::note_duplicate_case_prev);
586          // FIXME: We really want to remove the bogus case stmt from the
587          // substmt, but we have no way to do this right now.
588          CaseListIsErroneous = true;
589        }
590      }
591    }
592
593    // Detect duplicate case ranges, which usually don't exist at all in
594    // the first place.
595    if (!CaseRanges.empty()) {
596      // Sort all the case ranges by their low value so we can easily detect
597      // overlaps between ranges.
598      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
599
600      // Scan the ranges, computing the high values and removing empty ranges.
601      std::vector<llvm::APSInt> HiVals;
602      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
603        llvm::APSInt &LoVal = CaseRanges[i].first;
604        CaseStmt *CR = CaseRanges[i].second;
605        Expr *Hi = CR->getRHS();
606        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
607
608        // Convert the value to the same width/sign as the condition.
609        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
610                                           CR->getRHS()->getLocStart(),
611                                           diag::warn_case_value_overflow);
612
613        // If the LHS is not the same type as the condition, insert an implicit
614        // cast.
615        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
616        CR->setRHS(Hi);
617
618        // If the low value is bigger than the high value, the case is empty.
619        if (LoVal > HiVal) {
620          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
621            << SourceRange(CR->getLHS()->getLocStart(),
622                           CR->getRHS()->getLocEnd());
623          CaseRanges.erase(CaseRanges.begin()+i);
624          --i, --e;
625          continue;
626        }
627
628        if (ShouldCheckConstantCond &&
629            LoVal <= ConstantCondValue &&
630            ConstantCondValue <= HiVal)
631          ShouldCheckConstantCond = false;
632
633        HiVals.push_back(HiVal);
634      }
635
636      // Rescan the ranges, looking for overlap with singleton values and other
637      // ranges.  Since the range list is sorted, we only need to compare case
638      // ranges with their neighbors.
639      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
640        llvm::APSInt &CRLo = CaseRanges[i].first;
641        llvm::APSInt &CRHi = HiVals[i];
642        CaseStmt *CR = CaseRanges[i].second;
643
644        // Check to see whether the case range overlaps with any
645        // singleton cases.
646        CaseStmt *OverlapStmt = 0;
647        llvm::APSInt OverlapVal(32);
648
649        // Find the smallest value >= the lower bound.  If I is in the
650        // case range, then we have overlap.
651        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
652                                                  CaseVals.end(), CRLo,
653                                                  CaseCompareFunctor());
654        if (I != CaseVals.end() && I->first < CRHi) {
655          OverlapVal  = I->first;   // Found overlap with scalar.
656          OverlapStmt = I->second;
657        }
658
659        // Find the smallest value bigger than the upper bound.
660        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
661        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
662          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
663          OverlapStmt = (I-1)->second;
664        }
665
666        // Check to see if this case stmt overlaps with the subsequent
667        // case range.
668        if (i && CRLo <= HiVals[i-1]) {
669          OverlapVal  = HiVals[i-1];       // Found overlap with range.
670          OverlapStmt = CaseRanges[i-1].second;
671        }
672
673        if (OverlapStmt) {
674          // If we have a duplicate, report it.
675          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
676            << OverlapVal.toString(10);
677          Diag(OverlapStmt->getLHS()->getLocStart(),
678               diag::note_duplicate_case_prev);
679          // FIXME: We really want to remove the bogus case stmt from the
680          // substmt, but we have no way to do this right now.
681          CaseListIsErroneous = true;
682        }
683      }
684    }
685
686    // Complain if we have a constant condition and we didn't find a match.
687    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
688      // TODO: it would be nice if we printed enums as enums, chars as
689      // chars, etc.
690      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
691        << ConstantCondValue.toString(10)
692        << CondExpr->getSourceRange();
693    }
694
695    // Check to see if switch is over an Enum and handles all of its
696    // values.  We don't need to do this if there's a default
697    // statement or if we have a constant condition.
698    //
699    // TODO: we might want to check whether case values are out of the
700    // enum even if we don't want to check whether all cases are handled.
701    const EnumType* ET = CondTypeBeforePromotion->getAs<EnumType>();
702    // If switch has default case, then ignore it.
703    if (!CaseListIsErroneous && !TheDefaultStmt && !HasConstantCond && ET) {
704      const EnumDecl *ED = ET->getDecl();
705      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
706      EnumValsTy EnumVals;
707
708      // Gather all enum values, set their type and sort them,
709      // allowing easier comparison with CaseVals.
