SemaStmt.cpp revision 8ef7b203332b0c8d65876a1f5e6d1db4e6f40e4b
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
156      !E->isUnusedResultAWarning(Loc, R1, R2, Context))
157    return;
158
159  // Okay, we have an unused result.  Depending on what the base expression is,
160  // we might want to make a more specific diagnostic.  Check for one of these
161  // cases now.
162  unsigned DiagID = diag::warn_unused_expr;
163  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
164    E = Temps->getSubExpr();
165  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
166    E = TempExpr->getSubExpr();
167
168  if (DiagnoseUnusedComparison(*this, E))
169    return;
170
171  E = E->IgnoreParenImpCasts();
172  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
173    if (E->getType()->isVoidType())
174      return;
175
176    // If the callee has attribute pure, const, or warn_unused_result, warn with
177    // a more specific message to make it clear what is happening.
178    if (const Decl *FD = CE->getCalleeDecl()) {
179      if (FD->getAttr<WarnUnusedResultAttr>()) {
180        Diag(Loc, diag::warn_unused_result) << R1 << R2;
181        return;
182      }
183      if (FD->getAttr<PureAttr>()) {
184        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
185        return;
186      }
187      if (FD->getAttr<ConstAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
189        return;
190      }
191    }
192  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
193    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
194      Diag(Loc, diag::err_arc_unused_init_message) << R1;
195      return;
196    }
197    const ObjCMethodDecl *MD = ME->getMethodDecl();
198    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
199      Diag(Loc, diag::warn_unused_result) << R1 << R2;
200      return;
201    }
202  } else if (isa<PseudoObjectExpr>(E)) {
203    DiagID = diag::warn_unused_property_expr;
204  } else if (const CXXFunctionalCastExpr *FC
205                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
206    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
207        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
208      return;
209  }
210  // Diagnose "(void*) blah" as a typo for "(void) blah".
211  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
212    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
213    QualType T = TI->getType();
214
215    // We really do want to use the non-canonical type here.
216    if (T == Context.VoidPtrTy) {
217      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
218
219      Diag(Loc, diag::warn_unused_voidptr)
220        << FixItHint::CreateRemoval(TL.getStarLoc());
221      return;
222    }
223  }
224
225  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
226}
227
228StmtResult
229Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
230                        MultiStmtArg elts, bool isStmtExpr) {
231  unsigned NumElts = elts.size();
232  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
233  // If we're in C89 mode, check that we don't have any decls after stmts.  If
234  // so, emit an extension diagnostic.
235  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
236    // Note that __extension__ can be around a decl.
237    unsigned i = 0;
238    // Skip over all declarations.
239    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
240      /*empty*/;
241
242    // We found the end of the list or a statement.  Scan for another declstmt.
243    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
244      /*empty*/;
245
246    if (i != NumElts) {
247      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
248      Diag(D->getLocation(), diag::ext_mixed_decls_code);
249    }
250  }
251  // Warn about unused expressions in statements.
252  for (unsigned i = 0; i != NumElts; ++i) {
253    // Ignore statements that are last in a statement expression.
254    if (isStmtExpr && i == NumElts - 1)
255      continue;
256
257    DiagnoseUnusedExprResult(Elts[i]);
258  }
259
260  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
261}
262
263StmtResult
264Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
265                    SourceLocation DotDotDotLoc, Expr *RHSVal,
266                    SourceLocation ColonLoc) {
267  assert((LHSVal != 0) && "missing expression in case statement");
268
269  if (getCurFunction()->SwitchStack.empty()) {
270    Diag(CaseLoc, diag::err_case_not_in_switch);
271    return StmtError();
272  }
273
274  if (!getLangOptions().CPlusPlus0x) {
275    // C99 6.8.4.2p3: The expression shall be an integer constant.
276    // However, GCC allows any evaluatable integer expression.
277    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
278        VerifyIntegerConstantExpression(LHSVal))
279      return StmtError();
280
281    // GCC extension: The expression shall be an integer constant.
282
283    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
284        VerifyIntegerConstantExpression(RHSVal)) {
285      RHSVal = 0;  // Recover by just forgetting about it.
286    }
287  }
288
289  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
290                                        ColonLoc);
291  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
292  return Owned(CS);
293}
294
295/// ActOnCaseStmtBody - This installs a statement as the body of a case.
296void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
297  DiagnoseUnusedExprResult(SubStmt);
298
299  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
300  CS->setSubStmt(SubStmt);
301}
302
303StmtResult
304Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
305                       Stmt *SubStmt, Scope *CurScope) {
306  DiagnoseUnusedExprResult(SubStmt);
307
308  if (getCurFunction()->SwitchStack.empty()) {
309    Diag(DefaultLoc, diag::err_default_not_in_switch);
310    return Owned(SubStmt);
311  }
312
313  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
314  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
315  return Owned(DS);
316}
317
318StmtResult
319Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
320                     SourceLocation ColonLoc, Stmt *SubStmt) {
321
322  // If the label was multiply defined, reject it now.
323  if (TheDecl->getStmt()) {
324    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
325    Diag(TheDecl->getLocation(), diag::note_previous_definition);
326    return Owned(SubStmt);
327  }
328
329  // Otherwise, things are good.  Fill in the declaration and return it.
330  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
331  TheDecl->setStmt(LS);
332  if (!TheDecl->isGnuLocal())
333    TheDecl->setLocation(IdentLoc);
334  return Owned(LS);
335}
336
337StmtResult
338Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
339                  Stmt *thenStmt, SourceLocation ElseLoc,
340                  Stmt *elseStmt) {
341  ExprResult CondResult(CondVal.release());
342
343  VarDecl *ConditionVar = 0;
344  if (CondVar) {
345    ConditionVar = cast<VarDecl>(CondVar);
346    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
347    if (CondResult.isInvalid())
348      return StmtError();
349  }
350  Expr *ConditionExpr = CondResult.takeAs<Expr>();
351  if (!ConditionExpr)
352    return StmtError();
353
354  DiagnoseUnusedExprResult(thenStmt);
355
356  // Warn if the if block has a null body without an else value.
357  // this helps prevent bugs due to typos, such as
358  // if (condition);
359  //   do_stuff();
360  //
361  if (!elseStmt) {
362    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
363      // But do not warn if the body is a macro that expands to nothing, e.g:
364      //
365      // #define CALL(x)
366      // if (condition)
367      //   CALL(0);
368      //
369      if (!stmt->hasLeadingEmptyMacro())
370        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
371  }
372
373  DiagnoseUnusedExprResult(elseStmt);
374
375  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
376                                    thenStmt, ElseLoc, elseStmt));
377}
378
379/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
380/// the specified width and sign.  If an overflow occurs, detect it and emit
381/// the specified diagnostic.
382void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
383                                              unsigned NewWidth, bool NewSign,
384                                              SourceLocation Loc,
385                                              unsigned DiagID) {
386  // Perform a conversion to the promoted condition type if needed.
387  if (NewWidth > Val.getBitWidth()) {
388    // If this is an extension, just do it.
389    Val = Val.extend(NewWidth);
390    Val.setIsSigned(NewSign);
391
392    // If the input was signed and negative and the output is
393    // unsigned, don't bother to warn: this is implementation-defined
394    // behavior.
395    // FIXME: Introduce a second, default-ignored warning for this case?
396  } else if (NewWidth < Val.getBitWidth()) {
397    // If this is a truncation, check for overflow.
398    llvm::APSInt ConvVal(Val);
399    ConvVal = ConvVal.trunc(NewWidth);
400    ConvVal.setIsSigned(NewSign);
401    ConvVal = ConvVal.extend(Val.getBitWidth());
402    ConvVal.setIsSigned(Val.isSigned());
403    if (ConvVal != Val)
404      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
405
406    // Regardless of whether a diagnostic was emitted, really do the
407    // truncation.
408    Val = Val.trunc(NewWidth);
409    Val.setIsSigned(NewSign);
410  } else if (NewSign != Val.isSigned()) {
411    // Convert the sign to match the sign of the condition.  This can cause
412    // overflow as well: unsigned(INTMIN)
413    // We don't diagnose this overflow, because it is implementation-defined
414    // behavior.
415    // FIXME: Introduce a second, default-ignored warning for this case?
416    llvm::APSInt OldVal(Val);
417    Val.setIsSigned(NewSign);
418  }
419}
420
421namespace {
422  struct CaseCompareFunctor {
423    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
424                    const llvm::APSInt &RHS) {
425      return LHS.first < RHS;
426    }
427    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
428                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
429      return LHS.first < RHS.first;
430    }
431    bool operator()(const llvm::APSInt &LHS,
432                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
433      return LHS < RHS.first;
434    }
435  };
436}
437
438/// CmpCaseVals - Comparison predicate for sorting case values.
439///
440static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
441                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
442  if (lhs.first < rhs.first)
443    return true;
444
445  if (lhs.first == rhs.first &&
446      lhs.second->getCaseLoc().getRawEncoding()
447       < rhs.second->getCaseLoc().getRawEncoding())
448    return true;
449  return false;
450}
451
452/// CmpEnumVals - Comparison predicate for sorting enumeration values.
453///
454static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
455                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
456{
457  return lhs.first < rhs.first;
458}
459
460/// EqEnumVals - Comparison preficate for uniqing enumeration values.
461///
462static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
463                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
464{
465  return lhs.first == rhs.first;
466}
467
468/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
469/// potentially integral-promoted expression @p expr.
