SemaStmt.cpp revision 65ce04bef06696379682410f399f37b43996d824
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Basic/Diagnostic.h"
21using namespace clang;
22
23Sema::StmtResult Sema::ActOnExprStmt(ExprTy *expr) {
24  Expr *E = static_cast<Expr*>(expr);
25  assert(E && "ActOnExprStmt(): missing expression");
26
27  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
28  // void expression for its side effects.  Conversion to void allows any
29  // operand, even incomplete types.
30
31  // Same thing in for stmt first clause (when expr) and third clause.
32  return E;
33}
34
35
36Sema::StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
37  return new NullStmt(SemiLoc);
38}
39
40Sema::StmtResult Sema::ActOnDeclStmt(DeclTy *decl, SourceLocation StartLoc,
41                                     SourceLocation EndLoc) {
42  if (decl == 0)
43    return true;
44
45  ScopedDecl *SD = cast<ScopedDecl>(static_cast<Decl *>(decl));
46
47
48  // This is a temporary hack until we are always passing around
49  // DeclGroupRefs.
50  llvm::SmallVector<Decl*, 10> decls;
51  while (SD) {
52    ScopedDecl* d = SD;
53    SD = SD->getNextDeclarator();
54    d->setNextDeclarator(0);
55    decls.push_back(d);
56  }
57
58  assert (!decls.empty());
59
60  if (decls.size() == 1) {
61    DeclGroupOwningRef DG(*decls.begin());
62    return new DeclStmt(DG, StartLoc, EndLoc);
63  }
64  else {
65    DeclGroupOwningRef DG(DeclGroup::Create(Context, decls.size(), &decls[0]));
66    return new DeclStmt(DG, StartLoc, EndLoc);
67  }
68}
69
70Action::StmtResult
71Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
72                        StmtTy **elts, unsigned NumElts, bool isStmtExpr) {
73  Stmt **Elts = reinterpret_cast<Stmt**>(elts);
74  // If we're in C89 mode, check that we don't have any decls after stmts.  If
75  // so, emit an extension diagnostic.
76  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
77    // Note that __extension__ can be around a decl.
78    unsigned i = 0;
79    // Skip over all declarations.
80    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
81      /*empty*/;
82
83    // We found the end of the list or a statement.  Scan for another declstmt.
84    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
85      /*empty*/;
86
87    if (i != NumElts) {
88      ScopedDecl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
89      Diag(D->getLocation(), diag::ext_mixed_decls_code);
90    }
91  }
92  // Warn about unused expressions in statements.
93  for (unsigned i = 0; i != NumElts; ++i) {
94    Expr *E = dyn_cast<Expr>(Elts[i]);
95    if (!E) continue;
96
97    // Warn about expressions with unused results.
98    if (E->hasLocalSideEffect() || E->getType()->isVoidType())
99      continue;
100
101    // The last expr in a stmt expr really is used.
102    if (isStmtExpr && i == NumElts-1)
103      continue;
104
105    /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in
106    /// a context where the result is unused.  Emit a diagnostic to warn about
107    /// this.
108    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
109      Diag(BO->getOperatorLoc(), diag::warn_unused_expr)
110        << BO->getLHS()->getSourceRange() << BO->getRHS()->getSourceRange();
111    else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
112      Diag(UO->getOperatorLoc(), diag::warn_unused_expr)
113        << UO->getSubExpr()->getSourceRange();
114    else
115      Diag(E->getExprLoc(), diag::warn_unused_expr) << E->getSourceRange();
116  }
117
118  return new CompoundStmt(Elts, NumElts, L, R);
119}
120
121Action::StmtResult
122Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval,
123                    SourceLocation DotDotDotLoc, ExprTy *rhsval,
124                    SourceLocation ColonLoc, StmtTy *subStmt) {
125  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
126  Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval);
127  assert((LHSVal != 0) && "missing expression in case statement");
128
129  // C99 6.8.4.2p3: The expression shall be an integer constant.