710      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
711             EDI != ED->enumerator_end(); EDI++) {
712        llvm::APSInt Val = (*EDI)->getInitVal();
713        if(Val.getBitWidth() < CondWidth)
714          Val.extend(CondWidth);
715        else if (Val.getBitWidth() > CondWidth)
716          Val.trunc(CondWidth);
717        Val.setIsSigned(CondIsSigned);
718        EnumVals.push_back(std::make_pair(Val, (*EDI)));
719      }
720      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
721      EnumValsTy::iterator EIend =
722        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
723      // See which case values aren't in enum
724      EnumValsTy::const_iterator EI = EnumVals.begin();
725      for (CaseValsTy::const_iterator CI = CaseVals.begin();
726             CI != CaseVals.end(); CI++) {
727        while (EI != EIend && EI->first < CI->first)
728          EI++;
729        if (EI == EIend || EI->first > CI->first)
730            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
731              << ED->getDeclName();
732      }
733      // See which of case ranges aren't in enum
734      EI = EnumVals.begin();
735      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
736             RI != CaseRanges.end() && EI != EIend; RI++) {
737        while (EI != EIend && EI->first < RI->first)
738          EI++;
739
740        if (EI == EIend || EI->first != RI->first) {
741          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
742            << ED->getDeclName();
743        }
744
745        llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
746        while (EI != EIend && EI->first < Hi)
747          EI++;
748        if (EI == EIend || EI->first != Hi)
749          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
750            << ED->getDeclName();
751      }
752      //Check which enum vals aren't in switch
753      CaseValsTy::const_iterator CI = CaseVals.begin();
754      CaseRangesTy::const_iterator RI = CaseRanges.begin();
755      EI = EnumVals.begin();
756      for (; EI != EIend; EI++) {
757        //Drop unneeded case values
758        llvm::APSInt CIVal;
759        while (CI != CaseVals.end() && CI->first < EI->first)
760          CI++;
761
762        if (CI != CaseVals.end() && CI->first == EI->first)
763          continue;
764
765        //Drop unneeded case ranges
766        for (; RI != CaseRanges.end(); RI++) {
767          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
768          if (EI->first <= Hi)
769            break;
770        }
771
772        if (RI == CaseRanges.end() || EI->first < RI->first)
773          Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
774            << EI->second->getDeclName();
775      }
776    }
777  }
778
779  // FIXME: If the case list was broken is some way, we don't have a good system
780  // to patch it up.  Instead, just return the whole substmt as broken.
781  if (CaseListIsErroneous)
782    return StmtError();
783
784  return Owned(SS);
785}
786
787StmtResult
788Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
789                     Decl *CondVar, Stmt *Body) {
790  ExprResult CondResult(Cond.release());
791
792  VarDecl *ConditionVar = 0;
793  if (CondVar) {
794    ConditionVar = cast<VarDecl>(CondVar);
795    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
796    if (CondResult.isInvalid())
797      return StmtError();
798  }
799  Expr *ConditionExpr = CondResult.take();
800  if (!ConditionExpr)
801    return StmtError();
802
803  DiagnoseUnusedExprResult(Body);
804
805  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
806                                       Body, WhileLoc));
807}
808
809StmtResult
810Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
811                  SourceLocation WhileLoc, SourceLocation CondLParen,
812                  Expr *Cond, SourceLocation CondRParen) {
813  assert(Cond && "ActOnDoStmt(): missing expression");
814
815  if (CheckBooleanCondition(Cond, DoLoc))
816    return StmtError();
817
818  ExprResult CondResult = MaybeCreateCXXExprWithTemporaries(Cond);
819  if (CondResult.isInvalid())
820    return StmtError();
821  Cond = CondResult.take();
822
823  DiagnoseUnusedExprResult(Body);
824
825  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
826}
827
828StmtResult
829Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
830                   Stmt *First, FullExprArg second, Decl *secondVar,
831                   FullExprArg third,
832                   SourceLocation RParenLoc, Stmt *Body) {
833  if (!getLangOptions().CPlusPlus) {
834    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
835      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
836      // declare identifiers for objects having storage class 'auto' or
837      // 'register'.
838      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
839           DI!=DE; ++DI) {
840        VarDecl *VD = dyn_cast<VarDecl>(*DI);
841        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
842          VD = 0;
843        if (VD == 0)
844          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
845        // FIXME: mark decl erroneous!
