SemaStmt.cpp revision 636463e4c43be15e2f0fd0b8a08667f3066d8af7
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/StmtObjC.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24using namespace clang;
25
26Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
27  Expr *E = expr->takeAs<Expr>();
28  assert(E && "ActOnExprStmt(): missing expression");
29
30  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
31  // void expression for its side effects.  Conversion to void allows any
32  // operand, even incomplete types.
33
34  // Same thing in for stmt first clause (when expr) and third clause.
35  return Owned(static_cast<Stmt*>(E));
36}
37
38
39Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
40  return Owned(new (Context) NullStmt(SemiLoc));
41}
42
43Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
44                                           SourceLocation StartLoc,
45                                           SourceLocation EndLoc) {
46  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
47
48  // If we have an invalid decl, just return an error.
49  if (DG.isNull()) return StmtError();
50
51  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
52}
53
54void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
55  const Expr *E = dyn_cast<Expr>(S);
56  if (!E)
57    return;
58
59  // Ignore expressions that have void type.
60  if (E->getType()->isVoidType())
61    return;
62
63  SourceLocation Loc;
64  SourceRange R1, R2;
65  if (!E->isUnusedResultAWarning(Loc, R1, R2))
66    return;
67
68  Diag(Loc, diag::warn_unused_expr) << R1 << R2;
69}
70
71Action::OwningStmtResult
72Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
73                        MultiStmtArg elts, bool isStmtExpr) {
74  unsigned NumElts = elts.size();
75  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
76  // If we're in C89 mode, check that we don't have any decls after stmts.  If
77  // so, emit an extension diagnostic.
78  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
79    // Note that __extension__ can be around a decl.
80    unsigned i = 0;
81    // Skip over all declarations.
82    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
83      /*empty*/;
84
85    // We found the end of the list or a statement.  Scan for another declstmt.
86    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
87      /*empty*/;
88
89    if (i != NumElts) {
90      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
91      Diag(D->getLocation(), diag::ext_mixed_decls_code);
92    }
93  }
94  // Warn about unused expressions in statements.
95  for (unsigned i = 0; i != NumElts; ++i) {
96    // Ignore statements that are last in a statement expression.
97    if (isStmtExpr && i == NumElts - 1)
98      continue;
99
100    DiagnoseUnusedExprResult(Elts[i]);
101  }
102
103  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
104}
105
106Action::OwningStmtResult
107Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
108                    SourceLocation DotDotDotLoc, ExprArg rhsval,
109                    SourceLocation ColonLoc) {
110  assert((lhsval.get() != 0) && "missing expression in case statement");
111
112  // C99 6.8.4.2p3: The expression shall be an integer constant.
113  // However, GCC allows any evaluatable integer expression.
114  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
115  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
116      VerifyIntegerConstantExpression(LHSVal))
117    return StmtError();
118
119  // GCC extension: The expression shall be an integer constant.
120
121  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
122  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
123      VerifyIntegerConstantExpression(RHSVal)) {
124    RHSVal = 0;  // Recover by just forgetting about it.
125    rhsval = 0;
126  }
127
128  if (getSwitchStack().empty()) {
129    Diag(CaseLoc, diag::err_case_not_in_switch);
130    return StmtError();
131  }
132
133  // Only now release the smart pointers.
134  lhsval.release();
135  rhsval.release();
136  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
137                                        ColonLoc);
138  getSwitchStack().back()->addSwitchCase(CS);
139  return Owned(CS);
140}
141
142/// ActOnCaseStmtBody - This installs a statement as the body of a case.
143void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
144  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
145  Stmt *SubStmt = subStmt.takeAs<Stmt>();
146  CS->setSubStmt(SubStmt);
147}
148
149Action::OwningStmtResult
150Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
151                       StmtArg subStmt, Scope *CurScope) {
152  Stmt *SubStmt = subStmt.takeAs<Stmt>();
153
154  if (getSwitchStack().empty()) {
155    Diag(DefaultLoc, diag::err_default_not_in_switch);
156    return Owned(SubStmt);
157  }
158
159  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
160  getSwitchStack().back()->addSwitchCase(DS);
161  return Owned(DS);
162}
163
164Action::OwningStmtResult
165Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
166                     SourceLocation ColonLoc, StmtArg subStmt) {
167  Stmt *SubStmt = subStmt.takeAs<Stmt>();
168  // Look up the record for this label identifier.
169  LabelStmt *&LabelDecl = getLabelMap()[II];
170
171  // If not forward referenced or defined already, just create a new LabelStmt.
172  if (LabelDecl == 0)
173    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
174
175  assert(LabelDecl->getID() == II && "Label mismatch!");
176
177  // Otherwise, this label was either forward reference or multiply defined.  If
178  // multiply defined, reject it now.
179  if (LabelDecl->getSubStmt()) {
180    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
181    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
182    return Owned(SubStmt);
183  }
184
185  // Otherwise, this label was forward declared, and we just found its real
186  // definition.  Fill in the forward definition and return it.
187  LabelDecl->setIdentLoc(IdentLoc);
188  LabelDecl->setSubStmt(SubStmt);
189  return Owned(LabelDecl);
190}
191
192Action::OwningStmtResult
193Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal,
194                  StmtArg ThenVal, SourceLocation ElseLoc,
195                  StmtArg ElseVal) {
196  OwningExprResult CondResult(CondVal.release());
197
198  Expr *condExpr = CondResult.takeAs<Expr>();
199
200  assert(condExpr && "ActOnIfStmt(): missing expression");
201
202  if (!condExpr->isTypeDependent()) {
203    DefaultFunctionArrayConversion(condExpr);
204    // Take ownership again until we're past the error checking.