470static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
471  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
472    expr = cleanups->getSubExpr();
473  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
474    if (impcast->getCastKind() != CK_IntegralCast) break;
475    expr = impcast->getSubExpr();
476  }
477  return expr->getType();
478}
479
480StmtResult
481Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
482                             Decl *CondVar) {
483  ExprResult CondResult;
484
485  VarDecl *ConditionVar = 0;
486  if (CondVar) {
487    ConditionVar = cast<VarDecl>(CondVar);
488    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
489    if (CondResult.isInvalid())
490      return StmtError();
491
492    Cond = CondResult.release();
493  }
494
495  if (!Cond)
496    return StmtError();
497
498  CondResult = CheckPlaceholderExpr(Cond);
499  if (CondResult.isInvalid())
500    return StmtError();
501
502  CondResult
503    = ConvertToIntegralOrEnumerationType(SwitchLoc, CondResult.take(),
504                          PDiag(diag::err_typecheck_statement_requires_integer),
505                                   PDiag(diag::err_switch_incomplete_class_type)
506                                     << Cond->getSourceRange(),
507                                   PDiag(diag::err_switch_explicit_conversion),
508                                         PDiag(diag::note_switch_conversion),
509                                   PDiag(diag::err_switch_multiple_conversions),
510                                         PDiag(diag::note_switch_conversion),
511                                         PDiag(0));
512  if (CondResult.isInvalid()) return StmtError();
513  Cond = CondResult.take();
514
515  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
516  CondResult = UsualUnaryConversions(Cond);
517  if (CondResult.isInvalid()) return StmtError();
518  Cond = CondResult.take();
519
520  if (!CondVar) {
521    CheckImplicitConversions(Cond, SwitchLoc);
522    CondResult = MaybeCreateExprWithCleanups(Cond);
523    if (CondResult.isInvalid())
524      return StmtError();
525    Cond = CondResult.take();
526  }
527
528  getCurFunction()->setHasBranchIntoScope();
529
530  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
531  getCurFunction()->SwitchStack.push_back(SS);
532  return Owned(SS);
533}
534
535static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
536  if (Val.getBitWidth() < BitWidth)
537    Val = Val.extend(BitWidth);
538  else if (Val.getBitWidth() > BitWidth)
539    Val = Val.trunc(BitWidth);
540  Val.setIsSigned(IsSigned);
541}
542
543StmtResult
544Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
545                            Stmt *BodyStmt) {
546  SwitchStmt *SS = cast<SwitchStmt>(Switch);
547  assert(SS == getCurFunction()->SwitchStack.back() &&
548         "switch stack missing push/pop!");
549
550  SS->setBody(BodyStmt, SwitchLoc);
551  getCurFunction()->SwitchStack.pop_back();
552
553  Expr *CondExpr = SS->getCond();
554  if (!CondExpr) return StmtError();
555
556  QualType CondType = CondExpr->getType();
557
558  Expr *CondExprBeforePromotion = CondExpr;
559  QualType CondTypeBeforePromotion =
560      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
561
562  // C++ 6.4.2.p2:
563  // Integral promotions are performed (on the switch condition).
564  //
565  // A case value unrepresentable by the original switch condition
566  // type (before the promotion) doesn't make sense, even when it can
567  // be represented by the promoted type.  Therefore we need to find
568  // the pre-promotion type of the switch condition.
569  if (!CondExpr->isTypeDependent()) {
570    // We have already converted the expression to an integral or enumeration
571    // type, when we started the switch statement. If we don't have an
572    // appropriate type now, just return an error.
573    if (!CondType->isIntegralOrEnumerationType())
574      return StmtError();
575
576    if (CondExpr->isKnownToHaveBooleanValue()) {
577      // switch(bool_expr) {...} is often a programmer error, e.g.
578      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
579      // One can always use an if statement instead of switch(bool_expr).
580      Diag(SwitchLoc, diag::warn_bool_switch_condition)
581          << CondExpr->getSourceRange();
582    }
583  }
584
585  // Get the bitwidth of the switched-on value before promotions.  We must
586  // convert the integer case values to this width before comparison.
587  bool HasDependentValue
588    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
589  unsigned CondWidth
590    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
591  bool CondIsSigned
592    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
593
594  // Accumulate all of the case values in a vector so that we can sort them
595  // and detect duplicates.  This vector contains the APInt for the case after
596  // it has been converted to the condition type.
597  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
598  CaseValsTy CaseVals;
599
600  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
601  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
602  CaseRangesTy CaseRanges;
603
604  DefaultStmt *TheDefaultStmt = 0;
605
606  bool CaseListIsErroneous = false;
607
608  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
609       SC = SC->getNextSwitchCase()) {
610
611    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
612      if (TheDefaultStmt) {
613        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
614        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
615
616        // FIXME: Remove the default statement from the switch block so that
617        // we'll return a valid AST.  This requires recursing down the AST and
618        // finding it, not something we are set up to do right now.  For now,
619        // just lop the entire switch stmt out of the AST.
620        CaseListIsErroneous = true;
621      }
622      TheDefaultStmt = DS;
623
624    } else {
625      CaseStmt *CS = cast<CaseStmt>(SC);
626
627      Expr *Lo = CS->getLHS();
628
629      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
630        HasDependentValue = true;
631        break;
632      }
633
634      llvm::APSInt LoVal;
635
636      if (getLangOptions().CPlusPlus0x) {
637        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
638        // constant expression of the promoted type of the switch condition.
639        ExprResult ConvLo =
640          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
641        if (ConvLo.isInvalid()) {
642          CaseListIsErroneous = true;
643          continue;
644        }
645        Lo = ConvLo.take();
646      } else {
647        // We already verified that the expression has a i-c-e value (C99
648        // 6.8.4.2p3) - get that value now.
649        LoVal = Lo->EvaluateKnownConstInt(Context);
650
651        // If the LHS is not the same type as the condition, insert an implicit
652        // cast.
653        Lo = DefaultLvalueConversion(Lo).take();
654        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
655      }
656
657      // Convert the value to the same width/sign as the condition had prior to
658      // integral promotions.
659      //
660      // FIXME: This causes us to reject valid code:
661      //   switch ((char)c) { case 256: case 0: return 0; }
662      // Here we claim there is a duplicated condition value, but there is not.
663      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
664                                         Lo->getLocStart(),
665                                         diag::warn_case_value_overflow);
666
667      CS->setLHS(Lo);
668
669      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
670      if (CS->getRHS()) {
671        if (CS->getRHS()->isTypeDependent() ||
672            CS->getRHS()->isValueDependent()) {
673          HasDependentValue = true;
674          break;
675        }
676        CaseRanges.push_back(std::make_pair(LoVal, CS));
677      } else
678        CaseVals.push_back(std::make_pair(LoVal, CS));
679    }
680  }
681
682  if (!HasDependentValue) {
683    // If we don't have a default statement, check whether the
684    // condition is constant.
685    llvm::APSInt ConstantCondValue;
686    bool HasConstantCond = false;
687    if (!HasDependentValue && !TheDefaultStmt) {
688      HasConstantCond
689        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
690                                                 Expr::SE_AllowSideEffects);
691      assert(!HasConstantCond ||
692             (ConstantCondValue.getBitWidth() == CondWidth &&
693              ConstantCondValue.isSigned() == CondIsSigned));
694    }
695    bool ShouldCheckConstantCond = HasConstantCond;
696
697    // Sort all the scalar case values so we can easily detect duplicates.
698    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
699
700    if (!CaseVals.empty()) {
701      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
702        if (ShouldCheckConstantCond &&
703            CaseVals[i].first == ConstantCondValue)
704          ShouldCheckConstantCond = false;
705
706        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
707          // If we have a duplicate, report it.
708          Diag(CaseVals[i].second->getLHS()->getLocStart(),
709               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
710          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
711               diag::note_duplicate_case_prev);
712          // FIXME: We really want to remove the bogus case stmt from the
713          // substmt, but we have no way to do this right now.
714          CaseListIsErroneous = true;
715        }
716      }
717    }
718
719    // Detect duplicate case ranges, which usually don't exist at all in
720    // the first place.
721    if (!CaseRanges.empty()) {
722      // Sort all the case ranges by their low value so we can easily detect
723      // overlaps between ranges.
724      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
725
726      // Scan the ranges, computing the high values and removing empty ranges.
727      std::vector<llvm::APSInt> HiVals;
728      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
729        llvm::APSInt &LoVal = CaseRanges[i].first;
730        CaseStmt *CR = CaseRanges[i].second;
731        Expr *Hi = CR->getRHS();
732        llvm::APSInt HiVal;
733
734        if (getLangOptions().CPlusPlus0x) {
735          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
736          // constant expression of the promoted type of the switch condition.
737          ExprResult ConvHi =
738            CheckConvertedConstantExpression(Hi, CondType, HiVal,
739                                             CCEK_CaseValue);
740          if (ConvHi.isInvalid()) {
741            CaseListIsErroneous = true;
742            continue;
743          }
744          Hi = ConvHi.take();
745        } else {
746          HiVal = Hi->EvaluateKnownConstInt(Context);
747
748          // If the RHS is not the same type as the condition, insert an
749          // implicit cast.
750          Hi = DefaultLvalueConversion(Hi).take();
751          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
752        }
753
754        // Convert the value to the same width/sign as the condition.
755        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
756                                           Hi->getLocStart(),
757                                           diag::warn_case_value_overflow);
758
759        CR->setRHS(Hi);
760
761        // If the low value is bigger than the high value, the case is empty.