130  // However, GCC allows any evaluatable integer expression.
131
132  if (VerifyIntegerConstantExpression(LHSVal))
133    return SubStmt;
134
135  // GCC extension: The expression shall be an integer constant.
136
137  if (RHSVal && VerifyIntegerConstantExpression(RHSVal))
138    RHSVal = 0;  // Recover by just forgetting about it.
139
140  if (SwitchStack.empty()) {
141    Diag(CaseLoc, diag::err_case_not_in_switch);
142    return SubStmt;
143  }
144
145  CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
146  SwitchStack.back()->addSwitchCase(CS);
147  return CS;
148}
149
150Action::StmtResult
151Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
152                       StmtTy *subStmt, Scope *CurScope) {
153  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
154
155  if (SwitchStack.empty()) {
156    Diag(DefaultLoc, diag::err_default_not_in_switch);
157    return SubStmt;
158  }
159
160  DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt);
161  SwitchStack.back()->addSwitchCase(DS);
162
163  return DS;
164}
165
166Action::StmtResult
167Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
168                     SourceLocation ColonLoc, StmtTy *subStmt) {
169  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
170  // Look up the record for this label identifier.
171  LabelStmt *&LabelDecl = LabelMap[II];
172
173  // If not forward referenced or defined already, just create a new LabelStmt.
174  if (LabelDecl == 0)
175    return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt);
176
177  assert(LabelDecl->getID() == II && "Label mismatch!");
178
179  // Otherwise, this label was either forward reference or multiply defined.  If
180  // multiply defined, reject it now.
181  if (LabelDecl->getSubStmt()) {
182    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
183    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
184    return SubStmt;
185  }
186
187  // Otherwise, this label was forward declared, and we just found its real
188  // definition.  Fill in the forward definition and return it.
189  LabelDecl->setIdentLoc(IdentLoc);
190  LabelDecl->setSubStmt(SubStmt);
191  return LabelDecl;
192}
193
194Action::StmtResult
195Sema::ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
196                  StmtTy *ThenVal, SourceLocation ElseLoc,
197                  StmtTy *ElseVal) {
198  Expr *condExpr = (Expr *)CondVal;
199  Stmt *thenStmt = (Stmt *)ThenVal;
200
201  assert(condExpr && "ActOnIfStmt(): missing expression");
202
203  DefaultFunctionArrayConversion(condExpr);
204  QualType condType = condExpr->getType();
205
206  if (getLangOptions().CPlusPlus) {
207    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
208      return true;
209  } else if (!condType->isScalarType()) // C99 6.8.4.1p1
210    return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar)
211      << condType << condExpr->getSourceRange();
212
213  // Warn if the if block has a null body without an else value.
214  // this helps prevent bugs due to typos, such as
215  // if (condition);
216  //   do_stuff();
217  if (!ElseVal) {
218    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
219      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
220  }
221
222  return new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal);
223}
224
225Action::StmtResult
226Sema::ActOnStartOfSwitchStmt(ExprTy *cond) {
227  Expr *Cond = static_cast<Expr*>(cond);
228
229  if (getLangOptions().CPlusPlus) {
230    // C++ 6.4.2.p2:
231    // The condition shall be of integral type, enumeration type, or of a class
232    // type for which a single conversion function to integral or enumeration
233    // type exists (12.3). If the condition is of class type, the condition is
234    // converted by calling that conversion function, and the result of the
235    // conversion is used in place of the original condition for the remainder
236    // of this section. Integral promotions are performed.
237
238    QualType Ty = Cond->getType();
239
240    // FIXME: Handle class types.
241
242    // If the type is wrong a diagnostic will be emitted later at
243    // ActOnFinishSwitchStmt.
244    if (Ty->isIntegralType() || Ty->isEnumeralType()) {
245      // Integral promotions are performed.
246      // FIXME: Integral promotions for C++ are not complete.
