SemaStmt.cpp revision 649657e7d6c150136cae5ab22e39b9794cff80cc
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallVector.h"
33using namespace clang;
34using namespace sema;
35
36StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
37  Expr *E = expr.get();
38  if (!E) // FIXME: FullExprArg has no error state?
39    return StmtError();
40
41  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
42  // void expression for its side effects.  Conversion to void allows any
43  // operand, even incomplete types.
44
45  // Same thing in for stmt first clause (when expr) and third clause.
46  return Owned(static_cast<Stmt*>(E));
47}
48
49
50StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
51                               bool HasLeadingEmptyMacro) {
52  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
53}
54
55StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
56                               SourceLocation EndLoc) {
57  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
58
59  // If we have an invalid decl, just return an error.
60  if (DG.isNull()) return StmtError();
61
62  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
63}
64
65void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
66  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
67
68  // If we have an invalid decl, just return.
69  if (DG.isNull() || !DG.isSingleDecl()) return;
70  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
71
72  // suppress any potential 'unused variable' warning.
73  var->setUsed();
74
75  // foreach variables are never actually initialized in the way that
76  // the parser came up with.
77  var->setInit(0);
78
79  // In ARC, we don't need to retain the iteration variable of a fast
80  // enumeration loop.  Rather than actually trying to catch that
81  // during declaration processing, we remove the consequences here.
82  if (getLangOptions().ObjCAutoRefCount) {
83    QualType type = var->getType();
84
85    // Only do this if we inferred the lifetime.  Inferred lifetime
86    // will show up as a local qualifier because explicit lifetime
87    // should have shown up as an AttributedType instead.
88    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
89      // Add 'const' and mark the variable as pseudo-strong.
90      var->setType(type.withConst());
91      var->setARCPseudoStrong(true);
92    }
93  }
94}
95
96/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
97///
98/// Adding a cast to void (or other expression wrappers) will prevent the
99/// warning from firing.
100static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
101  SourceLocation Loc;
102  bool IsNotEqual, CanAssign;
103
104  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
105    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
106      return false;
107
108    Loc = Op->getOperatorLoc();
109    IsNotEqual = Op->getOpcode() == BO_NE;
110    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
111  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
112    if (Op->getOperator() != OO_EqualEqual &&
113        Op->getOperator() != OO_ExclaimEqual)
114      return false;
115
116    Loc = Op->getOperatorLoc();
117    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
118    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
119  } else {
120    // Not a typo-prone comparison.
121    return false;
122  }
123
124  // Suppress warnings when the operator, suspicious as it may be, comes from
125  // a macro expansion.
126  if (Loc.isMacroID())
127    return false;
128
129  S.Diag(Loc, diag::warn_unused_comparison)
130    << (unsigned)IsNotEqual << E->getSourceRange();
131
132  // If the LHS is a plausible entity to assign to, provide a fixit hint to
133  // correct common typos.
134  if (CanAssign) {
135    if (IsNotEqual)
136      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
137        << FixItHint::CreateReplacement(Loc, "|=");
138    else
139      S.Diag(Loc, diag::note_equality_comparison_to_assign)
140        << FixItHint::CreateReplacement(Loc, "=");
141  }
142
143  return true;
144}
145
146void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
147  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
148    return DiagnoseUnusedExprResult(Label->getSubStmt());
149
150  const Expr *E = dyn_cast_or_null<Expr>(S);
151  if (!E)
152    return;
153
154  SourceLocation Loc;
155  SourceRange R1, R2;
156  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
157    return;
158
159  // Okay, we have an unused result.  Depending on what the base expression is,
160  // we might want to make a more specific diagnostic.  Check for one of these
161  // cases now.
162  unsigned DiagID = diag::warn_unused_expr;
163  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
164    E = Temps->getSubExpr();
165  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
166    E = TempExpr->getSubExpr();
167
168  if (DiagnoseUnusedComparison(*this, E))
169    return;
170
171  E = E->IgnoreParenImpCasts();
172  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
173    if (E->getType()->isVoidType())
174      return;
175
176    // If the callee has attribute pure, const, or warn_unused_result, warn with
177    // a more specific message to make it clear what is happening.
178    if (const Decl *FD = CE->getCalleeDecl()) {
179      if (FD->getAttr<WarnUnusedResultAttr>()) {
180        Diag(Loc, diag::warn_unused_result) << R1 << R2;
181        return;
182      }
183      if (FD->getAttr<PureAttr>()) {
184        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
185        return;
186      }
187      if (FD->getAttr<ConstAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
189        return;
190      }
191    }
192  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
193    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
194      Diag(Loc, diag::err_arc_unused_init_message) << R1;
195      return;
196    }
197    const ObjCMethodDecl *MD = ME->getMethodDecl();
198    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
199      Diag(Loc, diag::warn_unused_result) << R1 << R2;
200      return;
201    }
202  } else if (isa<PseudoObjectExpr>(E)) {
203    DiagID = diag::warn_unused_property_expr;
204  } else if (const CXXFunctionalCastExpr *FC
205                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
206    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
207        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
208      return;
209  }
210  // Diagnose "(void*) blah" as a typo for "(void) blah".
211  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
212    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
213    QualType T = TI->getType();
214
215    // We really do want to use the non-canonical type here.
216    if (T == Context.VoidPtrTy) {
217      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
218
219      Diag(Loc, diag::warn_unused_voidptr)
220        << FixItHint::CreateRemoval(TL.getStarLoc());
221      return;
222    }
223  }
224
225  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
226}
227
228StmtResult
229Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
230                        MultiStmtArg elts, bool isStmtExpr) {
231  unsigned NumElts = elts.size();
232  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
233  // If we're in C89 mode, check that we don't have any decls after stmts.  If
234  // so, emit an extension diagnostic.
235  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
236    // Note that __extension__ can be around a decl.
237    unsigned i = 0;
238    // Skip over all declarations.
239    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
240      /*empty*/;
241
242    // We found the end of the list or a statement.  Scan for another declstmt.
243    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
244      /*empty*/;
245
246    if (i != NumElts) {
247      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
248      Diag(D->getLocation(), diag::ext_mixed_decls_code);
249    }
250  }
251  // Warn about unused expressions in statements.
252  for (unsigned i = 0; i != NumElts; ++i) {
253    // Ignore statements that are last in a statement expression.
254    if (isStmtExpr && i == NumElts - 1)
255      continue;
256
257    DiagnoseUnusedExprResult(Elts[i]);
258  }
259
260  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
261}
262
263StmtResult
264Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
265                    SourceLocation DotDotDotLoc, Expr *RHSVal,
266                    SourceLocation ColonLoc) {
267  assert((LHSVal != 0) && "missing expression in case statement");
268
269  // C99 6.8.4.2p3: The expression shall be an integer constant.
270  // However, GCC allows any evaluatable integer expression.
271  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
272      VerifyIntegerConstantExpression(LHSVal))
273    return StmtError();
274
275  // GCC extension: The expression shall be an integer constant.
276
277  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
278      VerifyIntegerConstantExpression(RHSVal)) {
279    RHSVal = 0;  // Recover by just forgetting about it.
280  }
281
282  if (getCurFunction()->SwitchStack.empty()) {
283    Diag(CaseLoc, diag::err_case_not_in_switch);
284    return StmtError();
285  }
286
287  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
288                                        ColonLoc);
289  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
290  return Owned(CS);
291}
292
293/// ActOnCaseStmtBody - This installs a statement as the body of a case.
294void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
295  DiagnoseUnusedExprResult(SubStmt);
296
297  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
298  CS->setSubStmt(SubStmt);
299}
300
301StmtResult
302Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
303                       Stmt *SubStmt, Scope *CurScope) {
304  DiagnoseUnusedExprResult(SubStmt);
305
306  if (getCurFunction()->SwitchStack.empty()) {
307    Diag(DefaultLoc, diag::err_default_not_in_switch);
308    return Owned(SubStmt);
309  }
310
311  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
312  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
313  return Owned(DS);
314}
315
316StmtResult
317Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
318                     SourceLocation ColonLoc, Stmt *SubStmt) {
319
320  // If the label was multiply defined, reject it now.
321  if (TheDecl->getStmt()) {
322    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
323    Diag(TheDecl->getLocation(), diag::note_previous_definition);
324    return Owned(SubStmt);
325  }
326
327  // Otherwise, things are good.  Fill in the declaration and return it.
328  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
329  TheDecl->setStmt(LS);
330  if (!TheDecl->isGnuLocal())
331    TheDecl->setLocation(IdentLoc);
332  return Owned(LS);
333}
334
335StmtResult
336Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
337                  Stmt *thenStmt, SourceLocation ElseLoc,
338                  Stmt *elseStmt) {
339  ExprResult CondResult(CondVal.release());
340
341  VarDecl *ConditionVar = 0;
342  if (CondVar) {
343    ConditionVar = cast<VarDecl>(CondVar);
344    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
345    if (CondResult.isInvalid())
346      return StmtError();
347  }
348  Expr *ConditionExpr = CondResult.takeAs<Expr>();
349  if (!ConditionExpr)
350    return StmtError();
351
352  DiagnoseUnusedExprResult(thenStmt);
353
354  // Warn if the if block has a null body without an else value.
355  // this helps prevent bugs due to typos, such as
356  // if (condition);
357  //   do_stuff();
358  //
359  if (!elseStmt) {
360    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
361      // But do not warn if the body is a macro that expands to nothing, e.g:
362      //
363      // #define CALL(x)
364      // if (condition)
365      //   CALL(0);
366      //
367      if (!stmt->hasLeadingEmptyMacro())
368        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
369  }
370
371  DiagnoseUnusedExprResult(elseStmt);
372
373  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
374                                    thenStmt, ElseLoc, elseStmt));
375}
376
377/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
378/// the specified width and sign.  If an overflow occurs, detect it and emit
379/// the specified diagnostic.