762        if (LoVal > HiVal) {
763          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
764            << SourceRange(CR->getLHS()->getLocStart(),
765                           Hi->getLocEnd());
766          CaseRanges.erase(CaseRanges.begin()+i);
767          --i, --e;
768          continue;
769        }
770
771        if (ShouldCheckConstantCond &&
772            LoVal <= ConstantCondValue &&
773            ConstantCondValue <= HiVal)
774          ShouldCheckConstantCond = false;
775
776        HiVals.push_back(HiVal);
777      }
778
779      // Rescan the ranges, looking for overlap with singleton values and other
780      // ranges.  Since the range list is sorted, we only need to compare case
781      // ranges with their neighbors.
782      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
783        llvm::APSInt &CRLo = CaseRanges[i].first;
784        llvm::APSInt &CRHi = HiVals[i];
785        CaseStmt *CR = CaseRanges[i].second;
786
787        // Check to see whether the case range overlaps with any
788        // singleton cases.
789        CaseStmt *OverlapStmt = 0;
790        llvm::APSInt OverlapVal(32);
791
792        // Find the smallest value >= the lower bound.  If I is in the
793        // case range, then we have overlap.
794        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
795                                                  CaseVals.end(), CRLo,
796                                                  CaseCompareFunctor());
797        if (I != CaseVals.end() && I->first < CRHi) {
798          OverlapVal  = I->first;   // Found overlap with scalar.
799          OverlapStmt = I->second;
800        }
801
802        // Find the smallest value bigger than the upper bound.
803        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
804        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
805          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
806          OverlapStmt = (I-1)->second;
807        }
808
809        // Check to see if this case stmt overlaps with the subsequent
810        // case range.
811        if (i && CRLo <= HiVals[i-1]) {
812          OverlapVal  = HiVals[i-1];       // Found overlap with range.
813          OverlapStmt = CaseRanges[i-1].second;
814        }
815
816        if (OverlapStmt) {
817          // If we have a duplicate, report it.
818          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
819            << OverlapVal.toString(10);
820          Diag(OverlapStmt->getLHS()->getLocStart(),
821               diag::note_duplicate_case_prev);
822          // FIXME: We really want to remove the bogus case stmt from the
823          // substmt, but we have no way to do this right now.
824          CaseListIsErroneous = true;
825        }
826      }
827    }
828
829    // Complain if we have a constant condition and we didn't find a match.
830    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
831      // TODO: it would be nice if we printed enums as enums, chars as
832      // chars, etc.
833      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
834        << ConstantCondValue.toString(10)
835        << CondExpr->getSourceRange();
836    }
837
838    // Check to see if switch is over an Enum and handles all of its
839    // values.  We only issue a warning if there is not 'default:', but
840    // we still do the analysis to preserve this information in the AST
841    // (which can be used by flow-based analyes).
842    //
843    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
844
845    // If switch has default case, then ignore it.
846    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
847      const EnumDecl *ED = ET->getDecl();
848      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
849        EnumValsTy;
850      EnumValsTy EnumVals;
851
852      // Gather all enum values, set their type and sort them,
853      // allowing easier comparison with CaseVals.
854      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
855           EDI != ED->enumerator_end(); ++EDI) {
856        llvm::APSInt Val = EDI->getInitVal();
857        AdjustAPSInt(Val, CondWidth, CondIsSigned);
858        EnumVals.push_back(std::make_pair(Val, *EDI));
859      }
860      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
861      EnumValsTy::iterator EIend =
862        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
863
864      // See which case values aren't in enum.
865      // TODO: we might want to check whether case values are out of the
866      // enum even if we don't want to check whether all cases are handled.
867      if (!TheDefaultStmt) {
868        EnumValsTy::const_iterator EI = EnumVals.begin();
869        for (CaseValsTy::const_iterator CI = CaseVals.begin();
870             CI != CaseVals.end(); CI++) {
871          while (EI != EIend && EI->first < CI->first)
872            EI++;
873          if (EI == EIend || EI->first > CI->first)
874            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
875              << ED->getDeclName();
876        }
877        // See which of case ranges aren't in enum
878        EI = EnumVals.begin();
879        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
880             RI != CaseRanges.end() && EI != EIend; RI++) {
881          while (EI != EIend && EI->first < RI->first)
882            EI++;
883
884          if (EI == EIend || EI->first != RI->first) {
885            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
886              << ED->getDeclName();
887          }
888
889          llvm::APSInt Hi =
890            RI->second->getRHS()->EvaluateKnownConstInt(Context);
891          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
892          while (EI != EIend && EI->first < Hi)
893            EI++;
894          if (EI == EIend || EI->first != Hi)
895            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
896              << ED->getDeclName();
897        }
898      }
899
900      // Check which enum vals aren't in switch
901      CaseValsTy::const_iterator CI = CaseVals.begin();
902      CaseRangesTy::const_iterator RI = CaseRanges.begin();
903      bool hasCasesNotInSwitch = false;
904
905      SmallVector<DeclarationName,8> UnhandledNames;
906
907      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
908        // Drop unneeded case values
909        llvm::APSInt CIVal;
910        while (CI != CaseVals.end() && CI->first < EI->first)
911          CI++;
912
913        if (CI != CaseVals.end() && CI->first == EI->first)
914          continue;
915
916        // Drop unneeded case ranges
917        for (; RI != CaseRanges.end(); RI++) {
918          llvm::APSInt Hi =
919            RI->second->getRHS()->EvaluateKnownConstInt(Context);
920          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
921          if (EI->first <= Hi)
922            break;
923        }
924
925        if (RI == CaseRanges.end() || EI->first < RI->first) {
926          hasCasesNotInSwitch = true;
927          if (!TheDefaultStmt)
928            UnhandledNames.push_back(EI->second->getDeclName());
929        }
930      }
931
932      // Produce a nice diagnostic if multiple values aren't handled.
933      switch (UnhandledNames.size()) {
934      case 0: break;
935      case 1:
936        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
937          << UnhandledNames[0];
938        break;
939      case 2:
940        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
941          << UnhandledNames[0] << UnhandledNames[1];
942        break;
943      case 3:
944        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
945          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
946        break;
947      default:
948        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
949          << (unsigned)UnhandledNames.size()
950          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
951        break;
952      }
953
954      if (!hasCasesNotInSwitch)
955        SS->setAllEnumCasesCovered();
956    }
957  }
958
959  // FIXME: If the case list was broken is some way, we don't have a good system
960  // to patch it up.  Instead, just return the whole substmt as broken.
961  if (CaseListIsErroneous)
962    return StmtError();
963
964  return Owned(SS);
965}
966
967StmtResult
968Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
969                     Decl *CondVar, Stmt *Body) {
970  ExprResult CondResult(Cond.release());
971
972  VarDecl *ConditionVar = 0;
973  if (CondVar) {
974    ConditionVar = cast<VarDecl>(CondVar);
975    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
976    if (CondResult.isInvalid())
977      return StmtError();
978  }
979  Expr *ConditionExpr = CondResult.take();
980  if (!ConditionExpr)
981    return StmtError();
982
983  DiagnoseUnusedExprResult(Body);
984
985  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
986                                       Body, WhileLoc));
987}
988
989StmtResult
990Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
991                  SourceLocation WhileLoc, SourceLocation CondLParen,
992                  Expr *Cond, SourceLocation CondRParen) {
993  assert(Cond && "ActOnDoStmt(): missing expression");
994
995  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
996  if (CondResult.isInvalid() || CondResult.isInvalid())
997    return StmtError();
998  Cond = CondResult.take();
999
1000  CheckImplicitConversions(Cond, DoLoc);
1001  CondResult = MaybeCreateExprWithCleanups(Cond);
1002  if (CondResult.isInvalid())
1003    return StmtError();
1004  Cond = CondResult.take();
1005
1006  DiagnoseUnusedExprResult(Body);
1007
1008  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1009}
1010
1011StmtResult
1012Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1013                   Stmt *First, FullExprArg second, Decl *secondVar,
1014                   FullExprArg third,
1015                   SourceLocation RParenLoc, Stmt *Body) {
1016  if (!getLangOptions().CPlusPlus) {
1017    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1018      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1019      // declare identifiers for objects having storage class 'auto' or
1020      // 'register'.
1021      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1022           DI!=DE; ++DI) {
1023        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1024        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1025          VD = 0;
1026        if (VD == 0)
1027          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1028        // FIXME: mark decl erroneous!
1029      }
1030    }
1031  }
1032
1033  ExprResult SecondResult(second.release());
1034  VarDecl *ConditionVar = 0;
1035  if (secondVar) {
1036    ConditionVar = cast<VarDecl>(secondVar);
1037    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1038    if (SecondResult.isInvalid())
1039      return StmtError();
1040  }
1041
1042  Expr *Third  = third.release().takeAs<Expr>();
1043
1044  DiagnoseUnusedExprResult(First);
1045  DiagnoseUnusedExprResult(Third);
1046  DiagnoseUnusedExprResult(Body);
1047
1048  return Owned(new (Context) ForStmt(Context, First,
1049                                     SecondResult.take(), ConditionVar,
1050                                     Third, Body, ForLoc, LParenLoc,
1051                                     RParenLoc));
1052}
1053
1054/// In an Objective C collection iteration statement:
1055///   for (x in y)
1056/// x can be an arbitrary l-value expression.  Bind it up as a
1057/// full-expression.
1058StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1059  CheckImplicitConversions(E);
1060  ExprResult Result = MaybeCreateExprWithCleanups(E);
1061  if (Result.isInvalid()) return StmtError();
1062  return Owned(static_cast<Stmt*>(Result.get()));
1063}
1064
1065ExprResult
1066Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1067  assert(collection);
1068
1069  // Bail out early if we've got a type-dependent expression.