247      UsualUnaryConversions(Cond);
248    }
249  } else {
250    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
251    UsualUnaryConversions(Cond);
252  }
253
254  SwitchStmt *SS = new SwitchStmt(Cond);
255  SwitchStack.push_back(SS);
256  return SS;
257}
258
259/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
260/// the specified width and sign.  If an overflow occurs, detect it and emit
261/// the specified diagnostic.
262void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
263                                              unsigned NewWidth, bool NewSign,
264                                              SourceLocation Loc,
265                                              unsigned DiagID) {
266  // Perform a conversion to the promoted condition type if needed.
267  if (NewWidth > Val.getBitWidth()) {
268    // If this is an extension, just do it.
269    llvm::APSInt OldVal(Val);
270    Val.extend(NewWidth);
271
272    // If the input was signed and negative and the output is unsigned,
273    // warn.
274    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
275      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
276
277    Val.setIsSigned(NewSign);
278  } else if (NewWidth < Val.getBitWidth()) {
279    // If this is a truncation, check for overflow.
280    llvm::APSInt ConvVal(Val);
281    ConvVal.trunc(NewWidth);
282    ConvVal.setIsSigned(NewSign);
283    ConvVal.extend(Val.getBitWidth());
284    ConvVal.setIsSigned(Val.isSigned());
285    if (ConvVal != Val)
286      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
287
288    // Regardless of whether a diagnostic was emitted, really do the
289    // truncation.
290    Val.trunc(NewWidth);
291    Val.setIsSigned(NewSign);
292  } else if (NewSign != Val.isSigned()) {
293    // Convert the sign to match the sign of the condition.  This can cause
294    // overflow as well: unsigned(INTMIN)
295    llvm::APSInt OldVal(Val);
296    Val.setIsSigned(NewSign);
297
298    if (Val.isNegative())  // Sign bit changes meaning.
299      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
300  }
301}
302
303namespace {
304  struct CaseCompareFunctor {
305    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
306                    const llvm::APSInt &RHS) {
307      return LHS.first < RHS;
308    }
309    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
310                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
311      return LHS.first < RHS.first;
312    }
313    bool operator()(const llvm::APSInt &LHS,
314                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
315      return LHS < RHS.first;
316    }
317  };
318}
319
320/// CmpCaseVals - Comparison predicate for sorting case values.
321///
322static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
323                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
324  if (lhs.first < rhs.first)
325    return true;
326
327  if (lhs.first == rhs.first &&
328      lhs.second->getCaseLoc().getRawEncoding()
329       < rhs.second->getCaseLoc().getRawEncoding())
330    return true;
331  return false;
332}
333
334Action::StmtResult
335Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch,
336                            ExprTy *Body) {
337  Stmt *BodyStmt = (Stmt*)Body;
338
339  SwitchStmt *SS = SwitchStack.back();
340  assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!");
341
342  SS->setBody(BodyStmt, SwitchLoc);
343  SwitchStack.pop_back();
344
345  Expr *CondExpr = SS->getCond();
346  QualType CondType = CondExpr->getType();
347
348  if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
349    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
350      << CondType << CondExpr->getSourceRange();
351    return true;
352  }
353
354  // Get the bitwidth of the switched-on value before promotions.  We must
355  // convert the integer case values to this width before comparison.
356  unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
357  bool CondIsSigned = CondType->isSignedIntegerType();
358
359  // Accumulate all of the case values in a vector so that we can sort them
360  // and detect duplicates.  This vector contains the APInt for the case after
361  // it has been converted to the condition type.
362  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
363  CaseValsTy CaseVals;
364
365  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
366  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
367
368  DefaultStmt *TheDefaultStmt = 0;
369
370  bool CaseListIsErroneous = false;
371
372  for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
373       SC = SC->getNextSwitchCase()) {
374
375    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
376      if (TheDefaultStmt) {
377        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
378        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
379
380        // FIXME: Remove the default statement from the switch block so that
381        // we'll return a valid AST.  This requires recursing down the
382        // AST and finding it, not something we are set up to do right now.  For
383        // now, just lop the entire switch stmt out of the AST.