380void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
381                                              unsigned NewWidth, bool NewSign,
382                                              SourceLocation Loc,
383                                              unsigned DiagID) {
384  // Perform a conversion to the promoted condition type if needed.
385  if (NewWidth > Val.getBitWidth()) {
386    // If this is an extension, just do it.
387    Val = Val.extend(NewWidth);
388    Val.setIsSigned(NewSign);
389
390    // If the input was signed and negative and the output is
391    // unsigned, don't bother to warn: this is implementation-defined
392    // behavior.
393    // FIXME: Introduce a second, default-ignored warning for this case?
394  } else if (NewWidth < Val.getBitWidth()) {
395    // If this is a truncation, check for overflow.
396    llvm::APSInt ConvVal(Val);
397    ConvVal = ConvVal.trunc(NewWidth);
398    ConvVal.setIsSigned(NewSign);
399    ConvVal = ConvVal.extend(Val.getBitWidth());
400    ConvVal.setIsSigned(Val.isSigned());
401    if (ConvVal != Val)
402      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
403
404    // Regardless of whether a diagnostic was emitted, really do the
405    // truncation.
406    Val = Val.trunc(NewWidth);
407    Val.setIsSigned(NewSign);
408  } else if (NewSign != Val.isSigned()) {
409    // Convert the sign to match the sign of the condition.  This can cause
410    // overflow as well: unsigned(INTMIN)
411    // We don't diagnose this overflow, because it is implementation-defined
412    // behavior.
413    // FIXME: Introduce a second, default-ignored warning for this case?
414    llvm::APSInt OldVal(Val);
415    Val.setIsSigned(NewSign);
416  }
417}
418
419namespace {
420  struct CaseCompareFunctor {
421    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
422                    const llvm::APSInt &RHS) {
423      return LHS.first < RHS;
424    }
425    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
426                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
427      return LHS.first < RHS.first;
428    }
429    bool operator()(const llvm::APSInt &LHS,
430                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
431      return LHS < RHS.first;
432    }
433  };
434}
435
436/// CmpCaseVals - Comparison predicate for sorting case values.
437///
438static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
439                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
440  if (lhs.first < rhs.first)
441    return true;
442
443  if (lhs.first == rhs.first &&
444      lhs.second->getCaseLoc().getRawEncoding()
445       < rhs.second->getCaseLoc().getRawEncoding())
446    return true;
447  return false;
448}
449
450/// CmpEnumVals - Comparison predicate for sorting enumeration values.
451///
452static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
453                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
454{
455  return lhs.first < rhs.first;
456}
457
458/// EqEnumVals - Comparison preficate for uniqing enumeration values.
459///
460static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
461                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
462{
463  return lhs.first == rhs.first;
464}
465
466/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
467/// potentially integral-promoted expression @p expr.
468static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
469  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
470    expr = cleanups->getSubExpr();
471  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
472    if (impcast->getCastKind() != CK_IntegralCast) break;
473    expr = impcast->getSubExpr();
474  }
475  return expr->getType();
476}
477
478StmtResult
479Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
480                             Decl *CondVar) {
481  ExprResult CondResult;
482
483  VarDecl *ConditionVar = 0;
484  if (CondVar) {
485    ConditionVar = cast<VarDecl>(CondVar);
486    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
487    if (CondResult.isInvalid())
488      return StmtError();
489
490    Cond = CondResult.release();
491  }
492
493  if (!Cond)
494    return StmtError();
495
496  CondResult = CheckPlaceholderExpr(Cond);
497  if (CondResult.isInvalid())
498    return StmtError();
499
500  CondResult
501    = ConvertToIntegralOrEnumerationType(SwitchLoc, CondResult.take(),
502                          PDiag(diag::err_typecheck_statement_requires_integer),
503                                   PDiag(diag::err_switch_incomplete_class_type)
504                                     << Cond->getSourceRange(),
505                                   PDiag(diag::err_switch_explicit_conversion),
506                                         PDiag(diag::note_switch_conversion),
507                                   PDiag(diag::err_switch_multiple_conversions),
508                                         PDiag(diag::note_switch_conversion),
509                                         PDiag(0));
510  if (CondResult.isInvalid()) return StmtError();
511  Cond = CondResult.take();
512
513  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
514  CondResult = UsualUnaryConversions(Cond);
515  if (CondResult.isInvalid()) return StmtError();
516  Cond = CondResult.take();
517
518  if (!CondVar) {
519    CheckImplicitConversions(Cond, SwitchLoc);
520    CondResult = MaybeCreateExprWithCleanups(Cond);
521    if (CondResult.isInvalid())
522      return StmtError();
523    Cond = CondResult.take();
524  }
525
526  getCurFunction()->setHasBranchIntoScope();
527
528  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
529  getCurFunction()->SwitchStack.push_back(SS);
530  return Owned(SS);
531}
532
533static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
534  if (Val.getBitWidth() < BitWidth)
535    Val = Val.extend(BitWidth);
536  else if (Val.getBitWidth() > BitWidth)
537    Val = Val.trunc(BitWidth);
538  Val.setIsSigned(IsSigned);
539}
540
541StmtResult
542Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
543                            Stmt *BodyStmt) {
544  SwitchStmt *SS = cast<SwitchStmt>(Switch);
545  assert(SS == getCurFunction()->SwitchStack.back() &&
546         "switch stack missing push/pop!");
547
548  SS->setBody(BodyStmt, SwitchLoc);
549  getCurFunction()->SwitchStack.pop_back();
550
551  Expr *CondExpr = SS->getCond();
552  if (!CondExpr) return StmtError();
553
554  QualType CondType = CondExpr->getType();
555
556  Expr *CondExprBeforePromotion = CondExpr;
557  QualType CondTypeBeforePromotion =
558      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
559
560  // C++ 6.4.2.p2:
561  // Integral promotions are performed (on the switch condition).
562  //
563  // A case value unrepresentable by the original switch condition
564  // type (before the promotion) doesn't make sense, even when it can
565  // be represented by the promoted type.  Therefore we need to find
566  // the pre-promotion type of the switch condition.
567  if (!CondExpr->isTypeDependent()) {
568    // We have already converted the expression to an integral or enumeration
569    // type, when we started the switch statement. If we don't have an
570    // appropriate type now, just return an error.
571    if (!CondType->isIntegralOrEnumerationType())
572      return StmtError();
573
574    if (CondExpr->isKnownToHaveBooleanValue()) {
575      // switch(bool_expr) {...} is often a programmer error, e.g.
576      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
577      // One can always use an if statement instead of switch(bool_expr).
578      Diag(SwitchLoc, diag::warn_bool_switch_condition)
579          << CondExpr->getSourceRange();
580    }
581  }
582
583  // Get the bitwidth of the switched-on value before promotions.  We must
584  // convert the integer case values to this width before comparison.
585  bool HasDependentValue
586    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
587  unsigned CondWidth
588    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
589  bool CondIsSigned
590    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
591
592  // Accumulate all of the case values in a vector so that we can sort them
593  // and detect duplicates.  This vector contains the APInt for the case after
594  // it has been converted to the condition type.
595  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
596  CaseValsTy CaseVals;
597
598  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
599  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
600  CaseRangesTy CaseRanges;
601
602  DefaultStmt *TheDefaultStmt = 0;
603
604  bool CaseListIsErroneous = false;
605
606  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
607       SC = SC->getNextSwitchCase()) {
608
609    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
610      if (TheDefaultStmt) {
611        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
612        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
613
614        // FIXME: Remove the default statement from the switch block so that
615        // we'll return a valid AST.  This requires recursing down the AST and
616        // finding it, not something we are set up to do right now.  For now,
617        // just lop the entire switch stmt out of the AST.
618        CaseListIsErroneous = true;
619      }
620      TheDefaultStmt = DS;
621
622    } else {
623      CaseStmt *CS = cast<CaseStmt>(SC);
624
625      // We already verified that the expression has a i-c-e value (C99
626      // 6.8.4.2p3) - get that value now.
627      Expr *Lo = CS->getLHS();
628
629      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
630        HasDependentValue = true;
631        break;
632      }
633
634      llvm::APSInt LoVal = Lo->EvaluateKnownConstInt(Context);
635
636      // Convert the value to the same width/sign as the condition.
637      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
638                                         Lo->getLocStart(),
639                                         diag::warn_case_value_overflow);
640
641      // If the LHS is not the same type as the condition, insert an implicit
642      // cast.
643      // FIXME: In C++11, the value is a converted constant expression of the
644      // promoted type of the switch condition.
645      Lo = DefaultLvalueConversion(Lo).take();
646      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
647      CS->setLHS(Lo);
648
649      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
650      if (CS->getRHS()) {
651        if (CS->getRHS()->isTypeDependent() ||
652            CS->getRHS()->isValueDependent()) {
653          HasDependentValue = true;
654          break;
655        }
656        CaseRanges.push_back(std::make_pair(LoVal, CS));
657      } else
658        CaseVals.push_back(std::make_pair(LoVal, CS));
659    }
660  }
661
662  if (!HasDependentValue) {
663    // If we don't have a default statement, check whether the
664    // condition is constant.
665    llvm::APSInt ConstantCondValue;
666    bool HasConstantCond = false;
667    bool ShouldCheckConstantCond = false;
668    if (!HasDependentValue && !TheDefaultStmt) {
669      Expr::EvalResult Result;
670      HasConstantCond
671        = CondExprBeforePromotion->EvaluateAsRValue(Result, Context);
672      if (HasConstantCond) {
673        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
674        ConstantCondValue = Result.Val.getInt();
675        ShouldCheckConstantCond = true;
676
677        assert(ConstantCondValue.getBitWidth() == CondWidth &&
678               ConstantCondValue.isSigned() == CondIsSigned);
679      }
680    }
681
682    // Sort all the scalar case values so we can easily detect duplicates.
