SemaStmt.cpp revision 864c041e118155c2b1ce0ba36942a3da5a4a055e
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, bool LeadingEmptyMacro) {
50  return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacro));
51}
52
53StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
54                               SourceLocation EndLoc) {
55  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
56
57  // If we have an invalid decl, just return an error.
58  if (DG.isNull()) return StmtError();
59
60  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
61}
62
63void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
64  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
65
66  // If we have an invalid decl, just return.
67  if (DG.isNull() || !DG.isSingleDecl()) return;
68  // suppress any potential 'unused variable' warning.
69  DG.getSingleDecl()->setUsed();
70}
71
72void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
73  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
74    return DiagnoseUnusedExprResult(Label->getSubStmt());
75
76  const Expr *E = dyn_cast_or_null<Expr>(S);
77  if (!E)
78    return;
79
80  SourceLocation Loc;
81  SourceRange R1, R2;
82  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
83    return;
84
85  // Okay, we have an unused result.  Depending on what the base expression is,
86  // we might want to make a more specific diagnostic.  Check for one of these
87  // cases now.
88  unsigned DiagID = diag::warn_unused_expr;
89  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
90    E = Temps->getSubExpr();
91  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
92    E = TempExpr->getSubExpr();
93
94  E = E->IgnoreParenImpCasts();
95  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
96    if (E->getType()->isVoidType())
97      return;
98
99    // If the callee has attribute pure, const, or warn_unused_result, warn with
100    // a more specific message to make it clear what is happening.
101    if (const Decl *FD = CE->getCalleeDecl()) {
102      if (FD->getAttr<WarnUnusedResultAttr>()) {
103        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
104        return;
105      }
106      if (FD->getAttr<PureAttr>()) {
107        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
108        return;
109      }
110      if (FD->getAttr<ConstAttr>()) {
111        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
112        return;
113      }
114    }
115  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
116    const ObjCMethodDecl *MD = ME->getMethodDecl();
117    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
118      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
119      return;
120    }
121  } else if (isa<ObjCPropertyRefExpr>(E)) {
122    DiagID = diag::warn_unused_property_expr;
123  } else if (const CXXFunctionalCastExpr *FC
124                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
125    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
126        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
127      return;
128  }
129  // Diagnose "(void*) blah" as a typo for "(void) blah".
130  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
131    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
132    QualType T = TI->getType();
133
134    // We really do want to use the non-canonical type here.
135    if (T == Context.VoidPtrTy) {
136      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
137
138      Diag(Loc, diag::warn_unused_voidptr)
139        << FixItHint::CreateRemoval(TL.getStarLoc());
140      return;
141    }
142  }
143
144  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
145}
146
147StmtResult
148Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
149                        MultiStmtArg elts, bool isStmtExpr) {
150  unsigned NumElts = elts.size();
151  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
152  // If we're in C89 mode, check that we don't have any decls after stmts.  If
153  // so, emit an extension diagnostic.
154  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
155    // Note that __extension__ can be around a decl.
156    unsigned i = 0;
157    // Skip over all declarations.
158    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
159      /*empty*/;
160
161    // We found the end of the list or a statement.  Scan for another declstmt.
162    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
163      /*empty*/;
164
165    if (i != NumElts) {
166      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
167      Diag(D->getLocation(), diag::ext_mixed_decls_code);
168    }
169  }
170  // Warn about unused expressions in statements.
171  for (unsigned i = 0; i != NumElts; ++i) {
172    // Ignore statements that are last in a statement expression.
173    if (isStmtExpr && i == NumElts - 1)
174      continue;
175
176    DiagnoseUnusedExprResult(Elts[i]);
177  }
178
179  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
180}
181
182StmtResult
183Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
184                    SourceLocation DotDotDotLoc, Expr *RHSVal,
185                    SourceLocation ColonLoc) {
186  assert((LHSVal != 0) && "missing expression in case statement");
187
188  // C99 6.8.4.2p3: The expression shall be an integer constant.
189  // However, GCC allows any evaluatable integer expression.
190  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
191      VerifyIntegerConstantExpression(LHSVal))
192    return StmtError();
193
194  // GCC extension: The expression shall be an integer constant.
195
196  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
197      VerifyIntegerConstantExpression(RHSVal)) {
198    RHSVal = 0;  // Recover by just forgetting about it.
199  }
200
201  if (getCurFunction()->SwitchStack.empty()) {
202    Diag(CaseLoc, diag::err_case_not_in_switch);
203    return StmtError();
204  }
205
206  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
207                                        ColonLoc);
208  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
209  return Owned(CS);
210}
211
212/// ActOnCaseStmtBody - This installs a statement as the body of a case.
213void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
214  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
215  CS->setSubStmt(SubStmt);
216}
217
218StmtResult
219Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
220                       Stmt *SubStmt, Scope *CurScope) {
221  if (getCurFunction()->SwitchStack.empty()) {
222    Diag(DefaultLoc, diag::err_default_not_in_switch);
223    return Owned(SubStmt);
224  }
225
226  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
227  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
228  return Owned(DS);
229}
230
231StmtResult
232Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
233                     SourceLocation ColonLoc, Stmt *SubStmt) {
234
235  // If the label was multiply defined, reject it now.
236  if (TheDecl->getStmt()) {
237    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
238    Diag(TheDecl->getLocation(), diag::note_previous_definition);
239    return Owned(SubStmt);
240  }
241
242  // Otherwise, things are good.  Fill in the declaration and return it.
243  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
244  TheDecl->setStmt(LS);
245  if (!TheDecl->isGnuLocal())
246    TheDecl->setLocation(IdentLoc);
247  return Owned(LS);
248}
249
250StmtResult
251Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
252                  Stmt *thenStmt, SourceLocation ElseLoc,
253                  Stmt *elseStmt) {
254  ExprResult CondResult(CondVal.release());
255
256  VarDecl *ConditionVar = 0;
257  if (CondVar) {
258    ConditionVar = cast<VarDecl>(CondVar);
259    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
260    if (CondResult.isInvalid())
261      return StmtError();
262  }
263  Expr *ConditionExpr = CondResult.takeAs<Expr>();
264  if (!ConditionExpr)
265    return StmtError();
266
267  DiagnoseUnusedExprResult(thenStmt);
268
269  // Warn if the if block has a null body without an else value.
270  // this helps prevent bugs due to typos, such as
271  // if (condition);
272  //   do_stuff();
273  //
274  if (!elseStmt) {
275    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
276      // But do not warn if the body is a macro that expands to nothing, e.g:
277      //
278      // #define CALL(x)
279      // if (condition)
280      //   CALL(0);
281      //
282      if (!stmt->hasLeadingEmptyMacro())
283        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
284  }
285
286  DiagnoseUnusedExprResult(elseStmt);
287
288  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
289                                    thenStmt, ElseLoc, elseStmt));
290}
291
292/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
293/// the specified width and sign.  If an overflow occurs, detect it and emit
294/// the specified diagnostic.
295void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
296                                              unsigned NewWidth, bool NewSign,
297                                              SourceLocation Loc,
298                                              unsigned DiagID) {
299  // Perform a conversion to the promoted condition type if needed.
300  if (NewWidth > Val.getBitWidth()) {
301    // If this is an extension, just do it.
302    Val = Val.extend(NewWidth);
303    Val.setIsSigned(NewSign);
304
305    // If the input was signed and negative and the output is
306    // unsigned, don't bother to warn: this is implementation-defined
307    // behavior.
308    // FIXME: Introduce a second, default-ignored warning for this case?
309  } else if (NewWidth < Val.getBitWidth()) {
310    // If this is a truncation, check for overflow.
311    llvm::APSInt ConvVal(Val);
312    ConvVal = ConvVal.trunc(NewWidth);
313    ConvVal.setIsSigned(NewSign);
314    ConvVal = ConvVal.extend(Val.getBitWidth());
315    ConvVal.setIsSigned(Val.isSigned());
316    if (ConvVal != Val)
317      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
318
319    // Regardless of whether a diagnostic was emitted, really do the
320    // truncation.
321    Val = Val.trunc(NewWidth);
322    Val.setIsSigned(NewSign);
323  } else if (NewSign != Val.isSigned()) {
324    // Convert the sign to match the sign of the condition.  This can cause
325    // overflow as well: unsigned(INTMIN)
326    // We don't diagnose this overflow, because it is implementation-defined
327    // behavior.
328    // FIXME: Introduce a second, default-ignored warning for this case?