846      }
847    }
848  }
849
850  ExprResult SecondResult(second.release());
851  VarDecl *ConditionVar = 0;
852  if (secondVar) {
853    ConditionVar = cast<VarDecl>(secondVar);
854    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
855    if (SecondResult.isInvalid())
856      return StmtError();
857  }
858
859  Expr *Third  = third.release().takeAs<Expr>();
860
861  DiagnoseUnusedExprResult(First);
862  DiagnoseUnusedExprResult(Third);
863  DiagnoseUnusedExprResult(Body);
864
865  return Owned(new (Context) ForStmt(Context, First,
866                                     SecondResult.take(), ConditionVar,
867                                     Third, Body, ForLoc, LParenLoc,
868                                     RParenLoc));
869}
870
871StmtResult
872Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
873                                 SourceLocation LParenLoc,
874                                 Stmt *First, Expr *Second,
875                                 SourceLocation RParenLoc, Stmt *Body) {
876  if (First) {
877    QualType FirstType;
878    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
879      if (!DS->isSingleDecl())
880        return StmtError(Diag((*DS->decl_begin())->getLocation(),
881                         diag::err_toomany_element_decls));
882
883      Decl *D = DS->getSingleDecl();
884      FirstType = cast<ValueDecl>(D)->getType();
885      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
886      // declare identifiers for objects having storage class 'auto' or
887      // 'register'.
888      VarDecl *VD = cast<VarDecl>(D);
889      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
890        return StmtError(Diag(VD->getLocation(),
891                              diag::err_non_variable_decl_in_for));
892    } else {
893      Expr *FirstE = cast<Expr>(First);
894      if (!FirstE->isTypeDependent() &&
895          FirstE->isLvalue(Context) != Expr::LV_Valid)
896        return StmtError(Diag(First->getLocStart(),
897                   diag::err_selector_element_not_lvalue)
898          << First->getSourceRange());
899
900      FirstType = static_cast<Expr*>(First)->getType();
901    }
902    if (!FirstType->isDependentType() &&
903        !FirstType->isObjCObjectPointerType() &&
904        !FirstType->isBlockPointerType())
905        Diag(ForLoc, diag::err_selector_element_type)
906          << FirstType << First->getSourceRange();
907  }
908  if (Second && !Second->isTypeDependent()) {
909    DefaultFunctionArrayLvalueConversion(Second);
910    QualType SecondType = Second->getType();
911    if (!SecondType->isObjCObjectPointerType())
912      Diag(ForLoc, diag::err_collection_expr_type)
913        << SecondType << Second->getSourceRange();
914    else if (const ObjCObjectPointerType *OPT =
915             SecondType->getAsObjCInterfacePointerType()) {
916      llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
917      IdentifierInfo* selIdent =
918        &Context.Idents.get("countByEnumeratingWithState");
919      KeyIdents.push_back(selIdent);
920      selIdent = &Context.Idents.get("objects");
921      KeyIdents.push_back(selIdent);
922      selIdent = &Context.Idents.get("count");
923      KeyIdents.push_back(selIdent);
924      Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
925      if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
926        if (!IDecl->isForwardDecl() &&
927            !IDecl->lookupInstanceMethod(CSelector)) {
928          // Must further look into private implementation methods.
929          if (!LookupPrivateInstanceMethod(CSelector, IDecl))
930            Diag(ForLoc, diag::warn_collection_expr_type)
931              << SecondType << CSelector << Second->getSourceRange();
932        }
933      }
934    }
935  }
936  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
937                                                   ForLoc, RParenLoc));
938}
939
940StmtResult
941Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
942                    IdentifierInfo *LabelII) {
943  // Look up the record for this label identifier.
944  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
945
946  setFunctionHasBranchIntoScope();
947
948  // If we haven't seen this label yet, create a forward reference.
949  if (LabelDecl == 0)
950    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
951
952  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
953}
954
955StmtResult
956Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
957                            Expr *E) {
958  // Convert operand to void*
959  if (!E->isTypeDependent()) {
960    QualType ETy = E->getType();
961    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
962    AssignConvertType ConvTy =
963      CheckSingleAssignmentConstraints(DestTy, E);
964    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
965      return StmtError();
966  }
967
968  setFunctionHasIndirectGoto();
969
970  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
971}
972
973StmtResult
974Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
975  Scope *S = CurScope->getContinueParent();
976  if (!S) {
977    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
978    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
979  }
980
981  return Owned(new (Context) ContinueStmt(ContinueLoc));
982}
983
984StmtResult
985Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
986  Scope *S = CurScope->getBreakParent();
987  if (!S) {
988    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
989    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
990  }
991
992  return Owned(new (Context) BreakStmt(BreakLoc));
993}
994
995/// \brief Determine whether a return statement is a candidate for the named
996/// return value optimization (C++0x 12.8p34, bullet 1).