384        CaseListIsErroneous = true;
385      }
386      TheDefaultStmt = DS;
387
388    } else {
389      CaseStmt *CS = cast<CaseStmt>(SC);
390
391      // We already verified that the expression has a i-c-e value (C99
392      // 6.8.4.2p3) - get that value now.
393      Expr *Lo = CS->getLHS();
394      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
395
396      // Convert the value to the same width/sign as the condition.
397      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
398                                         CS->getLHS()->getLocStart(),
399                                         diag::warn_case_value_overflow);
400
401      // If the LHS is not the same type as the condition, insert an implicit
402      // cast.
403      ImpCastExprToType(Lo, CondType);
404      CS->setLHS(Lo);
405
406      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
407      if (CS->getRHS())
408        CaseRanges.push_back(std::make_pair(LoVal, CS));
409      else
410        CaseVals.push_back(std::make_pair(LoVal, CS));
411    }
412  }
413
414  // Sort all the scalar case values so we can easily detect duplicates.
415  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
416
417  if (!CaseVals.empty()) {
418    for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
419      if (CaseVals[i].first == CaseVals[i+1].first) {
420        // If we have a duplicate, report it.
421        Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
422             diag::err_duplicate_case) << CaseVals[i].first.toString(10);
423        Diag(CaseVals[i].second->getLHS()->getLocStart(),
424             diag::note_duplicate_case_prev);
425        // FIXME: We really want to remove the bogus case stmt from the substmt,
426        // but we have no way to do this right now.
427        CaseListIsErroneous = true;
428      }
429    }
430  }
431
432  // Detect duplicate case ranges, which usually don't exist at all in the first
433  // place.
434  if (!CaseRanges.empty()) {
435    // Sort all the case ranges by their low value so we can easily detect
436    // overlaps between ranges.
437    std::stable_sort(CaseRanges.begin(), CaseRanges.end());
438
439    // Scan the ranges, computing the high values and removing empty ranges.
440    std::vector<llvm::APSInt> HiVals;
441    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
442      CaseStmt *CR = CaseRanges[i].second;
443      Expr *Hi = CR->getRHS();
444      llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
445
446      // Convert the value to the same width/sign as the condition.
447      ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
448                                         CR->getRHS()->getLocStart(),
449                                         diag::warn_case_value_overflow);
450
451      // If the LHS is not the same type as the condition, insert an implicit
452      // cast.
453      ImpCastExprToType(Hi, CondType);
454      CR->setRHS(Hi);
455
456      // If the low value is bigger than the high value, the case is empty.
457      if (CaseRanges[i].first > HiVal) {
458        Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
459          << SourceRange(CR->getLHS()->getLocStart(),
460                         CR->getRHS()->getLocEnd());
461        CaseRanges.erase(CaseRanges.begin()+i);
462        --i, --e;
463        continue;
464      }
465      HiVals.push_back(HiVal);
466    }
467
468    // Rescan the ranges, looking for overlap with singleton values and other
469    // ranges.  Since the range list is sorted, we only need to compare case
470    // ranges with their neighbors.
471    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
472      llvm::APSInt &CRLo = CaseRanges[i].first;
473      llvm::APSInt &CRHi = HiVals[i];
474      CaseStmt *CR = CaseRanges[i].second;
475
476      // Check to see whether the case range overlaps with any singleton cases.
477      CaseStmt *OverlapStmt = 0;
478      llvm::APSInt OverlapVal(32);
479
480      // Find the smallest value >= the lower bound.  If I is in the case range,
481      // then we have overlap.
482      CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
483                                                CaseVals.end(), CRLo,
484                                                CaseCompareFunctor());
485      if (I != CaseVals.end() && I->first < CRHi) {
486        OverlapVal  = I->first;   // Found overlap with scalar.
487        OverlapStmt = I->second;
488      }
489
490      // Find the smallest value bigger than the upper bound.