329    llvm::APSInt OldVal(Val);
330    Val.setIsSigned(NewSign);
331  }
332}
333
334namespace {
335  struct CaseCompareFunctor {
336    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
337                    const llvm::APSInt &RHS) {
338      return LHS.first < RHS;
339    }
340    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
341                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
342      return LHS.first < RHS.first;
343    }
344    bool operator()(const llvm::APSInt &LHS,
345                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
346      return LHS < RHS.first;
347    }
348  };
349}
350
351/// CmpCaseVals - Comparison predicate for sorting case values.
352///
353static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
354                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
355  if (lhs.first < rhs.first)
356    return true;
357
358  if (lhs.first == rhs.first &&
359      lhs.second->getCaseLoc().getRawEncoding()
360       < rhs.second->getCaseLoc().getRawEncoding())
361    return true;
362  return false;
363}
364
365/// CmpEnumVals - Comparison predicate for sorting enumeration values.
366///
367static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
368                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
369{
370  return lhs.first < rhs.first;
371}
372
373/// EqEnumVals - Comparison preficate for uniqing enumeration values.
374///
375static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
376                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
377{
378  return lhs.first == rhs.first;
379}
380
381/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
382/// potentially integral-promoted expression @p expr.
383static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
384  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
385    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
386    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
387    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
388      return TypeBeforePromotion;
389    }
390  }
391  return expr->getType();
392}
393
394StmtResult
395Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
396                             Decl *CondVar) {
397  ExprResult CondResult;
398
399  VarDecl *ConditionVar = 0;
400  if (CondVar) {
401    ConditionVar = cast<VarDecl>(CondVar);
402    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
403    if (CondResult.isInvalid())
404      return StmtError();
405
406    Cond = CondResult.release();
407  }
408
409  if (!Cond)
410    return StmtError();
411
412  CondResult
413    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
414                          PDiag(diag::err_typecheck_statement_requires_integer),
415                                   PDiag(diag::err_switch_incomplete_class_type)
416                                     << Cond->getSourceRange(),
417                                   PDiag(diag::err_switch_explicit_conversion),
418                                         PDiag(diag::note_switch_conversion),
419                                   PDiag(diag::err_switch_multiple_conversions),
420                                         PDiag(diag::note_switch_conversion),
421                                         PDiag(0));
422  if (CondResult.isInvalid()) return StmtError();
423  Cond = CondResult.take();
424
425  if (!CondVar) {
426    CheckImplicitConversions(Cond, SwitchLoc);
427    CondResult = MaybeCreateExprWithCleanups(Cond);
428    if (CondResult.isInvalid())
429      return StmtError();
430    Cond = CondResult.take();
431  }
432
433  getCurFunction()->setHasBranchIntoScope();
434
435  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
436  getCurFunction()->SwitchStack.push_back(SS);
437  return Owned(SS);
438}
439
440static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
441  if (Val.getBitWidth() < BitWidth)
442    Val = Val.extend(BitWidth);
443  else if (Val.getBitWidth() > BitWidth)
444    Val = Val.trunc(BitWidth);
445  Val.setIsSigned(IsSigned);
446}
447
448StmtResult
449Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
450                            Stmt *BodyStmt) {
451  SwitchStmt *SS = cast<SwitchStmt>(Switch);
452  assert(SS == getCurFunction()->SwitchStack.back() &&
453         "switch stack missing push/pop!");
454
455  SS->setBody(BodyStmt, SwitchLoc);
456  getCurFunction()->SwitchStack.pop_back();
457
458  if (SS->getCond() == 0)
459    return StmtError();
460
461  Expr *CondExpr = SS->getCond();
462  Expr *CondExprBeforePromotion = CondExpr;
463  QualType CondTypeBeforePromotion =
464      GetTypeBeforeIntegralPromotion(CondExpr);
465
466  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
467  ExprResult CondResult = UsualUnaryConversions(CondExpr);
468  if (CondResult.isInvalid())
469    return StmtError();
470  CondExpr = CondResult.take();
471  QualType CondType = CondExpr->getType();
472  SS->setCond(CondExpr);
473
474  // C++ 6.4.2.p2:
475  // Integral promotions are performed (on the switch condition).
476  //
477  // A case value unrepresentable by the original switch condition
478  // type (before the promotion) doesn't make sense, even when it can
479  // be represented by the promoted type.  Therefore we need to find
480  // the pre-promotion type of the switch condition.
481  if (!CondExpr->isTypeDependent()) {
482    // We have already converted the expression to an integral or enumeration
483    // type, when we started the switch statement. If we don't have an
484    // appropriate type now, just return an error.
485    if (!CondType->isIntegralOrEnumerationType())
486      return StmtError();
487
488    if (CondExpr->isKnownToHaveBooleanValue()) {
489      // switch(bool_expr) {...} is often a programmer error, e.g.
490      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
491      // One can always use an if statement instead of switch(bool_expr).
492      Diag(SwitchLoc, diag::warn_bool_switch_condition)
493          << CondExpr->getSourceRange();
494    }
495  }
496
497  // Get the bitwidth of the switched-on value before promotions.  We must
498  // convert the integer case values to this width before comparison.
499  bool HasDependentValue
500    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
501  unsigned CondWidth
502    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
503  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
504
505  // Accumulate all of the case values in a vector so that we can sort them
506  // and detect duplicates.  This vector contains the APInt for the case after
507  // it has been converted to the condition type.
508  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
509  CaseValsTy CaseVals;
510
511  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
512  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
513  CaseRangesTy CaseRanges;
514
515  DefaultStmt *TheDefaultStmt = 0;
516
517  bool CaseListIsErroneous = false;
518
519  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
520       SC = SC->getNextSwitchCase()) {
521
522    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
523      if (TheDefaultStmt) {
524        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
525        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
526
527        // FIXME: Remove the default statement from the switch block so that
528        // we'll return a valid AST.  This requires recursing down the AST and
529        // finding it, not something we are set up to do right now.  For now,
530        // just lop the entire switch stmt out of the AST.
531        CaseListIsErroneous = true;
532      }
533      TheDefaultStmt = DS;
534
535    } else {
536      CaseStmt *CS = cast<CaseStmt>(SC);
537
538      // We already verified that the expression has a i-c-e value (C99
539      // 6.8.4.2p3) - get that value now.
540      Expr *Lo = CS->getLHS();
541
542      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
543        HasDependentValue = true;
544        break;
545      }
546
547      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
548
549      // Convert the value to the same width/sign as the condition.
550      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
551                                         Lo->getLocStart(),
552                                         diag::warn_case_value_overflow);
553
554      // If the LHS is not the same type as the condition, insert an implicit
555      // cast.
556      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
557      CS->setLHS(Lo);
558
559      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
560      if (CS->getRHS()) {
561        if (CS->getRHS()->isTypeDependent() ||
562            CS->getRHS()->isValueDependent()) {
563          HasDependentValue = true;
564          break;
565        }
566        CaseRanges.push_back(std::make_pair(LoVal, CS));
567      } else
568        CaseVals.push_back(std::make_pair(LoVal, CS));
569    }
570  }
571
572  if (!HasDependentValue) {
573    // If we don't have a default statement, check whether the
574    // condition is constant.
575    llvm::APSInt ConstantCondValue;
576    bool HasConstantCond = false;
577    bool ShouldCheckConstantCond = false;
578    if (!HasDependentValue && !TheDefaultStmt) {
579      Expr::EvalResult Result;
580      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
581      if (HasConstantCond) {
582        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
583        ConstantCondValue = Result.Val.getInt();
584        ShouldCheckConstantCond = true;
585
586        assert(ConstantCondValue.getBitWidth() == CondWidth &&
587               ConstantCondValue.isSigned() == CondIsSigned);
588      }
589    }
590
591    // Sort all the scalar case values so we can easily detect duplicates.
592    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
593
594    if (!CaseVals.empty()) {
595      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
596        if (ShouldCheckConstantCond &&
597            CaseVals[i].first == ConstantCondValue)
598          ShouldCheckConstantCond = false;
599
600        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
601          // If we have a duplicate, report it.
602          Diag(CaseVals[i].second->getLHS()->getLocStart(),
603               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
604          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
605               diag::note_duplicate_case_prev);
606          // FIXME: We really want to remove the bogus case stmt from the
607          // substmt, but we have no way to do this right now.
608          CaseListIsErroneous = true;
609        }
610      }
611    }
612
613    // Detect duplicate case ranges, which usually don't exist at all in
614    // the first place.
615    if (!CaseRanges.empty()) {
616      // Sort all the case ranges by their low value so we can easily detect
617      // overlaps between ranges.
618      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
619
620      // Scan the ranges, computing the high values and removing empty ranges.