997///
998/// \param Ctx The context in which the return expression and type occur.
999///
1000/// \param RetType The return type of the function or block.
1001///
1002/// \param RetExpr The expression being returned from the function or block.
1003///
1004/// \returns The NRVO candidate variable, if the return statement may use the
1005/// NRVO, or NULL if there is no such candidate.
1006static const VarDecl *getNRVOCandidate(ASTContext &Ctx, QualType RetType,
1007                                       Expr *RetExpr) {
1008  QualType ExprType = RetExpr->getType();
1009  // - in a return statement in a function with ...
1010  // ... a class return type ...
1011  if (!RetType->isRecordType())
1012    return 0;
1013  // ... the same cv-unqualified type as the function return type ...
1014  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
1015    return 0;
1016  // ... the expression is the name of a non-volatile automatic object ...
1017  // We ignore parentheses here.
1018  // FIXME: Is this compliant? (Everyone else does it)
1019  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
1020  if (!DR)
1021    return 0;
1022  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1023  if (!VD)
1024    return 0;
1025
1026  if (VD->getKind() == Decl::Var && VD->hasLocalStorage() &&
1027      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1028      !VD->getType().isVolatileQualified())
1029    return VD;
1030
1031  return 0;
1032}
1033
1034/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1035///
1036StmtResult
1037Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1038  // If this is the first return we've seen in the block, infer the type of
1039  // the block from it.
1040  BlockScopeInfo *CurBlock = getCurBlock();
1041  if (CurBlock->ReturnType.isNull()) {
1042    if (RetValExp) {
1043      // Don't call UsualUnaryConversions(), since we don't want to do
1044      // integer promotions here.
1045      DefaultFunctionArrayLvalueConversion(RetValExp);
1046      CurBlock->ReturnType = RetValExp->getType();
1047      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1048        // We have to remove a 'const' added to copied-in variable which was
1049        // part of the implementation spec. and not the actual qualifier for
1050        // the variable.
1051        if (CDRE->isConstQualAdded())
1052           CurBlock->ReturnType.removeConst();
1053      }
1054    } else
1055      CurBlock->ReturnType = Context.VoidTy;
1056  }
1057  QualType FnRetType = CurBlock->ReturnType;
1058
1059  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
1060    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1061      << getCurFunctionOrMethodDecl()->getDeclName();
1062    return StmtError();
1063  }
1064
1065  // Otherwise, verify that this result type matches the previous one.  We are
1066  // pickier with blocks than for normal functions because we don't have GCC
1067  // compatibility to worry about here.
1068  ReturnStmt *Result = 0;
1069  if (CurBlock->ReturnType->isVoidType()) {
1070    if (RetValExp) {
1071      Diag(ReturnLoc, diag::err_return_block_has_expr);
1072      RetValExp = 0;
1073    }
1074    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1075  } else if (!RetValExp) {
1076    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1077  } else {
1078    const VarDecl *NRVOCandidate = 0;
1079
1080    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1081      // we have a non-void block with an expression, continue checking
1082
1083      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1084      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1085      // function return.
1086
1087      // In C++ the return statement is handled via a copy initialization.
1088      // the C version of which boils down to CheckSingleAssignmentConstraints.
1089      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1090      ExprResult Res = PerformCopyInitialization(
1091                               InitializedEntity::InitializeResult(ReturnLoc,
1092                                                                   FnRetType,
1093                                                            NRVOCandidate != 0),
1094                               SourceLocation(),
1095                               Owned(RetValExp));
1096      if (Res.isInvalid()) {
1097        // FIXME: Cleanup temporaries here, anyway?
1098        return StmtError();
1099      }
1100
1101      if (RetValExp)
1102        RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1103
1104      RetValExp = Res.takeAs<Expr>();
1105      if (RetValExp)
1106        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1107    }
1108
1109    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1110  }
1111
1112  // If we need to check for the named return value optimization, save the
1113  // return statement in our scope for later processing.
