SemaStmt.cpp revision e696b6924d14b0e0590b5d923ca1646e6f67ac40
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/SmallVector.h"
35using namespace clang;
36using namespace sema;
37
38StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
39  Expr *E = expr.get();
40  if (!E) // FIXME: FullExprArg has no error state?
41    return StmtError();
42
43  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
44  // void expression for its side effects.  Conversion to void allows any
45  // operand, even incomplete types.
46
47  // Same thing in for stmt first clause (when expr) and third clause.
48  return Owned(static_cast<Stmt*>(E));
49}
50
51
52StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
53                               bool HasLeadingEmptyMacro) {
54  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
55}
56
57StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
58                               SourceLocation EndLoc) {
59  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
60
61  // If we have an invalid decl, just return an error.
62  if (DG.isNull()) return StmtError();
63
64  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
65}
66
67void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
68  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
69
70  // If we have an invalid decl, just return.
71  if (DG.isNull() || !DG.isSingleDecl()) return;
72  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
73
74  // suppress any potential 'unused variable' warning.
75  var->setUsed();
76
77  // foreach variables are never actually initialized in the way that
78  // the parser came up with.
79  var->setInit(0);
80
81  // In ARC, we don't need to retain the iteration variable of a fast
82  // enumeration loop.  Rather than actually trying to catch that
83  // during declaration processing, we remove the consequences here.
84  if (getLangOpts().ObjCAutoRefCount) {
85    QualType type = var->getType();
86
87    // Only do this if we inferred the lifetime.  Inferred lifetime
88    // will show up as a local qualifier because explicit lifetime
89    // should have shown up as an AttributedType instead.
90    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
91      // Add 'const' and mark the variable as pseudo-strong.
92      var->setType(type.withConst());
93      var->setARCPseudoStrong(true);
94    }
95  }
96}
97
98/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
99///
100/// Adding a cast to void (or other expression wrappers) will prevent the
101/// warning from firing.
102static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
103  SourceLocation Loc;
104  bool IsNotEqual, CanAssign;
105
106  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
107    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
108      return false;
109
110    Loc = Op->getOperatorLoc();
111    IsNotEqual = Op->getOpcode() == BO_NE;
112    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
113  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
114    if (Op->getOperator() != OO_EqualEqual &&
115        Op->getOperator() != OO_ExclaimEqual)
116      return false;
117
118    Loc = Op->getOperatorLoc();
119    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
120    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
121  } else {
122    // Not a typo-prone comparison.
123    return false;
124  }
125
126  // Suppress warnings when the operator, suspicious as it may be, comes from
127  // a macro expansion.
128  if (Loc.isMacroID())
129    return false;
130
131  S.Diag(Loc, diag::warn_unused_comparison)
132    << (unsigned)IsNotEqual << E->getSourceRange();
133
134  // If the LHS is a plausible entity to assign to, provide a fixit hint to
135  // correct common typos.
136  if (CanAssign) {
137    if (IsNotEqual)
138      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
139        << FixItHint::CreateReplacement(Loc, "|=");
140    else
141      S.Diag(Loc, diag::note_equality_comparison_to_assign)
142        << FixItHint::CreateReplacement(Loc, "=");
143  }
144
145  return true;
146}
147
148void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
149  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
150    return DiagnoseUnusedExprResult(Label->getSubStmt());
151
152  const Expr *E = dyn_cast_or_null<Expr>(S);
153  if (!E)
154    return;
155
156  const Expr *WarnExpr;
157  SourceLocation Loc;
158  SourceRange R1, R2;
159  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
160      !E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
161    return;
162
163  // Okay, we have an unused result.  Depending on what the base expression is,
164  // we might want to make a more specific diagnostic.  Check for one of these
165  // cases now.
166  unsigned DiagID = diag::warn_unused_expr;
167  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
168    E = Temps->getSubExpr();
169  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
170    E = TempExpr->getSubExpr();
171
172  if (DiagnoseUnusedComparison(*this, E))
173    return;
174
175  E = WarnExpr;
176  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
177    if (E->getType()->isVoidType())
178      return;
179
180    // If the callee has attribute pure, const, or warn_unused_result, warn with
181    // a more specific message to make it clear what is happening.
182    if (const Decl *FD = CE->getCalleeDecl()) {
183      if (FD->getAttr<WarnUnusedResultAttr>()) {
184        Diag(Loc, diag::warn_unused_result) << R1 << R2;
185        return;
186      }
187      if (FD->getAttr<PureAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
189        return;
190      }
191      if (FD->getAttr<ConstAttr>()) {
192        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
193        return;
194      }
195    }
196  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
197    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
198      Diag(Loc, diag::err_arc_unused_init_message) << R1;
199      return;
200    }
201    const ObjCMethodDecl *MD = ME->getMethodDecl();
202    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
203      Diag(Loc, diag::warn_unused_result) << R1 << R2;
204      return;
205    }
206  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
207    const Expr *Source = POE->getSyntacticForm();
208    if (isa<ObjCSubscriptRefExpr>(Source))
209      DiagID = diag::warn_unused_container_subscript_expr;
210    else
211      DiagID = diag::warn_unused_property_expr;
212  } else if (const CXXFunctionalCastExpr *FC
213                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
214    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
215        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
216      return;
217  }
218  // Diagnose "(void*) blah" as a typo for "(void) blah".
219  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
220    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
221    QualType T = TI->getType();
222
223    // We really do want to use the non-canonical type here.
224    if (T == Context.VoidPtrTy) {
225      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
226
227      Diag(Loc, diag::warn_unused_voidptr)
228        << FixItHint::CreateRemoval(TL.getStarLoc());
229      return;
230    }
231  }
232
233  if (E->isGLValue() && E->getType().isVolatileQualified()) {
234    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
235    return;
236  }
237
238  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
239}
240
241void Sema::ActOnStartOfCompoundStmt() {
242  PushCompoundScope();
243}
244
245void Sema::ActOnFinishOfCompoundStmt() {
246  PopCompoundScope();
247}
248
249sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
250  return getCurFunction()->CompoundScopes.back();
251}
252
253StmtResult
254Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
255                        MultiStmtArg elts, bool isStmtExpr) {
256  unsigned NumElts = elts.size();
257  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
258  // If we're in C89 mode, check that we don't have any decls after stmts.  If
259  // so, emit an extension diagnostic.
260  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
261    // Note that __extension__ can be around a decl.
262    unsigned i = 0;
263    // Skip over all declarations.
264    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
265      /*empty*/;
266
267    // We found the end of the list or a statement.  Scan for another declstmt.
268    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
269      /*empty*/;
270
271    if (i != NumElts) {
272      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
273      Diag(D->getLocation(), diag::ext_mixed_decls_code);
274    }
275  }
276  // Warn about unused expressions in statements.
277  for (unsigned i = 0; i != NumElts; ++i) {
278    // Ignore statements that are last in a statement expression.
279    if (isStmtExpr && i == NumElts - 1)
280      continue;
281
282    DiagnoseUnusedExprResult(Elts[i]);
283  }
284
285  // Check for suspicious empty body (null statement) in `for' and `while'
286  // statements.  Don't do anything for template instantiations, this just adds
287  // noise.
288  if (NumElts != 0 && !CurrentInstantiationScope &&
289      getCurCompoundScope().HasEmptyLoopBodies) {
290    for (unsigned i = 0; i != NumElts - 1; ++i)
291      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
292  }
293
294  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
295}
296
297StmtResult
298Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
299                    SourceLocation DotDotDotLoc, Expr *RHSVal,
300                    SourceLocation ColonLoc) {
301  assert((LHSVal != 0) && "missing expression in case statement");
302
303  if (getCurFunction()->SwitchStack.empty()) {
304    Diag(CaseLoc, diag::err_case_not_in_switch);
305    return StmtError();
306  }
307
308  if (!getLangOpts().CPlusPlus0x) {
309    // C99 6.8.4.2p3: The expression shall be an integer constant.
310    // However, GCC allows any evaluatable integer expression.