621      std::vector<llvm::APSInt> HiVals;
622      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
623        llvm::APSInt &LoVal = CaseRanges[i].first;
624        CaseStmt *CR = CaseRanges[i].second;
625        Expr *Hi = CR->getRHS();
626        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
627
628        // Convert the value to the same width/sign as the condition.
629        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
630                                           Hi->getLocStart(),
631                                           diag::warn_case_value_overflow);
632
633        // If the LHS is not the same type as the condition, insert an implicit
634        // cast.
635        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
636        CR->setRHS(Hi);
637
638        // If the low value is bigger than the high value, the case is empty.
639        if (LoVal > HiVal) {
640          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
641            << SourceRange(CR->getLHS()->getLocStart(),
642                           Hi->getLocEnd());
643          CaseRanges.erase(CaseRanges.begin()+i);
644          --i, --e;
645          continue;
646        }
647
648        if (ShouldCheckConstantCond &&
649            LoVal <= ConstantCondValue &&
650            ConstantCondValue <= HiVal)
651          ShouldCheckConstantCond = false;
652
653        HiVals.push_back(HiVal);
654      }
655
656      // Rescan the ranges, looking for overlap with singleton values and other
657      // ranges.  Since the range list is sorted, we only need to compare case
658      // ranges with their neighbors.
659      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
660        llvm::APSInt &CRLo = CaseRanges[i].first;
661        llvm::APSInt &CRHi = HiVals[i];
662        CaseStmt *CR = CaseRanges[i].second;
663
664        // Check to see whether the case range overlaps with any
665        // singleton cases.
666        CaseStmt *OverlapStmt = 0;
667        llvm::APSInt OverlapVal(32);
668
669        // Find the smallest value >= the lower bound.  If I is in the
670        // case range, then we have overlap.
671        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
672                                                  CaseVals.end(), CRLo,
673                                                  CaseCompareFunctor());
674        if (I != CaseVals.end() && I->first < CRHi) {
675          OverlapVal  = I->first;   // Found overlap with scalar.
676          OverlapStmt = I->second;
677        }
678
679        // Find the smallest value bigger than the upper bound.
680        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
681        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
682          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
683          OverlapStmt = (I-1)->second;
684        }
685
686        // Check to see if this case stmt overlaps with the subsequent
687        // case range.
688        if (i && CRLo <= HiVals[i-1]) {
689          OverlapVal  = HiVals[i-1];       // Found overlap with range.
690          OverlapStmt = CaseRanges[i-1].second;
691        }
692
693        if (OverlapStmt) {
694          // If we have a duplicate, report it.
695          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
696            << OverlapVal.toString(10);
697          Diag(OverlapStmt->getLHS()->getLocStart(),
698               diag::note_duplicate_case_prev);
699          // FIXME: We really want to remove the bogus case stmt from the
700          // substmt, but we have no way to do this right now.
701          CaseListIsErroneous = true;
702        }
703      }
704    }
705
706    // Complain if we have a constant condition and we didn't find a match.
707    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
708      // TODO: it would be nice if we printed enums as enums, chars as
709      // chars, etc.
710      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
711        << ConstantCondValue.toString(10)
712        << CondExpr->getSourceRange();
713    }
714
715    // Check to see if switch is over an Enum and handles all of its
716    // values.  We only issue a warning if there is not 'default:', but
717    // we still do the analysis to preserve this information in the AST
718    // (which can be used by flow-based analyes).
719    //
720    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
721
722    // If switch has default case, then ignore it.
723    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
724      const EnumDecl *ED = ET->getDecl();
725      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
726      EnumValsTy EnumVals;
727
728      // Gather all enum values, set their type and sort them,
729      // allowing easier comparison with CaseVals.
730      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
731           EDI != ED->enumerator_end(); ++EDI) {
732        llvm::APSInt Val = EDI->getInitVal();
733        AdjustAPSInt(Val, CondWidth, CondIsSigned);
734        EnumVals.push_back(std::make_pair(Val, *EDI));
735      }
736      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
737      EnumValsTy::iterator EIend =
738        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
739
740      // See which case values aren't in enum.
741      // TODO: we might want to check whether case values are out of the
742      // enum even if we don't want to check whether all cases are handled.
743      if (!TheDefaultStmt) {
744        EnumValsTy::const_iterator EI = EnumVals.begin();
745        for (CaseValsTy::const_iterator CI = CaseVals.begin();
746             CI != CaseVals.end(); CI++) {
747          while (EI != EIend && EI->first < CI->first)
748            EI++;
749          if (EI == EIend || EI->first > CI->first)
750            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
751              << ED->getDeclName();
752        }
753        // See which of case ranges aren't in enum
754        EI = EnumVals.begin();
755        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
756             RI != CaseRanges.end() && EI != EIend; RI++) {
757          while (EI != EIend && EI->first < RI->first)
758            EI++;
759
760          if (EI == EIend || EI->first != RI->first) {
761            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
762              << ED->getDeclName();
763          }
764
765          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
766          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
767          while (EI != EIend && EI->first < Hi)
768            EI++;
769          if (EI == EIend || EI->first != Hi)
770            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
771              << ED->getDeclName();
772        }
773      }
774
775      // Check which enum vals aren't in switch
776      CaseValsTy::const_iterator CI = CaseVals.begin();
777      CaseRangesTy::const_iterator RI = CaseRanges.begin();
778      bool hasCasesNotInSwitch = false;
779
780      llvm::SmallVector<DeclarationName,8> UnhandledNames;
781
782      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
783        // Drop unneeded case values
784        llvm::APSInt CIVal;
785        while (CI != CaseVals.end() && CI->first < EI->first)
786          CI++;
787
788        if (CI != CaseVals.end() && CI->first == EI->first)
789          continue;
790
791        // Drop unneeded case ranges
792        for (; RI != CaseRanges.end(); RI++) {
793          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
794          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
795          if (EI->first <= Hi)
796            break;
797        }
798
799        if (RI == CaseRanges.end() || EI->first < RI->first) {
800          hasCasesNotInSwitch = true;
801          if (!TheDefaultStmt)
802            UnhandledNames.push_back(EI->second->getDeclName());
803        }
804      }
805
806      // Produce a nice diagnostic if multiple values aren't handled.
807      switch (UnhandledNames.size()) {
808      case 0: break;
809      case 1:
810        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
811          << UnhandledNames[0];
812        break;
813      case 2:
814        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
815          << UnhandledNames[0] << UnhandledNames[1];
816        break;
817      case 3:
818        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
819          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
820        break;
821      default:
822        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
823          << (unsigned)UnhandledNames.size()
824          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
825        break;
826      }
827
828      if (!hasCasesNotInSwitch)
829        SS->setAllEnumCasesCovered();
830    }
831  }
832
833  // FIXME: If the case list was broken is some way, we don't have a good system
834  // to patch it up.  Instead, just return the whole substmt as broken.
835  if (CaseListIsErroneous)
836    return StmtError();
837
838  return Owned(SS);
839}
840
841StmtResult
842Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
843                     Decl *CondVar, Stmt *Body) {
844  ExprResult CondResult(Cond.release());
845
846  VarDecl *ConditionVar = 0;
847  if (CondVar) {
848    ConditionVar = cast<VarDecl>(CondVar);
849    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
850    if (CondResult.isInvalid())
851      return StmtError();
852  }
853  Expr *ConditionExpr = CondResult.take();
854  if (!ConditionExpr)
855    return StmtError();
856
857  DiagnoseUnusedExprResult(Body);
858
859  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
860                                       Body, WhileLoc));
861}
862
863StmtResult
864Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
865                  SourceLocation WhileLoc, SourceLocation CondLParen,
866                  Expr *Cond, SourceLocation CondRParen) {
867  assert(Cond && "ActOnDoStmt(): missing expression");
868
869  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
870  if (CondResult.isInvalid() || CondResult.isInvalid())
871    return StmtError();
872  Cond = CondResult.take();
873
874  CheckImplicitConversions(Cond, DoLoc);
875  CondResult = MaybeCreateExprWithCleanups(Cond);
876  if (CondResult.isInvalid())
877    return StmtError();
878  Cond = CondResult.take();
879
880  DiagnoseUnusedExprResult(Body);
881
882  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
883}
884
885StmtResult
886Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
887                   Stmt *First, FullExprArg second, Decl *secondVar,
888                   FullExprArg third,
889                   SourceLocation RParenLoc, Stmt *Body) {
890  if (!getLangOptions().CPlusPlus) {
891    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
892      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
893      // declare identifiers for objects having storage class 'auto' or
894      // 'register'.