1070  if (collection->isTypeDependent()) return Owned(collection);
1071
1072  // Perform normal l-value conversion.
1073  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1074  if (result.isInvalid())
1075    return ExprError();
1076  collection = result.take();
1077
1078  // The operand needs to have object-pointer type.
1079  // TODO: should we do a contextual conversion?
1080  const ObjCObjectPointerType *pointerType =
1081    collection->getType()->getAs<ObjCObjectPointerType>();
1082  if (!pointerType)
1083    return Diag(forLoc, diag::err_collection_expr_type)
1084             << collection->getType() << collection->getSourceRange();
1085
1086  // Check that the operand provides
1087  //   - countByEnumeratingWithState:objects:count:
1088  const ObjCObjectType *objectType = pointerType->getObjectType();
1089  ObjCInterfaceDecl *iface = objectType->getInterface();
1090
1091  // If we have a forward-declared type, we can't do this check.
1092  // Under ARC, it is an error not to have a forward-declared class.
1093  if (iface &&
1094      RequireCompleteType(forLoc, QualType(objectType, 0),
1095                          getLangOptions().ObjCAutoRefCount
1096                            ? PDiag(diag::err_arc_collection_forward)
1097                                << collection->getSourceRange()
1098                          : PDiag(0))) {
1099    // Otherwise, if we have any useful type information, check that
1100    // the type declares the appropriate method.
1101  } else if (iface || !objectType->qual_empty()) {
1102    IdentifierInfo *selectorIdents[] = {
1103      &Context.Idents.get("countByEnumeratingWithState"),
1104      &Context.Idents.get("objects"),
1105      &Context.Idents.get("count")
1106    };
1107    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1108
1109    ObjCMethodDecl *method = 0;
1110
1111    // If there's an interface, look in both the public and private APIs.
1112    if (iface) {
1113      method = iface->lookupInstanceMethod(selector);
1114      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1115    }
1116
1117    // Also check protocol qualifiers.
1118    if (!method)
1119      method = LookupMethodInQualifiedType(selector, pointerType,
1120                                           /*instance*/ true);
1121
1122    // If we didn't find it anywhere, give up.
1123    if (!method) {
1124      Diag(forLoc, diag::warn_collection_expr_type)
1125        << collection->getType() << selector << collection->getSourceRange();
1126    }
1127
1128    // TODO: check for an incompatible signature?
1129  }
1130
1131  // Wrap up any cleanups in the expression.
1132  return Owned(MaybeCreateExprWithCleanups(collection));
1133}
1134
1135StmtResult
1136Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1137                                 SourceLocation LParenLoc,
1138                                 Stmt *First, Expr *Second,
1139                                 SourceLocation RParenLoc, Stmt *Body) {
1140  if (First) {
1141    QualType FirstType;
1142    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1143      if (!DS->isSingleDecl())
1144        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1145                         diag::err_toomany_element_decls));
1146
1147      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1148      FirstType = D->getType();
1149      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1150      // declare identifiers for objects having storage class 'auto' or
1151      // 'register'.
1152      if (!D->hasLocalStorage())
1153        return StmtError(Diag(D->getLocation(),
1154                              diag::err_non_variable_decl_in_for));
1155    } else {
1156      Expr *FirstE = cast<Expr>(First);
1157      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1158        return StmtError(Diag(First->getLocStart(),
1159                   diag::err_selector_element_not_lvalue)
1160          << First->getSourceRange());
1161
1162      FirstType = static_cast<Expr*>(First)->getType();
1163    }
1164    if (!FirstType->isDependentType() &&
1165        !FirstType->isObjCObjectPointerType() &&
1166        !FirstType->isBlockPointerType())
1167        Diag(ForLoc, diag::err_selector_element_type)
1168          << FirstType << First->getSourceRange();
1169  }
1170
1171  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1172                                                   ForLoc, RParenLoc));
1173}
1174
1175namespace {
1176
1177enum BeginEndFunction {
1178  BEF_begin,
1179  BEF_end
1180};
1181
1182/// Build a variable declaration for a for-range statement.
1183static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1184                                     QualType Type, const char *Name) {
1185  DeclContext *DC = SemaRef.CurContext;
1186  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1187  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1188  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1189                                  TInfo, SC_Auto, SC_None);
1190  Decl->setImplicit();
1191  return Decl;
1192}
1193
1194/// Finish building a variable declaration for a for-range statement.
1195/// \return true if an error occurs.
1196static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1197                                  SourceLocation Loc, int diag) {
1198  // Deduce the type for the iterator variable now rather than leaving it to
1199  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1200  TypeSourceInfo *InitTSI = 0;
1201  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1202      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1203    SemaRef.Diag(Loc, diag) << Init->getType();
1204  if (!InitTSI) {
1205    Decl->setInvalidDecl();
1206    return true;
1207  }
1208  Decl->setTypeSourceInfo(InitTSI);
1209  Decl->setType(InitTSI->getType());
1210
1211  // In ARC, infer lifetime.
1212  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1213  // we're doing the equivalent of fast iteration.
1214  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1215      SemaRef.inferObjCARCLifetime(Decl))
1216    Decl->setInvalidDecl();
1217
1218  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1219                               /*TypeMayContainAuto=*/false);
1220  SemaRef.FinalizeDeclaration(Decl);
1221  SemaRef.CurContext->addHiddenDecl(Decl);
1222  return false;
1223}
1224
1225/// Produce a note indicating which begin/end function was implicitly called
1226/// by a C++0x for-range statement. This is often not obvious from the code,
1227/// nor from the diagnostics produced when analysing the implicit expressions
1228/// required in a for-range statement.
1229void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1230                                  BeginEndFunction BEF) {
1231  CallExpr *CE = dyn_cast<CallExpr>(E);
1232  if (!CE)
1233    return;
1234  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1235  if (!D)
1236    return;
1237  SourceLocation Loc = D->getLocation();
1238
1239  std::string Description;
1240  bool IsTemplate = false;
1241  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1242    Description = SemaRef.getTemplateArgumentBindingsText(
1243      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1244    IsTemplate = true;
1245  }
1246
1247  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1248    << BEF << IsTemplate << Description << E->getType();
1249}
1250
1251/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1252/// given LookupResult is non-empty, it is assumed to describe a member which
1253/// will be invoked. Otherwise, the function will be found via argument
1254/// dependent lookup.
1255static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1256                                            SourceLocation Loc,
1257                                            VarDecl *Decl,
1258                                            BeginEndFunction BEF,
1259                                            const DeclarationNameInfo &NameInfo,
1260                                            LookupResult &MemberLookup,
1261                                            Expr *Range) {
1262  ExprResult CallExpr;
1263  if (!MemberLookup.empty()) {
1264    ExprResult MemberRef =
1265      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1266                                       /*IsPtr=*/false, CXXScopeSpec(),
1267                                       /*Qualifier=*/0, MemberLookup,
1268                                       /*TemplateArgs=*/0);
1269    if (MemberRef.isInvalid())
1270      return ExprError();
1271    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1272                                     Loc, 0);
1273    if (CallExpr.isInvalid())
1274      return ExprError();
1275  } else {
1276    UnresolvedSet<0> FoundNames;
1277    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1278    // std is an associated namespace.
1279    UnresolvedLookupExpr *Fn =
1280      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1281                                   NestedNameSpecifierLoc(), NameInfo,
1282                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1283                                   FoundNames.begin(), FoundNames.end(),
1284                                   /*LookInStdNamespace=*/true);
1285    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1286                                               0);
1287    if (CallExpr.isInvalid()) {
1288      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1289        << Range->getType();
1290      return ExprError();
1291    }
1292  }
1293  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1294                            diag::err_for_range_iter_deduction_failure)) {
1295    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1296    return ExprError();
1297  }
1298  return CallExpr;
1299}
1300
1301}
1302
1303/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1304///
1305/// C++0x [stmt.ranged]:
1306///   A range-based for statement is equivalent to
1307///
1308///   {
1309///     auto && __range = range-init;
1310///     for ( auto __begin = begin-expr,
1311///           __end = end-expr;
1312///           __begin != __end;
1313///           ++__begin ) {
1314///       for-range-declaration = *__begin;
1315///       statement
1316///     }
1317///   }
1318///
1319/// The body of the loop is not available yet, since it cannot be analysed until
1320/// we have determined the type of the for-range-declaration.
1321StmtResult
1322Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1323                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1324                           SourceLocation RParenLoc) {
1325  if (!First || !Range)
1326    return StmtError();
1327
1328  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1329  assert(DS && "first part of for range not a decl stmt");
1330
1331  if (!DS->isSingleDecl()) {
1332    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1333    return StmtError();
1334  }
1335  if (DS->getSingleDecl()->isInvalidDecl())
1336    return StmtError();
1337
1338  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1339    return StmtError();
1340
1341  // Build  auto && __range = range-init
1342  SourceLocation RangeLoc = Range->getLocStart();
1343  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1344                                           Context.getAutoRRefDeductType(),
1345                                           "__range");
1346  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1347                            diag::err_for_range_deduction_failure))
1348    return StmtError();
1349
1350  // Claim the type doesn't contain auto: we've already done the checking.