491      I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
492      if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
493        OverlapVal  = (I-1)->first;      // Found overlap with scalar.
494        OverlapStmt = (I-1)->second;
495      }
496
497      // Check to see if this case stmt overlaps with the subsequent case range.
498      if (i && CRLo <= HiVals[i-1]) {
499        OverlapVal  = HiVals[i-1];       // Found overlap with range.
500        OverlapStmt = CaseRanges[i-1].second;
501      }
502
503      if (OverlapStmt) {
504        // If we have a duplicate, report it.
505        Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
506          << OverlapVal.toString(10);
507        Diag(OverlapStmt->getLHS()->getLocStart(),
508             diag::note_duplicate_case_prev);
509        // FIXME: We really want to remove the bogus case stmt from the substmt,
510        // but we have no way to do this right now.
511        CaseListIsErroneous = true;
512      }
513    }
514  }
515
516  // FIXME: If the case list was broken is some way, we don't have a good system
517  // to patch it up.  Instead, just return the whole substmt as broken.
518  if (CaseListIsErroneous)
519    return true;
520
521  return SS;
522}
523
524Action::StmtResult
525Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) {
526  Expr *condExpr = (Expr *)Cond;
527  assert(condExpr && "ActOnWhileStmt(): missing expression");
528
529  DefaultFunctionArrayConversion(condExpr);
530  QualType condType = condExpr->getType();
531
532  if (getLangOptions().CPlusPlus) {
533    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
534      return true;
535  } else if (!condType->isScalarType()) // C99 6.8.5p2
536    return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar)
537      << condType << condExpr->getSourceRange();
538
539  return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc);
540}
541
542Action::StmtResult
543Sema::ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body,
544                  SourceLocation WhileLoc, ExprTy *Cond) {
545  Expr *condExpr = (Expr *)Cond;
546  assert(condExpr && "ActOnDoStmt(): missing expression");
547
548  DefaultFunctionArrayConversion(condExpr);
549  QualType condType = condExpr->getType();
550
551  if (getLangOptions().CPlusPlus) {
552    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
553      return true;
554  } else if (!condType->isScalarType()) // C99 6.8.5p2
555    return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar)
556      << condType << condExpr->getSourceRange();
557
558  return new DoStmt((Stmt*)Body, condExpr, DoLoc);
559}
560
561Action::StmtResult
562Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
563                   StmtTy *first, ExprTy *second, ExprTy *third,
564                   SourceLocation RParenLoc, StmtTy *body) {
565  Stmt *First  = static_cast<Stmt*>(first);
566  Expr *Second = static_cast<Expr*>(second);
567  Expr *Third  = static_cast<Expr*>(third);
568  Stmt *Body  = static_cast<Stmt*>(body);
569
570  if (!getLangOptions().CPlusPlus) {
571    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
572      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
573      // declare identifiers for objects having storage class 'auto' or
574      // 'register'.
575      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
576           DI!=DE; ++DI) {
577        VarDecl *VD = dyn_cast<VarDecl>(*DI);
578        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
579          VD = 0;
580        if (VD == 0)
581          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
582        // FIXME: mark decl erroneous!
583      }
584    }
585  }
586  if (Second) {
587    DefaultFunctionArrayConversion(Second);
588    QualType SecondType = Second->getType();
589
590    if (getLangOptions().CPlusPlus) {
591      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
592        return true;
593    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
594      return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar)
595        << SecondType << Second->getSourceRange();
596  }
597  return new ForStmt(First, Second, Third, Body, ForLoc);
598}
599
600Action::StmtResult
601Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
602                                 SourceLocation LParenLoc,
603                                 StmtTy *first, ExprTy *second,
604                                 SourceLocation RParenLoc, StmtTy *body) {
605  Stmt *First  = static_cast<Stmt*>(first);
606  Expr *Second = static_cast<Expr*>(second);
607  Stmt *Body  = static_cast<Stmt*>(body);
608  if (First) {
609    QualType FirstType;
610    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
611      if (!DS->hasSolitaryDecl())
612        return Diag((*DS->decl_begin())->getLocation(),
613                    diag::err_toomany_element_decls);
614
615      ScopedDecl *D = DS->getSolitaryDecl();
616      FirstType = cast<ValueDecl>(D)->getType();
617      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
618      // declare identifiers for objects having storage class 'auto' or
619      // 'register'.