311    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
312      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
313      if (!LHSVal)
314        return StmtError();
315    }
316
317    // GCC extension: The expression shall be an integer constant.
318
319    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
320      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
321      // Recover from an error by just forgetting about it.
322    }
323  }
324
325  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
326                                        ColonLoc);
327  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
328  return Owned(CS);
329}
330
331/// ActOnCaseStmtBody - This installs a statement as the body of a case.
332void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
333  DiagnoseUnusedExprResult(SubStmt);
334
335  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
336  CS->setSubStmt(SubStmt);
337}
338
339StmtResult
340Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
341                       Stmt *SubStmt, Scope *CurScope) {
342  DiagnoseUnusedExprResult(SubStmt);
343
344  if (getCurFunction()->SwitchStack.empty()) {
345    Diag(DefaultLoc, diag::err_default_not_in_switch);
346    return Owned(SubStmt);
347  }
348
349  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
350  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
351  return Owned(DS);
352}
353
354StmtResult
355Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
356                     SourceLocation ColonLoc, Stmt *SubStmt) {
357  // If the label was multiply defined, reject it now.
358  if (TheDecl->getStmt()) {
359    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
360    Diag(TheDecl->getLocation(), diag::note_previous_definition);
361    return Owned(SubStmt);
362  }
363
364  // Otherwise, things are good.  Fill in the declaration and return it.
365  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
366  TheDecl->setStmt(LS);
367  if (!TheDecl->isGnuLocal())
368    TheDecl->setLocation(IdentLoc);
369  return Owned(LS);
370}
371
372StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
373                                     ArrayRef<const Attr*> Attrs,
374                                     Stmt *SubStmt) {
375  // Fill in the declaration and return it.
376  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
377  return Owned(LS);
378}
379
380StmtResult
381Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
382                  Stmt *thenStmt, SourceLocation ElseLoc,
383                  Stmt *elseStmt) {
384  ExprResult CondResult(CondVal.release());
385
386  VarDecl *ConditionVar = 0;
387  if (CondVar) {
388    ConditionVar = cast<VarDecl>(CondVar);
389    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
390    if (CondResult.isInvalid())
391      return StmtError();
392  }
393  Expr *ConditionExpr = CondResult.takeAs<Expr>();
394  if (!ConditionExpr)
395    return StmtError();
396
397  DiagnoseUnusedExprResult(thenStmt);
398
399  if (!elseStmt) {
400    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
401                          diag::warn_empty_if_body);
402  }
403
404  DiagnoseUnusedExprResult(elseStmt);
405
406  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
407                                    thenStmt, ElseLoc, elseStmt));
408}
409
410/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
411/// the specified width and sign.  If an overflow occurs, detect it and emit
412/// the specified diagnostic.
413void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
414                                              unsigned NewWidth, bool NewSign,
415                                              SourceLocation Loc,
416                                              unsigned DiagID) {
417  // Perform a conversion to the promoted condition type if needed.
418  if (NewWidth > Val.getBitWidth()) {
419    // If this is an extension, just do it.
420    Val = Val.extend(NewWidth);
421    Val.setIsSigned(NewSign);
422
423    // If the input was signed and negative and the output is
424    // unsigned, don't bother to warn: this is implementation-defined
425    // behavior.
426    // FIXME: Introduce a second, default-ignored warning for this case?
427  } else if (NewWidth < Val.getBitWidth()) {
428    // If this is a truncation, check for overflow.
429    llvm::APSInt ConvVal(Val);
430    ConvVal = ConvVal.trunc(NewWidth);
431    ConvVal.setIsSigned(NewSign);
432    ConvVal = ConvVal.extend(Val.getBitWidth());
433    ConvVal.setIsSigned(Val.isSigned());
434    if (ConvVal != Val)
435      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
436
437    // Regardless of whether a diagnostic was emitted, really do the
438    // truncation.
439    Val = Val.trunc(NewWidth);
440    Val.setIsSigned(NewSign);
441  } else if (NewSign != Val.isSigned()) {
442    // Convert the sign to match the sign of the condition.  This can cause
443    // overflow as well: unsigned(INTMIN)
444    // We don't diagnose this overflow, because it is implementation-defined
445    // behavior.
446    // FIXME: Introduce a second, default-ignored warning for this case?
447    llvm::APSInt OldVal(Val);
448    Val.setIsSigned(NewSign);
449  }
450}
451
452namespace {
453  struct CaseCompareFunctor {
454    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
455                    const llvm::APSInt &RHS) {
456      return LHS.first < RHS;
457    }
458    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
459                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
460      return LHS.first < RHS.first;
461    }
462    bool operator()(const llvm::APSInt &LHS,
463                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
464      return LHS < RHS.first;
465    }
466  };
467}
468
469/// CmpCaseVals - Comparison predicate for sorting case values.
470///
471static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
472                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
473  if (lhs.first < rhs.first)
474    return true;
475
476  if (lhs.first == rhs.first &&
477      lhs.second->getCaseLoc().getRawEncoding()
478       < rhs.second->getCaseLoc().getRawEncoding())
479    return true;
480  return false;
481}
482
483/// CmpEnumVals - Comparison predicate for sorting enumeration values.
484///
485static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
486                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
487{
488  return lhs.first < rhs.first;
489}
490
491/// EqEnumVals - Comparison preficate for uniqing enumeration values.
492///
493static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
494                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
495{
496  return lhs.first == rhs.first;
497}
498
499/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
500/// potentially integral-promoted expression @p expr.
501static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
502  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
503    expr = cleanups->getSubExpr();
504  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
505    if (impcast->getCastKind() != CK_IntegralCast) break;
506    expr = impcast->getSubExpr();
507  }
508  return expr->getType();
509}
510
511StmtResult
512Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
513                             Decl *CondVar) {
514  ExprResult CondResult;
515
516  VarDecl *ConditionVar = 0;
517  if (CondVar) {
518    ConditionVar = cast<VarDecl>(CondVar);
519    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
520    if (CondResult.isInvalid())
521      return StmtError();
522
523    Cond = CondResult.release();
524  }
525
526  if (!Cond)
527    return StmtError();
528
529  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
530    Expr *Cond;
531
532  public:
533    SwitchConvertDiagnoser(Expr *Cond)
534      : ICEConvertDiagnoser(false, true), Cond(Cond) { }
535
536    virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
537                                             QualType T) {
538      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
539    }
540
541    virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
542                                                 QualType T) {
543      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
544               << T << Cond->getSourceRange();
545    }
546
547    virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
548                                                   QualType T,
549                                                   QualType ConvTy) {
550      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
551    }
552
553    virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
554                                               QualType ConvTy) {
555      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
556        << ConvTy->isEnumeralType() << ConvTy;
557    }
558
559    virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
560                                                QualType T) {
561      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
562    }
563
564    virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
565                                            QualType ConvTy) {
566      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
567      << ConvTy->isEnumeralType() << ConvTy;
568    }
569
570    virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
571                                                 QualType T,
572                                                 QualType ConvTy) {
573      return DiagnosticBuilder::getEmpty();
574    }
575  } SwitchDiagnoser(Cond);
576
577  CondResult
578    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
579                                         /*AllowScopedEnumerations*/ true);
580  if (CondResult.isInvalid()) return StmtError();
581  Cond = CondResult.take();
582
583  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
584  CondResult = UsualUnaryConversions(Cond);
585  if (CondResult.isInvalid()) return StmtError();
586  Cond = CondResult.take();
587
588  if (!CondVar) {
589    CheckImplicitConversions(Cond, SwitchLoc);
590    CondResult = MaybeCreateExprWithCleanups(Cond);
591    if (CondResult.isInvalid())
592      return StmtError();
593    Cond = CondResult.take();
594  }
595
596  getCurFunction()->setHasBranchIntoScope();
597
598  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
599  getCurFunction()->SwitchStack.push_back(SS);
600  return Owned(SS);
601}
602
603static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
604  if (Val.getBitWidth() < BitWidth)
605    Val = Val.extend(BitWidth);
606  else if (Val.getBitWidth() > BitWidth)
607    Val = Val.trunc(BitWidth);
608  Val.setIsSigned(IsSigned);
609}
610
611StmtResult
612Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
613                            Stmt *BodyStmt) {
614  SwitchStmt *SS = cast<SwitchStmt>(Switch);
615  assert(SS == getCurFunction()->SwitchStack.back() &&
616         "switch stack missing push/pop!");
617
618  SS->setBody(BodyStmt, SwitchLoc);
619  getCurFunction()->SwitchStack.pop_back();
620
621  Expr *CondExpr = SS->getCond();
622  if (!CondExpr) return StmtError();
623
624  QualType CondType = CondExpr->getType();
625
626  Expr *CondExprBeforePromotion = CondExpr;
627  QualType CondTypeBeforePromotion =
628      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
629
630  // C++ 6.4.2.p2:
631  // Integral promotions are performed (on the switch condition).