683    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
684
685    if (!CaseVals.empty()) {
686      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
687        if (ShouldCheckConstantCond &&
688            CaseVals[i].first == ConstantCondValue)
689          ShouldCheckConstantCond = false;
690
691        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
692          // If we have a duplicate, report it.
693          Diag(CaseVals[i].second->getLHS()->getLocStart(),
694               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
695          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
696               diag::note_duplicate_case_prev);
697          // FIXME: We really want to remove the bogus case stmt from the
698          // substmt, but we have no way to do this right now.
699          CaseListIsErroneous = true;
700        }
701      }
702    }
703
704    // Detect duplicate case ranges, which usually don't exist at all in
705    // the first place.
706    if (!CaseRanges.empty()) {
707      // Sort all the case ranges by their low value so we can easily detect
708      // overlaps between ranges.
709      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
710
711      // Scan the ranges, computing the high values and removing empty ranges.
712      std::vector<llvm::APSInt> HiVals;
713      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
714        llvm::APSInt &LoVal = CaseRanges[i].first;
715        CaseStmt *CR = CaseRanges[i].second;
716        Expr *Hi = CR->getRHS();
717        llvm::APSInt HiVal = Hi->EvaluateKnownConstInt(Context);
718
719        // Convert the value to the same width/sign as the condition.
720        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
721                                           Hi->getLocStart(),
722                                           diag::warn_case_value_overflow);
723
724        // If the RHS is not the same type as the condition, insert an implicit
725        // cast.
726        // FIXME: In C++11, the value is a converted constant expression of the
727        // promoted type of the switch condition.
728        Hi = DefaultLvalueConversion(Hi).take();
729        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
730        CR->setRHS(Hi);
731
732        // If the low value is bigger than the high value, the case is empty.
733        if (LoVal > HiVal) {
734          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
735            << SourceRange(CR->getLHS()->getLocStart(),
736                           Hi->getLocEnd());
737          CaseRanges.erase(CaseRanges.begin()+i);
738          --i, --e;
739          continue;
740        }
741
742        if (ShouldCheckConstantCond &&
743            LoVal <= ConstantCondValue &&
744            ConstantCondValue <= HiVal)
745          ShouldCheckConstantCond = false;
746
747        HiVals.push_back(HiVal);
748      }
749
750      // Rescan the ranges, looking for overlap with singleton values and other
751      // ranges.  Since the range list is sorted, we only need to compare case
752      // ranges with their neighbors.
753      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
754        llvm::APSInt &CRLo = CaseRanges[i].first;
755        llvm::APSInt &CRHi = HiVals[i];
756        CaseStmt *CR = CaseRanges[i].second;
757
758        // Check to see whether the case range overlaps with any
759        // singleton cases.
760        CaseStmt *OverlapStmt = 0;
761        llvm::APSInt OverlapVal(32);
762
763        // Find the smallest value >= the lower bound.  If I is in the
764        // case range, then we have overlap.
765        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
766                                                  CaseVals.end(), CRLo,
767                                                  CaseCompareFunctor());
768        if (I != CaseVals.end() && I->first < CRHi) {
769          OverlapVal  = I->first;   // Found overlap with scalar.
770          OverlapStmt = I->second;
771        }
772
773        // Find the smallest value bigger than the upper bound.
774        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
775        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
776          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
777          OverlapStmt = (I-1)->second;
778        }
779
780        // Check to see if this case stmt overlaps with the subsequent
781        // case range.
782        if (i && CRLo <= HiVals[i-1]) {
783          OverlapVal  = HiVals[i-1];       // Found overlap with range.
784          OverlapStmt = CaseRanges[i-1].second;
785        }
786
787        if (OverlapStmt) {
788          // If we have a duplicate, report it.
789          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
790            << OverlapVal.toString(10);
791          Diag(OverlapStmt->getLHS()->getLocStart(),
792               diag::note_duplicate_case_prev);
793          // FIXME: We really want to remove the bogus case stmt from the
794          // substmt, but we have no way to do this right now.
795          CaseListIsErroneous = true;
796        }
797      }
798    }
799
800    // Complain if we have a constant condition and we didn't find a match.
801    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
802      // TODO: it would be nice if we printed enums as enums, chars as
803      // chars, etc.
804      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
805        << ConstantCondValue.toString(10)
806        << CondExpr->getSourceRange();
807    }
808
809    // Check to see if switch is over an Enum and handles all of its
810    // values.  We only issue a warning if there is not 'default:', but
811    // we still do the analysis to preserve this information in the AST
812    // (which can be used by flow-based analyes).
813    //
814    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
815
816    // If switch has default case, then ignore it.
817    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
818      const EnumDecl *ED = ET->getDecl();
819      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
820        EnumValsTy;
821      EnumValsTy EnumVals;
822
823      // Gather all enum values, set their type and sort them,
824      // allowing easier comparison with CaseVals.
825      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
826           EDI != ED->enumerator_end(); ++EDI) {
827        llvm::APSInt Val = EDI->getInitVal();
828        AdjustAPSInt(Val, CondWidth, CondIsSigned);
829        EnumVals.push_back(std::make_pair(Val, *EDI));
830      }
831      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
832      EnumValsTy::iterator EIend =
833        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
834
835      // See which case values aren't in enum.
836      // TODO: we might want to check whether case values are out of the
837      // enum even if we don't want to check whether all cases are handled.
838      if (!TheDefaultStmt) {
839        EnumValsTy::const_iterator EI = EnumVals.begin();
840        for (CaseValsTy::const_iterator CI = CaseVals.begin();
841             CI != CaseVals.end(); CI++) {
842          while (EI != EIend && EI->first < CI->first)
843            EI++;
844          if (EI == EIend || EI->first > CI->first)
845            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
846              << ED->getDeclName();
847        }
848        // See which of case ranges aren't in enum
849        EI = EnumVals.begin();
850        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
851             RI != CaseRanges.end() && EI != EIend; RI++) {
852          while (EI != EIend && EI->first < RI->first)
853            EI++;
854
855          if (EI == EIend || EI->first != RI->first) {
856            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
857              << ED->getDeclName();
858          }
859
860          llvm::APSInt Hi =
861            RI->second->getRHS()->EvaluateKnownConstInt(Context);
862          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
863          while (EI != EIend && EI->first < Hi)
864            EI++;
865          if (EI == EIend || EI->first != Hi)
866            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
867              << ED->getDeclName();
868        }
869      }
870
871      // Check which enum vals aren't in switch
872      CaseValsTy::const_iterator CI = CaseVals.begin();
873      CaseRangesTy::const_iterator RI = CaseRanges.begin();
874      bool hasCasesNotInSwitch = false;
875
876      SmallVector<DeclarationName,8> UnhandledNames;
877
878      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
879        // Drop unneeded case values
880        llvm::APSInt CIVal;
881        while (CI != CaseVals.end() && CI->first < EI->first)
882          CI++;
883
884        if (CI != CaseVals.end() && CI->first == EI->first)
885          continue;
886
887        // Drop unneeded case ranges
888        for (; RI != CaseRanges.end(); RI++) {
889          llvm::APSInt Hi =
890            RI->second->getRHS()->EvaluateKnownConstInt(Context);
891          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
892          if (EI->first <= Hi)
893            break;
894        }
895
896        if (RI == CaseRanges.end() || EI->first < RI->first) {
897          hasCasesNotInSwitch = true;
898          if (!TheDefaultStmt)
899            UnhandledNames.push_back(EI->second->getDeclName());
900        }
901      }
902
903      // Produce a nice diagnostic if multiple values aren't handled.
904      switch (UnhandledNames.size()) {
905      case 0: break;
906      case 1:
907        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
908          << UnhandledNames[0];
909        break;
910      case 2:
911        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
912          << UnhandledNames[0] << UnhandledNames[1];
913        break;
914      case 3:
915        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
916          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
917        break;
918      default:
919        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
920          << (unsigned)UnhandledNames.size()
921          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
922        break;
923      }
924
925      if (!hasCasesNotInSwitch)
926        SS->setAllEnumCasesCovered();
927    }
928  }
929
930  // FIXME: If the case list was broken is some way, we don't have a good system
931  // to patch it up.  Instead, just return the whole substmt as broken.
932  if (CaseListIsErroneous)
933    return StmtError();
934
935  return Owned(SS);
936}
937
938StmtResult
939Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
940                     Decl *CondVar, Stmt *Body) {
941  ExprResult CondResult(Cond.release());
942
943  VarDecl *ConditionVar = 0;
944  if (CondVar) {
945    ConditionVar = cast<VarDecl>(CondVar);
946    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
947    if (CondResult.isInvalid())
948      return StmtError();
949  }
950  Expr *ConditionExpr = CondResult.take();
951  if (!ConditionExpr)
952    return StmtError();
953
954  DiagnoseUnusedExprResult(Body);
955
956  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
957                                       Body, WhileLoc));
958}
959
960StmtResult
961Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
962                  SourceLocation WhileLoc, SourceLocation CondLParen,
963                  Expr *Cond, SourceLocation CondRParen) {
964  assert(Cond && "ActOnDoStmt(): missing expression");
965
966  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
967  if (CondResult.isInvalid() || CondResult.isInvalid())
968    return StmtError();
969  Cond = CondResult.take();
970
971  CheckImplicitConversions(Cond, DoLoc);
972  CondResult = MaybeCreateExprWithCleanups(Cond);
973  if (CondResult.isInvalid())
974    return StmtError();
975  Cond = CondResult.take();
976
977  DiagnoseUnusedExprResult(Body);
978
979  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
980}
981
982StmtResult
983Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
984                   Stmt *First, FullExprArg second, Decl *secondVar,
985                   FullExprArg third,
986                   SourceLocation RParenLoc, Stmt *Body) {
987  if (!getLangOptions().CPlusPlus) {
988    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
989      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
990      // declare identifiers for objects having storage class 'auto' or
991      // 'register'.