205    CondResult = condExpr;
206    QualType condType = condExpr->getType();
207
208    if (getLangOptions().CPlusPlus) {
209      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
210        return StmtError();
211    } else if (!condType->isScalarType()) // C99 6.8.4.1p1
212      return StmtError(Diag(IfLoc,
213                            diag::err_typecheck_statement_requires_scalar)
214                       << condType << condExpr->getSourceRange());
215  }
216
217  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
218
219  // Warn if the if block has a null body without an else value.
220  // this helps prevent bugs due to typos, such as
221  // if (condition);
222  //   do_stuff();
223  if (!ElseVal.get()) {
224    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
225      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
226  }
227
228  CondResult.release();
229  return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
230                                    ElseLoc, ElseVal.takeAs<Stmt>()));
231}
232
233Action::OwningStmtResult
234Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
235  Expr *Cond = cond.takeAs<Expr>();
236
237  if (getLangOptions().CPlusPlus) {
238    // C++ 6.4.2.p2:
239    // The condition shall be of integral type, enumeration type, or of a class
240    // type for which a single conversion function to integral or enumeration
241    // type exists (12.3). If the condition is of class type, the condition is
242    // converted by calling that conversion function, and the result of the
243    // conversion is used in place of the original condition for the remainder
244    // of this section. Integral promotions are performed.
245    if (!Cond->isTypeDependent()) {
246      QualType Ty = Cond->getType();
247
248      // FIXME: Handle class types.
249
250      // If the type is wrong a diagnostic will be emitted later at
251      // ActOnFinishSwitchStmt.
252      if (Ty->isIntegralType() || Ty->isEnumeralType()) {
253        // Integral promotions are performed.
254        // FIXME: Integral promotions for C++ are not complete.
255        UsualUnaryConversions(Cond);
256      }
257    }
258  } else {
259    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
260    UsualUnaryConversions(Cond);
261  }
262
263  SwitchStmt *SS = new (Context) SwitchStmt(Cond);
264  getSwitchStack().push_back(SS);
265  return Owned(SS);
266}
267
268/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
269/// the specified width and sign.  If an overflow occurs, detect it and emit
270/// the specified diagnostic.
271void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
272                                              unsigned NewWidth, bool NewSign,
273                                              SourceLocation Loc,
274                                              unsigned DiagID) {
275  // Perform a conversion to the promoted condition type if needed.
276  if (NewWidth > Val.getBitWidth()) {
277    // If this is an extension, just do it.
278    llvm::APSInt OldVal(Val);
279    Val.extend(NewWidth);
280
281    // If the input was signed and negative and the output is unsigned,
282    // warn.
283    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
284      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
285
286    Val.setIsSigned(NewSign);
287  } else if (NewWidth < Val.getBitWidth()) {
288    // If this is a truncation, check for overflow.
289    llvm::APSInt ConvVal(Val);
290    ConvVal.trunc(NewWidth);
291    ConvVal.setIsSigned(NewSign);
292    ConvVal.extend(Val.getBitWidth());
293    ConvVal.setIsSigned(Val.isSigned());
294    if (ConvVal != Val)
295      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
296
297    // Regardless of whether a diagnostic was emitted, really do the
298    // truncation.
299    Val.trunc(NewWidth);
300    Val.setIsSigned(NewSign);
301  } else if (NewSign != Val.isSigned()) {
302    // Convert the sign to match the sign of the condition.  This can cause
303    // overflow as well: unsigned(INTMIN)
304    llvm::APSInt OldVal(Val);
305    Val.setIsSigned(NewSign);
306
307    if (Val.isNegative())  // Sign bit changes meaning.
308      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
309  }
310}
311
312namespace {
313  struct CaseCompareFunctor {
314    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
315                    const llvm::APSInt &RHS) {
316      return LHS.first < RHS;
317    }
318    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
319                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
320      return LHS.first < RHS.first;
321    }
322    bool operator()(const llvm::APSInt &LHS,
323                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
324      return LHS < RHS.first;
325    }
326  };
327}
328
329/// CmpCaseVals - Comparison predicate for sorting case values.
330///
331static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
332                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
333  if (lhs.first < rhs.first)
334    return true;
335
336  if (lhs.first == rhs.first &&
337      lhs.second->getCaseLoc().getRawEncoding()
338       < rhs.second->getCaseLoc().getRawEncoding())
339    return true;
340  return false;
341}
342
343Action::OwningStmtResult
344Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
345                            StmtArg Body) {
346  Stmt *BodyStmt = Body.takeAs<Stmt>();
347
348  SwitchStmt *SS = getSwitchStack().back();
349  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
350
351  SS->setBody(BodyStmt, SwitchLoc);
352  getSwitchStack().pop_back();
353
354  Expr *CondExpr = SS->getCond();
355  QualType CondType = CondExpr->getType();
356
357  if (!CondExpr->isTypeDependent() &&
358      !CondType->isIntegerType()) { // C99 6.8.4.2p1
359    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
360      << CondType << CondExpr->getSourceRange();
361    return StmtError();
362  }
363
364  // Get the bitwidth of the switched-on value before promotions.  We must
365  // convert the integer case values to this width before comparison.