620      VarDecl *VD = cast<VarDecl>(D);
621      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
622        return Diag(VD->getLocation(), diag::err_non_variable_decl_in_for);
623    } else {
624      Expr::isLvalueResult lval = cast<Expr>(First)->isLvalue(Context);
625
626      if (lval != Expr::LV_Valid)
627        return Diag(First->getLocStart(), diag::err_selector_element_not_lvalue)
628          << First->getSourceRange();
629
630      FirstType = static_cast<Expr*>(first)->getType();
631    }
632    if (!Context.isObjCObjectPointerType(FirstType))
633        Diag(ForLoc, diag::err_selector_element_type)
634          << FirstType << First->getSourceRange();
635  }
636  if (Second) {
637    DefaultFunctionArrayConversion(Second);
638    QualType SecondType = Second->getType();
639    if (!Context.isObjCObjectPointerType(SecondType))
640      Diag(ForLoc, diag::err_collection_expr_type)
641        << SecondType << Second->getSourceRange();
642  }
643  return new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc);
644}
645
646Action::StmtResult
647Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
648                    IdentifierInfo *LabelII) {
649  // If we are in a block, reject all gotos for now.
650  if (CurBlock)
651    return Diag(GotoLoc, diag::err_goto_in_block);
652
653  // Look up the record for this label identifier.
654  LabelStmt *&LabelDecl = LabelMap[LabelII];
655
656  // If we haven't seen this label yet, create a forward reference.
657  if (LabelDecl == 0)
658    LabelDecl = new LabelStmt(LabelLoc, LabelII, 0);
659
660  return new GotoStmt(LabelDecl, GotoLoc, LabelLoc);
661}
662
663Action::StmtResult
664Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
665                            ExprTy *DestExp) {
666  // FIXME: Verify that the operand is convertible to void*.
667
668  return new IndirectGotoStmt((Expr*)DestExp);
669}
670
671Action::StmtResult
672Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
673  Scope *S = CurScope->getContinueParent();
674  if (!S) {
675    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
676    Diag(ContinueLoc, diag::err_continue_not_in_loop);
677    return true;
678  }
679
680  return new ContinueStmt(ContinueLoc);
681}
682
683Action::StmtResult
684Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
685  Scope *S = CurScope->getBreakParent();
686  if (!S) {
687    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
688    Diag(BreakLoc, diag::err_break_not_in_loop_or_switch);
689    return true;
690  }
691
692  return new BreakStmt(BreakLoc);
693}
694
695/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
696///
697Action::StmtResult
698Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
699
700  // If this is the first return we've seen in the block, infer the type of
701  // the block from it.
702  if (CurBlock->ReturnType == 0) {
703    if (RetValExp) {
704      // Don't call UsualUnaryConversions(), since we don't want to do
705      // integer promotions here.
706      DefaultFunctionArrayConversion(RetValExp);
707      CurBlock->ReturnType = RetValExp->getType().getTypePtr();
708    } else
709      CurBlock->ReturnType = Context.VoidTy.getTypePtr();
710    return new ReturnStmt(ReturnLoc, RetValExp);
711  }
712
713  // Otherwise, verify that this result type matches the previous one.  We are
714  // pickier with blocks than for normal functions because we don't have GCC
715  // compatibility to worry about here.