632  //
633  // A case value unrepresentable by the original switch condition
634  // type (before the promotion) doesn't make sense, even when it can
635  // be represented by the promoted type.  Therefore we need to find
636  // the pre-promotion type of the switch condition.
637  if (!CondExpr->isTypeDependent()) {
638    // We have already converted the expression to an integral or enumeration
639    // type, when we started the switch statement. If we don't have an
640    // appropriate type now, just return an error.
641    if (!CondType->isIntegralOrEnumerationType())
642      return StmtError();
643
644    if (CondExpr->isKnownToHaveBooleanValue()) {
645      // switch(bool_expr) {...} is often a programmer error, e.g.
646      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
647      // One can always use an if statement instead of switch(bool_expr).
648      Diag(SwitchLoc, diag::warn_bool_switch_condition)
649          << CondExpr->getSourceRange();
650    }
651  }
652
653  // Get the bitwidth of the switched-on value before promotions.  We must
654  // convert the integer case values to this width before comparison.
655  bool HasDependentValue
656    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
657  unsigned CondWidth
658    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
659  bool CondIsSigned
660    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
661
662  // Accumulate all of the case values in a vector so that we can sort them
663  // and detect duplicates.  This vector contains the APInt for the case after
664  // it has been converted to the condition type.
665  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
666  CaseValsTy CaseVals;
667
668  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
669  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
670  CaseRangesTy CaseRanges;
671
672  DefaultStmt *TheDefaultStmt = 0;
673
674  bool CaseListIsErroneous = false;
675
676  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
677       SC = SC->getNextSwitchCase()) {
678
679    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
680      if (TheDefaultStmt) {
681        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
682        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
683
684        // FIXME: Remove the default statement from the switch block so that
685        // we'll return a valid AST.  This requires recursing down the AST and
686        // finding it, not something we are set up to do right now.  For now,
687        // just lop the entire switch stmt out of the AST.
688        CaseListIsErroneous = true;
689      }
690      TheDefaultStmt = DS;
691
692    } else {
693      CaseStmt *CS = cast<CaseStmt>(SC);
694
695      Expr *Lo = CS->getLHS();
696
697      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
698        HasDependentValue = true;
699        break;
700      }
701
702      llvm::APSInt LoVal;
703
704      if (getLangOpts().CPlusPlus0x) {
705        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
706        // constant expression of the promoted type of the switch condition.
707        ExprResult ConvLo =
708          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
709        if (ConvLo.isInvalid()) {
710          CaseListIsErroneous = true;
711          continue;
712        }
713        Lo = ConvLo.take();
714      } else {
715        // We already verified that the expression has a i-c-e value (C99
716        // 6.8.4.2p3) - get that value now.
717        LoVal = Lo->EvaluateKnownConstInt(Context);
718
719        // If the LHS is not the same type as the condition, insert an implicit
720        // cast.
721        Lo = DefaultLvalueConversion(Lo).take();
722        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
723      }
724
725      // Convert the value to the same width/sign as the condition had prior to
726      // integral promotions.
727      //
728      // FIXME: This causes us to reject valid code:
729      //   switch ((char)c) { case 256: case 0: return 0; }
730      // Here we claim there is a duplicated condition value, but there is not.
731      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
732                                         Lo->getLocStart(),
733                                         diag::warn_case_value_overflow);
734
735      CS->setLHS(Lo);
736
737      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
738      if (CS->getRHS()) {
739        if (CS->getRHS()->isTypeDependent() ||
740            CS->getRHS()->isValueDependent()) {
741          HasDependentValue = true;
742          break;
743        }
744        CaseRanges.push_back(std::make_pair(LoVal, CS));
745      } else
746        CaseVals.push_back(std::make_pair(LoVal, CS));
747    }
748  }
749
750  if (!HasDependentValue) {
751    // If we don't have a default statement, check whether the
752    // condition is constant.
753    llvm::APSInt ConstantCondValue;
754    bool HasConstantCond = false;
755    if (!HasDependentValue && !TheDefaultStmt) {
756      HasConstantCond
757        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
758                                                 Expr::SE_AllowSideEffects);
759      assert(!HasConstantCond ||
760             (ConstantCondValue.getBitWidth() == CondWidth &&
761              ConstantCondValue.isSigned() == CondIsSigned));
762    }
763    bool ShouldCheckConstantCond = HasConstantCond;
764
765    // Sort all the scalar case values so we can easily detect duplicates.
766    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
767
768    if (!CaseVals.empty()) {
769      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
770        if (ShouldCheckConstantCond &&
771            CaseVals[i].first == ConstantCondValue)
772          ShouldCheckConstantCond = false;
773
774        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
775          // If we have a duplicate, report it.
776          // First, determine if either case value has a name
777          StringRef PrevString, CurrString;
778          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
779          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
780          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
781            PrevString = DeclRef->getDecl()->getName();
782          }
783          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
784            CurrString = DeclRef->getDecl()->getName();
785          }
786          llvm::SmallString<16> CaseValStr;
787          CaseVals[i-1].first.toString(CaseValStr);
788
789          if (PrevString == CurrString)
790            Diag(CaseVals[i].second->getLHS()->getLocStart(),
791                 diag::err_duplicate_case) <<
792                 (PrevString.empty() ? CaseValStr.str() : PrevString);
793          else
794            Diag(CaseVals[i].second->getLHS()->getLocStart(),
795                 diag::err_duplicate_case_differing_expr) <<
796                 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
797                 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
798                 CaseValStr;
799
800          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
801               diag::note_duplicate_case_prev);
802          // FIXME: We really want to remove the bogus case stmt from the
803          // substmt, but we have no way to do this right now.
804          CaseListIsErroneous = true;
805        }
806      }
807    }
808
809    // Detect duplicate case ranges, which usually don't exist at all in
810    // the first place.
811    if (!CaseRanges.empty()) {
812      // Sort all the case ranges by their low value so we can easily detect
813      // overlaps between ranges.
814      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
815
816      // Scan the ranges, computing the high values and removing empty ranges.
817      std::vector<llvm::APSInt> HiVals;
818      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
819        llvm::APSInt &LoVal = CaseRanges[i].first;
820        CaseStmt *CR = CaseRanges[i].second;
821        Expr *Hi = CR->getRHS();
822        llvm::APSInt HiVal;
823
824        if (getLangOpts().CPlusPlus0x) {
825          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
826          // constant expression of the promoted type of the switch condition.
827          ExprResult ConvHi =
828            CheckConvertedConstantExpression(Hi, CondType, HiVal,
829                                             CCEK_CaseValue);
830          if (ConvHi.isInvalid()) {
831            CaseListIsErroneous = true;
832            continue;
833          }
834          Hi = ConvHi.take();
835        } else {
836          HiVal = Hi->EvaluateKnownConstInt(Context);
837
838          // If the RHS is not the same type as the condition, insert an
839          // implicit cast.
840          Hi = DefaultLvalueConversion(Hi).take();
841          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
842        }
843
844        // Convert the value to the same width/sign as the condition.