366  bool HasDependentValue
367    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
368  unsigned CondWidth
369    = HasDependentValue? 0
370                       : static_cast<unsigned>(Context.getTypeSize(CondType));
371  bool CondIsSigned = CondType->isSignedIntegerType();
372
373  // Accumulate all of the case values in a vector so that we can sort them
374  // and detect duplicates.  This vector contains the APInt for the case after
375  // it has been converted to the condition type.
376  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
377  CaseValsTy CaseVals;
378
379  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
380  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
381
382  DefaultStmt *TheDefaultStmt = 0;
383
384  bool CaseListIsErroneous = false;
385
386  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
387       SC = SC->getNextSwitchCase()) {
388
389    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
390      if (TheDefaultStmt) {
391        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
392        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
393
394        // FIXME: Remove the default statement from the switch block so that
395        // we'll return a valid AST.  This requires recursing down the AST and
396        // finding it, not something we are set up to do right now.  For now,
397        // just lop the entire switch stmt out of the AST.
398        CaseListIsErroneous = true;
399      }
400      TheDefaultStmt = DS;
401
402    } else {
403      CaseStmt *CS = cast<CaseStmt>(SC);
404
405      // We already verified that the expression has a i-c-e value (C99
406      // 6.8.4.2p3) - get that value now.
407      Expr *Lo = CS->getLHS();
408
409      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
410        HasDependentValue = true;
411        break;
412      }
413
414      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
415
416      // Convert the value to the same width/sign as the condition.
417      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
418                                         CS->getLHS()->getLocStart(),
419                                         diag::warn_case_value_overflow);
420
421      // If the LHS is not the same type as the condition, insert an implicit
422      // cast.
423      ImpCastExprToType(Lo, CondType);
424      CS->setLHS(Lo);
425
426      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
427      if (CS->getRHS()) {
428        if (CS->getRHS()->isTypeDependent() ||
429            CS->getRHS()->isValueDependent()) {
430          HasDependentValue = true;
431          break;
432        }
433        CaseRanges.push_back(std::make_pair(LoVal, CS));
434      } else
435        CaseVals.push_back(std::make_pair(LoVal, CS));
436    }
437  }
438
439  if (!HasDependentValue) {
440    // Sort all the scalar case values so we can easily detect duplicates.
441    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
442
443    if (!CaseVals.empty()) {
444      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
445        if (CaseVals[i].first == CaseVals[i+1].first) {
446          // If we have a duplicate, report it.
447          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
448               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
449          Diag(CaseVals[i].second->getLHS()->getLocStart(),
450               diag::note_duplicate_case_prev);
451          // FIXME: We really want to remove the bogus case stmt from the
452          // substmt, but we have no way to do this right now.
453          CaseListIsErroneous = true;
454        }
455      }
456    }
457
458    // Detect duplicate case ranges, which usually don't exist at all in
459    // the first place.
460    if (!CaseRanges.empty()) {
461      // Sort all the case ranges by their low value so we can easily detect
462      // overlaps between ranges.
463      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
464
465      // Scan the ranges, computing the high values and removing empty ranges.
466      std::vector<llvm::APSInt> HiVals;
467      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
468        CaseStmt *CR = CaseRanges[i].second;
469        Expr *Hi = CR->getRHS();
470        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
471
472        // Convert the value to the same width/sign as the condition.
473        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
474                                           CR->getRHS()->getLocStart(),
475                                           diag::warn_case_value_overflow);
476
477        // If the LHS is not the same type as the condition, insert an implicit
478        // cast.
479        ImpCastExprToType(Hi, CondType);
480        CR->setRHS(Hi);
481
482        // If the low value is bigger than the high value, the case is empty.
483        if (CaseRanges[i].first > HiVal) {
484          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
485            << SourceRange(CR->getLHS()->getLocStart(),
486                           CR->getRHS()->getLocEnd());
487          CaseRanges.erase(CaseRanges.begin()+i);
488          --i, --e;
489          continue;
490        }
491        HiVals.push_back(HiVal);
492      }
493
494      // Rescan the ranges, looking for overlap with singleton values and other
495      // ranges.  Since the range list is sorted, we only need to compare case
496      // ranges with their neighbors.
497      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
498        llvm::APSInt &CRLo = CaseRanges[i].first;
499        llvm::APSInt &CRHi = HiVals[i];
500        CaseStmt *CR = CaseRanges[i].second;
501
502        // Check to see whether the case range overlaps with any
503        // singleton cases.
504        CaseStmt *OverlapStmt = 0;
505        llvm::APSInt OverlapVal(32);
506
507        // Find the smallest value >= the lower bound.  If I is in the
508        // case range, then we have overlap.
509        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
510                                                  CaseVals.end(), CRLo,
511                                                  CaseCompareFunctor());
512        if (I != CaseVals.end() && I->first < CRHi) {
513          OverlapVal  = I->first;   // Found overlap with scalar.
514          OverlapStmt = I->second;
515        }
516
517        // Find the smallest value bigger than the upper bound.
518        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
519        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
520          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
521          OverlapStmt = (I-1)->second;
522        }
523
524        // Check to see if this case stmt overlaps with the subsequent
525        // case range.
526        if (i && CRLo <= HiVals[i-1]) {
527          OverlapVal  = HiVals[i-1];       // Found overlap with range.
528          OverlapStmt = CaseRanges[i-1].second;
529        }
530
531        if (OverlapStmt) {
532          // If we have a duplicate, report it.