716  if (CurBlock->ReturnType->isVoidType()) {
717    if (RetValExp) {
718      Diag(ReturnLoc, diag::err_return_block_has_expr);
719      delete RetValExp;
720      RetValExp = 0;
721    }
722    return new ReturnStmt(ReturnLoc, RetValExp);
723  }
724
725  if (!RetValExp) {
726    Diag(ReturnLoc, diag::err_block_return_missing_expr);
727    return true;
728  }
729
730  // we have a non-void block with an expression, continue checking
731  QualType RetValType = RetValExp->getType();
732
733  // For now, restrict multiple return statements in a block to have
734  // strict compatible types only.
735  QualType BlockQT = QualType(CurBlock->ReturnType, 0);
736  if (Context.getCanonicalType(BlockQT).getTypePtr()
737      != Context.getCanonicalType(RetValType).getTypePtr()) {
738    DiagnoseAssignmentResult(Incompatible, ReturnLoc, BlockQT,
739                             RetValType, RetValExp, "returning");
740    return true;
741  }
742
743  if (RetValExp) CheckReturnStackAddr(RetValExp, BlockQT, ReturnLoc);
744
745  return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
746}
747
748Action::StmtResult
749Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) {
750  Expr *RetValExp = static_cast<Expr *>(rex);
751  if (CurBlock)
752    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
753
754  QualType FnRetType;
755  if (FunctionDecl *FD = getCurFunctionDecl())
756    FnRetType = FD->getResultType();
757  else
758    FnRetType = getCurMethodDecl()->getResultType();
759
760  if (FnRetType->isVoidType()) {
761    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
762      unsigned D = diag::ext_return_has_expr;
763      if (RetValExp->getType()->isVoidType())
764        D = diag::ext_return_has_void_expr;
765      NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
766
767      Diag(ReturnLoc, D)
768        << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
769        << RetValExp->getSourceRange();
770    }
771    return new ReturnStmt(ReturnLoc, RetValExp);
772  }
773
774  if (!RetValExp) {
775    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
776    // C99 6.8.6.4p1 (ext_ since GCC warns)
777    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
778
779    if (FunctionDecl *FD = getCurFunctionDecl())
780      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
781    else
782      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
783    return new ReturnStmt(ReturnLoc, (Expr*)0);
784  }
785
786  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
787    // we have a non-void function with an expression, continue checking
788    QualType RetValType = RetValExp->getType();
789
790    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
791    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
792    // function return.
793
794    // In C++ the return statement is handled via a copy initialization.
795    // the C version of which boils down to
796    // CheckSingleAssignmentConstraints.
797    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
798      return true;
799
800    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
801  }
802
803  return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
804}
805
806Sema::StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
807                                    bool IsSimple,
808                                    bool IsVolatile,
809                                    unsigned NumOutputs,
810                                    unsigned NumInputs,
811                                    std::string *Names,
812                                    ExprTy **constraints,
813                                    ExprTy **exprs,
814                                    ExprTy *asmString,
815                                    unsigned NumClobbers,
816                                    ExprTy **clobbers,
817                                    SourceLocation RParenLoc) {
818  StringLiteral **Constraints = reinterpret_cast<StringLiteral**>(constraints);
819  Expr **Exprs = reinterpret_cast<Expr **>(exprs);
820  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString);
821  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers);
822
823  // The parser verifies that there is a string literal here.
824  if (AsmString->isWide())
825    // FIXME: We currently leak memory here.
826    return Diag(AsmString->getLocStart(), diag::err_asm_wide_character)
827      << AsmString->getSourceRange();
828
829
830  for (unsigned i = 0; i != NumOutputs; i++) {
831    StringLiteral *Literal = Constraints[i];
832    if (Literal->isWide())
833      // FIXME: We currently leak memory here.
834      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
835        << Literal->getSourceRange();
836
837    std::string OutputConstraint(Literal->getStrData(),
838                                 Literal->getByteLength());
839
840    TargetInfo::ConstraintInfo info;
841    if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info))
842      // FIXME: We currently leak memory here.
843      return Diag(Literal->getLocStart(),
844                  diag::err_asm_invalid_output_constraint) << OutputConstraint;
845
846    // Check that the output exprs are valid lvalues.