1114  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1115      !CurContext->isDependentContext())
1116    FunctionScopes.back()->Returns.push_back(Result);
1117
1118  return Owned(Result);
1119}
1120
1121StmtResult
1122Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1123  if (getCurBlock())
1124    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1125
1126  QualType FnRetType;
1127  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1128    FnRetType = FD->getResultType();
1129    if (FD->hasAttr<NoReturnAttr>() ||
1130        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1131      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1132        << getCurFunctionOrMethodDecl()->getDeclName();
1133  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1134    FnRetType = MD->getResultType();
1135  else // If we don't have a function/method context, bail.
1136    return StmtError();
1137
1138  ReturnStmt *Result = 0;
1139  if (FnRetType->isVoidType()) {
1140    if (RetValExp && !RetValExp->isTypeDependent()) {
1141      // C99 6.8.6.4p1 (ext_ since GCC warns)
1142      unsigned D = diag::ext_return_has_expr;
1143      if (RetValExp->getType()->isVoidType())
1144        D = diag::ext_return_has_void_expr;
1145
1146      // return (some void expression); is legal in C++.
1147      if (D != diag::ext_return_has_void_expr ||
1148          !getLangOptions().CPlusPlus) {
1149        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1150        Diag(ReturnLoc, D)
1151          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1152          << RetValExp->getSourceRange();
1153      }
1154
1155      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1156    }
1157
1158    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1159  } else if (!RetValExp && !FnRetType->isDependentType()) {
1160    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1161    // C99 6.8.6.4p1 (ext_ since GCC warns)
1162    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1163
1164    if (FunctionDecl *FD = getCurFunctionDecl())
1165      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1166    else
1167      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1168    Result = new (Context) ReturnStmt(ReturnLoc);
1169  } else {
1170    const VarDecl *NRVOCandidate = 0;
1171    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1172      // we have a non-void function with an expression, continue checking
1173
1174      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1175      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1176      // function return.
1177
1178      // In C++ the return statement is handled via a copy initialization.
1179      // the C version of which boils down to CheckSingleAssignmentConstraints.
1180      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1181      ExprResult Res = PerformCopyInitialization(
1182                               InitializedEntity::InitializeResult(ReturnLoc,
1183                                                                   FnRetType,
1184                                                            NRVOCandidate != 0),
1185                               SourceLocation(),
1186                               Owned(RetValExp));
1187      if (Res.isInvalid()) {
1188        // FIXME: Cleanup temporaries here, anyway?
1189        return StmtError();
1190      }
1191
1192      RetValExp = Res.takeAs<Expr>();
1193      if (RetValExp)
1194        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1195    }
1196
1197    if (RetValExp)
1198      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1199    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1200  }
1201
1202  // If we need to check for the named return value optimization, save the
1203  // return statement in our scope for later processing.
1204  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1205      !CurContext->isDependentContext())
1206    FunctionScopes.back()->Returns.push_back(Result);
1207
1208  return Owned(Result);
1209}
1210
1211/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1212/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1213/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1214/// provide a strong guidance to not use it.
1215///
1216/// This method checks to see if the argument is an acceptable l-value and
1217/// returns false if it is a case we can handle.
1218static bool CheckAsmLValue(const Expr *E, Sema &S) {
1219  // Type dependent expressions will be checked during instantiation.
1220  if (E->isTypeDependent())
1221    return false;
1222
1223  if (E->isLvalue(S.Context) == Expr::LV_Valid)
1224    return false;  // Cool, this is an lvalue.
1225
1226  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1227  // are supposed to allow.
1228  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1229  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
1230    if (!S.getLangOptions().HeinousExtensions)
1231      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1232        << E->getSourceRange();
1233    else
1234      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1235        << E->getSourceRange();
1236    // Accept, even if we emitted an error diagnostic.
1237    return false;
1238  }
1239
1240  // None of the above, just randomly invalid non-lvalue.
1241  return true;
1242}
1243
1244
1245StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
1246                                          bool IsSimple,
1247                                          bool IsVolatile,
1248                                          unsigned NumOutputs,
1249                                          unsigned NumInputs,
1250                                          IdentifierInfo **Names,
1251                                          MultiExprArg constraints,
1252                                          MultiExprArg exprs,
1253                                          Expr *asmString,
1254                                          MultiExprArg clobbers,
1255                                          SourceLocation RParenLoc,
1256                                          bool MSAsm) {
1257  unsigned NumClobbers = clobbers.size();
1258  StringLiteral **Constraints =
1259    reinterpret_cast<StringLiteral**>(constraints.get());
1260  Expr **Exprs = exprs.get();
1261  StringLiteral *AsmString = cast<StringLiteral>(asmString);
1262  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1263
1264  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1265
1266  // The parser verifies that there is a string literal here.