533          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
534            << OverlapVal.toString(10);
535          Diag(OverlapStmt->getLHS()->getLocStart(),
536               diag::note_duplicate_case_prev);
537          // FIXME: We really want to remove the bogus case stmt from the
538          // substmt, but we have no way to do this right now.
539          CaseListIsErroneous = true;
540        }
541      }
542    }
543  }
544
545  // FIXME: If the case list was broken is some way, we don't have a good system
546  // to patch it up.  Instead, just return the whole substmt as broken.
547  if (CaseListIsErroneous)
548    return StmtError();
549
550  Switch.release();
551  return Owned(SS);
552}
553
554Action::OwningStmtResult
555Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, StmtArg Body) {
556  ExprArg CondArg(Cond.release());
557  Expr *condExpr = CondArg.takeAs<Expr>();
558  assert(condExpr && "ActOnWhileStmt(): missing expression");
559
560  if (!condExpr->isTypeDependent()) {
561    DefaultFunctionArrayConversion(condExpr);
562    CondArg = condExpr;
563    QualType condType = condExpr->getType();
564
565    if (getLangOptions().CPlusPlus) {
566      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
567        return StmtError();
568    } else if (!condType->isScalarType()) // C99 6.8.5p2
569      return StmtError(Diag(WhileLoc,
570                            diag::err_typecheck_statement_requires_scalar)
571                       << condType << condExpr->getSourceRange());
572  }
573
574  CondArg.release();
575  return Owned(new (Context) WhileStmt(condExpr, Body.takeAs<Stmt>(),
576                                       WhileLoc));
577}
578
579Action::OwningStmtResult
580Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
581                  SourceLocation WhileLoc, SourceLocation CondLParen,
582                  ExprArg Cond, SourceLocation CondRParen) {
583  Expr *condExpr = Cond.takeAs<Expr>();
584  assert(condExpr && "ActOnDoStmt(): missing expression");
585
586  if (!condExpr->isTypeDependent()) {
587    DefaultFunctionArrayConversion(condExpr);
588    Cond = condExpr;
589    QualType condType = condExpr->getType();
590
591    if (getLangOptions().CPlusPlus) {
592      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
593        return StmtError();
594    } else if (!condType->isScalarType()) // C99 6.8.5p2
595      return StmtError(Diag(DoLoc,
596                            diag::err_typecheck_statement_requires_scalar)
597                       << condType << condExpr->getSourceRange());
598  }
599
600  Cond.release();
601  return Owned(new (Context) DoStmt(Body.takeAs<Stmt>(), condExpr, DoLoc,
602                                    WhileLoc, CondRParen));
603}
604
605Action::OwningStmtResult
606Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
607                   StmtArg first, ExprArg second, ExprArg third,
608                   SourceLocation RParenLoc, StmtArg body) {
609  Stmt *First  = static_cast<Stmt*>(first.get());
610  Expr *Second = static_cast<Expr*>(second.get());
611  Expr *Third  = static_cast<Expr*>(third.get());
612  Stmt *Body  = static_cast<Stmt*>(body.get());
613
614  if (!getLangOptions().CPlusPlus) {
615    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
616      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
617      // declare identifiers for objects having storage class 'auto' or
618      // 'register'.
619      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
620           DI!=DE; ++DI) {
621        VarDecl *VD = dyn_cast<VarDecl>(*DI);
622        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
623          VD = 0;
624        if (VD == 0)
625          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
626        // FIXME: mark decl erroneous!
627      }
628    }
629  }
630  if (Second && !Second->isTypeDependent()) {
631    DefaultFunctionArrayConversion(Second);
632    QualType SecondType = Second->getType();
633
634    if (getLangOptions().CPlusPlus) {
635      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
636        return StmtError();
637    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
638      return StmtError(Diag(ForLoc,
639                            diag::err_typecheck_statement_requires_scalar)
640        << SecondType << Second->getSourceRange());
641  }
642  first.release();
643  second.release();
644  third.release();
645  body.release();
646  return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc,
647                                     LParenLoc, RParenLoc));
648}
649
650Action::OwningStmtResult
651Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
652                                 SourceLocation LParenLoc,
653                                 StmtArg first, ExprArg second,
654                                 SourceLocation RParenLoc, StmtArg body) {
655  Stmt *First  = static_cast<Stmt*>(first.get());
656  Expr *Second = static_cast<Expr*>(second.get());
657  Stmt *Body  = static_cast<Stmt*>(body.get());
658  if (First) {
659    QualType FirstType;
660    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
661      if (!DS->isSingleDecl())
662        return StmtError(Diag((*DS->decl_begin())->getLocation(),
663                         diag::err_toomany_element_decls));
664
665      Decl *D = DS->getSingleDecl();
666      FirstType = cast<ValueDecl>(D)->getType();
667      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
668      // declare identifiers for objects having storage class 'auto' or
669      // 'register'.