992      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
993           DI!=DE; ++DI) {
994        VarDecl *VD = dyn_cast<VarDecl>(*DI);
995        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
996          VD = 0;
997        if (VD == 0)
998          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
999        // FIXME: mark decl erroneous!
1000      }
1001    }
1002  }
1003
1004  ExprResult SecondResult(second.release());
1005  VarDecl *ConditionVar = 0;
1006  if (secondVar) {
1007    ConditionVar = cast<VarDecl>(secondVar);
1008    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1009    if (SecondResult.isInvalid())
1010      return StmtError();
1011  }
1012
1013  Expr *Third  = third.release().takeAs<Expr>();
1014
1015  DiagnoseUnusedExprResult(First);
1016  DiagnoseUnusedExprResult(Third);
1017  DiagnoseUnusedExprResult(Body);
1018
1019  return Owned(new (Context) ForStmt(Context, First,
1020                                     SecondResult.take(), ConditionVar,
1021                                     Third, Body, ForLoc, LParenLoc,
1022                                     RParenLoc));
1023}
1024
1025/// In an Objective C collection iteration statement:
1026///   for (x in y)
1027/// x can be an arbitrary l-value expression.  Bind it up as a
1028/// full-expression.
1029StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1030  CheckImplicitConversions(E);
1031  ExprResult Result = MaybeCreateExprWithCleanups(E);
1032  if (Result.isInvalid()) return StmtError();
1033  return Owned(static_cast<Stmt*>(Result.get()));
1034}
1035
1036ExprResult
1037Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1038  assert(collection);
1039
1040  // Bail out early if we've got a type-dependent expression.
1041  if (collection->isTypeDependent()) return Owned(collection);
1042
1043  // Perform normal l-value conversion.
1044  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1045  if (result.isInvalid())
1046    return ExprError();
1047  collection = result.take();
1048
1049  // The operand needs to have object-pointer type.
1050  // TODO: should we do a contextual conversion?
1051  const ObjCObjectPointerType *pointerType =
1052    collection->getType()->getAs<ObjCObjectPointerType>();
1053  if (!pointerType)
1054    return Diag(forLoc, diag::err_collection_expr_type)
1055             << collection->getType() << collection->getSourceRange();
1056
1057  // Check that the operand provides
1058  //   - countByEnumeratingWithState:objects:count:
1059  const ObjCObjectType *objectType = pointerType->getObjectType();
1060  ObjCInterfaceDecl *iface = objectType->getInterface();
1061
1062  // If we have a forward-declared type, we can't do this check.
1063  // Under ARC, it is an error not to have a forward-declared class.
1064  if (iface &&
1065      RequireCompleteType(forLoc, QualType(objectType, 0),
1066                          getLangOptions().ObjCAutoRefCount
1067                            ? PDiag(diag::err_arc_collection_forward)
1068                                << collection->getSourceRange()
1069                          : PDiag(0))) {
1070    // Otherwise, if we have any useful type information, check that
1071    // the type declares the appropriate method.
1072  } else if (iface || !objectType->qual_empty()) {
1073    IdentifierInfo *selectorIdents[] = {
1074      &Context.Idents.get("countByEnumeratingWithState"),
1075      &Context.Idents.get("objects"),
1076      &Context.Idents.get("count")
1077    };
1078    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1079
1080    ObjCMethodDecl *method = 0;
1081
1082    // If there's an interface, look in both the public and private APIs.
1083    if (iface) {
1084      method = iface->lookupInstanceMethod(selector);
1085      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1086    }
1087
1088    // Also check protocol qualifiers.
1089    if (!method)
1090      method = LookupMethodInQualifiedType(selector, pointerType,
1091                                           /*instance*/ true);
1092
1093    // If we didn't find it anywhere, give up.
1094    if (!method) {
1095      Diag(forLoc, diag::warn_collection_expr_type)
1096        << collection->getType() << selector << collection->getSourceRange();
1097    }
1098
1099    // TODO: check for an incompatible signature?
1100  }
1101
1102  // Wrap up any cleanups in the expression.
1103  return Owned(MaybeCreateExprWithCleanups(collection));
1104}
1105
1106StmtResult
1107Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1108                                 SourceLocation LParenLoc,
1109                                 Stmt *First, Expr *Second,
1110                                 SourceLocation RParenLoc, Stmt *Body) {
1111  if (First) {
1112    QualType FirstType;
1113    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1114      if (!DS->isSingleDecl())
1115        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1116                         diag::err_toomany_element_decls));
1117
1118      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1119      FirstType = D->getType();
1120      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1121      // declare identifiers for objects having storage class 'auto' or
1122      // 'register'.
1123      if (!D->hasLocalStorage())
1124        return StmtError(Diag(D->getLocation(),
1125                              diag::err_non_variable_decl_in_for));
1126    } else {
1127      Expr *FirstE = cast<Expr>(First);
1128      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1129        return StmtError(Diag(First->getLocStart(),
1130                   diag::err_selector_element_not_lvalue)
1131          << First->getSourceRange());
1132
1133      FirstType = static_cast<Expr*>(First)->getType();
1134    }
1135    if (!FirstType->isDependentType() &&
1136        !FirstType->isObjCObjectPointerType() &&
1137        !FirstType->isBlockPointerType())
1138        Diag(ForLoc, diag::err_selector_element_type)
1139          << FirstType << First->getSourceRange();
1140  }
1141
1142  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1143                                                   ForLoc, RParenLoc));
1144}
1145
1146namespace {
1147
1148enum BeginEndFunction {
1149  BEF_begin,
1150  BEF_end
1151};
1152
1153/// Build a variable declaration for a for-range statement.
1154static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1155                                     QualType Type, const char *Name) {
1156  DeclContext *DC = SemaRef.CurContext;
1157  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1158  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1159  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1160                                  TInfo, SC_Auto, SC_None);
1161  Decl->setImplicit();
1162  return Decl;
1163}
1164
1165/// Finish building a variable declaration for a for-range statement.
1166/// \return true if an error occurs.
1167static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1168                                  SourceLocation Loc, int diag) {
1169  // Deduce the type for the iterator variable now rather than leaving it to
1170  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1171  TypeSourceInfo *InitTSI = 0;
1172  if (Init->getType()->isVoidType() ||
1173      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1174    SemaRef.Diag(Loc, diag) << Init->getType();
1175  if (!InitTSI) {
1176    Decl->setInvalidDecl();
1177    return true;
1178  }
1179  Decl->setTypeSourceInfo(InitTSI);
1180  Decl->setType(InitTSI->getType());
1181
1182  // In ARC, infer lifetime.
1183  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1184  // we're doing the equivalent of fast iteration.
1185  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1186      SemaRef.inferObjCARCLifetime(Decl))
1187    Decl->setInvalidDecl();
1188
1189  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1190                               /*TypeMayContainAuto=*/false);
1191  SemaRef.FinalizeDeclaration(Decl);
1192  SemaRef.CurContext->addHiddenDecl(Decl);
1193  return false;
1194}
1195
1196/// Produce a note indicating which begin/end function was implicitly called
1197/// by a C++0x for-range statement. This is often not obvious from the code,
1198/// nor from the diagnostics produced when analysing the implicit expressions
1199/// required in a for-range statement.
1200void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1201                                  BeginEndFunction BEF) {
1202  CallExpr *CE = dyn_cast<CallExpr>(E);
1203  if (!CE)
1204    return;
1205  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1206  if (!D)
1207    return;
1208  SourceLocation Loc = D->getLocation();
1209
1210  std::string Description;
1211  bool IsTemplate = false;
1212  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1213    Description = SemaRef.getTemplateArgumentBindingsText(
1214      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1215    IsTemplate = true;
1216  }
1217
1218  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1219    << BEF << IsTemplate << Description << E->getType();
1220}
1221
1222/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1223/// given LookupResult is non-empty, it is assumed to describe a member which
1224/// will be invoked. Otherwise, the function will be found via argument
1225/// dependent lookup.
1226static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1227                                            SourceLocation Loc,
1228                                            VarDecl *Decl,
1229                                            BeginEndFunction BEF,
1230                                            const DeclarationNameInfo &NameInfo,
1231                                            LookupResult &MemberLookup,
1232                                            Expr *Range) {
1233  ExprResult CallExpr;
1234  if (!MemberLookup.empty()) {
1235    ExprResult MemberRef =
1236      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1237                                       /*IsPtr=*/false, CXXScopeSpec(),
1238                                       /*Qualifier=*/0, MemberLookup,
1239                                       /*TemplateArgs=*/0);
1240    if (MemberRef.isInvalid())
1241      return ExprError();
1242    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1243                                     Loc, 0);
1244    if (CallExpr.isInvalid())
1245      return ExprError();
1246  } else {
1247    UnresolvedSet<0> FoundNames;
1248    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1249    // std is an associated namespace.
1250    UnresolvedLookupExpr *Fn =
1251      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1252                                   NestedNameSpecifierLoc(), NameInfo,
1253                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1254                                   FoundNames.begin(), FoundNames.end(),
1255                                   /*LookInStdNamespace=*/true);
1256    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1257                                               0);
1258    if (CallExpr.isInvalid()) {
1259      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1260        << Range->getType();
1261      return ExprError();
1262    }
1263  }
1264  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1265                            diag::err_for_range_iter_deduction_failure)) {
1266    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1267    return ExprError();
1268  }
1269  return CallExpr;
1270}
1271
1272}
1273
1274/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1275///
1276/// C++0x [stmt.ranged]:
1277///   A range-based for statement is equivalent to
1278///
1279///   {
1280///     auto && __range = range-init;
1281///     for ( auto __begin = begin-expr,
1282///           __end = end-expr;
1283///           __begin != __end;
1284///           ++__begin ) {
1285///       for-range-declaration = *__begin;
1286///       statement
1287///     }
1288///   }
1289///
1290/// The body of the loop is not available yet, since it cannot be analysed until
1291/// we have determined the type of the for-range-declaration.