895      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
896           DI!=DE; ++DI) {
897        VarDecl *VD = dyn_cast<VarDecl>(*DI);
898        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
899          VD = 0;
900        if (VD == 0)
901          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
902        // FIXME: mark decl erroneous!
903      }
904    }
905  }
906
907  ExprResult SecondResult(second.release());
908  VarDecl *ConditionVar = 0;
909  if (secondVar) {
910    ConditionVar = cast<VarDecl>(secondVar);
911    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
912    if (SecondResult.isInvalid())
913      return StmtError();
914  }
915
916  Expr *Third  = third.release().takeAs<Expr>();
917
918  DiagnoseUnusedExprResult(First);
919  DiagnoseUnusedExprResult(Third);
920  DiagnoseUnusedExprResult(Body);
921
922  return Owned(new (Context) ForStmt(Context, First,
923                                     SecondResult.take(), ConditionVar,
924                                     Third, Body, ForLoc, LParenLoc,
925                                     RParenLoc));
926}
927
928/// In an Objective C collection iteration statement:
929///   for (x in y)
930/// x can be an arbitrary l-value expression.  Bind it up as a
931/// full-expression.
932StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
933  CheckImplicitConversions(E);
934  ExprResult Result = MaybeCreateExprWithCleanups(E);
935  if (Result.isInvalid()) return StmtError();
936  return Owned(static_cast<Stmt*>(Result.get()));
937}
938
939StmtResult
940Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
941                                 SourceLocation LParenLoc,
942                                 Stmt *First, Expr *Second,
943                                 SourceLocation RParenLoc, Stmt *Body) {
944  if (First) {
945    QualType FirstType;
946    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
947      if (!DS->isSingleDecl())
948        return StmtError(Diag((*DS->decl_begin())->getLocation(),
949                         diag::err_toomany_element_decls));
950
951      Decl *D = DS->getSingleDecl();
952      FirstType = cast<ValueDecl>(D)->getType();
953      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
954      // declare identifiers for objects having storage class 'auto' or
955      // 'register'.
956      VarDecl *VD = cast<VarDecl>(D);
957      if (VD->isLocalVarDecl() && !VD->hasLocalStorage())
958        return StmtError(Diag(VD->getLocation(),
959                              diag::err_non_variable_decl_in_for));
960    } else {
961      Expr *FirstE = cast<Expr>(First);
962      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
963        return StmtError(Diag(First->getLocStart(),
964                   diag::err_selector_element_not_lvalue)
965          << First->getSourceRange());
966
967      FirstType = static_cast<Expr*>(First)->getType();
968    }
969    if (!FirstType->isDependentType() &&
970        !FirstType->isObjCObjectPointerType() &&
971        !FirstType->isBlockPointerType())
972        Diag(ForLoc, diag::err_selector_element_type)
973          << FirstType << First->getSourceRange();
974  }
975  if (Second && !Second->isTypeDependent()) {
976    ExprResult Result = DefaultFunctionArrayLvalueConversion(Second);
977    if (Result.isInvalid())
978      return StmtError();
979    Second = Result.take();
980    QualType SecondType = Second->getType();
981    if (!SecondType->isObjCObjectPointerType())
982      Diag(ForLoc, diag::err_collection_expr_type)
983        << SecondType << Second->getSourceRange();
984    else if (const ObjCObjectPointerType *OPT =
985             SecondType->getAsObjCInterfacePointerType()) {
986      llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
987      IdentifierInfo* selIdent =
988        &Context.Idents.get("countByEnumeratingWithState");
989      KeyIdents.push_back(selIdent);
990      selIdent = &Context.Idents.get("objects");
991      KeyIdents.push_back(selIdent);
992      selIdent = &Context.Idents.get("count");
993      KeyIdents.push_back(selIdent);
994      Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
995      if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
996        if (!IDecl->isForwardDecl() &&
997            !IDecl->lookupInstanceMethod(CSelector) &&
998            !LookupMethodInQualifiedType(CSelector, OPT, true)) {
999          // Must further look into private implementation methods.
1000          if (!LookupPrivateInstanceMethod(CSelector, IDecl))
1001            Diag(ForLoc, diag::warn_collection_expr_type)
1002              << SecondType << CSelector << Second->getSourceRange();
1003        }
1004      }
1005    }
1006  }
1007  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1008                                                   ForLoc, RParenLoc));
1009}
1010
1011namespace {
1012
1013enum BeginEndFunction {
1014  BEF_begin,
1015  BEF_end
1016};
1017
1018/// Build a variable declaration for a for-range statement.
1019static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1020                                     QualType Type, const char *Name) {
1021  DeclContext *DC = SemaRef.CurContext;
1022  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1023  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1024  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1025                                  TInfo, SC_Auto, SC_None);
1026  Decl->setImplicit();
1027  return Decl;
1028}
1029
1030/// Finish building a variable declaration for a for-range statement.
1031/// \return true if an error occurs.
1032static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1033                                  SourceLocation Loc, int diag) {
1034  // Deduce the type for the iterator variable now rather than leaving it to
1035  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1036  TypeSourceInfo *InitTSI = 0;
1037  if (Init->getType()->isVoidType() ||
1038      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1039    SemaRef.Diag(Loc, diag) << Init->getType();
1040  if (!InitTSI) {
1041    Decl->setInvalidDecl();
1042    return true;
1043  }
1044  Decl->setTypeSourceInfo(InitTSI);
1045  Decl->setType(InitTSI->getType());
1046
1047  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1048                               /*TypeMayContainAuto=*/false);
1049  SemaRef.FinalizeDeclaration(Decl);
1050  SemaRef.CurContext->addHiddenDecl(Decl);
1051  return false;
1052}
1053
1054/// Produce a note indicating which begin/end function was implicitly called
1055/// by a C++0x for-range statement. This is often not obvious from the code,
1056/// nor from the diagnostics produced when analysing the implicit expressions
1057/// required in a for-range statement.
1058void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1059                                  BeginEndFunction BEF) {
1060  CallExpr *CE = dyn_cast<CallExpr>(E);
1061  if (!CE)
1062    return;
1063  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1064  if (!D)
1065    return;
1066  SourceLocation Loc = D->getLocation();
1067
1068  std::string Description;
1069  bool IsTemplate = false;
1070  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1071    Description = SemaRef.getTemplateArgumentBindingsText(
1072      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1073    IsTemplate = true;
1074  }
1075
1076  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1077    << BEF << IsTemplate << Description << E->getType();
1078}
1079
1080/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1081/// given LookupResult is non-empty, it is assumed to describe a member which
1082/// will be invoked. Otherwise, the function will be found via argument
1083/// dependent lookup.
1084static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1085                                            SourceLocation Loc,
1086                                            VarDecl *Decl,
1087                                            BeginEndFunction BEF,
1088                                            const DeclarationNameInfo &NameInfo,
1089                                            LookupResult &MemberLookup,
1090                                            Expr *Range) {
1091  ExprResult CallExpr;
1092  if (!MemberLookup.empty()) {
1093    ExprResult MemberRef =
1094      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1095                                       /*IsPtr=*/false, CXXScopeSpec(),
1096                                       /*Qualifier=*/0, MemberLookup,
1097                                       /*TemplateArgs=*/0);
1098    if (MemberRef.isInvalid())
1099      return ExprError();
1100    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1101                                     Loc, 0);
1102    if (CallExpr.isInvalid())
1103      return ExprError();
1104  } else {
1105    UnresolvedSet<0> FoundNames;
1106    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1107    // std is an associated namespace.
1108    UnresolvedLookupExpr *Fn =
1109      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1110                                   NestedNameSpecifierLoc(), NameInfo,
1111                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1112                                   FoundNames.begin(), FoundNames.end(),
1113                                   /*LookInStdNamespace=*/true);
1114    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1115                                               0);
1116    if (CallExpr.isInvalid()) {
1117      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1118        << Range->getType();
1119      return ExprError();
1120    }
1121  }
1122  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1123                            diag::err_for_range_iter_deduction_failure)) {
1124    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1125    return ExprError();
1126  }
1127  return CallExpr;
1128}
1129
1130}
1131
1132/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1133///
1134/// C++0x [stmt.ranged]:
1135///   A range-based for statement is equivalent to
1136///
1137///   {
1138///     auto && __range = range-init;
1139///     for ( auto __begin = begin-expr,
1140///           __end = end-expr;
1141///           __begin != __end;
1142///           ++__begin ) {
1143///       for-range-declaration = *__begin;
1144///       statement
1145///     }
1146///   }
1147///
1148/// The body of the loop is not available yet, since it cannot be analysed until
1149/// we have determined the type of the for-range-declaration.