845        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
846                                           Hi->getLocStart(),
847                                           diag::warn_case_value_overflow);
848
849        CR->setRHS(Hi);
850
851        // If the low value is bigger than the high value, the case is empty.
852        if (LoVal > HiVal) {
853          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
854            << SourceRange(CR->getLHS()->getLocStart(),
855                           Hi->getLocEnd());
856          CaseRanges.erase(CaseRanges.begin()+i);
857          --i, --e;
858          continue;
859        }
860
861        if (ShouldCheckConstantCond &&
862            LoVal <= ConstantCondValue &&
863            ConstantCondValue <= HiVal)
864          ShouldCheckConstantCond = false;
865
866        HiVals.push_back(HiVal);
867      }
868
869      // Rescan the ranges, looking for overlap with singleton values and other
870      // ranges.  Since the range list is sorted, we only need to compare case
871      // ranges with their neighbors.
872      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
873        llvm::APSInt &CRLo = CaseRanges[i].first;
874        llvm::APSInt &CRHi = HiVals[i];
875        CaseStmt *CR = CaseRanges[i].second;
876
877        // Check to see whether the case range overlaps with any
878        // singleton cases.
879        CaseStmt *OverlapStmt = 0;
880        llvm::APSInt OverlapVal(32);
881
882        // Find the smallest value >= the lower bound.  If I is in the
883        // case range, then we have overlap.
884        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
885                                                  CaseVals.end(), CRLo,
886                                                  CaseCompareFunctor());
887        if (I != CaseVals.end() && I->first < CRHi) {
888          OverlapVal  = I->first;   // Found overlap with scalar.
889          OverlapStmt = I->second;
890        }
891
892        // Find the smallest value bigger than the upper bound.
893        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
894        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
895          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
896          OverlapStmt = (I-1)->second;
897        }
898
899        // Check to see if this case stmt overlaps with the subsequent
900        // case range.
901        if (i && CRLo <= HiVals[i-1]) {
902          OverlapVal  = HiVals[i-1];       // Found overlap with range.
903          OverlapStmt = CaseRanges[i-1].second;
904        }
905
906        if (OverlapStmt) {
907          // If we have a duplicate, report it.
908          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
909            << OverlapVal.toString(10);
910          Diag(OverlapStmt->getLHS()->getLocStart(),
911               diag::note_duplicate_case_prev);
912          // FIXME: We really want to remove the bogus case stmt from the
913          // substmt, but we have no way to do this right now.
914          CaseListIsErroneous = true;
915        }
916      }
917    }
918
919    // Complain if we have a constant condition and we didn't find a match.
920    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
921      // TODO: it would be nice if we printed enums as enums, chars as
922      // chars, etc.
923      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
924        << ConstantCondValue.toString(10)
925        << CondExpr->getSourceRange();
926    }
927
928    // Check to see if switch is over an Enum and handles all of its
929    // values.  We only issue a warning if there is not 'default:', but
930    // we still do the analysis to preserve this information in the AST
931    // (which can be used by flow-based analyes).
932    //
933    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
934
935    // If switch has default case, then ignore it.
936    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
937      const EnumDecl *ED = ET->getDecl();
938      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
939        EnumValsTy;
940      EnumValsTy EnumVals;
941
942      // Gather all enum values, set their type and sort them,
943      // allowing easier comparison with CaseVals.
944      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
945           EDI != ED->enumerator_end(); ++EDI) {
946        llvm::APSInt Val = EDI->getInitVal();
947        AdjustAPSInt(Val, CondWidth, CondIsSigned);
948        EnumVals.push_back(std::make_pair(Val, *EDI));
949      }
950      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
951      EnumValsTy::iterator EIend =
952        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
953
954      // See which case values aren't in enum.
955      EnumValsTy::const_iterator EI = EnumVals.begin();
956      for (CaseValsTy::const_iterator CI = CaseVals.begin();
957           CI != CaseVals.end(); CI++) {
958        while (EI != EIend && EI->first < CI->first)
959          EI++;
960        if (EI == EIend || EI->first > CI->first)
961          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
962            << CondTypeBeforePromotion;
963      }
964      // See which of case ranges aren't in enum
965      EI = EnumVals.begin();
966      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
967           RI != CaseRanges.end() && EI != EIend; RI++) {
968        while (EI != EIend && EI->first < RI->first)
969          EI++;
970
971        if (EI == EIend || EI->first != RI->first) {
972          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
973            << CondTypeBeforePromotion;
974        }
975
976        llvm::APSInt Hi =
977          RI->second->getRHS()->EvaluateKnownConstInt(Context);
978        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
979        while (EI != EIend && EI->first < Hi)
980          EI++;
981        if (EI == EIend || EI->first != Hi)
982          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
983            << CondTypeBeforePromotion;
984      }
985
986      // Check which enum vals aren't in switch
987      CaseValsTy::const_iterator CI = CaseVals.begin();
988      CaseRangesTy::const_iterator RI = CaseRanges.begin();
989      bool hasCasesNotInSwitch = false;
990
991      SmallVector<DeclarationName,8> UnhandledNames;
992
993      for (EI = EnumVals.begin(); EI != EIend; EI++){
994        // Drop unneeded case values
995        llvm::APSInt CIVal;
996        while (CI != CaseVals.end() && CI->first < EI->first)
997          CI++;
998
999        if (CI != CaseVals.end() && CI->first == EI->first)
1000          continue;
1001
1002        // Drop unneeded case ranges
1003        for (; RI != CaseRanges.end(); RI++) {
1004          llvm::APSInt Hi =
1005            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1006          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1007          if (EI->first <= Hi)
1008            break;
1009        }
1010
1011        if (RI == CaseRanges.end() || EI->first < RI->first) {
1012          hasCasesNotInSwitch = true;
1013          UnhandledNames.push_back(EI->second->getDeclName());
1014        }
1015      }
1016
1017      if (TheDefaultStmt && UnhandledNames.empty())
1018        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1019
1020      // Produce a nice diagnostic if multiple values aren't handled.
1021      switch (UnhandledNames.size()) {
1022      case 0: break;
1023      case 1:
1024        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1025          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1026          << UnhandledNames[0];
1027        break;
1028      case 2:
1029        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1030          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1031          << UnhandledNames[0] << UnhandledNames[1];
1032        break;
1033      case 3:
1034        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1035          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1036          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1037        break;
1038      default:
1039        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1040          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1041          << (unsigned)UnhandledNames.size()
1042          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1043        break;
1044      }
1045
1046      if (!hasCasesNotInSwitch)
1047        SS->setAllEnumCasesCovered();
1048    }
1049  }
1050
1051  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1052                        diag::warn_empty_switch_body);
1053
1054  // FIXME: If the case list was broken is some way, we don't have a good system
1055  // to patch it up.  Instead, just return the whole substmt as broken.
1056  if (CaseListIsErroneous)
1057    return StmtError();
1058
1059  return Owned(SS);
1060}
1061
1062void
1063Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1064                             Expr *SrcExpr) {
1065  unsigned DIAG = diag::warn_not_in_enum_assignement;
1066  if (Diags.getDiagnosticLevel(DIAG, SrcExpr->getExprLoc())
1067      == DiagnosticsEngine::Ignored)
1068    return;
1069
1070  if (const EnumType *ET = DstType->getAs<EnumType>())
1071    if (!Context.hasSameType(SrcType, DstType) &&
1072        SrcType->isIntegerType()) {
1073      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1074          SrcExpr->isIntegerConstantExpr(Context)) {
1075        // Get the bitwidth of the enum value before promotions.
1076        unsigned DstWith = Context.getIntWidth(DstType);
1077        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1078
1079        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1080        const EnumDecl *ED = ET->getDecl();
1081        typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1082        EnumValsTy;
1083        EnumValsTy EnumVals;
1084
1085        // Gather all enum values, set their type and sort them,
1086        // allowing easier comparison with rhs constant.