1292StmtResult
1293Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1294                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1295                           SourceLocation RParenLoc) {
1296  if (!First || !Range)
1297    return StmtError();
1298
1299  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1300  assert(DS && "first part of for range not a decl stmt");
1301
1302  if (!DS->isSingleDecl()) {
1303    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1304    return StmtError();
1305  }
1306  if (DS->getSingleDecl()->isInvalidDecl())
1307    return StmtError();
1308
1309  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1310    return StmtError();
1311
1312  // Build  auto && __range = range-init
1313  SourceLocation RangeLoc = Range->getLocStart();
1314  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1315                                           Context.getAutoRRefDeductType(),
1316                                           "__range");
1317  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1318                            diag::err_for_range_deduction_failure))
1319    return StmtError();
1320
1321  // Claim the type doesn't contain auto: we've already done the checking.
1322  DeclGroupPtrTy RangeGroup =
1323    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1324  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1325  if (RangeDecl.isInvalid())
1326    return StmtError();
1327
1328  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1329                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1330                              RParenLoc);
1331}
1332
1333/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1334StmtResult
1335Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1336                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1337                           Expr *Inc, Stmt *LoopVarDecl,
1338                           SourceLocation RParenLoc) {
1339  Scope *S = getCurScope();
1340
1341  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1342  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1343  QualType RangeVarType = RangeVar->getType();
1344
1345  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1346  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1347
1348  StmtResult BeginEndDecl = BeginEnd;
1349  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1350
1351  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1352    SourceLocation RangeLoc = RangeVar->getLocation();
1353
1354    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1355
1356    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1357                                                VK_LValue, ColonLoc);
1358    if (BeginRangeRef.isInvalid())
1359      return StmtError();
1360
1361    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1362                                              VK_LValue, ColonLoc);
1363    if (EndRangeRef.isInvalid())
1364      return StmtError();
1365
1366    QualType AutoType = Context.getAutoDeductType();
1367    Expr *Range = RangeVar->getInit();
1368    if (!Range)
1369      return StmtError();
1370    QualType RangeType = Range->getType();
1371
1372    if (RequireCompleteType(RangeLoc, RangeType,
1373                            PDiag(diag::err_for_range_incomplete_type)))
1374      return StmtError();
1375
1376    // Build auto __begin = begin-expr, __end = end-expr.
1377    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1378                                             "__begin");
1379    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1380                                           "__end");
1381
1382    // Build begin-expr and end-expr and attach to __begin and __end variables.
1383    ExprResult BeginExpr, EndExpr;
1384    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1385      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1386      //   __range + __bound, respectively, where __bound is the array bound. If
1387      //   _RangeT is an array of unknown size or an array of incomplete type,
1388      //   the program is ill-formed;
1389
1390      // begin-expr is __range.
1391      BeginExpr = BeginRangeRef;
1392      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1393                                diag::err_for_range_iter_deduction_failure)) {
1394        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1395        return StmtError();
1396      }
1397
1398      // Find the array bound.
1399      ExprResult BoundExpr;
1400      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1401        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1402                                                 Context.getPointerDiffType(),
1403                                                 RangeLoc));
1404      else if (const VariableArrayType *VAT =
1405               dyn_cast<VariableArrayType>(UnqAT))
1406        BoundExpr = VAT->getSizeExpr();
1407      else {
1408        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1409        // UnqAT is not incomplete and Range is not type-dependent.
1410        llvm_unreachable("Unexpected array type in for-range");
1411      }
1412
1413      // end-expr is __range + __bound.
1414      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1415                           BoundExpr.get());
1416      if (EndExpr.isInvalid())
1417        return StmtError();
1418      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1419                                diag::err_for_range_iter_deduction_failure)) {
1420        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1421        return StmtError();
1422      }
1423    } else {
1424      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1425                                        ColonLoc);
1426      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1427                                      ColonLoc);
1428
1429      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1430      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1431
1432      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1433        // - if _RangeT is a class type, the unqualified-ids begin and end are
1434        //   looked up in the scope of class _RangeT as if by class member access
1435        //   lookup (3.4.5), and if either (or both) finds at least one
1436        //   declaration, begin-expr and end-expr are __range.begin() and
1437        //   __range.end(), respectively;
1438        LookupQualifiedName(BeginMemberLookup, D);
1439        LookupQualifiedName(EndMemberLookup, D);
1440
1441        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1442          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1443            << RangeType << BeginMemberLookup.empty();
1444          return StmtError();
1445        }
1446      } else {
1447        // - otherwise, begin-expr and end-expr are begin(__range) and
1448        //   end(__range), respectively, where begin and end are looked up with
1449        //   argument-dependent lookup (3.4.2). For the purposes of this name
1450        //   lookup, namespace std is an associated namespace.
1451      }
1452
1453      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1454                                            BEF_begin, BeginNameInfo,
1455                                            BeginMemberLookup,
1456                                            BeginRangeRef.get());
1457      if (BeginExpr.isInvalid())
1458        return StmtError();
1459
1460      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1461                                          BEF_end, EndNameInfo,
1462                                          EndMemberLookup, EndRangeRef.get());
1463      if (EndExpr.isInvalid())
1464        return StmtError();
1465    }
1466
1467    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1468    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1469    if (!Context.hasSameType(BeginType, EndType)) {
1470      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1471        << BeginType << EndType;
1472      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1473      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1474    }
1475
1476    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1477    // Claim the type doesn't contain auto: we've already done the checking.
1478    DeclGroupPtrTy BeginEndGroup =
1479      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1480    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1481
1482    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1483    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1484                                           VK_LValue, ColonLoc);
1485    if (BeginRef.isInvalid())
1486      return StmtError();
1487
1488    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1489                                         VK_LValue, ColonLoc);
1490    if (EndRef.isInvalid())
1491      return StmtError();
1492
1493    // Build and check __begin != __end expression.
1494    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1495                           BeginRef.get(), EndRef.get());
1496    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1497    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1498    if (NotEqExpr.isInvalid()) {
1499      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1500      if (!Context.hasSameType(BeginType, EndType))
1501        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1502      return StmtError();
1503    }
1504
1505    // Build and check ++__begin expression.
1506    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1507                                VK_LValue, ColonLoc);
1508    if (BeginRef.isInvalid())
1509      return StmtError();
1510
1511    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1512    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1513    if (IncrExpr.isInvalid()) {
1514      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1515      return StmtError();
1516    }
1517
1518    // Build and check *__begin  expression.
1519    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1520                                VK_LValue, ColonLoc);
1521    if (BeginRef.isInvalid())
1522      return StmtError();
1523
1524    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1525    if (DerefExpr.isInvalid()) {
1526      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1527      return StmtError();
1528    }
1529
1530    // Attach  *__begin  as initializer for VD.
1531    if (!LoopVar->isInvalidDecl()) {
1532      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1533                           /*TypeMayContainAuto=*/true);
1534      if (LoopVar->isInvalidDecl())
1535        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1536    }
1537  } else {
1538    // The range is implicitly used as a placeholder when it is dependent.
1539    RangeVar->setUsed();
1540  }
1541
1542  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1543                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1544                                             NotEqExpr.take(), IncrExpr.take(),
1545                                             LoopVarDS, /*Body=*/0, ForLoc,
1546                                             ColonLoc, RParenLoc));
1547}
1548
1549/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1550/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1551/// body cannot be performed until after the type of the range variable is
1552/// determined.
1553StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1554  if (!S || !B)
1555    return StmtError();
1556
1557  cast<CXXForRangeStmt>(S)->setBody(B);
1558  return S;
1559}
1560
1561StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1562                               SourceLocation LabelLoc,
1563                               LabelDecl *TheDecl) {
1564  getCurFunction()->setHasBranchIntoScope();
1565  TheDecl->setUsed();
1566  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1567}
1568
1569StmtResult
1570Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1571                            Expr *E) {
1572  // Convert operand to void*
1573  if (!E->isTypeDependent()) {
1574    QualType ETy = E->getType();
1575    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1576    ExprResult ExprRes = Owned(E);
1577    AssignConvertType ConvTy =
1578      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1579    if (ExprRes.isInvalid())
1580      return StmtError();
1581    E = ExprRes.take();
1582    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1583      return StmtError();
1584  }
1585
1586  getCurFunction()->setHasIndirectGoto();
1587
1588  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1589}
1590
1591StmtResult
1592Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1593  Scope *S = CurScope->getContinueParent();
1594  if (!S) {
1595    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1596    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1597  }
1598
1599  return Owned(new (Context) ContinueStmt(ContinueLoc));
1600}
1601
1602StmtResult
1603Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1604  Scope *S = CurScope->getBreakParent();
1605  if (!S) {
1606    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1607    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1608  }
1609
1610  return Owned(new (Context) BreakStmt(BreakLoc));
1611}
1612
1613/// \brief Determine whether the given expression is a candidate for
1614/// copy elision in either a return statement or a throw expression.
1615///
1616/// \param ReturnType If we're determining the copy elision candidate for
1617/// a return statement, this is the return type of the function. If we're
1618/// determining the copy elision candidate for a throw expression, this will
1619/// be a NULL type.
1620///
1621/// \param E The expression being returned from the function or block, or
1622/// being thrown.
1623///
1624/// \param AllowFunctionParameter Whether we allow function parameters to
1625/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1626/// we re-use this logic to determine whether we should try to move as part of
1627/// a return or throw (which does allow function parameters).
1628///
1629/// \returns The NRVO candidate variable, if the return statement may use the
1630/// NRVO, or NULL if there is no such candidate.
1631const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1632                                             Expr *E,
1633                                             bool AllowFunctionParameter) {
1634  QualType ExprType = E->getType();
1635  // - in a return statement in a function with ...
1636  // ... a class return type ...
1637  if (!ReturnType.isNull()) {
1638    if (!ReturnType->isRecordType())
1639      return 0;
1640    // ... the same cv-unqualified type as the function return type ...