1150StmtResult
1151Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1152                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1153                           SourceLocation RParenLoc) {
1154  if (!First || !Range)
1155    return StmtError();
1156
1157  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1158  assert(DS && "first part of for range not a decl stmt");
1159
1160  if (!DS->isSingleDecl()) {
1161    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1162    return StmtError();
1163  }
1164  if (DS->getSingleDecl()->isInvalidDecl())
1165    return StmtError();
1166
1167  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1168    return StmtError();
1169
1170  // Build  auto && __range = range-init
1171  SourceLocation RangeLoc = Range->getLocStart();
1172  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1173                                           Context.getAutoRRefDeductType(),
1174                                           "__range");
1175  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1176                            diag::err_for_range_deduction_failure))
1177    return StmtError();
1178
1179  // Claim the type doesn't contain auto: we've already done the checking.
1180  DeclGroupPtrTy RangeGroup =
1181    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1182  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1183  if (RangeDecl.isInvalid())
1184    return StmtError();
1185
1186  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1187                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1188                              RParenLoc);
1189}
1190
1191/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1192StmtResult
1193Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1194                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1195                           Expr *Inc, Stmt *LoopVarDecl,
1196                           SourceLocation RParenLoc) {
1197  Scope *S = getCurScope();
1198
1199  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1200  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1201  QualType RangeVarType = RangeVar->getType();
1202
1203  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1204  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1205
1206  StmtResult BeginEndDecl = BeginEnd;
1207  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1208
1209  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1210    SourceLocation RangeLoc = RangeVar->getLocation();
1211
1212    ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
1213                                           RangeVarType.getNonReferenceType(),
1214                                           VK_LValue, ColonLoc);
1215    if (RangeRef.isInvalid())
1216      return StmtError();
1217
1218    QualType AutoType = Context.getAutoDeductType();
1219    Expr *Range = RangeVar->getInit();
1220    if (!Range)
1221      return StmtError();
1222    QualType RangeType = Range->getType();
1223
1224    if (RequireCompleteType(RangeLoc, RangeType,
1225                            PDiag(diag::err_for_range_incomplete_type)))
1226      return StmtError();
1227
1228    // Build auto __begin = begin-expr, __end = end-expr.
1229    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1230                                             "__begin");
1231    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1232                                           "__end");
1233
1234    // Build begin-expr and end-expr and attach to __begin and __end variables.
1235    ExprResult BeginExpr, EndExpr;
1236    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1237      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1238      //   __range + __bound, respectively, where __bound is the array bound. If
1239      //   _RangeT is an array of unknown size or an array of incomplete type,
1240      //   the program is ill-formed;
1241
1242      // begin-expr is __range.
1243      BeginExpr = RangeRef;
1244      if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
1245                                diag::err_for_range_iter_deduction_failure)) {
1246        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1247        return StmtError();
1248      }
1249
1250      // Find the array bound.
1251      ExprResult BoundExpr;
1252      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1253        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1254                                                 Context.IntTy, RangeLoc));
1255      else if (const VariableArrayType *VAT =
1256               dyn_cast<VariableArrayType>(UnqAT))
1257        BoundExpr = VAT->getSizeExpr();
1258      else {
1259        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1260        // UnqAT is not incomplete and Range is not type-dependent.
1261        assert(0 && "Unexpected array type in for-range");
1262        return StmtError();
1263      }
1264
1265      // end-expr is __range + __bound.
1266      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
1267                           BoundExpr.get());
1268      if (EndExpr.isInvalid())
1269        return StmtError();
1270      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1271                                diag::err_for_range_iter_deduction_failure)) {
1272        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1273        return StmtError();
1274      }
1275    } else {
1276      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1277                                        ColonLoc);
1278      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1279                                      ColonLoc);
1280
1281      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1282      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1283
1284      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1285        // - if _RangeT is a class type, the unqualified-ids begin and end are
1286        //   looked up in the scope of class _RangeT as if by class member access
1287        //   lookup (3.4.5), and if either (or both) finds at least one
1288        //   declaration, begin-expr and end-expr are __range.begin() and
1289        //   __range.end(), respectively;
1290        LookupQualifiedName(BeginMemberLookup, D);
1291        LookupQualifiedName(EndMemberLookup, D);
1292
1293        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1294          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1295            << RangeType << BeginMemberLookup.empty();
1296          return StmtError();
1297        }
1298      } else {
1299        // - otherwise, begin-expr and end-expr are begin(__range) and
1300        //   end(__range), respectively, where begin and end are looked up with
1301        //   argument-dependent lookup (3.4.2). For the purposes of this name
1302        //   lookup, namespace std is an associated namespace.
1303      }
1304
1305      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1306                                            BEF_begin, BeginNameInfo,
1307                                            BeginMemberLookup, RangeRef.get());
1308      if (BeginExpr.isInvalid())
1309        return StmtError();
1310
1311      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1312                                          BEF_end, EndNameInfo,
1313                                          EndMemberLookup, RangeRef.get());
1314      if (EndExpr.isInvalid())
1315        return StmtError();
1316    }
1317
1318    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1319    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1320    if (!Context.hasSameType(BeginType, EndType)) {
1321      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1322        << BeginType << EndType;
1323      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1324      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1325    }
1326
1327    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1328    // Claim the type doesn't contain auto: we've already done the checking.
1329    DeclGroupPtrTy BeginEndGroup =
1330      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1331    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1332
1333    ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
1334                                           BeginType.getNonReferenceType(),
1335                                           VK_LValue, ColonLoc);
1336    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1337                                         VK_LValue, ColonLoc);
1338
1339    // Build and check __begin != __end expression.
1340    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1341                           BeginRef.get(), EndRef.get());
1342    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1343    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1344    if (NotEqExpr.isInvalid()) {
1345      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1346      if (!Context.hasSameType(BeginType, EndType))
1347        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1348      return StmtError();
1349    }
1350
1351    // Build and check ++__begin expression.
1352    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1353    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1354    if (IncrExpr.isInvalid()) {
1355      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1356      return StmtError();
1357    }
1358
1359    // Build and check *__begin  expression.
1360    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1361    if (DerefExpr.isInvalid()) {
1362      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1363      return StmtError();
1364    }
1365
1366    // Attach  *__begin  as initializer for VD.
1367    if (!LoopVar->isInvalidDecl()) {
1368      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1369                           /*TypeMayContainAuto=*/true);
1370      if (LoopVar->isInvalidDecl())
1371        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1372    }
1373  }
1374
1375  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1376                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1377                                             NotEqExpr.take(), IncrExpr.take(),
1378                                             LoopVarDS, /*Body=*/0, ForLoc,
1379                                             ColonLoc, RParenLoc));
1380}
1381
1382/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1383/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1384/// body cannot be performed until after the type of the range variable is
1385/// determined.
1386StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1387  if (!S || !B)
1388    return StmtError();
1389
1390  cast<CXXForRangeStmt>(S)->setBody(B);
1391  return S;
1392}
1393
1394StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1395                               SourceLocation LabelLoc,
1396                               LabelDecl *TheDecl) {
1397  getCurFunction()->setHasBranchIntoScope();
1398  TheDecl->setUsed();
1399  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1400}
1401
1402StmtResult
1403Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1404                            Expr *E) {
1405  // Convert operand to void*
1406  if (!E->isTypeDependent()) {
1407    QualType ETy = E->getType();
1408    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1409    ExprResult ExprRes = Owned(E);
1410    AssignConvertType ConvTy =
1411      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1412    if (ExprRes.isInvalid())
1413      return StmtError();
1414    E = ExprRes.take();
1415    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1416      return StmtError();
1417  }
1418
1419  getCurFunction()->setHasIndirectGoto();
1420
1421  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1422}
1423
1424StmtResult
1425Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1426  Scope *S = CurScope->getContinueParent();
1427  if (!S) {
1428    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1429    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1430  }
1431
1432  return Owned(new (Context) ContinueStmt(ContinueLoc));
1433}
1434
1435StmtResult
1436Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1437  Scope *S = CurScope->getBreakParent();
1438  if (!S) {
1439    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1440    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1441  }
1442
1443  return Owned(new (Context) BreakStmt(BreakLoc));
1444}
1445
1446/// \brief Determine whether the given expression is a candidate for
1447/// copy elision in either a return statement or a throw expression.
1448///
1449/// \param ReturnType If we're determining the copy elision candidate for
1450/// a return statement, this is the return type of the function. If we're
1451/// determining the copy elision candidate for a throw expression, this will
1452/// be a NULL type.