1351  DeclGroupPtrTy RangeGroup =
1352    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1353  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1354  if (RangeDecl.isInvalid())
1355    return StmtError();
1356
1357  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1358                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1359                              RParenLoc);
1360}
1361
1362/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1363StmtResult
1364Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1365                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1366                           Expr *Inc, Stmt *LoopVarDecl,
1367                           SourceLocation RParenLoc) {
1368  Scope *S = getCurScope();
1369
1370  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1371  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1372  QualType RangeVarType = RangeVar->getType();
1373
1374  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1375  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1376
1377  StmtResult BeginEndDecl = BeginEnd;
1378  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1379
1380  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1381    SourceLocation RangeLoc = RangeVar->getLocation();
1382
1383    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1384
1385    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1386                                                VK_LValue, ColonLoc);
1387    if (BeginRangeRef.isInvalid())
1388      return StmtError();
1389
1390    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1391                                              VK_LValue, ColonLoc);
1392    if (EndRangeRef.isInvalid())
1393      return StmtError();
1394
1395    QualType AutoType = Context.getAutoDeductType();
1396    Expr *Range = RangeVar->getInit();
1397    if (!Range)
1398      return StmtError();
1399    QualType RangeType = Range->getType();
1400
1401    if (RequireCompleteType(RangeLoc, RangeType,
1402                            PDiag(diag::err_for_range_incomplete_type)))
1403      return StmtError();
1404
1405    // Build auto __begin = begin-expr, __end = end-expr.
1406    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1407                                             "__begin");
1408    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1409                                           "__end");
1410
1411    // Build begin-expr and end-expr and attach to __begin and __end variables.
1412    ExprResult BeginExpr, EndExpr;
1413    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1414      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1415      //   __range + __bound, respectively, where __bound is the array bound. If
1416      //   _RangeT is an array of unknown size or an array of incomplete type,
1417      //   the program is ill-formed;
1418
1419      // begin-expr is __range.
1420      BeginExpr = BeginRangeRef;
1421      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1422                                diag::err_for_range_iter_deduction_failure)) {
1423        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1424        return StmtError();
1425      }
1426
1427      // Find the array bound.
1428      ExprResult BoundExpr;
1429      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1430        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1431                                                 Context.getPointerDiffType(),
1432                                                 RangeLoc));
1433      else if (const VariableArrayType *VAT =
1434               dyn_cast<VariableArrayType>(UnqAT))
1435        BoundExpr = VAT->getSizeExpr();
1436      else {
1437        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1438        // UnqAT is not incomplete and Range is not type-dependent.
1439        llvm_unreachable("Unexpected array type in for-range");
1440      }
1441
1442      // end-expr is __range + __bound.
1443      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1444                           BoundExpr.get());
1445      if (EndExpr.isInvalid())
1446        return StmtError();
1447      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1448                                diag::err_for_range_iter_deduction_failure)) {
1449        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1450        return StmtError();
1451      }
1452    } else {
1453      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1454                                        ColonLoc);
1455      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1456                                      ColonLoc);
1457
1458      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1459      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1460
1461      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1462        // - if _RangeT is a class type, the unqualified-ids begin and end are
1463        //   looked up in the scope of class _RangeT as if by class member access
1464        //   lookup (3.4.5), and if either (or both) finds at least one
1465        //   declaration, begin-expr and end-expr are __range.begin() and
1466        //   __range.end(), respectively;
1467        LookupQualifiedName(BeginMemberLookup, D);
1468        LookupQualifiedName(EndMemberLookup, D);
1469
1470        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1471          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1472            << RangeType << BeginMemberLookup.empty();
1473          return StmtError();
1474        }
1475      } else {
1476        // - otherwise, begin-expr and end-expr are begin(__range) and
1477        //   end(__range), respectively, where begin and end are looked up with
1478        //   argument-dependent lookup (3.4.2). For the purposes of this name
1479        //   lookup, namespace std is an associated namespace.
1480      }
1481
1482      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1483                                            BEF_begin, BeginNameInfo,
1484                                            BeginMemberLookup,
1485                                            BeginRangeRef.get());
1486      if (BeginExpr.isInvalid())
1487        return StmtError();
1488
1489      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1490                                          BEF_end, EndNameInfo,
1491                                          EndMemberLookup, EndRangeRef.get());
1492      if (EndExpr.isInvalid())
1493        return StmtError();
1494    }
1495
1496    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1497    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1498    if (!Context.hasSameType(BeginType, EndType)) {
1499      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1500        << BeginType << EndType;
1501      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1502      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1503    }
1504
1505    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1506    // Claim the type doesn't contain auto: we've already done the checking.
1507    DeclGroupPtrTy BeginEndGroup =
1508      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1509    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1510
1511    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1512    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1513                                           VK_LValue, ColonLoc);
1514    if (BeginRef.isInvalid())
1515      return StmtError();
1516
1517    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1518                                         VK_LValue, ColonLoc);
1519    if (EndRef.isInvalid())
1520      return StmtError();
1521
1522    // Build and check __begin != __end expression.
1523    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1524                           BeginRef.get(), EndRef.get());
1525    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1526    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1527    if (NotEqExpr.isInvalid()) {
1528      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1529      if (!Context.hasSameType(BeginType, EndType))
1530        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1531      return StmtError();
1532    }
1533
1534    // Build and check ++__begin expression.
1535    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1536                                VK_LValue, ColonLoc);
1537    if (BeginRef.isInvalid())
1538      return StmtError();
1539
1540    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1541    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1542    if (IncrExpr.isInvalid()) {
1543      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1544      return StmtError();
1545    }
1546
1547    // Build and check *__begin  expression.
1548    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1549                                VK_LValue, ColonLoc);
1550    if (BeginRef.isInvalid())
1551      return StmtError();
1552
1553    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1554    if (DerefExpr.isInvalid()) {
1555      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1556      return StmtError();
1557    }
1558
1559    // Attach  *__begin  as initializer for VD.
1560    if (!LoopVar->isInvalidDecl()) {
1561      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1562                           /*TypeMayContainAuto=*/true);
1563      if (LoopVar->isInvalidDecl())
1564        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1565    }
1566  } else {
1567    // The range is implicitly used as a placeholder when it is dependent.
1568    RangeVar->setUsed();
1569  }
1570
1571  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1572                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1573                                             NotEqExpr.take(), IncrExpr.take(),
1574                                             LoopVarDS, /*Body=*/0, ForLoc,
1575                                             ColonLoc, RParenLoc));
1576}
1577
1578/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1579/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1580/// body cannot be performed until after the type of the range variable is
1581/// determined.
1582StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1583  if (!S || !B)
1584    return StmtError();
1585
1586  cast<CXXForRangeStmt>(S)->setBody(B);
1587  return S;
1588}
1589
1590StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1591                               SourceLocation LabelLoc,
1592                               LabelDecl *TheDecl) {
1593  getCurFunction()->setHasBranchIntoScope();
1594  TheDecl->setUsed();
1595  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1596}
1597
1598StmtResult
1599Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1600                            Expr *E) {
1601  // Convert operand to void*
1602  if (!E->isTypeDependent()) {
1603    QualType ETy = E->getType();
1604    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1605    ExprResult ExprRes = Owned(E);
1606    AssignConvertType ConvTy =
1607      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1608    if (ExprRes.isInvalid())
1609      return StmtError();
1610    E = ExprRes.take();
1611    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1612      return StmtError();
1613  }
1614
1615  getCurFunction()->setHasIndirectGoto();
1616
1617  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1618}
1619
1620StmtResult
1621Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1622  Scope *S = CurScope->getContinueParent();
1623  if (!S) {
1624    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1625    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1626  }
1627
1628  return Owned(new (Context) ContinueStmt(ContinueLoc));
1629}
1630
1631StmtResult
1632Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1633  Scope *S = CurScope->getBreakParent();
1634  if (!S) {
1635    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1636    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1637  }
1638
1639  return Owned(new (Context) BreakStmt(BreakLoc));
1640}
1641
1642/// \brief Determine whether the given expression is a candidate for
1643/// copy elision in either a return statement or a throw expression.
1644///
1645/// \param ReturnType If we're determining the copy elision candidate for
1646/// a return statement, this is the return type of the function. If we're
1647/// determining the copy elision candidate for a throw expression, this will
1648/// be a NULL type.
1649///
1650/// \param E The expression being returned from the function or block, or
1651/// being thrown.
1652///
1653/// \param AllowFunctionParameter Whether we allow function parameters to
1654/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1655/// we re-use this logic to determine whether we should try to move as part of
1656/// a return or throw (which does allow function parameters).
1657///
1658/// \returns The NRVO candidate variable, if the return statement may use the
1659/// NRVO, or NULL if there is no such candidate.
1660const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1661                                             Expr *E,
1662                                             bool AllowFunctionParameter) {
1663  QualType ExprType = E->getType();
1664  // - in a return statement in a function with ...
1665  // ... a class return type ...
1666  if (!ReturnType.isNull()) {
1667    if (!ReturnType->isRecordType())
1668      return 0;
1669    // ... the same cv-unqualified type as the function return type ...
1670    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1671      return 0;
1672  }
1673
1674  // ... the expression is the name of a non-volatile automatic object
1675  // (other than a function or catch-clause parameter)) ...
1676  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1677  if (!DR)
1678    return 0;
1679  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1680  if (!VD)
1681    return 0;
1682
1683  // ...object (other than a function or catch-clause parameter)...
1684  if (VD->getKind() != Decl::Var &&
1685      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
1686    return 0;
1687  if (VD->isExceptionVariable()) return 0;
1688
1689  // ...automatic...
1690  if (!VD->hasLocalStorage()) return 0;
1691
1692  // ...non-volatile...
1693  if (VD->getType().isVolatileQualified()) return 0;
1694  if (VD->getType()->isReferenceType()) return 0;
1695
1696  // __block variables can't be allocated in a way that permits NRVO.