1087        for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1088             EDI != ED->enumerator_end(); ++EDI) {
1089          llvm::APSInt Val = EDI->getInitVal();
1090          AdjustAPSInt(Val, DstWith, DstIsSigned);
1091          EnumVals.push_back(std::make_pair(Val, *EDI));
1092        }
1093        if (EnumVals.empty())
1094          return;
1095        std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1096        EnumValsTy::iterator EIend =
1097        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1098
1099        // See which case values aren't in enum.
1100        EnumValsTy::const_iterator EI = EnumVals.begin();
1101        while (EI != EIend && EI->first < RhsVal)
1102          EI++;
1103        if (EI == EIend || EI->first != RhsVal) {
1104          Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignement)
1105          << DstType;
1106        }
1107      }
1108    }
1109}
1110
1111StmtResult
1112Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1113                     Decl *CondVar, Stmt *Body) {
1114  ExprResult CondResult(Cond.release());
1115
1116  VarDecl *ConditionVar = 0;
1117  if (CondVar) {
1118    ConditionVar = cast<VarDecl>(CondVar);
1119    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1120    if (CondResult.isInvalid())
1121      return StmtError();
1122  }
1123  Expr *ConditionExpr = CondResult.take();
1124  if (!ConditionExpr)
1125    return StmtError();
1126
1127  DiagnoseUnusedExprResult(Body);
1128
1129  if (isa<NullStmt>(Body))
1130    getCurCompoundScope().setHasEmptyLoopBodies();
1131
1132  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1133                                       Body, WhileLoc));
1134}
1135
1136StmtResult
1137Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1138                  SourceLocation WhileLoc, SourceLocation CondLParen,
1139                  Expr *Cond, SourceLocation CondRParen) {
1140  assert(Cond && "ActOnDoStmt(): missing expression");
1141
1142  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1143  if (CondResult.isInvalid() || CondResult.isInvalid())
1144    return StmtError();
1145  Cond = CondResult.take();
1146
1147  CheckImplicitConversions(Cond, DoLoc);
1148  CondResult = MaybeCreateExprWithCleanups(Cond);
1149  if (CondResult.isInvalid())
1150    return StmtError();
1151  Cond = CondResult.take();
1152
1153  DiagnoseUnusedExprResult(Body);
1154
1155  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1156}
1157
1158namespace {
1159  // This visitor will traverse a conditional statement and store all
1160  // the evaluated decls into a vector.  Simple is set to true if none
1161  // of the excluded constructs are used.
1162  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1163    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1164    llvm::SmallVector<SourceRange, 10> &Ranges;
1165    bool Simple;
1166public:
1167  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1168
1169  DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1170                llvm::SmallVector<SourceRange, 10> &Ranges) :
1171      Inherited(S.Context),
1172      Decls(Decls),
1173      Ranges(Ranges),
1174      Simple(true) {}
1175
1176  bool isSimple() { return Simple; }
1177
1178  // Replaces the method in EvaluatedExprVisitor.
1179  void VisitMemberExpr(MemberExpr* E) {
1180    Simple = false;
1181  }
1182
1183  // Any Stmt not whitelisted will cause the condition to be marked complex.
1184  void VisitStmt(Stmt *S) {
1185    Simple = false;
1186  }
1187
1188  void VisitBinaryOperator(BinaryOperator *E) {
1189    Visit(E->getLHS());
1190    Visit(E->getRHS());
1191  }
1192
1193  void VisitCastExpr(CastExpr *E) {
1194    Visit(E->getSubExpr());
1195  }
1196
1197  void VisitUnaryOperator(UnaryOperator *E) {
1198    // Skip checking conditionals with derefernces.
1199    if (E->getOpcode() == UO_Deref)
1200      Simple = false;
1201    else
1202      Visit(E->getSubExpr());
1203  }
1204
1205  void VisitConditionalOperator(ConditionalOperator *E) {
1206    Visit(E->getCond());
1207    Visit(E->getTrueExpr());
1208    Visit(E->getFalseExpr());
1209  }
1210
1211  void VisitParenExpr(ParenExpr *E) {
1212    Visit(E->getSubExpr());
1213  }
1214
1215  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1216    Visit(E->getOpaqueValue()->getSourceExpr());
1217    Visit(E->getFalseExpr());
1218  }
1219
1220  void VisitIntegerLiteral(IntegerLiteral *E) { }
1221  void VisitFloatingLiteral(FloatingLiteral *E) { }
1222  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1223  void VisitCharacterLiteral(CharacterLiteral *E) { }
1224  void VisitGNUNullExpr(GNUNullExpr *E) { }
1225  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1226
1227  void VisitDeclRefExpr(DeclRefExpr *E) {
1228    VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1229    if (!VD) return;
1230
1231    Ranges.push_back(E->getSourceRange());
1232
1233    Decls.insert(VD);
1234  }
1235
1236  }; // end class DeclExtractor
1237
1238  // DeclMatcher checks to see if the decls are used in a non-evauluated
1239  // context.
1240  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1241    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1242    bool FoundDecl;
1243
1244public:
1245  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1246
1247  DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1248      Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1249    if (!Statement) return;
1250
1251    Visit(Statement);
1252  }
1253
1254  void VisitReturnStmt(ReturnStmt *S) {
1255    FoundDecl = true;
1256  }
1257
1258  void VisitBreakStmt(BreakStmt *S) {
1259    FoundDecl = true;
1260  }
1261
1262  void VisitGotoStmt(GotoStmt *S) {
1263    FoundDecl = true;
1264  }
1265
1266  void VisitCastExpr(CastExpr *E) {
1267    if (E->getCastKind() == CK_LValueToRValue)
1268      CheckLValueToRValueCast(E->getSubExpr());
1269    else
1270      Visit(E->getSubExpr());
1271  }
1272
1273  void CheckLValueToRValueCast(Expr *E) {
1274    E = E->IgnoreParenImpCasts();
1275
1276    if (isa<DeclRefExpr>(E)) {
1277      return;
1278    }
1279
1280    if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1281      Visit(CO->getCond());
1282      CheckLValueToRValueCast(CO->getTrueExpr());
1283      CheckLValueToRValueCast(CO->getFalseExpr());
1284      return;
1285    }
1286
1287    if (BinaryConditionalOperator *BCO =
1288            dyn_cast<BinaryConditionalOperator>(E)) {
1289      CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1290      CheckLValueToRValueCast(BCO->getFalseExpr());
1291      return;
1292    }
1293
1294    Visit(E);
1295  }
1296
1297  void VisitDeclRefExpr(DeclRefExpr *E) {
1298    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1299      if (Decls.count(VD))
1300        FoundDecl = true;
1301  }
1302
1303  bool FoundDeclInUse() { return FoundDecl; }
1304
1305  };  // end class DeclMatcher
1306
1307  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1308                                        Expr *Third, Stmt *Body) {
1309    // Condition is empty
1310    if (!Second) return;
1311
1312    if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1313                                   Second->getLocStart())
1314        == DiagnosticsEngine::Ignored)
1315      return;
1316
1317    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1318    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1319    llvm::SmallVector<SourceRange, 10> Ranges;
1320    DeclExtractor DE(S, Decls, Ranges);
1321    DE.Visit(Second);
1322
1323    // Don't analyze complex conditionals.
1324    if (!DE.isSimple()) return;
1325
1326    // No decls found.
1327    if (Decls.size() == 0) return;
1328
1329    // Don't warn on volatile, static, or global variables.
1330    for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1331                                                  E = Decls.end();
1332         I != E; ++I)
1333      if ((*I)->getType().isVolatileQualified() ||
1334          (*I)->hasGlobalStorage()) return;
1335
1336    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1337        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1338        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1339      return;
1340
1341    // Load decl names into diagnostic.
1342    if (Decls.size() > 4)
1343      PDiag << 0;
1344    else {
1345      PDiag << Decls.size();
1346      for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1347                                                    E = Decls.end();
1348           I != E; ++I)
1349        PDiag << (*I)->getDeclName();
1350    }
1351
1352    // Load SourceRanges into diagnostic if there is room.