1453///
1454/// \param E The expression being returned from the function or block, or
1455/// being thrown.
1456///
1457/// \param AllowFunctionParameter
1458///
1459/// \returns The NRVO candidate variable, if the return statement may use the
1460/// NRVO, or NULL if there is no such candidate.
1461const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1462                                             Expr *E,
1463                                             bool AllowFunctionParameter) {
1464  QualType ExprType = E->getType();
1465  // - in a return statement in a function with ...
1466  // ... a class return type ...
1467  if (!ReturnType.isNull()) {
1468    if (!ReturnType->isRecordType())
1469      return 0;
1470    // ... the same cv-unqualified type as the function return type ...
1471    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1472      return 0;
1473  }
1474
1475  // ... the expression is the name of a non-volatile automatic object
1476  // (other than a function or catch-clause parameter)) ...
1477  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1478  if (!DR)
1479    return 0;
1480  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1481  if (!VD)
1482    return 0;
1483
1484  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1485      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1486      !VD->getType().isVolatileQualified() &&
1487      ((VD->getKind() == Decl::Var) ||
1488       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1489    return VD;
1490
1491  return 0;
1492}
1493
1494/// \brief Perform the initialization of a potentially-movable value, which
1495/// is the result of return value.
1496///
1497/// This routine implements C++0x [class.copy]p33, which attempts to treat
1498/// returned lvalues as rvalues in certain cases (to prefer move construction),
1499/// then falls back to treating them as lvalues if that failed.
1500ExprResult
1501Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1502                                      const VarDecl *NRVOCandidate,
1503                                      QualType ResultType,
1504                                      Expr *Value) {
1505  // C++0x [class.copy]p33:
1506  //   When the criteria for elision of a copy operation are met or would
1507  //   be met save for the fact that the source object is a function
1508  //   parameter, and the object to be copied is designated by an lvalue,
1509  //   overload resolution to select the constructor for the copy is first
1510  //   performed as if the object were designated by an rvalue.
1511  ExprResult Res = ExprError();
1512  if (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true)) {
1513    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1514                              Value->getType(), CK_LValueToRValue,
1515                              Value, VK_XValue);
1516
1517    Expr *InitExpr = &AsRvalue;
1518    InitializationKind Kind
1519      = InitializationKind::CreateCopy(Value->getLocStart(),
1520                                       Value->getLocStart());
1521    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1522
1523    //   [...] If overload resolution fails, or if the type of the first
1524    //   parameter of the selected constructor is not an rvalue reference
1525    //   to the object's type (possibly cv-qualified), overload resolution
1526    //   is performed again, considering the object as an lvalue.
1527    if (Seq.getKind() != InitializationSequence::FailedSequence) {
1528      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1529           StepEnd = Seq.step_end();
1530           Step != StepEnd; ++Step) {
1531        if (Step->Kind
1532            != InitializationSequence::SK_ConstructorInitialization)
1533          continue;
1534
1535        CXXConstructorDecl *Constructor
1536        = cast<CXXConstructorDecl>(Step->Function.Function);
1537
1538        const RValueReferenceType *RRefType
1539          = Constructor->getParamDecl(0)->getType()
1540                                                 ->getAs<RValueReferenceType>();
1541
1542        // If we don't meet the criteria, break out now.
1543        if (!RRefType ||
1544            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1545                            Context.getTypeDeclType(Constructor->getParent())))
1546          break;
1547
1548        // Promote "AsRvalue" to the heap, since we now need this
1549        // expression node to persist.
1550        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1551                                         CK_LValueToRValue, Value, 0,
1552                                         VK_XValue);
1553
1554        // Complete type-checking the initialization of the return type
1555        // using the constructor we found.
1556        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1557      }
1558    }
1559  }
1560
1561  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1562  // above, or overload resolution failed. Either way, we need to try
1563  // (again) now with the return value expression as written.
1564  if (Res.isInvalid())
1565    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1566
1567  return Res;
1568}
1569
1570/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1571///
1572StmtResult
1573Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1574  // If this is the first return we've seen in the block, infer the type of
1575  // the block from it.
1576  BlockScopeInfo *CurBlock = getCurBlock();
1577  if (CurBlock->ReturnType.isNull()) {
1578    if (RetValExp) {
1579      // Don't call UsualUnaryConversions(), since we don't want to do
1580      // integer promotions here.
1581      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1582      if (Result.isInvalid())
1583        return StmtError();
1584      RetValExp = Result.take();
1585      CurBlock->ReturnType = RetValExp->getType();
1586      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1587        // We have to remove a 'const' added to copied-in variable which was
1588        // part of the implementation spec. and not the actual qualifier for
1589        // the variable.
1590        if (CDRE->isConstQualAdded())
1591          CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1592      }
1593    } else
1594      CurBlock->ReturnType = Context.VoidTy;
1595  }
1596  QualType FnRetType = CurBlock->ReturnType;
1597
1598  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1599    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1600      << getCurFunctionOrMethodDecl()->getDeclName();
1601    return StmtError();
1602  }
1603
1604  // Otherwise, verify that this result type matches the previous one.  We are
1605  // pickier with blocks than for normal functions because we don't have GCC
1606  // compatibility to worry about here.
1607  ReturnStmt *Result = 0;
1608  if (CurBlock->ReturnType->isVoidType()) {
1609    if (RetValExp) {
1610      Diag(ReturnLoc, diag::err_return_block_has_expr);
1611      RetValExp = 0;
1612    }
1613    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1614  } else if (!RetValExp) {
1615    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1616  } else {
1617    const VarDecl *NRVOCandidate = 0;
1618
1619    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1620      // we have a non-void block with an expression, continue checking
1621
1622      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1623      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1624      // function return.
1625
1626      // In C++ the return statement is handled via a copy initialization.
1627      // the C version of which boils down to CheckSingleAssignmentConstraints.
1628      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1629      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1630                                                                     FnRetType,
1631                                                           NRVOCandidate != 0);
1632      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1633                                                       FnRetType, RetValExp);
1634      if (Res.isInvalid()) {
1635        // FIXME: Cleanup temporaries here, anyway?
1636        return StmtError();
1637      }
1638
1639      if (RetValExp) {
1640        CheckImplicitConversions(RetValExp, ReturnLoc);
1641        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1642      }
1643
1644      RetValExp = Res.takeAs<Expr>();
1645      if (RetValExp)
1646        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1647    }
1648
1649    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1650  }
1651
1652  // If we need to check for the named return value optimization, save the
1653  // return statement in our scope for later processing.
1654  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1655      !CurContext->isDependentContext())
1656    FunctionScopes.back()->Returns.push_back(Result);
1657
1658  return Owned(Result);
1659}
1660
1661StmtResult
1662Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1663  if (getCurBlock())
1664    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1665
1666  QualType FnRetType;
1667  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1668    FnRetType = FD->getResultType();
1669    if (FD->hasAttr<NoReturnAttr>() ||
1670        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1671      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1672        << getCurFunctionOrMethodDecl()->getDeclName();
1673  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1674    FnRetType = MD->getResultType();
1675  else // If we don't have a function/method context, bail.
1676    return StmtError();
1677
1678  ReturnStmt *Result = 0;
1679  if (FnRetType->isVoidType()) {
1680    if (RetValExp && !RetValExp->isTypeDependent()) {
1681      // C99 6.8.6.4p1 (ext_ since GCC warns)
1682      unsigned D = diag::ext_return_has_expr;
1683      if (RetValExp->getType()->isVoidType())
1684        D = diag::ext_return_has_void_expr;
1685      else {
1686        ExprResult Result = Owned(RetValExp);
1687        Result = IgnoredValueConversions(Result.take());
1688        if (Result.isInvalid())
1689          return StmtError();
1690        RetValExp = Result.take();
1691        RetValExp = ImpCastExprToType(RetValExp, Context.VoidTy, CK_ToVoid).take();
1692      }
1693
1694      // return (some void expression); is legal in C++.
1695      if (D != diag::ext_return_has_void_expr ||
1696          !getLangOptions().CPlusPlus) {
1697        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1698        Diag(ReturnLoc, D)
1699          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1700          << RetValExp->getSourceRange();
1701      }
1702
1703      CheckImplicitConversions(RetValExp, ReturnLoc);
1704      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1705    }
1706
1707    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1708  } else if (!RetValExp && !FnRetType->isDependentType()) {
1709    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1710    // C99 6.8.6.4p1 (ext_ since GCC warns)
1711    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1712
1713    if (FunctionDecl *FD = getCurFunctionDecl())
1714      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1715    else
1716      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1717    Result = new (Context) ReturnStmt(ReturnLoc);
1718  } else {
1719    const VarDecl *NRVOCandidate = 0;
1720    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1721      // we have a non-void function with an expression, continue checking
1722
1723      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1724      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1725      // function return.