1641    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1642      return 0;
1643  }
1644
1645  // ... the expression is the name of a non-volatile automatic object
1646  // (other than a function or catch-clause parameter)) ...
1647  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1648  if (!DR)
1649    return 0;
1650  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1651  if (!VD)
1652    return 0;
1653
1654  // ...object (other than a function or catch-clause parameter)...
1655  if (VD->getKind() != Decl::Var &&
1656      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
1657    return 0;
1658  if (VD->isExceptionVariable()) return 0;
1659
1660  // ...automatic...
1661  if (!VD->hasLocalStorage()) return 0;
1662
1663  // ...non-volatile...
1664  if (VD->getType().isVolatileQualified()) return 0;
1665  if (VD->getType()->isReferenceType()) return 0;
1666
1667  // __block variables can't be allocated in a way that permits NRVO.
1668  if (VD->hasAttr<BlocksAttr>()) return 0;
1669
1670  // Variables with higher required alignment than their type's ABI
1671  // alignment cannot use NRVO.
1672  if (VD->hasAttr<AlignedAttr>() &&
1673      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
1674    return 0;
1675
1676  return VD;
1677}
1678
1679/// \brief Perform the initialization of a potentially-movable value, which
1680/// is the result of return value.
1681///
1682/// This routine implements C++0x [class.copy]p33, which attempts to treat
1683/// returned lvalues as rvalues in certain cases (to prefer move construction),
1684/// then falls back to treating them as lvalues if that failed.
1685ExprResult
1686Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1687                                      const VarDecl *NRVOCandidate,
1688                                      QualType ResultType,
1689                                      Expr *Value,
1690                                      bool AllowNRVO) {
1691  // C++0x [class.copy]p33:
1692  //   When the criteria for elision of a copy operation are met or would
1693  //   be met save for the fact that the source object is a function
1694  //   parameter, and the object to be copied is designated by an lvalue,
1695  //   overload resolution to select the constructor for the copy is first
1696  //   performed as if the object were designated by an rvalue.
1697  ExprResult Res = ExprError();
1698  if (AllowNRVO &&
1699      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1700    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1701                              Value->getType(), CK_LValueToRValue,
1702                              Value, VK_XValue);
1703
1704    Expr *InitExpr = &AsRvalue;
1705    InitializationKind Kind
1706      = InitializationKind::CreateCopy(Value->getLocStart(),
1707                                       Value->getLocStart());
1708    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1709
1710    //   [...] If overload resolution fails, or if the type of the first
1711    //   parameter of the selected constructor is not an rvalue reference
1712    //   to the object's type (possibly cv-qualified), overload resolution
1713    //   is performed again, considering the object as an lvalue.
1714    if (Seq) {
1715      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1716           StepEnd = Seq.step_end();
1717           Step != StepEnd; ++Step) {
1718        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1719          continue;
1720
1721        CXXConstructorDecl *Constructor
1722        = cast<CXXConstructorDecl>(Step->Function.Function);
1723
1724        const RValueReferenceType *RRefType
1725          = Constructor->getParamDecl(0)->getType()
1726                                                 ->getAs<RValueReferenceType>();
1727
1728        // If we don't meet the criteria, break out now.
1729        if (!RRefType ||
1730            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1731                            Context.getTypeDeclType(Constructor->getParent())))
1732          break;
1733
1734        // Promote "AsRvalue" to the heap, since we now need this
1735        // expression node to persist.
1736        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1737                                         CK_LValueToRValue, Value, 0,
1738                                         VK_XValue);
1739
1740        // Complete type-checking the initialization of the return type
1741        // using the constructor we found.
1742        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1743      }
1744    }
1745  }
1746
1747  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1748  // above, or overload resolution failed. Either way, we need to try
1749  // (again) now with the return value expression as written.
1750  if (Res.isInvalid())
1751    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1752
1753  return Res;
1754}
1755
1756/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1757///
1758StmtResult
1759Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1760  // If this is the first return we've seen in the block, infer the type of
1761  // the block from it.
1762  BlockScopeInfo *CurBlock = getCurBlock();
1763  if (CurBlock->TheDecl->blockMissingReturnType()) {
1764    QualType BlockReturnT;
1765    if (RetValExp) {
1766      // Don't call UsualUnaryConversions(), since we don't want to do
1767      // integer promotions here.
1768      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1769      if (Result.isInvalid())
1770        return StmtError();
1771      RetValExp = Result.take();
1772
1773      if (!RetValExp->isTypeDependent()) {
1774        BlockReturnT = RetValExp->getType();
1775        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1776          // We have to remove a 'const' added to copied-in variable which was
1777          // part of the implementation spec. and not the actual qualifier for
1778          // the variable.
1779          if (CDRE->isConstQualAdded())
1780            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1781        }
1782      } else
1783        BlockReturnT = Context.DependentTy;
1784    } else
1785        BlockReturnT = Context.VoidTy;
1786    if (!CurBlock->ReturnType.isNull() && !CurBlock->ReturnType->isDependentType()
1787        && !BlockReturnT->isDependentType()
1788        // when block's return type is not specified, all return types
1789        // must strictly match.
1790        && !Context.hasSameType(BlockReturnT, CurBlock->ReturnType)) {
1791        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
1792            << BlockReturnT << CurBlock->ReturnType;
1793        return StmtError();
1794    }
1795    CurBlock->ReturnType = BlockReturnT;
1796  }
1797  QualType FnRetType = CurBlock->ReturnType;
1798
1799  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1800    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1801      << getCurFunctionOrMethodDecl()->getDeclName();
1802    return StmtError();
1803  }
1804
1805  // Otherwise, verify that this result type matches the previous one.  We are
1806  // pickier with blocks than for normal functions because we don't have GCC
1807  // compatibility to worry about here.
1808  const VarDecl *NRVOCandidate = 0;
1809  if (FnRetType->isDependentType()) {
1810    // Delay processing for now.  TODO: there are lots of dependent
1811    // types we can conclusively prove aren't void.
1812  } else if (FnRetType->isVoidType()) {
1813    if (RetValExp &&
1814        !(getLangOptions().CPlusPlus &&
1815          (RetValExp->isTypeDependent() ||
1816           RetValExp->getType()->isVoidType()))) {
1817      Diag(ReturnLoc, diag::err_return_block_has_expr);
1818      RetValExp = 0;
1819    }
1820  } else if (!RetValExp) {
1821    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1822  } else if (!RetValExp->isTypeDependent()) {
1823    // we have a non-void block with an expression, continue checking
1824
1825    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1826    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1827    // function return.
1828
1829    // In C++ the return statement is handled via a copy initialization.
1830    // the C version of which boils down to CheckSingleAssignmentConstraints.
1831    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1832    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1833                                                                   FnRetType,
1834                                                          NRVOCandidate != 0);
1835    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1836                                                     FnRetType, RetValExp);
1837    if (Res.isInvalid()) {
1838      // FIXME: Cleanup temporaries here, anyway?
1839      return StmtError();
1840    }
1841    RetValExp = Res.take();
1842    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1843  }
1844
1845  if (RetValExp) {
1846    CheckImplicitConversions(RetValExp, ReturnLoc);
1847    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1848  }
1849  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1850                                                NRVOCandidate);
1851
1852  // If we need to check for the named return value optimization, save the
1853  // return statement in our scope for later processing.
1854  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1855      !CurContext->isDependentContext())
1856    FunctionScopes.back()->Returns.push_back(Result);
1857
1858  return Owned(Result);
1859}
1860
1861StmtResult
1862Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1863  // Check for unexpanded parameter packs.
1864  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1865    return StmtError();
1866
1867  if (getCurBlock())
1868    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1869
1870  QualType FnRetType;
1871  QualType DeclaredRetType;
1872  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1873    FnRetType = FD->getResultType();
1874    DeclaredRetType = FnRetType;
1875    if (FD->hasAttr<NoReturnAttr>() ||
1876        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1877      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1878        << getCurFunctionOrMethodDecl()->getDeclName();
1879  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1880    DeclaredRetType = MD->getResultType();
1881    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1882      // In the implementation of a method with a related return type, the
1883      // type used to type-check the validity of return statements within the
1884      // method body is a pointer to the type of the class being implemented.
1885      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1886      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1887    } else {
1888      FnRetType = DeclaredRetType;
1889    }
1890  } else // If we don't have a function/method context, bail.
1891    return StmtError();
1892
1893  ReturnStmt *Result = 0;
1894  if (FnRetType->isVoidType()) {
1895    if (RetValExp) {
1896      if (!RetValExp->isTypeDependent()) {
1897        // C99 6.8.6.4p1 (ext_ since GCC warns)
1898        unsigned D = diag::ext_return_has_expr;
1899        if (RetValExp->getType()->isVoidType())
1900          D = diag::ext_return_has_void_expr;
1901        else {
1902          ExprResult Result = Owned(RetValExp);
1903          Result = IgnoredValueConversions(Result.take());
1904          if (Result.isInvalid())
1905            return StmtError();
1906          RetValExp = Result.take();
1907          RetValExp = ImpCastExprToType(RetValExp,
1908                                        Context.VoidTy, CK_ToVoid).take();
1909        }
1910
1911        // return (some void expression); is legal in C++.