670      VarDecl *VD = cast<VarDecl>(D);
671      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
672        return StmtError(Diag(VD->getLocation(),
673                              diag::err_non_variable_decl_in_for));
674    } else {
675      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
676        return StmtError(Diag(First->getLocStart(),
677                   diag::err_selector_element_not_lvalue)
678          << First->getSourceRange());
679
680      FirstType = static_cast<Expr*>(First)->getType();
681    }
682    if (!FirstType->isObjCObjectPointerType())
683        Diag(ForLoc, diag::err_selector_element_type)
684          << FirstType << First->getSourceRange();
685  }
686  if (Second) {
687    DefaultFunctionArrayConversion(Second);
688    QualType SecondType = Second->getType();
689    if (!SecondType->isObjCObjectPointerType())
690      Diag(ForLoc, diag::err_collection_expr_type)
691        << SecondType << Second->getSourceRange();
692  }
693  first.release();
694  second.release();
695  body.release();
696  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
697                                                   ForLoc, RParenLoc));
698}
699
700Action::OwningStmtResult
701Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
702                    IdentifierInfo *LabelII) {
703  // If we are in a block, reject all gotos for now.
704  if (CurBlock)
705    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
706
707  // Look up the record for this label identifier.
708  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
709
710  // If we haven't seen this label yet, create a forward reference.
711  if (LabelDecl == 0)
712    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
713
714  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
715}
716
717Action::OwningStmtResult
718Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
719                            ExprArg DestExp) {
720  // Convert operand to void*
721  Expr* E = DestExp.takeAs<Expr>();
722  if (!E->isTypeDependent()) {
723    QualType ETy = E->getType();
724    AssignConvertType ConvTy =
725      CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
726    if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
727                                 E, "passing"))
728      return StmtError();
729  }
730  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
731}
732
733Action::OwningStmtResult
734Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
735  Scope *S = CurScope->getContinueParent();
736  if (!S) {
737    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
738    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
739  }
740
741  return Owned(new (Context) ContinueStmt(ContinueLoc));
742}
743
744Action::OwningStmtResult
745Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
746  Scope *S = CurScope->getBreakParent();
747  if (!S) {
748    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
749    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
750  }
751
752  return Owned(new (Context) BreakStmt(BreakLoc));
753}
754
755/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
756///
757Action::OwningStmtResult
758Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
759  // If this is the first return we've seen in the block, infer the type of
760  // the block from it.
761  if (CurBlock->ReturnType.isNull()) {
762    if (RetValExp) {
763      // Don't call UsualUnaryConversions(), since we don't want to do
764      // integer promotions here.
765      DefaultFunctionArrayConversion(RetValExp);
766      CurBlock->ReturnType = RetValExp->getType();
767      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
768        // We have to remove a 'const' added to copied-in variable which was
769        // part of the implementation spec. and not the actual qualifier for
770        // the variable.
771        if (CDRE->isConstQualAdded())
772           CurBlock->ReturnType.removeConst();
773      }
774    } else
775      CurBlock->ReturnType = Context.VoidTy;
776  }
777  QualType FnRetType = CurBlock->ReturnType;
778
779  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
780    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
781      << getCurFunctionOrMethodDecl()->getDeclName();
782    return StmtError();
783  }
784
785  // Otherwise, verify that this result type matches the previous one.  We are
786  // pickier with blocks than for normal functions because we don't have GCC
787  // compatibility to worry about here.
788  if (CurBlock->ReturnType->isVoidType()) {
789    if (RetValExp) {
790      Diag(ReturnLoc, diag::err_return_block_has_expr);
791      RetValExp->Destroy(Context);
792      RetValExp = 0;
793    }
794    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
795  }
796
797  if (!RetValExp)
798    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
799
800  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
801    // we have a non-void block with an expression, continue checking
802    QualType RetValType = RetValExp->getType();
803
804    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
805    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
806    // function return.
807
808    // In C++ the return statement is handled via a copy initialization.
809    // the C version of which boils down to CheckSingleAssignmentConstraints.
810    // FIXME: Leaks RetValExp.
811    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
812      return StmtError();
813
814    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
815  }
816
817  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
818}
819
820/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
821/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
822static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
823                                 Expr *RetExpr) {
824  QualType ExprType = RetExpr->getType();
825  // - in a return statement in a function with ...
826  // ... a class return type ...
827  if (!RetType->isRecordType())
828    return false;
829  // ... the same cv-unqualified type as the function return type ...
830  if (Ctx.getCanonicalType(RetType).getUnqualifiedType() !=
831      Ctx.getCanonicalType(ExprType).getUnqualifiedType())
832    return false;
833  // ... the expression is the name of a non-volatile automatic object ...
834  // We ignore parentheses here.
835  // FIXME: Is this compliant?
836  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
837  if (!DR)
838    return false;
839  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
840  if (!VD)
841    return false;
842  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
843    && !VD->getType().isVolatileQualified();
844}
845
846Action::OwningStmtResult
847Sema::ActOnReturnStmt(SourceLocation ReturnLoc, FullExprArg rex) {
848  Expr *RetValExp = rex->takeAs<Expr>();
849  if (CurBlock)
850    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
851
852  QualType FnRetType;
853  if (const FunctionDecl *FD = getCurFunctionDecl()) {
854    FnRetType = FD->getResultType();
855    if (FD->hasAttr<NoReturnAttr>())
856      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
857        << getCurFunctionOrMethodDecl()->getDeclName();
858  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
859    FnRetType = MD->getResultType();
860  else // If we don't have a function/method context, bail.
861    return StmtError();
862
863  if (FnRetType->isVoidType()) {
864    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
865      unsigned D = diag::ext_return_has_expr;
866      if (RetValExp->getType()->isVoidType())
867        D = diag::ext_return_has_void_expr;
868
869      // return (some void expression); is legal in C++.