1726
1727      // In C++ the return statement is handled via a copy initialization.
1728      // the C version of which boils down to CheckSingleAssignmentConstraints.
1729      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1730      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1731                                                                     FnRetType,
1732                                                                     NRVOCandidate != 0);
1733      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1734                                                       FnRetType, RetValExp);
1735      if (Res.isInvalid()) {
1736        // FIXME: Cleanup temporaries here, anyway?
1737        return StmtError();
1738      }
1739
1740      RetValExp = Res.takeAs<Expr>();
1741      if (RetValExp)
1742        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1743    }
1744
1745    if (RetValExp) {
1746      CheckImplicitConversions(RetValExp, ReturnLoc);
1747      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1748    }
1749    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1750  }
1751
1752  // If we need to check for the named return value optimization, save the
1753  // return statement in our scope for later processing.
1754  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1755      !CurContext->isDependentContext())
1756    FunctionScopes.back()->Returns.push_back(Result);
1757
1758  return Owned(Result);
1759}
1760
1761/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1762/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1763/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1764/// provide a strong guidance to not use it.
1765///
1766/// This method checks to see if the argument is an acceptable l-value and
1767/// returns false if it is a case we can handle.
1768static bool CheckAsmLValue(const Expr *E, Sema &S) {
1769  // Type dependent expressions will be checked during instantiation.
1770  if (E->isTypeDependent())
1771    return false;
1772
1773  if (E->isLValue())
1774    return false;  // Cool, this is an lvalue.
1775
1776  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1777  // are supposed to allow.
1778  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1779  if (E != E2 && E2->isLValue()) {
1780    if (!S.getLangOptions().HeinousExtensions)
1781      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1782        << E->getSourceRange();
1783    else
1784      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1785        << E->getSourceRange();
1786    // Accept, even if we emitted an error diagnostic.
1787    return false;
1788  }
1789
1790  // None of the above, just randomly invalid non-lvalue.
1791  return true;
1792}
1793
1794/// isOperandMentioned - Return true if the specified operand # is mentioned
1795/// anywhere in the decomposed asm string.
1796static bool isOperandMentioned(unsigned OpNo,
1797                         llvm::ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
1798  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
1799    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
1800    if (!Piece.isOperand()) continue;
1801
1802    // If this is a reference to the input and if the input was the smaller
1803    // one, then we have to reject this asm.
1804    if (Piece.getOperandNo() == OpNo)
1805      return true;
1806  }
1807
1808  return false;
1809}
1810
1811StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1812                              bool IsVolatile, unsigned NumOutputs,
1813                              unsigned NumInputs, IdentifierInfo **Names,
1814                              MultiExprArg constraints, MultiExprArg exprs,
1815                              Expr *asmString, MultiExprArg clobbers,
1816                              SourceLocation RParenLoc, bool MSAsm) {
1817  unsigned NumClobbers = clobbers.size();
1818  StringLiteral **Constraints =
1819    reinterpret_cast<StringLiteral**>(constraints.get());
1820  Expr **Exprs = exprs.get();
1821  StringLiteral *AsmString = cast<StringLiteral>(asmString);
1822  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1823
1824  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1825
1826  // The parser verifies that there is a string literal here.
1827  if (AsmString->isWide())
1828    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1829      << AsmString->getSourceRange());
1830
1831  for (unsigned i = 0; i != NumOutputs; i++) {
1832    StringLiteral *Literal = Constraints[i];
1833    if (Literal->isWide())
1834      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1835        << Literal->getSourceRange());
1836
1837    llvm::StringRef OutputName;
1838    if (Names[i])
1839      OutputName = Names[i]->getName();
1840
1841    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1842    if (!Context.Target.validateOutputConstraint(Info))
1843      return StmtError(Diag(Literal->getLocStart(),
1844                            diag::err_asm_invalid_output_constraint)
1845                       << Info.getConstraintStr());
1846
1847    // Check that the output exprs are valid lvalues.
1848    Expr *OutputExpr = Exprs[i];
1849    if (CheckAsmLValue(OutputExpr, *this)) {
1850      return StmtError(Diag(OutputExpr->getLocStart(),
1851                  diag::err_asm_invalid_lvalue_in_output)
1852        << OutputExpr->getSourceRange());
1853    }
1854
1855    OutputConstraintInfos.push_back(Info);
1856  }
1857
1858  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1859
1860  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1861    StringLiteral *Literal = Constraints[i];
1862    if (Literal->isWide())
1863      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1864        << Literal->getSourceRange());
1865
1866    llvm::StringRef InputName;
1867    if (Names[i])
1868      InputName = Names[i]->getName();
1869
1870    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1871    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1872                                                NumOutputs, Info)) {
1873      return StmtError(Diag(Literal->getLocStart(),
1874                            diag::err_asm_invalid_input_constraint)
1875                       << Info.getConstraintStr());
1876    }
1877
1878    Expr *InputExpr = Exprs[i];
1879
1880    // Only allow void types for memory constraints.
1881    if (Info.allowsMemory() && !Info.allowsRegister()) {
1882      if (CheckAsmLValue(InputExpr, *this))
1883        return StmtError(Diag(InputExpr->getLocStart(),
1884                              diag::err_asm_invalid_lvalue_in_input)
1885                         << Info.getConstraintStr()
1886                         << InputExpr->getSourceRange());
1887    }
1888
1889    if (Info.allowsRegister()) {
1890      if (InputExpr->getType()->isVoidType()) {
1891        return StmtError(Diag(InputExpr->getLocStart(),
1892                              diag::err_asm_invalid_type_in_input)
1893          << InputExpr->getType() << Info.getConstraintStr()
1894          << InputExpr->getSourceRange());
1895      }
1896    }
1897
1898    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
1899    if (Result.isInvalid())
1900      return StmtError();
1901
1902    Exprs[i] = Result.take();
1903    InputConstraintInfos.push_back(Info);
1904  }
1905
1906  // Check that the clobbers are valid.
1907  for (unsigned i = 0; i != NumClobbers; i++) {
1908    StringLiteral *Literal = Clobbers[i];
1909    if (Literal->isWide())
1910      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1911        << Literal->getSourceRange());
1912
1913    llvm::StringRef Clobber = Literal->getString();
1914
1915    if (!Context.Target.isValidGCCRegisterName(Clobber))
1916      return StmtError(Diag(Literal->getLocStart(),
1917                  diag::err_asm_unknown_register_name) << Clobber);
1918  }
1919
1920  AsmStmt *NS =
1921    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1922                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1923                          AsmString, NumClobbers, Clobbers, RParenLoc);
1924  // Validate the asm string, ensuring it makes sense given the operands we
1925  // have.
1926  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1927  unsigned DiagOffs;
1928  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1929    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1930           << AsmString->getSourceRange();
1931    return StmtError();
1932  }
1933
1934  // Validate tied input operands for type mismatches.
1935  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1936    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1937
1938    // If this is a tied constraint, verify that the output and input have
1939    // either exactly the same type, or that they are int/ptr operands with the
1940    // same size (int/long, int*/long, are ok etc).
1941    if (!Info.hasTiedOperand()) continue;
1942
1943    unsigned TiedTo = Info.getTiedOperand();
1944    unsigned InputOpNo = i+NumOutputs;
1945    Expr *OutputExpr = Exprs[TiedTo];
1946    Expr *InputExpr = Exprs[InputOpNo];
1947    QualType InTy = InputExpr->getType();
1948    QualType OutTy = OutputExpr->getType();
1949    if (Context.hasSameType(InTy, OutTy))
1950      continue;  // All types can be tied to themselves.
1951
1952    // Decide if the input and output are in the same domain (integer/ptr or
1953    // floating point.
1954    enum AsmDomain {
1955      AD_Int, AD_FP, AD_Other
1956    } InputDomain, OutputDomain;
1957
1958    if (InTy->isIntegerType() || InTy->isPointerType())
1959      InputDomain = AD_Int;
1960    else if (InTy->isRealFloatingType())
1961      InputDomain = AD_FP;
1962    else
1963      InputDomain = AD_Other;
1964
1965    if (OutTy->isIntegerType() || OutTy->isPointerType())
1966      OutputDomain = AD_Int;
1967    else if (OutTy->isRealFloatingType())
1968      OutputDomain = AD_FP;
1969    else
1970      OutputDomain = AD_Other;
1971
1972    // They are ok if they are the same size and in the same domain.  This
1973    // allows tying things like:
1974    //   void* to int*
1975    //   void* to int            if they are the same size.