1353    // Otherwise, load the SourceRange of the conditional expression.
1354    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1355      for (llvm::SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1356                                                        E = Ranges.end();
1357           I != E; ++I)
1358        PDiag << *I;
1359    else
1360      PDiag << Second->getSourceRange();
1361
1362    S.Diag(Ranges.begin()->getBegin(), PDiag);
1363  }
1364
1365} // end namespace
1366
1367StmtResult
1368Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1369                   Stmt *First, FullExprArg second, Decl *secondVar,
1370                   FullExprArg third,
1371                   SourceLocation RParenLoc, Stmt *Body) {
1372  if (!getLangOpts().CPlusPlus) {
1373    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1374      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1375      // declare identifiers for objects having storage class 'auto' or
1376      // 'register'.
1377      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1378           DI!=DE; ++DI) {
1379        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1380        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1381          VD = 0;
1382        if (VD == 0)
1383          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1384        // FIXME: mark decl erroneous!
1385      }
1386    }
1387  }
1388
1389  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1390
1391  ExprResult SecondResult(second.release());
1392  VarDecl *ConditionVar = 0;
1393  if (secondVar) {
1394    ConditionVar = cast<VarDecl>(secondVar);
1395    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1396    if (SecondResult.isInvalid())
1397      return StmtError();
1398  }
1399
1400  Expr *Third  = third.release().takeAs<Expr>();
1401
1402  DiagnoseUnusedExprResult(First);
1403  DiagnoseUnusedExprResult(Third);
1404  DiagnoseUnusedExprResult(Body);
1405
1406  if (isa<NullStmt>(Body))
1407    getCurCompoundScope().setHasEmptyLoopBodies();
1408
1409  return Owned(new (Context) ForStmt(Context, First,
1410                                     SecondResult.take(), ConditionVar,
1411                                     Third, Body, ForLoc, LParenLoc,
1412                                     RParenLoc));
1413}
1414
1415/// In an Objective C collection iteration statement:
1416///   for (x in y)
1417/// x can be an arbitrary l-value expression.  Bind it up as a
1418/// full-expression.
1419StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1420  // Reduce placeholder expressions here.  Note that this rejects the
1421  // use of pseudo-object l-values in this position.
1422  ExprResult result = CheckPlaceholderExpr(E);
1423  if (result.isInvalid()) return StmtError();
1424  E = result.take();
1425
1426  CheckImplicitConversions(E);
1427
1428  result = MaybeCreateExprWithCleanups(E);
1429  if (result.isInvalid()) return StmtError();
1430
1431  return Owned(static_cast<Stmt*>(result.take()));
1432}
1433
1434ExprResult
1435Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1436  if (!collection)
1437    return ExprError();
1438
1439  // Bail out early if we've got a type-dependent expression.
1440  if (collection->isTypeDependent()) return Owned(collection);
1441
1442  // Perform normal l-value conversion.
1443  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1444  if (result.isInvalid())
1445    return ExprError();
1446  collection = result.take();
1447
1448  // The operand needs to have object-pointer type.
1449  // TODO: should we do a contextual conversion?
1450  const ObjCObjectPointerType *pointerType =
1451    collection->getType()->getAs<ObjCObjectPointerType>();
1452  if (!pointerType)
1453    return Diag(forLoc, diag::err_collection_expr_type)
1454             << collection->getType() << collection->getSourceRange();
1455
1456  // Check that the operand provides
1457  //   - countByEnumeratingWithState:objects:count:
1458  const ObjCObjectType *objectType = pointerType->getObjectType();
1459  ObjCInterfaceDecl *iface = objectType->getInterface();
1460
1461  // If we have a forward-declared type, we can't do this check.
1462  // Under ARC, it is an error not to have a forward-declared class.
1463  if (iface &&
1464      RequireCompleteType(forLoc, QualType(objectType, 0),
1465                          getLangOpts().ObjCAutoRefCount
1466                            ? diag::err_arc_collection_forward
1467                            : 0,
1468                          collection)) {
1469    // Otherwise, if we have any useful type information, check that
1470    // the type declares the appropriate method.
1471  } else if (iface || !objectType->qual_empty()) {
1472    IdentifierInfo *selectorIdents[] = {
1473      &Context.Idents.get("countByEnumeratingWithState"),
1474      &Context.Idents.get("objects"),
1475      &Context.Idents.get("count")
1476    };
1477    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1478
1479    ObjCMethodDecl *method = 0;
1480
1481    // If there's an interface, look in both the public and private APIs.
1482    if (iface) {
1483      method = iface->lookupInstanceMethod(selector);
1484      if (!method) method = iface->lookupPrivateMethod(selector);
1485    }
1486
1487    // Also check protocol qualifiers.
1488    if (!method)
1489      method = LookupMethodInQualifiedType(selector, pointerType,
1490                                           /*instance*/ true);
1491
1492    // If we didn't find it anywhere, give up.
1493    if (!method) {
1494      Diag(forLoc, diag::warn_collection_expr_type)
1495        << collection->getType() << selector << collection->getSourceRange();
1496    }
1497
1498    // TODO: check for an incompatible signature?
1499  }
1500
1501  // Wrap up any cleanups in the expression.
1502  return Owned(MaybeCreateExprWithCleanups(collection));
1503}
1504
1505StmtResult
1506Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1507                                 SourceLocation LParenLoc,
1508                                 Stmt *First, Expr *collection,
1509                                 SourceLocation RParenLoc) {
1510
1511  ExprResult CollectionExprResult =
1512    CheckObjCForCollectionOperand(ForLoc, collection);
1513
1514  if (First) {
1515    QualType FirstType;
1516    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1517      if (!DS->isSingleDecl())
1518        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1519                         diag::err_toomany_element_decls));
1520
1521      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1522      FirstType = D->getType();
1523      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1524      // declare identifiers for objects having storage class 'auto' or
1525      // 'register'.
1526      if (!D->hasLocalStorage())
1527        return StmtError(Diag(D->getLocation(),
1528                              diag::err_non_variable_decl_in_for));
1529    } else {
1530      Expr *FirstE = cast<Expr>(First);
1531      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1532        return StmtError(Diag(First->getLocStart(),
1533                   diag::err_selector_element_not_lvalue)
1534          << First->getSourceRange());
1535
1536      FirstType = static_cast<Expr*>(First)->getType();
1537    }
1538    if (!FirstType->isDependentType() &&
1539        !FirstType->isObjCObjectPointerType() &&
1540        !FirstType->isBlockPointerType())
1541        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1542                           << FirstType << First->getSourceRange());
1543  }
1544
1545  if (CollectionExprResult.isInvalid())
1546    return StmtError();
1547
1548  return Owned(new (Context) ObjCForCollectionStmt(First,
1549                                                   CollectionExprResult.take(), 0,
1550                                                   ForLoc, RParenLoc));
1551}
1552
1553namespace {
1554
1555enum BeginEndFunction {
1556  BEF_begin,
1557  BEF_end
1558};
1559
1560/// Build a variable declaration for a for-range statement.
1561static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1562                                     QualType Type, const char *Name) {
1563  DeclContext *DC = SemaRef.CurContext;
1564  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1565  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1566  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1567                                  TInfo, SC_Auto, SC_None);
1568  Decl->setImplicit();
1569  return Decl;
1570}
1571
1572/// Finish building a variable declaration for a for-range statement.
1573/// \return true if an error occurs.
1574static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1575                                  SourceLocation Loc, int diag) {
1576  // Deduce the type for the iterator variable now rather than leaving it to
1577  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1578  TypeSourceInfo *InitTSI = 0;
1579  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1580      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1581          Sema::DAR_Failed)
1582    SemaRef.Diag(Loc, diag) << Init->getType();
1583  if (!InitTSI) {
1584    Decl->setInvalidDecl();
1585    return true;
1586  }
1587  Decl->setTypeSourceInfo(InitTSI);
1588  Decl->setType(InitTSI->getType());
1589
1590  // In ARC, infer lifetime.