1697  if (VD->hasAttr<BlocksAttr>()) return 0;
1698
1699  // Variables with higher required alignment than their type's ABI
1700  // alignment cannot use NRVO.
1701  if (VD->hasAttr<AlignedAttr>() &&
1702      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
1703    return 0;
1704
1705  return VD;
1706}
1707
1708/// \brief Perform the initialization of a potentially-movable value, which
1709/// is the result of return value.
1710///
1711/// This routine implements C++0x [class.copy]p33, which attempts to treat
1712/// returned lvalues as rvalues in certain cases (to prefer move construction),
1713/// then falls back to treating them as lvalues if that failed.
1714ExprResult
1715Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1716                                      const VarDecl *NRVOCandidate,
1717                                      QualType ResultType,
1718                                      Expr *Value,
1719                                      bool AllowNRVO) {
1720  // C++0x [class.copy]p33:
1721  //   When the criteria for elision of a copy operation are met or would
1722  //   be met save for the fact that the source object is a function
1723  //   parameter, and the object to be copied is designated by an lvalue,
1724  //   overload resolution to select the constructor for the copy is first
1725  //   performed as if the object were designated by an rvalue.
1726  ExprResult Res = ExprError();
1727  if (AllowNRVO &&
1728      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1729    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1730                              Value->getType(), CK_LValueToRValue,
1731                              Value, VK_XValue);
1732
1733    Expr *InitExpr = &AsRvalue;
1734    InitializationKind Kind
1735      = InitializationKind::CreateCopy(Value->getLocStart(),
1736                                       Value->getLocStart());
1737    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1738
1739    //   [...] If overload resolution fails, or if the type of the first
1740    //   parameter of the selected constructor is not an rvalue reference
1741    //   to the object's type (possibly cv-qualified), overload resolution
1742    //   is performed again, considering the object as an lvalue.
1743    if (Seq) {
1744      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1745           StepEnd = Seq.step_end();
1746           Step != StepEnd; ++Step) {
1747        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1748          continue;
1749
1750        CXXConstructorDecl *Constructor
1751        = cast<CXXConstructorDecl>(Step->Function.Function);
1752
1753        const RValueReferenceType *RRefType
1754          = Constructor->getParamDecl(0)->getType()
1755                                                 ->getAs<RValueReferenceType>();
1756
1757        // If we don't meet the criteria, break out now.
1758        if (!RRefType ||
1759            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1760                            Context.getTypeDeclType(Constructor->getParent())))
1761          break;
1762
1763        // Promote "AsRvalue" to the heap, since we now need this
1764        // expression node to persist.
1765        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1766                                         CK_LValueToRValue, Value, 0,
1767                                         VK_XValue);
1768
1769        // Complete type-checking the initialization of the return type
1770        // using the constructor we found.
1771        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1772      }
1773    }
1774  }
1775
1776  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1777  // above, or overload resolution failed. Either way, we need to try
1778  // (again) now with the return value expression as written.
1779  if (Res.isInvalid())
1780    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1781
1782  return Res;
1783}
1784
1785/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1786///
1787StmtResult
1788Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1789  // If this is the first return we've seen in the block, infer the type of
1790  // the block from it.
1791  BlockScopeInfo *CurBlock = getCurBlock();
1792  if (CurBlock->TheDecl->blockMissingReturnType()) {
1793    QualType BlockReturnT;
1794    if (RetValExp) {
1795      // Don't call UsualUnaryConversions(), since we don't want to do
1796      // integer promotions here.
1797      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1798      if (Result.isInvalid())
1799        return StmtError();
1800      RetValExp = Result.take();
1801
1802      if (!RetValExp->isTypeDependent()) {
1803        BlockReturnT = RetValExp->getType();
1804        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1805          // We have to remove a 'const' added to copied-in variable which was
1806          // part of the implementation spec. and not the actual qualifier for
1807          // the variable.
1808          if (CDRE->isConstQualAdded())
1809            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1810        }
1811      } else
1812        BlockReturnT = Context.DependentTy;
1813    } else
1814        BlockReturnT = Context.VoidTy;
1815    if (!CurBlock->ReturnType.isNull() && !CurBlock->ReturnType->isDependentType()
1816        && !BlockReturnT->isDependentType()
1817        // when block's return type is not specified, all return types
1818        // must strictly match.
1819        && !Context.hasSameType(BlockReturnT, CurBlock->ReturnType)) {
1820        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
1821            << BlockReturnT << CurBlock->ReturnType;
1822        return StmtError();
1823    }
1824    CurBlock->ReturnType = BlockReturnT;
1825  }
1826  QualType FnRetType = CurBlock->ReturnType;
1827
1828  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1829    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
1830    return StmtError();
1831  }
1832
1833  // Otherwise, verify that this result type matches the previous one.  We are
1834  // pickier with blocks than for normal functions because we don't have GCC
1835  // compatibility to worry about here.
1836  const VarDecl *NRVOCandidate = 0;
1837  if (FnRetType->isDependentType()) {
1838    // Delay processing for now.  TODO: there are lots of dependent
1839    // types we can conclusively prove aren't void.
1840  } else if (FnRetType->isVoidType()) {
1841    if (RetValExp &&
1842        !(getLangOptions().CPlusPlus &&
1843          (RetValExp->isTypeDependent() ||
1844           RetValExp->getType()->isVoidType()))) {
1845      Diag(ReturnLoc, diag::err_return_block_has_expr);
1846      RetValExp = 0;
1847    }
1848  } else if (!RetValExp) {
1849    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1850  } else if (!RetValExp->isTypeDependent()) {
1851    // we have a non-void block with an expression, continue checking
1852
1853    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1854    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1855    // function return.
1856
1857    // In C++ the return statement is handled via a copy initialization.
1858    // the C version of which boils down to CheckSingleAssignmentConstraints.
1859    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1860    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1861                                                                   FnRetType,
1862                                                          NRVOCandidate != 0);
1863    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1864                                                     FnRetType, RetValExp);
1865    if (Res.isInvalid()) {
1866      // FIXME: Cleanup temporaries here, anyway?
1867      return StmtError();
1868    }
1869    RetValExp = Res.take();
1870    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1871  }
1872
1873  if (RetValExp) {
1874    CheckImplicitConversions(RetValExp, ReturnLoc);
1875    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1876  }
1877  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1878                                                NRVOCandidate);
1879
1880  // If we need to check for the named return value optimization, save the
1881  // return statement in our scope for later processing.
1882  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1883      !CurContext->isDependentContext())
1884    FunctionScopes.back()->Returns.push_back(Result);
1885
1886  return Owned(Result);
1887}
1888
1889StmtResult
1890Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1891  // Check for unexpanded parameter packs.
1892  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1893    return StmtError();
1894
1895  if (getCurBlock())
1896    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1897
1898  QualType FnRetType;
1899  QualType DeclaredRetType;
1900  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1901    FnRetType = FD->getResultType();
1902    DeclaredRetType = FnRetType;
1903    if (FD->hasAttr<NoReturnAttr>() ||
1904        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1905      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1906        << FD->getDeclName();
1907  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1908    DeclaredRetType = MD->getResultType();
1909    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1910      // In the implementation of a method with a related return type, the
1911      // type used to type-check the validity of return statements within the
1912      // method body is a pointer to the type of the class being implemented.
1913      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1914      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1915    } else {
1916      FnRetType = DeclaredRetType;
1917    }
1918  } else // If we don't have a function/method context, bail.
1919    return StmtError();
1920
1921  ReturnStmt *Result = 0;
1922  if (FnRetType->isVoidType()) {
1923    if (RetValExp) {
1924      if (!RetValExp->isTypeDependent()) {
1925        // C99 6.8.6.4p1 (ext_ since GCC warns)
1926        unsigned D = diag::ext_return_has_expr;
1927        if (RetValExp->getType()->isVoidType())
1928          D = diag::ext_return_has_void_expr;
1929        else {
1930          ExprResult Result = Owned(RetValExp);
1931          Result = IgnoredValueConversions(Result.take());
1932          if (Result.isInvalid())
1933            return StmtError();
1934          RetValExp = Result.take();
1935          RetValExp = ImpCastExprToType(RetValExp,
1936                                        Context.VoidTy, CK_ToVoid).take();
1937        }
1938
1939        // return (some void expression); is legal in C++.
1940        if (D != diag::ext_return_has_void_expr ||
1941            !getLangOptions().CPlusPlus) {
1942          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1943
1944          int FunctionKind = 0;
1945          if (isa<ObjCMethodDecl>(CurDecl))
1946            FunctionKind = 1;
1947          else if (isa<CXXConstructorDecl>(CurDecl))
1948            FunctionKind = 2;
1949          else if (isa<CXXDestructorDecl>(CurDecl))
1950            FunctionKind = 3;
1951
1952          Diag(ReturnLoc, D)
1953            << CurDecl->getDeclName() << FunctionKind
1954            << RetValExp->getSourceRange();
1955        }
1956      }
1957
1958      CheckImplicitConversions(RetValExp, ReturnLoc);
1959      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1960    }
1961
1962    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1963  } else if (!RetValExp && !FnRetType->isDependentType()) {
1964    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1965    // C99 6.8.6.4p1 (ext_ since GCC warns)
1966    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1967
1968    if (FunctionDecl *FD = getCurFunctionDecl())
1969      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1970    else
1971      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1972    Result = new (Context) ReturnStmt(ReturnLoc);
1973  } else {
1974    const VarDecl *NRVOCandidate = 0;
1975    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1976      // we have a non-void function with an expression, continue checking
1977
1978      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1979      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1980      // function return.