1912        if (D != diag::ext_return_has_void_expr ||
1913            !getLangOptions().CPlusPlus) {
1914          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1915
1916          int FunctionKind = 0;
1917          if (isa<ObjCMethodDecl>(CurDecl))
1918            FunctionKind = 1;
1919          else if (isa<CXXConstructorDecl>(CurDecl))
1920            FunctionKind = 2;
1921          else if (isa<CXXDestructorDecl>(CurDecl))
1922            FunctionKind = 3;
1923
1924          Diag(ReturnLoc, D)
1925            << CurDecl->getDeclName() << FunctionKind
1926            << RetValExp->getSourceRange();
1927        }
1928      }
1929
1930      CheckImplicitConversions(RetValExp, ReturnLoc);
1931      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1932    }
1933
1934    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1935  } else if (!RetValExp && !FnRetType->isDependentType()) {
1936    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1937    // C99 6.8.6.4p1 (ext_ since GCC warns)
1938    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1939
1940    if (FunctionDecl *FD = getCurFunctionDecl())
1941      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1942    else
1943      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1944    Result = new (Context) ReturnStmt(ReturnLoc);
1945  } else {
1946    const VarDecl *NRVOCandidate = 0;
1947    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1948      // we have a non-void function with an expression, continue checking
1949
1950      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1951      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1952      // function return.
1953
1954      // In C++ the return statement is handled via a copy initialization,
1955      // the C version of which boils down to CheckSingleAssignmentConstraints.
1956      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1957      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1958                                                                     FnRetType,
1959                                                            NRVOCandidate != 0);
1960      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1961                                                       FnRetType, RetValExp);
1962      if (Res.isInvalid()) {
1963        // FIXME: Cleanup temporaries here, anyway?
1964        return StmtError();
1965      }
1966
1967      RetValExp = Res.takeAs<Expr>();
1968      if (RetValExp)
1969        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1970    }
1971
1972    if (RetValExp) {
1973      // If we type-checked an Objective-C method's return type based
1974      // on a related return type, we may need to adjust the return
1975      // type again. Do so now.
1976      if (DeclaredRetType != FnRetType) {
1977        ExprResult result = PerformImplicitConversion(RetValExp,
1978                                                      DeclaredRetType,
1979                                                      AA_Returning);
1980        if (result.isInvalid()) return StmtError();
1981        RetValExp = result.take();
1982      }
1983
1984      CheckImplicitConversions(RetValExp, ReturnLoc);
1985      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1986    }
1987    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1988  }
1989
1990  // If we need to check for the named return value optimization, save the
1991  // return statement in our scope for later processing.
1992  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1993      !CurContext->isDependentContext())
1994    FunctionScopes.back()->Returns.push_back(Result);
1995
1996  return Owned(Result);
1997}
1998
1999/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2000/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2001/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2002/// provide a strong guidance to not use it.
2003///
2004/// This method checks to see if the argument is an acceptable l-value and
2005/// returns false if it is a case we can handle.
2006static bool CheckAsmLValue(const Expr *E, Sema &S) {
2007  // Type dependent expressions will be checked during instantiation.
2008  if (E->isTypeDependent())
2009    return false;
2010
2011  if (E->isLValue())
2012    return false;  // Cool, this is an lvalue.
2013
2014  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2015  // are supposed to allow.
2016  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2017  if (E != E2 && E2->isLValue()) {
2018    if (!S.getLangOptions().HeinousExtensions)
2019      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2020        << E->getSourceRange();
2021    else
2022      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2023        << E->getSourceRange();
2024    // Accept, even if we emitted an error diagnostic.
2025    return false;
2026  }
2027
2028  // None of the above, just randomly invalid non-lvalue.
2029  return true;
2030}
2031
2032/// isOperandMentioned - Return true if the specified operand # is mentioned
2033/// anywhere in the decomposed asm string.
2034static bool isOperandMentioned(unsigned OpNo,
2035                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2036  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2037    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2038    if (!Piece.isOperand()) continue;
2039
2040    // If this is a reference to the input and if the input was the smaller
2041    // one, then we have to reject this asm.
2042    if (Piece.getOperandNo() == OpNo)
2043      return true;
2044  }
2045
2046  return false;
2047}
2048
2049StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2050                              bool IsVolatile, unsigned NumOutputs,
2051                              unsigned NumInputs, IdentifierInfo **Names,
2052                              MultiExprArg constraints, MultiExprArg exprs,
2053                              Expr *asmString, MultiExprArg clobbers,
2054                              SourceLocation RParenLoc, bool MSAsm) {
2055  unsigned NumClobbers = clobbers.size();
2056  StringLiteral **Constraints =
2057    reinterpret_cast<StringLiteral**>(constraints.get());
2058  Expr **Exprs = exprs.get();
2059  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2060  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2061
2062  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2063
2064  // The parser verifies that there is a string literal here.
2065  if (!AsmString->isAscii())
2066    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2067      << AsmString->getSourceRange());
2068
2069  for (unsigned i = 0; i != NumOutputs; i++) {
2070    StringLiteral *Literal = Constraints[i];
2071    if (!Literal->isAscii())
2072      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2073        << Literal->getSourceRange());
2074
2075    StringRef OutputName;
2076    if (Names[i])
2077      OutputName = Names[i]->getName();
2078
2079    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2080    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2081      return StmtError(Diag(Literal->getLocStart(),
2082                            diag::err_asm_invalid_output_constraint)
2083                       << Info.getConstraintStr());
2084
2085    // Check that the output exprs are valid lvalues.
2086    Expr *OutputExpr = Exprs[i];
2087    if (CheckAsmLValue(OutputExpr, *this)) {
2088      return StmtError(Diag(OutputExpr->getLocStart(),
2089                  diag::err_asm_invalid_lvalue_in_output)
2090        << OutputExpr->getSourceRange());
2091    }
2092
2093    OutputConstraintInfos.push_back(Info);
2094  }
2095
2096  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2097
2098  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2099    StringLiteral *Literal = Constraints[i];
2100    if (!Literal->isAscii())
2101      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2102        << Literal->getSourceRange());
2103
2104    StringRef InputName;
2105    if (Names[i])
2106      InputName = Names[i]->getName();
2107
2108    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2109    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2110                                                NumOutputs, Info)) {
2111      return StmtError(Diag(Literal->getLocStart(),
2112                            diag::err_asm_invalid_input_constraint)
2113                       << Info.getConstraintStr());
2114    }
2115
2116    Expr *InputExpr = Exprs[i];
2117
2118    // Only allow void types for memory constraints.
2119    if (Info.allowsMemory() && !Info.allowsRegister()) {
2120      if (CheckAsmLValue(InputExpr, *this))
2121        return StmtError(Diag(InputExpr->getLocStart(),
2122                              diag::err_asm_invalid_lvalue_in_input)
2123                         << Info.getConstraintStr()
2124                         << InputExpr->getSourceRange());
2125    }
2126
2127    if (Info.allowsRegister()) {
2128      if (InputExpr->getType()->isVoidType()) {
2129        return StmtError(Diag(InputExpr->getLocStart(),
2130                              diag::err_asm_invalid_type_in_input)
2131          << InputExpr->getType() << Info.getConstraintStr()
2132          << InputExpr->getSourceRange());
2133      }
2134    }
2135
2136    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2137    if (Result.isInvalid())
2138      return StmtError();
2139
2140    Exprs[i] = Result.take();
2141    InputConstraintInfos.push_back(Info);
2142  }
2143
2144  // Check that the clobbers are valid.
2145  for (unsigned i = 0; i != NumClobbers; i++) {
2146    StringLiteral *Literal = Clobbers[i];
2147    if (!Literal->isAscii())
2148      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2149        << Literal->getSourceRange());
2150
2151    StringRef Clobber = Literal->getString();
2152
2153    if (!Context.getTargetInfo().isValidClobber(Clobber))
2154      return StmtError(Diag(Literal->getLocStart(),
2155                  diag::err_asm_unknown_register_name) << Clobber);
2156  }
2157
2158  AsmStmt *NS =
2159    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2160                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2161                          AsmString, NumClobbers, Clobbers, RParenLoc);
2162  // Validate the asm string, ensuring it makes sense given the operands we
2163  // have.
2164  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2165  unsigned DiagOffs;
2166  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2167    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2168           << AsmString->getSourceRange();
2169    return StmtError();
2170  }
2171
2172  // Validate tied input operands for type mismatches.
2173  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2174    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2175
2176    // If this is a tied constraint, verify that the output and input have
2177    // either exactly the same type, or that they are int/ptr operands with the
2178    // same size (int/long, int*/long, are ok etc).
2179    if (!Info.hasTiedOperand()) continue;
2180
2181    unsigned TiedTo = Info.getTiedOperand();
2182    unsigned InputOpNo = i+NumOutputs;
2183    Expr *OutputExpr = Exprs[TiedTo];
2184    Expr *InputExpr = Exprs[InputOpNo];
2185
2186    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2187      continue;
2188
2189    QualType InTy = InputExpr->getType();
2190    QualType OutTy = OutputExpr->getType();
2191    if (Context.hasSameType(InTy, OutTy))
2192      continue;  // All types can be tied to themselves.
2193
2194    // Decide if the input and output are in the same domain (integer/ptr or
2195    // floating point.
2196    enum AsmDomain {
2197      AD_Int, AD_FP, AD_Other
2198    } InputDomain, OutputDomain;
2199
2200    if (InTy->isIntegerType() || InTy->isPointerType())
2201      InputDomain = AD_Int;
2202    else if (InTy->isRealFloatingType())
2203      InputDomain = AD_FP;
2204    else
2205      InputDomain = AD_Other;
2206
2207    if (OutTy->isIntegerType() || OutTy->isPointerType())
2208      OutputDomain = AD_Int;
2209    else if (OutTy->isRealFloatingType())
2210      OutputDomain = AD_FP;
2211    else
2212      OutputDomain = AD_Other;
2213
2214    // They are ok if they are the same size and in the same domain.  This
2215    // allows tying things like:
2216    //   void* to int*
2217    //   void* to int            if they are the same size.
2218    //   double to long double   if they are the same size.
2219    //
2220    uint64_t OutSize = Context.getTypeSize(OutTy);
2221    uint64_t InSize = Context.getTypeSize(InTy);
2222    if (OutSize == InSize && InputDomain == OutputDomain &&
2223        InputDomain != AD_Other)
2224      continue;
2225
2226    // If the smaller input/output operand is not mentioned in the asm string,
2227    // then we can promote the smaller one to a larger input and the asm string
2228    // won't notice.