847    ParenExpr *OutputExpr = cast<ParenExpr>(Exprs[i]);
848    Expr::isLvalueResult Result = OutputExpr->isLvalue(Context);
849    if (Result != Expr::LV_Valid) {
850      // FIXME: We currently leak memory here.
851      return Diag(OutputExpr->getSubExpr()->getLocStart(),
852                  diag::err_asm_invalid_lvalue_in_output)
853        << OutputExpr->getSubExpr()->getSourceRange();
854    }
855  }
856
857  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
858    StringLiteral *Literal = Constraints[i];
859    if (Literal->isWide())
860      // FIXME: We currently leak memory here.
861      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
862        << Literal->getSourceRange();
863
864    std::string InputConstraint(Literal->getStrData(),
865                                Literal->getByteLength());
866
867    TargetInfo::ConstraintInfo info;
868    if (!Context.Target.validateInputConstraint(InputConstraint.c_str(),
869                                                NumOutputs, info)) {
870      // FIXME: We currently leak memory here.
871      return Diag(Literal->getLocStart(),
872                  diag::err_asm_invalid_input_constraint) << InputConstraint;
873    }
874
875    // Check that the input exprs aren't of type void.
876    ParenExpr *InputExpr = cast<ParenExpr>(Exprs[i]);
877    if (InputExpr->getType()->isVoidType()) {
878
879      // FIXME: We currently leak memory here.
880      return Diag(InputExpr->getSubExpr()->getLocStart(),
881                  diag::err_asm_invalid_type_in_input)
882        << InputExpr->getType() << InputConstraint
883        << InputExpr->getSubExpr()->getSourceRange();
884    }
885  }
886
887  // Check that the clobbers are valid.
888  for (unsigned i = 0; i != NumClobbers; i++) {
889    StringLiteral *Literal = Clobbers[i];
890    if (Literal->isWide())
891      // FIXME: We currently leak memory here.
892      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
893        << Literal->getSourceRange();
894
895    llvm::SmallString<16> Clobber(Literal->getStrData(),
896                                  Literal->getStrData() +
897                                  Literal->getByteLength());
898
899    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
900      // FIXME: We currently leak memory here.
901      return Diag(Literal->getLocStart(),
902                  diag::err_asm_unknown_register_name) << Clobber.c_str();
903  }
904
905  return new AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
906                     Names, Constraints, Exprs, AsmString, NumClobbers,
907                     Clobbers, RParenLoc);
908}
909
910Action::StmtResult
911Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
912                           SourceLocation RParen, StmtTy *Parm,
913                           StmtTy *Body, StmtTy *CatchList) {
914  ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen,
915    static_cast<Stmt*>(Parm), static_cast<Stmt*>(Body),
916    static_cast<Stmt*>(CatchList));
917  return CatchList ? CatchList : CS;
918}
919
920Action::StmtResult
921Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body) {
922  ObjCAtFinallyStmt *FS = new ObjCAtFinallyStmt(AtLoc,
923                                                static_cast<Stmt*>(Body));
924  return FS;
925}
926
927Action::StmtResult
928Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
929                         StmtTy *Try, StmtTy *Catch, StmtTy *Finally) {
930  ObjCAtTryStmt *TS = new ObjCAtTryStmt(AtLoc, static_cast<Stmt*>(Try),
931                                        static_cast<Stmt*>(Catch),
932                                        static_cast<Stmt*>(Finally));
933  return TS;
934}
935
936Action::StmtResult
937Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw) {
938  ObjCAtThrowStmt *TS = new ObjCAtThrowStmt(AtLoc, static_cast<Stmt*>(Throw));
939  return TS;
940}
941
942Action::StmtResult
943Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr,
944                                  StmtTy *SynchBody) {
945  ObjCAtSynchronizedStmt *SS = new ObjCAtSynchronizedStmt(AtLoc,
946    static_cast<Stmt*>(SynchExpr), static_cast<Stmt*>(SynchBody));
947  return SS;
948}
949