1981
1982      // In C++ the return statement is handled via a copy initialization,
1983      // the C version of which boils down to CheckSingleAssignmentConstraints.
1984      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1985      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1986                                                                     FnRetType,
1987                                                            NRVOCandidate != 0);
1988      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1989                                                       FnRetType, RetValExp);
1990      if (Res.isInvalid()) {
1991        // FIXME: Cleanup temporaries here, anyway?
1992        return StmtError();
1993      }
1994
1995      RetValExp = Res.takeAs<Expr>();
1996      if (RetValExp)
1997        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1998    }
1999
2000    if (RetValExp) {
2001      // If we type-checked an Objective-C method's return type based
2002      // on a related return type, we may need to adjust the return
2003      // type again. Do so now.
2004      if (DeclaredRetType != FnRetType) {
2005        ExprResult result = PerformImplicitConversion(RetValExp,
2006                                                      DeclaredRetType,
2007                                                      AA_Returning);
2008        if (result.isInvalid()) return StmtError();
2009        RetValExp = result.take();
2010      }
2011
2012      CheckImplicitConversions(RetValExp, ReturnLoc);
2013      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2014    }
2015    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2016  }
2017
2018  // If we need to check for the named return value optimization, save the
2019  // return statement in our scope for later processing.
2020  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
2021      !CurContext->isDependentContext())
2022    FunctionScopes.back()->Returns.push_back(Result);
2023
2024  return Owned(Result);
2025}
2026
2027/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2028/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2029/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2030/// provide a strong guidance to not use it.
2031///
2032/// This method checks to see if the argument is an acceptable l-value and
2033/// returns false if it is a case we can handle.
2034static bool CheckAsmLValue(const Expr *E, Sema &S) {
2035  // Type dependent expressions will be checked during instantiation.
2036  if (E->isTypeDependent())
2037    return false;
2038
2039  if (E->isLValue())
2040    return false;  // Cool, this is an lvalue.
2041
2042  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2043  // are supposed to allow.
2044  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2045  if (E != E2 && E2->isLValue()) {
2046    if (!S.getLangOptions().HeinousExtensions)
2047      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2048        << E->getSourceRange();
2049    else
2050      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2051        << E->getSourceRange();
2052    // Accept, even if we emitted an error diagnostic.
2053    return false;
2054  }
2055
2056  // None of the above, just randomly invalid non-lvalue.
2057  return true;
2058}
2059
2060/// isOperandMentioned - Return true if the specified operand # is mentioned
2061/// anywhere in the decomposed asm string.
2062static bool isOperandMentioned(unsigned OpNo,
2063                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2064  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2065    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2066    if (!Piece.isOperand()) continue;
2067
2068    // If this is a reference to the input and if the input was the smaller
2069    // one, then we have to reject this asm.
2070    if (Piece.getOperandNo() == OpNo)
2071      return true;
2072  }
2073
2074  return false;
2075}
2076
2077StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2078                              bool IsVolatile, unsigned NumOutputs,
2079                              unsigned NumInputs, IdentifierInfo **Names,
2080                              MultiExprArg constraints, MultiExprArg exprs,
2081                              Expr *asmString, MultiExprArg clobbers,
2082                              SourceLocation RParenLoc, bool MSAsm) {
2083  unsigned NumClobbers = clobbers.size();
2084  StringLiteral **Constraints =
2085    reinterpret_cast<StringLiteral**>(constraints.get());
2086  Expr **Exprs = exprs.get();
2087  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2088  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2089
2090  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2091
2092  // The parser verifies that there is a string literal here.
2093  if (!AsmString->isAscii())
2094    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2095      << AsmString->getSourceRange());
2096
2097  for (unsigned i = 0; i != NumOutputs; i++) {
2098    StringLiteral *Literal = Constraints[i];
2099    if (!Literal->isAscii())
2100      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2101        << Literal->getSourceRange());
2102
2103    StringRef OutputName;
2104    if (Names[i])
2105      OutputName = Names[i]->getName();
2106
2107    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2108    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2109      return StmtError(Diag(Literal->getLocStart(),
2110                            diag::err_asm_invalid_output_constraint)
2111                       << Info.getConstraintStr());
2112
2113    // Check that the output exprs are valid lvalues.
2114    Expr *OutputExpr = Exprs[i];
2115    if (CheckAsmLValue(OutputExpr, *this)) {
2116      return StmtError(Diag(OutputExpr->getLocStart(),
2117                  diag::err_asm_invalid_lvalue_in_output)
2118        << OutputExpr->getSourceRange());
2119    }
2120
2121    OutputConstraintInfos.push_back(Info);
2122  }
2123
2124  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2125
2126  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2127    StringLiteral *Literal = Constraints[i];
2128    if (!Literal->isAscii())
2129      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2130        << Literal->getSourceRange());
2131
2132    StringRef InputName;
2133    if (Names[i])
2134      InputName = Names[i]->getName();
2135
2136    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2137    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2138                                                NumOutputs, Info)) {
2139      return StmtError(Diag(Literal->getLocStart(),
2140                            diag::err_asm_invalid_input_constraint)
2141                       << Info.getConstraintStr());
2142    }
2143
2144    Expr *InputExpr = Exprs[i];
2145
2146    // Only allow void types for memory constraints.
2147    if (Info.allowsMemory() && !Info.allowsRegister()) {
2148      if (CheckAsmLValue(InputExpr, *this))
2149        return StmtError(Diag(InputExpr->getLocStart(),
2150                              diag::err_asm_invalid_lvalue_in_input)
2151                         << Info.getConstraintStr()
2152                         << InputExpr->getSourceRange());
2153    }
2154
2155    if (Info.allowsRegister()) {
2156      if (InputExpr->getType()->isVoidType()) {
2157        return StmtError(Diag(InputExpr->getLocStart(),
2158                              diag::err_asm_invalid_type_in_input)
2159          << InputExpr->getType() << Info.getConstraintStr()
2160          << InputExpr->getSourceRange());
2161      }
2162    }
2163
2164    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2165    if (Result.isInvalid())
2166      return StmtError();
2167
2168    Exprs[i] = Result.take();
2169    InputConstraintInfos.push_back(Info);
2170  }
2171
2172  // Check that the clobbers are valid.
2173  for (unsigned i = 0; i != NumClobbers; i++) {
2174    StringLiteral *Literal = Clobbers[i];
2175    if (!Literal->isAscii())
2176      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2177        << Literal->getSourceRange());
2178
2179    StringRef Clobber = Literal->getString();
2180
2181    if (!Context.getTargetInfo().isValidClobber(Clobber))
2182      return StmtError(Diag(Literal->getLocStart(),
2183                  diag::err_asm_unknown_register_name) << Clobber);
2184  }
2185
2186  AsmStmt *NS =
2187    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2188                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2189                          AsmString, NumClobbers, Clobbers, RParenLoc);
2190  // Validate the asm string, ensuring it makes sense given the operands we
2191  // have.
2192  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2193  unsigned DiagOffs;
2194  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2195    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2196           << AsmString->getSourceRange();
2197    return StmtError();
2198  }
2199
2200  // Validate tied input operands for type mismatches.
2201  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2202    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2203
2204    // If this is a tied constraint, verify that the output and input have
2205    // either exactly the same type, or that they are int/ptr operands with the
2206    // same size (int/long, int*/long, are ok etc).
2207    if (!Info.hasTiedOperand()) continue;
2208
2209    unsigned TiedTo = Info.getTiedOperand();
2210    unsigned InputOpNo = i+NumOutputs;
2211    Expr *OutputExpr = Exprs[TiedTo];
2212    Expr *InputExpr = Exprs[InputOpNo];
2213
2214    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2215      continue;
2216
2217    QualType InTy = InputExpr->getType();
2218    QualType OutTy = OutputExpr->getType();
2219    if (Context.hasSameType(InTy, OutTy))
2220      continue;  // All types can be tied to themselves.
2221
2222    // Decide if the input and output are in the same domain (integer/ptr or
2223    // floating point.
2224    enum AsmDomain {
2225      AD_Int, AD_FP, AD_Other
2226    } InputDomain, OutputDomain;
2227
2228    if (InTy->isIntegerType() || InTy->isPointerType())
2229      InputDomain = AD_Int;
2230    else if (InTy->isRealFloatingType())
2231      InputDomain = AD_FP;
2232    else
2233      InputDomain = AD_Other;
2234
2235    if (OutTy->isIntegerType() || OutTy->isPointerType())
2236      OutputDomain = AD_Int;
2237    else if (OutTy->isRealFloatingType())
2238      OutputDomain = AD_FP;
2239    else
2240      OutputDomain = AD_Other;
2241
2242    // They are ok if they are the same size and in the same domain.  This
2243    // allows tying things like:
2244    //   void* to int*
2245    //   void* to int            if they are the same size.
2246    //   double to long double   if they are the same size.
2247    //
2248    uint64_t OutSize = Context.getTypeSize(OutTy);
2249    uint64_t InSize = Context.getTypeSize(InTy);
2250    if (OutSize == InSize && InputDomain == OutputDomain &&
2251        InputDomain != AD_Other)
2252      continue;
2253
2254    // If the smaller input/output operand is not mentioned in the asm string,
2255    // then we can promote the smaller one to a larger input and the asm string
2256    // won't notice.
2257    bool SmallerValueMentioned = false;
2258
2259    // If this is a reference to the input and if the input was the smaller
2260    // one, then we have to reject this asm.