870      if (D != diag::ext_return_has_void_expr ||
871          !getLangOptions().CPlusPlus) {
872        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
873        Diag(ReturnLoc, D)
874          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
875          << RetValExp->getSourceRange();
876      }
877    }
878    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
879  }
880
881  if (!RetValExp && !FnRetType->isDependentType()) {
882    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
883    // C99 6.8.6.4p1 (ext_ since GCC warns)
884    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
885
886    if (FunctionDecl *FD = getCurFunctionDecl())
887      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
888    else
889      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
890    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
891  }
892
893  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
894    // we have a non-void function with an expression, continue checking
895
896    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
897    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
898    // function return.
899
900    // C++0x 12.8p15: When certain criteria are met, an implementation is
901    //   allowed to omit the copy construction of a class object, [...]
902    //   - in a return statement in a function with a class return type, when
903    //     the expression is the name of a non-volatile automatic object with
904    //     the same cv-unqualified type as the function return type, the copy
905    //     operation can be omitted [...]
906    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
907    //   and the object to be copied is designated by an lvalue, overload
908    //   resolution to select the constructor for the copy is first performed
909    //   as if the object were designated by an rvalue.
910    // Note that we only compute Elidable if we're in C++0x, since we don't
911    // care otherwise.
912    bool Elidable = getLangOptions().CPlusPlus0x ?
913                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
914                      false;
915
916    // In C++ the return statement is handled via a copy initialization.
917    // the C version of which boils down to CheckSingleAssignmentConstraints.
918    // FIXME: Leaks RetValExp on error.
919    if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable))
920      return StmtError();
921
922    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
923  }
924
925  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
926}
927
928/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
929/// ignore "noop" casts in places where an lvalue is required by an inline asm.
930/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
931/// provide a strong guidance to not use it.
932///
933/// This method checks to see if the argument is an acceptable l-value and
934/// returns false if it is a case we can handle.
935static bool CheckAsmLValue(const Expr *E, Sema &S) {
936  if (E->isLvalue(S.Context) == Expr::LV_Valid)
937    return false;  // Cool, this is an lvalue.
938
939  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
940  // are supposed to allow.
941  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
942  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
943    if (!S.getLangOptions().HeinousExtensions)
944      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
945        << E->getSourceRange();
946    else
947      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
948        << E->getSourceRange();
949    // Accept, even if we emitted an error diagnostic.
950    return false;
951  }
952
953  // None of the above, just randomly invalid non-lvalue.
954  return true;
955}
956
957
958Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
959                                          bool IsSimple,
960                                          bool IsVolatile,
961                                          unsigned NumOutputs,
962                                          unsigned NumInputs,
963                                          std::string *Names,
964                                          MultiExprArg constraints,
965                                          MultiExprArg exprs,
966                                          ExprArg asmString,
967                                          MultiExprArg clobbers,
968                                          SourceLocation RParenLoc) {
969  unsigned NumClobbers = clobbers.size();
970  StringLiteral **Constraints =
971    reinterpret_cast<StringLiteral**>(constraints.get());
972  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
973  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
974  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
975
976  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
977
978  // The parser verifies that there is a string literal here.
979  if (AsmString->isWide())
980    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
981      << AsmString->getSourceRange());
982
983  for (unsigned i = 0; i != NumOutputs; i++) {
984    StringLiteral *Literal = Constraints[i];
985    if (Literal->isWide())
986      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
987        << Literal->getSourceRange());
988
989    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
990                                    Literal->getByteLength(),
991                                    Names[i]);
992    if (!Context.Target.validateOutputConstraint(Info))
993      return StmtError(Diag(Literal->getLocStart(),
994                            diag::err_asm_invalid_output_constraint)
995                       << Info.getConstraintStr());
996
997    // Check that the output exprs are valid lvalues.
998    Expr *OutputExpr = Exprs[i];
999    if (CheckAsmLValue(OutputExpr, *this)) {
1000      return StmtError(Diag(OutputExpr->getLocStart(),
1001                  diag::err_asm_invalid_lvalue_in_output)
1002        << OutputExpr->getSourceRange());
1003    }
1004
1005    OutputConstraintInfos.push_back(Info);
1006  }
1007
1008  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1009
1010  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1011    StringLiteral *Literal = Constraints[i];
1012    if (Literal->isWide())
1013      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1014        << Literal->getSourceRange());
1015
1016    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
1017                                    Literal->getByteLength(),
1018                                    Names[i]);
1019    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1020                                                NumOutputs, Info)) {
1021      return StmtError(Diag(Literal->getLocStart(),
1022                            diag::err_asm_invalid_input_constraint)
1023                       << Info.getConstraintStr());
1024    }
1025
1026    Expr *InputExpr = Exprs[i];
1027
1028    // Only allow void types for memory constraints.
1029    if (Info.allowsMemory() && !Info.allowsRegister()) {
1030      if (CheckAsmLValue(InputExpr, *this))
1031        return StmtError(Diag(InputExpr->getLocStart(),
1032                              diag::err_asm_invalid_lvalue_in_input)
1033                         << Info.getConstraintStr()
1034                         << InputExpr->getSourceRange());
1035    }
1036
1037    if (Info.allowsRegister()) {
1038      if (InputExpr->getType()->isVoidType()) {
1039        return StmtError(Diag(InputExpr->getLocStart(),
1040                              diag::err_asm_invalid_type_in_input)
1041          << InputExpr->getType() << Info.getConstraintStr()
1042          << InputExpr->getSourceRange());
1043      }
1044    }
1045
1046    DefaultFunctionArrayConversion(Exprs[i]);
1047
1048    InputConstraintInfos.push_back(Info);
1049  }
1050
1051  // Check that the clobbers are valid.