1591  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1592  // we're doing the equivalent of fast iteration.
1593  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1594      SemaRef.inferObjCARCLifetime(Decl))
1595    Decl->setInvalidDecl();
1596
1597  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1598                               /*TypeMayContainAuto=*/false);
1599  SemaRef.FinalizeDeclaration(Decl);
1600  SemaRef.CurContext->addHiddenDecl(Decl);
1601  return false;
1602}
1603
1604/// Produce a note indicating which begin/end function was implicitly called
1605/// by a C++0x for-range statement. This is often not obvious from the code,
1606/// nor from the diagnostics produced when analysing the implicit expressions
1607/// required in a for-range statement.
1608void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1609                                  BeginEndFunction BEF) {
1610  CallExpr *CE = dyn_cast<CallExpr>(E);
1611  if (!CE)
1612    return;
1613  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1614  if (!D)
1615    return;
1616  SourceLocation Loc = D->getLocation();
1617
1618  std::string Description;
1619  bool IsTemplate = false;
1620  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1621    Description = SemaRef.getTemplateArgumentBindingsText(
1622      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1623    IsTemplate = true;
1624  }
1625
1626  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1627    << BEF << IsTemplate << Description << E->getType();
1628}
1629
1630/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1631/// given LookupResult is non-empty, it is assumed to describe a member which
1632/// will be invoked. Otherwise, the function will be found via argument
1633/// dependent lookup.
1634static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1635                                            SourceLocation Loc,
1636                                            VarDecl *Decl,
1637                                            BeginEndFunction BEF,
1638                                            const DeclarationNameInfo &NameInfo,
1639                                            LookupResult &MemberLookup,
1640                                            Expr *Range) {
1641  ExprResult CallExpr;
1642  if (!MemberLookup.empty()) {
1643    ExprResult MemberRef =
1644      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1645                                       /*IsPtr=*/false, CXXScopeSpec(),
1646                                       /*TemplateKWLoc=*/SourceLocation(),
1647                                       /*FirstQualifierInScope=*/0,
1648                                       MemberLookup,
1649                                       /*TemplateArgs=*/0);
1650    if (MemberRef.isInvalid())
1651      return ExprError();
1652    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1653                                     Loc, 0);
1654    if (CallExpr.isInvalid())
1655      return ExprError();
1656  } else {
1657    UnresolvedSet<0> FoundNames;
1658    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1659    // std is an associated namespace.
1660    UnresolvedLookupExpr *Fn =
1661      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1662                                   NestedNameSpecifierLoc(), NameInfo,
1663                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1664                                   FoundNames.begin(), FoundNames.end(),
1665                                   /*LookInStdNamespace=*/true);
1666    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1667                                               0, /*AllowTypoCorrection=*/false);
1668    if (CallExpr.isInvalid()) {
1669      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1670        << Range->getType();
1671      return ExprError();
1672    }
1673  }
1674  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1675                            diag::err_for_range_iter_deduction_failure)) {
1676    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1677    return ExprError();
1678  }
1679  return CallExpr;
1680}
1681
1682}
1683
1684static bool ObjCEnumerationCollection(Expr *Collection) {
1685  return !Collection->isTypeDependent()
1686          && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1687}
1688
1689/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1690///
1691/// C++0x [stmt.ranged]:
1692///   A range-based for statement is equivalent to
1693///
1694///   {
1695///     auto && __range = range-init;
1696///     for ( auto __begin = begin-expr,
1697///           __end = end-expr;
1698///           __begin != __end;
1699///           ++__begin ) {
1700///       for-range-declaration = *__begin;
1701///       statement
1702///     }
1703///   }
1704///
1705/// The body of the loop is not available yet, since it cannot be analysed until
1706/// we have determined the type of the for-range-declaration.
1707StmtResult
1708Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1709                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1710                           SourceLocation RParenLoc) {
1711  if (!First || !Range)
1712    return StmtError();
1713
1714  if (ObjCEnumerationCollection(Range))
1715    return ActOnObjCForCollectionStmt(ForLoc, LParenLoc, First, Range,
1716                                      RParenLoc);
1717
1718  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1719  assert(DS && "first part of for range not a decl stmt");
1720
1721  if (!DS->isSingleDecl()) {
1722    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1723    return StmtError();
1724  }
1725  if (DS->getSingleDecl()->isInvalidDecl())
1726    return StmtError();
1727
1728  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1729    return StmtError();
1730
1731  // Build  auto && __range = range-init
1732  SourceLocation RangeLoc = Range->getLocStart();
1733  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1734                                           Context.getAutoRRefDeductType(),
1735                                           "__range");
1736  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1737                            diag::err_for_range_deduction_failure))
1738    return StmtError();
1739
1740  // Claim the type doesn't contain auto: we've already done the checking.
1741  DeclGroupPtrTy RangeGroup =
1742    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1743  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1744  if (RangeDecl.isInvalid())
1745    return StmtError();
1746
1747  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1748                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1749                              RParenLoc);
1750}
1751
1752/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1753StmtResult
1754Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1755                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1756                           Expr *Inc, Stmt *LoopVarDecl,
1757                           SourceLocation RParenLoc) {
1758  Scope *S = getCurScope();
1759
1760  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1761  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1762  QualType RangeVarType = RangeVar->getType();
1763
1764  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1765  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1766
1767  StmtResult BeginEndDecl = BeginEnd;
1768  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1769
1770  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1771    SourceLocation RangeLoc = RangeVar->getLocation();
1772
1773    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1774
1775    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1776                                                VK_LValue, ColonLoc);
1777    if (BeginRangeRef.isInvalid())
1778      return StmtError();
1779
1780    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1781                                              VK_LValue, ColonLoc);
1782    if (EndRangeRef.isInvalid())
1783      return StmtError();
1784
1785    QualType AutoType = Context.getAutoDeductType();
1786    Expr *Range = RangeVar->getInit();
1787    if (!Range)
1788      return StmtError();
1789    QualType RangeType = Range->getType();
1790
1791    if (RequireCompleteType(RangeLoc, RangeType,
1792                            diag::err_for_range_incomplete_type))
1793      return StmtError();
1794
1795    // Build auto __begin = begin-expr, __end = end-expr.
1796    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1797                                             "__begin");
1798    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1799                                           "__end");
1800
1801    // Build begin-expr and end-expr and attach to __begin and __end variables.
1802    ExprResult BeginExpr, EndExpr;
1803    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1804      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1805      //   __range + __bound, respectively, where __bound is the array bound. If
1806      //   _RangeT is an array of unknown size or an array of incomplete type,
1807      //   the program is ill-formed;
1808
1809      // begin-expr is __range.
1810      BeginExpr = BeginRangeRef;
1811      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1812                                diag::err_for_range_iter_deduction_failure)) {
1813        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1814        return StmtError();
1815      }
1816
1817      // Find the array bound.
1818      ExprResult BoundExpr;
1819      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1820        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1821                                                 Context.getPointerDiffType(),
1822                                                 RangeLoc));
1823      else if (const VariableArrayType *VAT =
1824               dyn_cast<VariableArrayType>(UnqAT))
1825        BoundExpr = VAT->getSizeExpr();
1826      else {
1827        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1828        // UnqAT is not incomplete and Range is not type-dependent.
1829        llvm_unreachable("Unexpected array type in for-range");
1830      }
1831
1832      // end-expr is __range + __bound.