1267  if (AsmString->isWide())
1268    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1269      << AsmString->getSourceRange());
1270
1271  for (unsigned i = 0; i != NumOutputs; i++) {
1272    StringLiteral *Literal = Constraints[i];
1273    if (Literal->isWide())
1274      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1275        << Literal->getSourceRange());
1276
1277    llvm::StringRef OutputName;
1278    if (Names[i])
1279      OutputName = Names[i]->getName();
1280
1281    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1282    if (!Context.Target.validateOutputConstraint(Info))
1283      return StmtError(Diag(Literal->getLocStart(),
1284                            diag::err_asm_invalid_output_constraint)
1285                       << Info.getConstraintStr());
1286
1287    // Check that the output exprs are valid lvalues.
1288    Expr *OutputExpr = Exprs[i];
1289    if (CheckAsmLValue(OutputExpr, *this)) {
1290      return StmtError(Diag(OutputExpr->getLocStart(),
1291                  diag::err_asm_invalid_lvalue_in_output)
1292        << OutputExpr->getSourceRange());
1293    }
1294
1295    OutputConstraintInfos.push_back(Info);
1296  }
1297
1298  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1299
1300  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1301    StringLiteral *Literal = Constraints[i];
1302    if (Literal->isWide())
1303      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1304        << Literal->getSourceRange());
1305
1306    llvm::StringRef InputName;
1307    if (Names[i])
1308      InputName = Names[i]->getName();
1309
1310    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1311    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1312                                                NumOutputs, Info)) {
1313      return StmtError(Diag(Literal->getLocStart(),
1314                            diag::err_asm_invalid_input_constraint)
1315                       << Info.getConstraintStr());
1316    }
1317
1318    Expr *InputExpr = Exprs[i];
1319
1320    // Only allow void types for memory constraints.
1321    if (Info.allowsMemory() && !Info.allowsRegister()) {
1322      if (CheckAsmLValue(InputExpr, *this))
1323        return StmtError(Diag(InputExpr->getLocStart(),
1324                              diag::err_asm_invalid_lvalue_in_input)
1325                         << Info.getConstraintStr()
1326                         << InputExpr->getSourceRange());
1327    }
1328
1329    if (Info.allowsRegister()) {
1330      if (InputExpr->getType()->isVoidType()) {
1331        return StmtError(Diag(InputExpr->getLocStart(),
1332                              diag::err_asm_invalid_type_in_input)
1333          << InputExpr->getType() << Info.getConstraintStr()
1334          << InputExpr->getSourceRange());
1335      }
1336    }
1337
1338    DefaultFunctionArrayLvalueConversion(Exprs[i]);
1339
1340    InputConstraintInfos.push_back(Info);
1341  }
1342
1343  // Check that the clobbers are valid.
1344  for (unsigned i = 0; i != NumClobbers; i++) {
1345    StringLiteral *Literal = Clobbers[i];
1346    if (Literal->isWide())
1347      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1348        << Literal->getSourceRange());
1349
1350    llvm::StringRef Clobber = Literal->getString();
1351
1352    if (!Context.Target.isValidGCCRegisterName(Clobber))
1353      return StmtError(Diag(Literal->getLocStart(),
1354                  diag::err_asm_unknown_register_name) << Clobber);
1355  }
1356
1357  AsmStmt *NS =
1358    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1359                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1360                          AsmString, NumClobbers, Clobbers, RParenLoc);
1361  // Validate the asm string, ensuring it makes sense given the operands we
1362  // have.
1363  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1364  unsigned DiagOffs;
1365  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1366    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1367           << AsmString->getSourceRange();
1368    DeleteStmt(NS);
1369    return StmtError();
1370  }
1371
1372  // Validate tied input operands for type mismatches.
1373  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1374    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1375
1376    // If this is a tied constraint, verify that the output and input have
1377    // either exactly the same type, or that they are int/ptr operands with the
1378    // same size (int/long, int*/long, are ok etc).