2261    if (isOperandMentioned(InputOpNo, Pieces)) {
2262      // This is a use in the asm string of the smaller operand.  Since we
2263      // codegen this by promoting to a wider value, the asm will get printed
2264      // "wrong".
2265      SmallerValueMentioned |= InSize < OutSize;
2266    }
2267    if (isOperandMentioned(TiedTo, Pieces)) {
2268      // If this is a reference to the output, and if the output is the larger
2269      // value, then it's ok because we'll promote the input to the larger type.
2270      SmallerValueMentioned |= OutSize < InSize;
2271    }
2272
2273    // If the smaller value wasn't mentioned in the asm string, and if the
2274    // output was a register, just extend the shorter one to the size of the
2275    // larger one.
2276    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2277        OutputConstraintInfos[TiedTo].allowsRegister())
2278      continue;
2279
2280    // Either both of the operands were mentioned or the smaller one was
2281    // mentioned.  One more special case that we'll allow: if the tied input is
2282    // integer, unmentioned, and is a constant, then we'll allow truncating it
2283    // down to the size of the destination.
2284    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2285        !isOperandMentioned(InputOpNo, Pieces) &&
2286        InputExpr->isEvaluatable(Context)) {
2287      CastKind castKind =
2288        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2289      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2290      Exprs[InputOpNo] = InputExpr;
2291      NS->setInputExpr(i, InputExpr);
2292      continue;
2293    }
2294
2295    Diag(InputExpr->getLocStart(),
2296         diag::err_asm_tying_incompatible_types)
2297      << InTy << OutTy << OutputExpr->getSourceRange()
2298      << InputExpr->getSourceRange();
2299    return StmtError();
2300  }
2301
2302  return Owned(NS);
2303}
2304
2305StmtResult
2306Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2307                           SourceLocation RParen, Decl *Parm,
2308                           Stmt *Body) {
2309  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2310  if (Var && Var->isInvalidDecl())
2311    return StmtError();
2312
2313  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2314}
2315
2316StmtResult
2317Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2318  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2319}
2320
2321StmtResult
2322Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2323                         MultiStmtArg CatchStmts, Stmt *Finally) {
2324  if (!getLangOptions().ObjCExceptions)
2325    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2326
2327  getCurFunction()->setHasBranchProtectedScope();
2328  unsigned NumCatchStmts = CatchStmts.size();
2329  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2330                                     CatchStmts.release(),
2331                                     NumCatchStmts,
2332                                     Finally));
2333}
2334
2335StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2336                                                  Expr *Throw) {
2337  if (Throw) {
2338    Throw = MaybeCreateExprWithCleanups(Throw);
2339    ExprResult Result = DefaultLvalueConversion(Throw);
2340    if (Result.isInvalid())
2341      return StmtError();
2342
2343    Throw = Result.take();
2344    QualType ThrowType = Throw->getType();
2345    // Make sure the expression type is an ObjC pointer or "void *".
2346    if (!ThrowType->isDependentType() &&
2347        !ThrowType->isObjCObjectPointerType()) {
2348      const PointerType *PT = ThrowType->getAs<PointerType>();
2349      if (!PT || !PT->getPointeeType()->isVoidType())
2350        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2351                         << Throw->getType() << Throw->getSourceRange());
2352    }
2353  }
2354
2355  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2356}
2357
2358StmtResult
2359Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2360                           Scope *CurScope) {
2361  if (!getLangOptions().ObjCExceptions)
2362    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2363
2364  if (!Throw) {
2365    // @throw without an expression designates a rethrow (which much occur
2366    // in the context of an @catch clause).
2367    Scope *AtCatchParent = CurScope;
2368    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2369      AtCatchParent = AtCatchParent->getParent();
2370    if (!AtCatchParent)
2371      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2372  }
2373
2374  return BuildObjCAtThrowStmt(AtLoc, Throw);
2375}
2376
2377ExprResult
2378Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2379  ExprResult result = DefaultLvalueConversion(operand);
2380  if (result.isInvalid())
2381    return ExprError();
2382  operand = result.take();
2383
2384  // Make sure the expression type is an ObjC pointer or "void *".
2385  QualType type = operand->getType();
2386  if (!type->isDependentType() &&
2387      !type->isObjCObjectPointerType()) {
2388    const PointerType *pointerType = type->getAs<PointerType>();
2389    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2390      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2391               << type << operand->getSourceRange();
2392  }
2393
2394  // The operand to @synchronized is a full-expression.
2395  return MaybeCreateExprWithCleanups(operand);
2396}
2397
2398StmtResult
2399Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2400                                  Stmt *SyncBody) {
2401  // We can't jump into or indirect-jump out of a @synchronized block.
2402  getCurFunction()->setHasBranchProtectedScope();
2403  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2404}
2405
2406/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2407/// and creates a proper catch handler from them.
2408StmtResult
2409Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2410                         Stmt *HandlerBlock) {
2411  // There's nothing to test that ActOnExceptionDecl didn't already test.
2412  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2413                                          cast_or_null<VarDecl>(ExDecl),
2414                                          HandlerBlock));
2415}
2416
2417StmtResult
2418Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2419  getCurFunction()->setHasBranchProtectedScope();
2420  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2421}
2422
2423namespace {
2424
2425class TypeWithHandler {
2426  QualType t;
2427  CXXCatchStmt *stmt;
2428public:
2429  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2430  : t(type), stmt(statement) {}
2431
2432  // An arbitrary order is fine as long as it places identical
2433  // types next to each other.
2434  bool operator<(const TypeWithHandler &y) const {
2435    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2436      return true;
2437    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2438      return false;
2439    else
2440      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2441  }
2442
2443  bool operator==(const TypeWithHandler& other) const {
2444    return t == other.t;
2445  }
2446
2447  CXXCatchStmt *getCatchStmt() const { return stmt; }
2448  SourceLocation getTypeSpecStartLoc() const {
2449    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2450  }
2451};
2452
2453}
2454
2455/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2456/// handlers and creates a try statement from them.
2457StmtResult
2458Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2459                       MultiStmtArg RawHandlers) {
2460  // Don't report an error if 'try' is used in system headers.
2461  if (!getLangOptions().CXXExceptions &&
2462      !getSourceManager().isInSystemHeader(TryLoc))
2463      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2464
2465  unsigned NumHandlers = RawHandlers.size();
2466  assert(NumHandlers > 0 &&
2467         "The parser shouldn't call this if there are no handlers.");
2468  Stmt **Handlers = RawHandlers.get();
2469
2470  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2471
2472  for (unsigned i = 0; i < NumHandlers; ++i) {
2473    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2474    if (!Handler->getExceptionDecl()) {
2475      if (i < NumHandlers - 1)
2476        return StmtError(Diag(Handler->getLocStart(),
2477                              diag::err_early_catch_all));
2478
2479      continue;
2480    }
2481
2482    const QualType CaughtType = Handler->getCaughtType();
2483    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2484    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2485  }
2486
2487  // Detect handlers for the same type as an earlier one.
2488  if (NumHandlers > 1) {
2489    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2490
2491    TypeWithHandler prev = TypesWithHandlers[0];
2492    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2493      TypeWithHandler curr = TypesWithHandlers[i];
2494
2495      if (curr == prev) {
2496        Diag(curr.getTypeSpecStartLoc(),
2497             diag::warn_exception_caught_by_earlier_handler)
2498          << curr.getCatchStmt()->getCaughtType().getAsString();
2499        Diag(prev.getTypeSpecStartLoc(),
2500             diag::note_previous_exception_handler)
2501          << prev.getCatchStmt()->getCaughtType().getAsString();
2502      }
2503
2504      prev = curr;
2505    }
2506  }
2507
2508  getCurFunction()->setHasBranchProtectedScope();
2509
2510  // FIXME: We should detect handlers that cannot catch anything because an
2511  // earlier handler catches a superclass. Need to find a method that is not
2512  // quadratic for this.
2513  // Neither of these are explicitly forbidden, but every compiler detects them
2514  // and warns.
2515
2516  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2517                                  Handlers, NumHandlers));
2518}
2519
2520StmtResult
2521Sema::ActOnSEHTryBlock(bool IsCXXTry,
2522                       SourceLocation TryLoc,
2523                       Stmt *TryBlock,
2524                       Stmt *Handler) {
2525  assert(TryBlock && Handler);
2526
2527  getCurFunction()->setHasBranchProtectedScope();
2528
2529  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2530}
2531
2532StmtResult
2533Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2534                          Expr *FilterExpr,
2535                          Stmt *Block) {
2536  assert(FilterExpr && Block);
2537
2538  if(!FilterExpr->getType()->isIntegerType()) {
2539    return StmtError(Diag(FilterExpr->getExprLoc(),
2540                     diag::err_filter_expression_integral)
2541                     << FilterExpr->getType());
2542  }
2543
2544  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2545}
2546
2547StmtResult
2548Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2549                           Stmt *Block) {
2550  assert(Block);
2551  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2552}
2553
2554StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2555                                            bool IsIfExists,
2556                                            NestedNameSpecifierLoc QualifierLoc,
2557                                            DeclarationNameInfo NameInfo,
2558                                            Stmt *Nested)
2559{
2560  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2561                                             QualifierLoc, NameInfo,
2562                                             cast<CompoundStmt>(Nested));
2563}
2564
2565
2566StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2567                                            bool IsIfExists,
2568                                            CXXScopeSpec &SS,
2569                                            UnqualifiedId &Name,
2570                                            Stmt *Nested) {
2571  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2572                                    SS.getWithLocInContext(Context),
2573                                    GetNameFromUnqualifiedId(Name),
2574                                    Nested);
2575}
2576