1976    //   double to long double   if they are the same size.
1977    //
1978    uint64_t OutSize = Context.getTypeSize(OutTy);
1979    uint64_t InSize = Context.getTypeSize(InTy);
1980    if (OutSize == InSize && InputDomain == OutputDomain &&
1981        InputDomain != AD_Other)
1982      continue;
1983
1984    // If the smaller input/output operand is not mentioned in the asm string,
1985    // then we can promote the smaller one to a larger input and the asm string
1986    // won't notice.
1987    bool SmallerValueMentioned = false;
1988
1989    // If this is a reference to the input and if the input was the smaller
1990    // one, then we have to reject this asm.
1991    if (isOperandMentioned(InputOpNo, Pieces)) {
1992      // This is a use in the asm string of the smaller operand.  Since we
1993      // codegen this by promoting to a wider value, the asm will get printed
1994      // "wrong".
1995      SmallerValueMentioned |= InSize < OutSize;
1996    }
1997    if (isOperandMentioned(TiedTo, Pieces)) {
1998      // If this is a reference to the output, and if the output is the larger
1999      // value, then it's ok because we'll promote the input to the larger type.
2000      SmallerValueMentioned |= OutSize < InSize;
2001    }
2002
2003    // If the smaller value wasn't mentioned in the asm string, and if the
2004    // output was a register, just extend the shorter one to the size of the
2005    // larger one.
2006    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2007        OutputConstraintInfos[TiedTo].allowsRegister())
2008      continue;
2009
2010    // Either both of the operands were mentioned or the smaller one was
2011    // mentioned.  One more special case that we'll allow: if the tied input is
2012    // integer, unmentioned, and is a constant, then we'll allow truncating it
2013    // down to the size of the destination.
2014    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2015        !isOperandMentioned(InputOpNo, Pieces) &&
2016        InputExpr->isEvaluatable(Context)) {
2017      InputExpr = ImpCastExprToType(InputExpr, OutTy, CK_IntegralCast).take();
2018      Exprs[InputOpNo] = InputExpr;
2019      NS->setInputExpr(i, InputExpr);
2020      continue;
2021    }
2022
2023    Diag(InputExpr->getLocStart(),
2024         diag::err_asm_tying_incompatible_types)
2025      << InTy << OutTy << OutputExpr->getSourceRange()
2026      << InputExpr->getSourceRange();
2027    return StmtError();
2028  }
2029
2030  return Owned(NS);
2031}
2032
2033StmtResult
2034Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2035                           SourceLocation RParen, Decl *Parm,
2036                           Stmt *Body) {
2037  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2038  if (Var && Var->isInvalidDecl())
2039    return StmtError();
2040
2041  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2042}
2043
2044StmtResult
2045Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2046  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2047}
2048
2049StmtResult
2050Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2051                         MultiStmtArg CatchStmts, Stmt *Finally) {
2052  if (!getLangOptions().ObjCExceptions)
2053    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2054
2055  getCurFunction()->setHasBranchProtectedScope();
2056  unsigned NumCatchStmts = CatchStmts.size();
2057  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2058                                     CatchStmts.release(),
2059                                     NumCatchStmts,
2060                                     Finally));
2061}
2062
2063StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2064                                                  Expr *Throw) {
2065  if (Throw) {
2066    ExprResult Result = DefaultLvalueConversion(Throw);
2067    if (Result.isInvalid())
2068      return StmtError();
2069
2070    Throw = Result.take();
2071    QualType ThrowType = Throw->getType();
2072    // Make sure the expression type is an ObjC pointer or "void *".
2073    if (!ThrowType->isDependentType() &&
2074        !ThrowType->isObjCObjectPointerType()) {
2075      const PointerType *PT = ThrowType->getAs<PointerType>();
2076      if (!PT || !PT->getPointeeType()->isVoidType())
2077        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2078                         << Throw->getType() << Throw->getSourceRange());
2079    }
2080  }
2081
2082  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2083}
2084
2085StmtResult
2086Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2087                           Scope *CurScope) {
2088  if (!getLangOptions().ObjCExceptions)
2089    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2090
2091  if (!Throw) {
2092    // @throw without an expression designates a rethrow (which much occur
2093    // in the context of an @catch clause).
2094    Scope *AtCatchParent = CurScope;
2095    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2096      AtCatchParent = AtCatchParent->getParent();
2097    if (!AtCatchParent)
2098      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2099  }
2100
2101  return BuildObjCAtThrowStmt(AtLoc, Throw);
2102}
2103
2104StmtResult
2105Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2106                                  Stmt *SyncBody) {
2107  getCurFunction()->setHasBranchProtectedScope();
2108
2109  ExprResult Result = DefaultLvalueConversion(SyncExpr);
2110  if (Result.isInvalid())
2111    return StmtError();
2112
2113  SyncExpr = Result.take();
2114  // Make sure the expression type is an ObjC pointer or "void *".
2115  if (!SyncExpr->getType()->isDependentType() &&
2116      !SyncExpr->getType()->isObjCObjectPointerType()) {
2117    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
2118    if (!PT || !PT->getPointeeType()->isVoidType())
2119      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
2120                       << SyncExpr->getType() << SyncExpr->getSourceRange());
2121  }
2122
2123  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2124}
2125
2126/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2127/// and creates a proper catch handler from them.
2128StmtResult
2129Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2130                         Stmt *HandlerBlock) {
2131  // There's nothing to test that ActOnExceptionDecl didn't already test.
2132  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2133                                          cast_or_null<VarDecl>(ExDecl),
2134                                          HandlerBlock));
2135}
2136
2137namespace {
2138
2139class TypeWithHandler {
2140  QualType t;
2141  CXXCatchStmt *stmt;
2142public:
2143  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2144  : t(type), stmt(statement) {}
2145
2146  // An arbitrary order is fine as long as it places identical
2147  // types next to each other.
2148  bool operator<(const TypeWithHandler &y) const {
2149    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2150      return true;
2151    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2152      return false;
2153    else
2154      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2155  }
2156
2157  bool operator==(const TypeWithHandler& other) const {
2158    return t == other.t;
2159  }
2160
2161  CXXCatchStmt *getCatchStmt() const { return stmt; }
2162  SourceLocation getTypeSpecStartLoc() const {
2163    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2164  }
2165};
2166
2167}
2168
2169/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2170/// handlers and creates a try statement from them.
2171StmtResult
2172Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2173                       MultiStmtArg RawHandlers) {
2174  // Don't report an error if 'try' is used in system headers.
2175  if (!getLangOptions().CXXExceptions &&
2176      !getSourceManager().isInSystemHeader(TryLoc))
2177      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2178
2179  unsigned NumHandlers = RawHandlers.size();
2180  assert(NumHandlers > 0 &&
2181         "The parser shouldn't call this if there are no handlers.");
2182  Stmt **Handlers = RawHandlers.get();
2183
2184  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2185
2186  for (unsigned i = 0; i < NumHandlers; ++i) {
2187    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
2188    if (!Handler->getExceptionDecl()) {
2189      if (i < NumHandlers - 1)
2190        return StmtError(Diag(Handler->getLocStart(),
2191                              diag::err_early_catch_all));
2192
2193      continue;
2194    }
2195
2196    const QualType CaughtType = Handler->getCaughtType();
2197    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2198    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2199  }
2200
2201  // Detect handlers for the same type as an earlier one.
2202  if (NumHandlers > 1) {
2203    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2204
2205    TypeWithHandler prev = TypesWithHandlers[0];
2206    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2207      TypeWithHandler curr = TypesWithHandlers[i];
2208
2209      if (curr == prev) {
2210        Diag(curr.getTypeSpecStartLoc(),
2211             diag::warn_exception_caught_by_earlier_handler)
2212          << curr.getCatchStmt()->getCaughtType().getAsString();
2213        Diag(prev.getTypeSpecStartLoc(),
2214             diag::note_previous_exception_handler)
2215          << prev.getCatchStmt()->getCaughtType().getAsString();
2216      }
2217
2218      prev = curr;
2219    }
2220  }
2221
2222  getCurFunction()->setHasBranchProtectedScope();
2223
2224  // FIXME: We should detect handlers that cannot catch anything because an
2225  // earlier handler catches a superclass. Need to find a method that is not
2226  // quadratic for this.
2227  // Neither of these are explicitly forbidden, but every compiler detects them
2228  // and warns.
2229
2230  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2231                                  Handlers, NumHandlers));
2232}
2233