1379    if (!Info.hasTiedOperand()) continue;
1380
1381    unsigned TiedTo = Info.getTiedOperand();
1382    Expr *OutputExpr = Exprs[TiedTo];
1383    Expr *InputExpr = Exprs[i+NumOutputs];
1384    QualType InTy = InputExpr->getType();
1385    QualType OutTy = OutputExpr->getType();
1386    if (Context.hasSameType(InTy, OutTy))
1387      continue;  // All types can be tied to themselves.
1388
1389    // Decide if the input and output are in the same domain (integer/ptr or
1390    // floating point.
1391    enum AsmDomain {
1392      AD_Int, AD_FP, AD_Other
1393    } InputDomain, OutputDomain;
1394
1395    if (InTy->isIntegerType() || InTy->isPointerType())
1396      InputDomain = AD_Int;
1397    else if (InTy->isRealFloatingType())
1398      InputDomain = AD_FP;
1399    else
1400      InputDomain = AD_Other;
1401
1402    if (OutTy->isIntegerType() || OutTy->isPointerType())
1403      OutputDomain = AD_Int;
1404    else if (OutTy->isRealFloatingType())
1405      OutputDomain = AD_FP;
1406    else
1407      OutputDomain = AD_Other;
1408
1409    // They are ok if they are the same size and in the same domain.  This
1410    // allows tying things like:
1411    //   void* to int*
1412    //   void* to int            if they are the same size.
1413    //   double to long double   if they are the same size.
1414    //
1415    uint64_t OutSize = Context.getTypeSize(OutTy);
1416    uint64_t InSize = Context.getTypeSize(InTy);
1417    if (OutSize == InSize && InputDomain == OutputDomain &&
1418        InputDomain != AD_Other)
1419      continue;
1420
1421    // If the smaller input/output operand is not mentioned in the asm string,
1422    // then we can promote it and the asm string won't notice.  Check this
1423    // case now.
1424    bool SmallerValueMentioned = false;
1425    for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1426      AsmStmt::AsmStringPiece &Piece = Pieces[p];
1427      if (!Piece.isOperand()) continue;
1428
1429      // If this is a reference to the input and if the input was the smaller
1430      // one, then we have to reject this asm.
1431      if (Piece.getOperandNo() == i+NumOutputs) {
1432        if (InSize < OutSize) {
1433          SmallerValueMentioned = true;
1434          break;
1435        }
1436      }
1437
1438      // If this is a reference to the input and if the input was the smaller
1439      // one, then we have to reject this asm.
1440      if (Piece.getOperandNo() == TiedTo) {
1441        if (InSize > OutSize) {
1442          SmallerValueMentioned = true;
1443          break;
1444        }
1445      }
1446    }
1447
1448    // If the smaller value wasn't mentioned in the asm string, and if the
1449    // output was a register, just extend the shorter one to the size of the
1450    // larger one.
1451    if (!SmallerValueMentioned && InputDomain != AD_Other &&
1452        OutputConstraintInfos[TiedTo].allowsRegister())
1453      continue;
1454
1455    Diag(InputExpr->getLocStart(),
1456         diag::err_asm_tying_incompatible_types)
1457      << InTy << OutTy << OutputExpr->getSourceRange()
1458      << InputExpr->getSourceRange();
1459    DeleteStmt(NS);
1460    return StmtError();
1461  }
1462
1463  return Owned(NS);
1464}
1465
1466StmtResult
1467Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1468                           SourceLocation RParen, Decl *Parm,
1469                           Stmt *Body) {
1470  VarDecl *Var = cast_or_null<VarDecl>(Parm);
1471  if (Var && Var->isInvalidDecl())
1472    return StmtError();
1473
1474  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
1475}
1476
1477StmtResult
1478Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
1479  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
1480}
1481
1482StmtResult
1483Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
1484                         MultiStmtArg CatchStmts, Stmt *Finally) {
1485  setFunctionHasBranchProtectedScope();
1486  unsigned NumCatchStmts = CatchStmts.size();
1487  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
1488                                     CatchStmts.release(),
1489                                     NumCatchStmts,
1490                                     Finally));
1491}
1492
1493StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
1494                                                  Expr *Throw) {
1495  if (Throw) {
1496    QualType ThrowType = Throw->getType();
1497    // Make sure the expression type is an ObjC pointer or "void *".