1052  for (unsigned i = 0; i != NumClobbers; i++) {
1053    StringLiteral *Literal = Clobbers[i];
1054    if (Literal->isWide())
1055      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1056        << Literal->getSourceRange());
1057
1058    llvm::SmallString<16> Clobber(Literal->getStrData(),
1059                                  Literal->getStrData() +
1060                                  Literal->getByteLength());
1061
1062    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
1063      return StmtError(Diag(Literal->getLocStart(),
1064                  diag::err_asm_unknown_register_name) << Clobber.c_str());
1065  }
1066
1067  constraints.release();
1068  exprs.release();
1069  asmString.release();
1070  clobbers.release();
1071  AsmStmt *NS =
1072    new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
1073                          Names, Constraints, Exprs, AsmString, NumClobbers,
1074                          Clobbers, RParenLoc);
1075  // Validate the asm string, ensuring it makes sense given the operands we
1076  // have.
1077  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1078  unsigned DiagOffs;
1079  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1080    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1081           << AsmString->getSourceRange();
1082    DeleteStmt(NS);
1083    return StmtError();
1084  }
1085
1086  // Validate tied input operands for type mismatches.
1087  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1088    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1089
1090    // If this is a tied constraint, verify that the output and input have
1091    // either exactly the same type, or that they are int/ptr operands with the
1092    // same size (int/long, int*/long, are ok etc).
1093    if (!Info.hasTiedOperand()) continue;
1094
1095    unsigned TiedTo = Info.getTiedOperand();
1096    Expr *OutputExpr = Exprs[TiedTo];
1097    Expr *InputExpr = Exprs[i+NumOutputs];
1098    QualType InTy = InputExpr->getType();
1099    QualType OutTy = OutputExpr->getType();
1100    if (Context.hasSameType(InTy, OutTy))
1101      continue;  // All types can be tied to themselves.
1102
1103    // Int/ptr operands have some special cases that we allow.
1104    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1105        (InTy->isIntegerType() || InTy->isPointerType())) {
1106
1107      // They are ok if they are the same size.  Tying void* to int is ok if
1108      // they are the same size, for example.  This also allows tying void* to
1109      // int*.
1110      uint64_t OutSize = Context.getTypeSize(OutTy);
1111      uint64_t InSize = Context.getTypeSize(InTy);
1112      if (OutSize == InSize)
1113        continue;
1114
1115      // If the smaller input/output operand is not mentioned in the asm string,
1116      // then we can promote it and the asm string won't notice.  Check this
1117      // case now.
1118      bool SmallerValueMentioned = false;
1119      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1120        AsmStmt::AsmStringPiece &Piece = Pieces[p];
1121        if (!Piece.isOperand()) continue;
1122
1123        // If this is a reference to the input and if the input was the smaller
1124        // one, then we have to reject this asm.
1125        if (Piece.getOperandNo() == i+NumOutputs) {
1126          if (InSize < OutSize) {
1127            SmallerValueMentioned = true;
1128            break;
1129          }
1130        }
1131
1132        // If this is a reference to the input and if the input was the smaller
1133        // one, then we have to reject this asm.
1134        if (Piece.getOperandNo() == TiedTo) {
1135          if (InSize > OutSize) {
1136            SmallerValueMentioned = true;
1137            break;
1138          }
1139        }
1140      }
1141
1142      // If the smaller value wasn't mentioned in the asm string, and if the
1143      // output was a register, just extend the shorter one to the size of the
1144      // larger one.
1145      if (!SmallerValueMentioned &&
1146          OutputConstraintInfos[TiedTo].allowsRegister())
1147        continue;
1148    }
1149
1150    Diag(InputExpr->getLocStart(),
1151         diag::err_asm_tying_incompatible_types)
1152      << InTy << OutTy << OutputExpr->getSourceRange()
1153      << InputExpr->getSourceRange();
1154    DeleteStmt(NS);
1155    return StmtError();
1156  }
1157
1158  return Owned(NS);
1159}
1160
1161Action::OwningStmtResult
1162Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1163                           SourceLocation RParen, DeclPtrTy Parm,
1164                           StmtArg Body, StmtArg catchList) {
1165  Stmt *CatchList = catchList.takeAs<Stmt>();
1166  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1167
1168  // PVD == 0 implies @catch(...).
1169  if (PVD) {
1170    // If we already know the decl is invalid, reject it.