2229    bool SmallerValueMentioned = false;
2230
2231    // If this is a reference to the input and if the input was the smaller
2232    // one, then we have to reject this asm.
2233    if (isOperandMentioned(InputOpNo, Pieces)) {
2234      // This is a use in the asm string of the smaller operand.  Since we
2235      // codegen this by promoting to a wider value, the asm will get printed
2236      // "wrong".
2237      SmallerValueMentioned |= InSize < OutSize;
2238    }
2239    if (isOperandMentioned(TiedTo, Pieces)) {
2240      // If this is a reference to the output, and if the output is the larger
2241      // value, then it's ok because we'll promote the input to the larger type.
2242      SmallerValueMentioned |= OutSize < InSize;
2243    }
2244
2245    // If the smaller value wasn't mentioned in the asm string, and if the
2246    // output was a register, just extend the shorter one to the size of the
2247    // larger one.
2248    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2249        OutputConstraintInfos[TiedTo].allowsRegister())
2250      continue;
2251
2252    // Either both of the operands were mentioned or the smaller one was
2253    // mentioned.  One more special case that we'll allow: if the tied input is
2254    // integer, unmentioned, and is a constant, then we'll allow truncating it
2255    // down to the size of the destination.
2256    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2257        !isOperandMentioned(InputOpNo, Pieces) &&
2258        InputExpr->isEvaluatable(Context)) {
2259      CastKind castKind =
2260        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2261      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2262      Exprs[InputOpNo] = InputExpr;
2263      NS->setInputExpr(i, InputExpr);
2264      continue;
2265    }
2266
2267    Diag(InputExpr->getLocStart(),
2268         diag::err_asm_tying_incompatible_types)
2269      << InTy << OutTy << OutputExpr->getSourceRange()
2270      << InputExpr->getSourceRange();
2271    return StmtError();
2272  }
2273
2274  return Owned(NS);
2275}
2276
2277StmtResult
2278Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2279                           SourceLocation RParen, Decl *Parm,
2280                           Stmt *Body) {
2281  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2282  if (Var && Var->isInvalidDecl())
2283    return StmtError();
2284
2285  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2286}
2287
2288StmtResult
2289Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2290  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2291}
2292
2293StmtResult
2294Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2295                         MultiStmtArg CatchStmts, Stmt *Finally) {
2296  if (!getLangOptions().ObjCExceptions)
2297    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2298
2299  getCurFunction()->setHasBranchProtectedScope();
2300  unsigned NumCatchStmts = CatchStmts.size();
2301  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2302                                     CatchStmts.release(),
2303                                     NumCatchStmts,
2304                                     Finally));
2305}
2306
2307StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2308                                                  Expr *Throw) {
2309  if (Throw) {
2310    Throw = MaybeCreateExprWithCleanups(Throw);
2311    ExprResult Result = DefaultLvalueConversion(Throw);
2312    if (Result.isInvalid())
2313      return StmtError();
2314
2315    Throw = Result.take();
2316    QualType ThrowType = Throw->getType();
2317    // Make sure the expression type is an ObjC pointer or "void *".
2318    if (!ThrowType->isDependentType() &&
2319        !ThrowType->isObjCObjectPointerType()) {
2320      const PointerType *PT = ThrowType->getAs<PointerType>();
2321      if (!PT || !PT->getPointeeType()->isVoidType())
2322        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2323                         << Throw->getType() << Throw->getSourceRange());
2324    }
2325  }
2326
2327  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2328}
2329
2330StmtResult
2331Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2332                           Scope *CurScope) {
2333  if (!getLangOptions().ObjCExceptions)
2334    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2335
2336  if (!Throw) {
2337    // @throw without an expression designates a rethrow (which much occur
2338    // in the context of an @catch clause).
2339    Scope *AtCatchParent = CurScope;
2340    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2341      AtCatchParent = AtCatchParent->getParent();
2342    if (!AtCatchParent)
2343      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2344  }
2345
2346  return BuildObjCAtThrowStmt(AtLoc, Throw);
2347}
2348
2349ExprResult
2350Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2351  ExprResult result = DefaultLvalueConversion(operand);
2352  if (result.isInvalid())
2353    return ExprError();
2354  operand = result.take();
2355
2356  // Make sure the expression type is an ObjC pointer or "void *".
2357  QualType type = operand->getType();
2358  if (!type->isDependentType() &&
2359      !type->isObjCObjectPointerType()) {
2360    const PointerType *pointerType = type->getAs<PointerType>();
2361    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2362      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2363               << type << operand->getSourceRange();
2364  }
2365
2366  // The operand to @synchronized is a full-expression.
2367  return MaybeCreateExprWithCleanups(operand);
2368}
2369
2370StmtResult
2371Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2372                                  Stmt *SyncBody) {
2373  // We can't jump into or indirect-jump out of a @synchronized block.
2374  getCurFunction()->setHasBranchProtectedScope();
2375  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2376}
2377
2378/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2379/// and creates a proper catch handler from them.
2380StmtResult
2381Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2382                         Stmt *HandlerBlock) {
2383  // There's nothing to test that ActOnExceptionDecl didn't already test.
2384  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2385                                          cast_or_null<VarDecl>(ExDecl),
2386                                          HandlerBlock));
2387}
2388
2389StmtResult
2390Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2391  getCurFunction()->setHasBranchProtectedScope();
2392  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2393}
2394
2395namespace {
2396
2397class TypeWithHandler {
2398  QualType t;
2399  CXXCatchStmt *stmt;
2400public:
2401  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2402  : t(type), stmt(statement) {}
2403
2404  // An arbitrary order is fine as long as it places identical
2405  // types next to each other.
2406  bool operator<(const TypeWithHandler &y) const {
2407    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2408      return true;
2409    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2410      return false;
2411    else
2412      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2413  }
2414
2415  bool operator==(const TypeWithHandler& other) const {
2416    return t == other.t;
2417  }
2418
2419  CXXCatchStmt *getCatchStmt() const { return stmt; }
2420  SourceLocation getTypeSpecStartLoc() const {
2421    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2422  }
2423};
2424
2425}
2426
2427/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2428/// handlers and creates a try statement from them.
2429StmtResult
2430Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2431                       MultiStmtArg RawHandlers) {
2432  // Don't report an error if 'try' is used in system headers.
2433  if (!getLangOptions().CXXExceptions &&
2434      !getSourceManager().isInSystemHeader(TryLoc))
2435      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2436
2437  unsigned NumHandlers = RawHandlers.size();
2438  assert(NumHandlers > 0 &&
2439         "The parser shouldn't call this if there are no handlers.");
2440  Stmt **Handlers = RawHandlers.get();
2441
2442  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2443
2444  for (unsigned i = 0; i < NumHandlers; ++i) {
2445    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2446    if (!Handler->getExceptionDecl()) {
2447      if (i < NumHandlers - 1)
2448        return StmtError(Diag(Handler->getLocStart(),
2449                              diag::err_early_catch_all));
2450
2451      continue;
2452    }
2453
2454    const QualType CaughtType = Handler->getCaughtType();
2455    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2456    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2457  }
2458
2459  // Detect handlers for the same type as an earlier one.
2460  if (NumHandlers > 1) {
2461    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2462
2463    TypeWithHandler prev = TypesWithHandlers[0];
2464    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2465      TypeWithHandler curr = TypesWithHandlers[i];
2466
2467      if (curr == prev) {
2468        Diag(curr.getTypeSpecStartLoc(),
2469             diag::warn_exception_caught_by_earlier_handler)
2470          << curr.getCatchStmt()->getCaughtType().getAsString();
2471        Diag(prev.getTypeSpecStartLoc(),
2472             diag::note_previous_exception_handler)
2473          << prev.getCatchStmt()->getCaughtType().getAsString();
2474      }
2475
2476      prev = curr;
2477    }
2478  }
2479
2480  getCurFunction()->setHasBranchProtectedScope();
2481
2482  // FIXME: We should detect handlers that cannot catch anything because an
2483  // earlier handler catches a superclass. Need to find a method that is not
2484  // quadratic for this.
2485  // Neither of these are explicitly forbidden, but every compiler detects them
2486  // and warns.
2487
2488  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2489                                  Handlers, NumHandlers));
2490}
2491
2492StmtResult
2493Sema::ActOnSEHTryBlock(bool IsCXXTry,
2494                       SourceLocation TryLoc,
2495                       Stmt *TryBlock,
2496                       Stmt *Handler) {
2497  assert(TryBlock && Handler);
2498
2499  getCurFunction()->setHasBranchProtectedScope();
2500
2501  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2502}
2503
2504StmtResult
2505Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2506                          Expr *FilterExpr,
2507                          Stmt *Block) {
2508  assert(FilterExpr && Block);
2509
2510  if(!FilterExpr->getType()->isIntegerType()) {
2511    return StmtError(Diag(FilterExpr->getExprLoc(),
2512                     diag::err_filter_expression_integral)
2513                     << FilterExpr->getType());
2514  }
2515
2516  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2517}
2518
2519StmtResult
2520Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2521                           Stmt *Block) {
2522  assert(Block);
2523  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2524}
2525
2526StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2527                                            bool IsIfExists,
2528                                            NestedNameSpecifierLoc QualifierLoc,
2529                                            DeclarationNameInfo NameInfo,
2530                                            Stmt *Nested)
2531{
2532  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2533                                             QualifierLoc, NameInfo,
2534                                             cast<CompoundStmt>(Nested));
2535}
2536
2537
2538StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2539                                            bool IsIfExists,
2540                                            CXXScopeSpec &SS,
2541                                            UnqualifiedId &Name,
2542                                            Stmt *Nested) {
2543  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2544                                    SS.getWithLocInContext(Context),
2545                                    GetNameFromUnqualifiedId(Name),
2546                                    Nested);
2547}
2548