1498    if (!ThrowType->isDependentType() &&
1499        !ThrowType->isObjCObjectPointerType()) {
1500      const PointerType *PT = ThrowType->getAs<PointerType>();
1501      if (!PT || !PT->getPointeeType()->isVoidType())
1502        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1503                         << Throw->getType() << Throw->getSourceRange());
1504    }
1505  }
1506
1507  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
1508}
1509
1510StmtResult
1511Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
1512                           Scope *CurScope) {
1513  if (!Throw) {
1514    // @throw without an expression designates a rethrow (which much occur
1515    // in the context of an @catch clause).
1516    Scope *AtCatchParent = CurScope;
1517    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1518      AtCatchParent = AtCatchParent->getParent();
1519    if (!AtCatchParent)
1520      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1521  }
1522
1523  return BuildObjCAtThrowStmt(AtLoc, Throw);
1524}
1525
1526StmtResult
1527Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
1528                                  Stmt *SyncBody) {
1529  setFunctionHasBranchProtectedScope();
1530
1531  // Make sure the expression type is an ObjC pointer or "void *".
1532  if (!SyncExpr->getType()->isDependentType() &&
1533      !SyncExpr->getType()->isObjCObjectPointerType()) {
1534    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1535    if (!PT || !PT->getPointeeType()->isVoidType())
1536      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1537                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1538  }
1539
1540  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
1541}
1542
1543/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1544/// and creates a proper catch handler from them.
1545StmtResult
1546Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
1547                         Stmt *HandlerBlock) {
1548  // There's nothing to test that ActOnExceptionDecl didn't already test.
1549  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1550                                          cast_or_null<VarDecl>(ExDecl),
1551                                          HandlerBlock));
1552}
1553
1554namespace {
1555
1556class TypeWithHandler {
1557  QualType t;
1558  CXXCatchStmt *stmt;
1559public:
1560  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1561  : t(type), stmt(statement) {}
1562
1563  // An arbitrary order is fine as long as it places identical
1564  // types next to each other.
1565  bool operator<(const TypeWithHandler &y) const {
1566    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1567      return true;
1568    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1569      return false;
1570    else
1571      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1572  }
1573
1574  bool operator==(const TypeWithHandler& other) const {
1575    return t == other.t;
1576  }
1577
1578  QualType getQualType() const { return t; }
1579  CXXCatchStmt *getCatchStmt() const { return stmt; }
1580  SourceLocation getTypeSpecStartLoc() const {
1581    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1582  }
1583};
1584
1585}
1586
1587/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1588/// handlers and creates a try statement from them.
1589StmtResult
1590Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
1591                       MultiStmtArg RawHandlers) {
1592  unsigned NumHandlers = RawHandlers.size();
1593  assert(NumHandlers > 0 &&
1594         "The parser shouldn't call this if there are no handlers.");
1595  Stmt **Handlers = RawHandlers.get();
1596
1597  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1598
1599  for (unsigned i = 0; i < NumHandlers; ++i) {
1600    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1601    if (!Handler->getExceptionDecl()) {
1602      if (i < NumHandlers - 1)
1603        return StmtError(Diag(Handler->getLocStart(),
1604                              diag::err_early_catch_all));
1605
1606      continue;
1607    }
1608
1609    const QualType CaughtType = Handler->getCaughtType();
1610    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1611    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1612  }
1613
1614  // Detect handlers for the same type as an earlier one.
1615  if (NumHandlers > 1) {
1616    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1617
1618    TypeWithHandler prev = TypesWithHandlers[0];
1619    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1620      TypeWithHandler curr = TypesWithHandlers[i];
1621
1622      if (curr == prev) {
1623        Diag(curr.getTypeSpecStartLoc(),
1624             diag::warn_exception_caught_by_earlier_handler)
1625          << curr.getCatchStmt()->getCaughtType().getAsString();
1626        Diag(prev.getTypeSpecStartLoc(),
1627             diag::note_previous_exception_handler)
1628          << prev.getCatchStmt()->getCaughtType().getAsString();
1629      }
1630
1631      prev = curr;
1632    }
1633  }
1634
1635  setFunctionHasBranchProtectedScope();
1636
1637  // FIXME: We should detect handlers that cannot catch anything because an
1638  // earlier handler catches a superclass. Need to find a method that is not
1639  // quadratic for this.
1640  // Neither of these are explicitly forbidden, but every compiler detects them
1641  // and warns.
1642
1643  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
1644                                  Handlers, NumHandlers));
1645}
1646