1171    if (PVD->isInvalidDecl())
1172      return StmtError();
1173
1174    if (!PVD->getType()->isObjCObjectPointerType())
1175      return StmtError(Diag(PVD->getLocation(),
1176                       diag::err_catch_param_not_objc_type));
1177    if (PVD->getType()->isObjCQualifiedIdType())
1178      return StmtError(Diag(PVD->getLocation(),
1179                       diag::err_illegal_qualifiers_on_catch_parm));
1180  }
1181
1182  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1183    PVD, Body.takeAs<Stmt>(), CatchList);
1184  return Owned(CatchList ? CatchList : CS);
1185}
1186
1187Action::OwningStmtResult
1188Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1189  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1190                                           static_cast<Stmt*>(Body.release())));
1191}
1192
1193Action::OwningStmtResult
1194Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1195                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
1196  CurFunctionNeedsScopeChecking = true;
1197  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1198                                           Catch.takeAs<Stmt>(),
1199                                           Finally.takeAs<Stmt>()));
1200}
1201
1202Action::OwningStmtResult
1203Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1204  Expr *ThrowExpr = expr.takeAs<Expr>();
1205  if (!ThrowExpr) {
1206    // @throw without an expression designates a rethrow (which much occur
1207    // in the context of an @catch clause).
1208    Scope *AtCatchParent = CurScope;
1209    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1210      AtCatchParent = AtCatchParent->getParent();
1211    if (!AtCatchParent)
1212      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1213  } else {
1214    QualType ThrowType = ThrowExpr->getType();
1215    // Make sure the expression type is an ObjC pointer or "void *".
1216    if (!ThrowType->isObjCObjectPointerType()) {
1217      const PointerType *PT = ThrowType->getAs<PointerType>();
1218      if (!PT || !PT->getPointeeType()->isVoidType())
1219        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1220                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1221    }
1222  }
1223  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1224}
1225
1226Action::OwningStmtResult
1227Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1228                                  StmtArg SynchBody) {
1229  CurFunctionNeedsScopeChecking = true;
1230
1231  // Make sure the expression type is an ObjC pointer or "void *".
1232  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1233  if (!SyncExpr->getType()->isObjCObjectPointerType()) {
1234    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1235    if (!PT || !PT->getPointeeType()->isVoidType())
1236      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1237                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1238  }
1239
1240  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1241                                                    SynchExpr.takeAs<Stmt>(),
1242                                                    SynchBody.takeAs<Stmt>()));
1243}
1244
1245/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1246/// and creates a proper catch handler from them.
1247Action::OwningStmtResult
1248Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1249                         StmtArg HandlerBlock) {
1250  // There's nothing to test that ActOnExceptionDecl didn't already test.
1251  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1252                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1253                                          HandlerBlock.takeAs<Stmt>()));
1254}
1255
1256class TypeWithHandler {
1257  QualType t;
1258  CXXCatchStmt *stmt;
1259public:
1260  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1261  : t(type), stmt(statement) {}
1262
1263  bool operator<(const TypeWithHandler &y) const {
1264    if (t.getTypePtr() < y.t.getTypePtr())
1265      return true;
1266    else if (t.getTypePtr() > y.t.getTypePtr())
1267      return false;
1268    else if (t.getCVRQualifiers() < y.t.getCVRQualifiers())
1269      return true;
1270    else if (t.getCVRQualifiers() < y.t.getCVRQualifiers())
1271      return false;
1272    else
1273      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1274  }
1275
1276  bool operator==(const TypeWithHandler& other) const {
1277    return t.getTypePtr() == other.t.getTypePtr()
1278        && t.getCVRQualifiers() == other.t.getCVRQualifiers();
1279  }
1280
1281  QualType getQualType() const { return t; }
1282  CXXCatchStmt *getCatchStmt() const { return stmt; }
1283  SourceLocation getTypeSpecStartLoc() const {
1284    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1285  }
1286};
1287
1288/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1289/// handlers and creates a try statement from them.
1290Action::OwningStmtResult
1291Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1292                       MultiStmtArg RawHandlers) {
1293  unsigned NumHandlers = RawHandlers.size();
1294  assert(NumHandlers > 0 &&
1295         "The parser shouldn't call this if there are no handlers.");
1296  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1297
1298  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1299
1300  for(unsigned i = 0; i < NumHandlers; ++i) {
1301    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1302    if (!Handler->getExceptionDecl()) {
1303      if (i < NumHandlers - 1)
1304        return StmtError(Diag(Handler->getLocStart(),
1305                              diag::err_early_catch_all));
1306
1307      continue;
1308    }
1309
1310    const QualType CaughtType = Handler->getCaughtType();
1311    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1312    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1313  }
1314
1315  // Detect handlers for the same type as an earlier one.
1316  if (NumHandlers > 1) {
1317    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1318
1319    TypeWithHandler prev = TypesWithHandlers[0];
1320    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1321      TypeWithHandler curr = TypesWithHandlers[i];
1322
1323      if (curr == prev) {
1324        Diag(curr.getTypeSpecStartLoc(),
1325             diag::warn_exception_caught_by_earlier_handler)
1326          << curr.getCatchStmt()->getCaughtType().getAsString();
1327        Diag(prev.getTypeSpecStartLoc(),
1328             diag::note_previous_exception_handler)
1329          << prev.getCatchStmt()->getCaughtType().getAsString();
1330      }
1331
1332      prev = curr;
1333    }
1334  }
1335
1336  // FIXME: We should detect handlers that cannot catch anything because an
1337  // earlier handler catches a superclass. Need to find a method that is not
1338  // quadratic for this.
1339  // Neither of these are explicitly forbidden, but every compiler detects them
1340  // and warns.
1341
1342  CurFunctionNeedsScopeChecking = true;
1343  RawHandlers.release();
1344  return Owned(new (Context) CXXTryStmt(TryLoc,
1345                                        static_cast<Stmt*>(TryBlock.release()),
1346                                        Handlers, NumHandlers));
1347}
1348