1833      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1834                           BoundExpr.get());
1835      if (EndExpr.isInvalid())
1836        return StmtError();
1837      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1838                                diag::err_for_range_iter_deduction_failure)) {
1839        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1840        return StmtError();
1841      }
1842    } else {
1843      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1844                                        ColonLoc);
1845      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1846                                      ColonLoc);
1847
1848      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1849      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1850
1851      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1852        // - if _RangeT is a class type, the unqualified-ids begin and end are
1853        //   looked up in the scope of class _RangeT as if by class member access
1854        //   lookup (3.4.5), and if either (or both) finds at least one
1855        //   declaration, begin-expr and end-expr are __range.begin() and
1856        //   __range.end(), respectively;
1857        LookupQualifiedName(BeginMemberLookup, D);
1858        LookupQualifiedName(EndMemberLookup, D);
1859
1860        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1861          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1862            << RangeType << BeginMemberLookup.empty();
1863          return StmtError();
1864        }
1865      } else {
1866        // - otherwise, begin-expr and end-expr are begin(__range) and
1867        //   end(__range), respectively, where begin and end are looked up with
1868        //   argument-dependent lookup (3.4.2). For the purposes of this name
1869        //   lookup, namespace std is an associated namespace.
1870      }
1871
1872      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1873                                            BEF_begin, BeginNameInfo,
1874                                            BeginMemberLookup,
1875                                            BeginRangeRef.get());
1876      if (BeginExpr.isInvalid())
1877        return StmtError();
1878
1879      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1880                                          BEF_end, EndNameInfo,
1881                                          EndMemberLookup, EndRangeRef.get());
1882      if (EndExpr.isInvalid())
1883        return StmtError();
1884    }
1885
1886    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1887    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1888    if (!Context.hasSameType(BeginType, EndType)) {
1889      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1890        << BeginType << EndType;
1891      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1892      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1893    }
1894
1895    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1896    // Claim the type doesn't contain auto: we've already done the checking.
1897    DeclGroupPtrTy BeginEndGroup =
1898      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1899    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1900
1901    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1902    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1903                                           VK_LValue, ColonLoc);
1904    if (BeginRef.isInvalid())
1905      return StmtError();
1906
1907    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1908                                         VK_LValue, ColonLoc);
1909    if (EndRef.isInvalid())
1910      return StmtError();
1911
1912    // Build and check __begin != __end expression.
1913    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1914                           BeginRef.get(), EndRef.get());
1915    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1916    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1917    if (NotEqExpr.isInvalid()) {
1918      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1919      if (!Context.hasSameType(BeginType, EndType))
1920        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1921      return StmtError();
1922    }
1923
1924    // Build and check ++__begin expression.
1925    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1926                                VK_LValue, ColonLoc);
1927    if (BeginRef.isInvalid())
1928      return StmtError();
1929
1930    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1931    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1932    if (IncrExpr.isInvalid()) {
1933      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1934      return StmtError();
1935    }
1936
1937    // Build and check *__begin  expression.
1938    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1939                                VK_LValue, ColonLoc);
1940    if (BeginRef.isInvalid())
1941      return StmtError();
1942
1943    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1944    if (DerefExpr.isInvalid()) {
1945      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1946      return StmtError();
1947    }
1948
1949    // Attach  *__begin  as initializer for VD.
1950    if (!LoopVar->isInvalidDecl()) {
1951      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1952                           /*TypeMayContainAuto=*/true);
1953      if (LoopVar->isInvalidDecl())
1954        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1955    }
1956  } else {
1957    // The range is implicitly used as a placeholder when it is dependent.
1958    RangeVar->setUsed();
1959  }
1960
1961  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1962                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1963                                             NotEqExpr.take(), IncrExpr.take(),
1964                                             LoopVarDS, /*Body=*/0, ForLoc,
1965                                             ColonLoc, RParenLoc));
1966}
1967
1968/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
1969/// statement.
1970StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
1971  if (!S || !B)
1972    return StmtError();
1973  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
1974
1975  ForStmt->setBody(B);
1976  return S;
1977}
1978
1979/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1980/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1981/// body cannot be performed until after the type of the range variable is
1982/// determined.
1983StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1984  if (!S || !B)
1985    return StmtError();
1986
1987  if (isa<ObjCForCollectionStmt>(S))
1988    return FinishObjCForCollectionStmt(S, B);
1989
1990  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
1991  ForStmt->setBody(B);
1992
1993  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
1994                        diag::warn_empty_range_based_for_body);
1995
1996  return S;
1997}
1998
1999StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2000                               SourceLocation LabelLoc,
2001                               LabelDecl *TheDecl) {
2002  getCurFunction()->setHasBranchIntoScope();
2003  TheDecl->setUsed();
2004  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2005}
2006
2007StmtResult
2008Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2009                            Expr *E) {
2010  // Convert operand to void*
2011  if (!E->isTypeDependent()) {
2012    QualType ETy = E->getType();
2013    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2014    ExprResult ExprRes = Owned(E);
2015    AssignConvertType ConvTy =
2016      CheckSingleAssignmentConstraints(DestTy, ExprRes);
2017    if (ExprRes.isInvalid())
2018      return StmtError();
2019    E = ExprRes.take();
2020    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2021      return StmtError();
2022    E = MaybeCreateExprWithCleanups(E);
2023  }
2024
2025  getCurFunction()->setHasIndirectGoto();
2026
2027  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2028}
2029
2030StmtResult
2031Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2032  Scope *S = CurScope->getContinueParent();
2033  if (!S) {
2034    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2035    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2036  }
2037
2038  return Owned(new (Context) ContinueStmt(ContinueLoc));
2039}
2040
2041StmtResult
2042Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2043  Scope *S = CurScope->getBreakParent();
2044  if (!S) {
2045    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2046    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2047  }
2048
2049  return Owned(new (Context) BreakStmt(BreakLoc));
2050}
2051
2052/// \brief Determine whether the given expression is a candidate for
2053/// copy elision in either a return statement or a throw expression.
2054///
2055/// \param ReturnType If we're determining the copy elision candidate for
2056/// a return statement, this is the return type of the function. If we're
2057/// determining the copy elision candidate for a throw expression, this will
2058/// be a NULL type.
2059///
2060/// \param E The expression being returned from the function or block, or
2061/// being thrown.
2062///
2063/// \param AllowFunctionParameter Whether we allow function parameters to
2064/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2065/// we re-use this logic to determine whether we should try to move as part of
2066/// a return or throw (which does allow function parameters).
2067///
2068/// \returns The NRVO candidate variable, if the return statement may use the
2069/// NRVO, or NULL if there is no such candidate.
2070const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2071                                             Expr *E,
2072                                             bool AllowFunctionParameter) {
2073  QualType ExprType = E->getType();
2074  // - in a return statement in a function with ...
2075  // ... a class return type ...
2076  if (!ReturnType.isNull()) {
2077    if (!ReturnType->isRecordType())
2078      return 0;
2079    // ... the same cv-unqualified type as the function return type ...
2080    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2081      return 0;
2082  }
2083
2084  // ... the expression is the name of a non-volatile automatic object
2085  // (other than a function or catch-clause parameter)) ...
2086  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2087  if (!DR || DR->refersToEnclosingLocal())
2088    return 0;
2089  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2090  if (!VD)
2091    return 0;
2092
2093  // ...object (other than a function or catch-clause parameter)...
2094  if (VD->getKind() != Decl::Var &&
2095      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2096    return 0;
2097  if (VD->isExceptionVariable()) return 0;
2098
2099  // ...automatic...
2100  if (!VD->hasLocalStorage()) return 0;
2101
2102  // ...non-volatile...
2103  if (VD->getType().isVolatileQualified()) return 0;
2104  if (VD->getType()->isReferenceType()) return 0;
2105
2106  // __block variables can't be allocated in a way that permits NRVO.
2107  if (VD->hasAttr<BlocksAttr>()) return 0;
2108
2109  // Variables with higher required alignment than their type's ABI
2110  // alignment cannot use NRVO.
2111  if (VD->hasAttr<AlignedAttr>() &&
2112      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2113    return 0;
2114
2115  return VD;
2116}
2117
2118/// \brief Perform the initialization of a potentially-movable value, which
2119/// is the result of return value.
2120///
2121/// This routine implements C++0x [class.copy]p33, which attempts to treat
2122/// returned lvalues as rvalues in certain cases (to prefer move construction),
2123/// then falls back to treating them as lvalues if that failed.
2124ExprResult
2125Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2126                                      const VarDecl *NRVOCandidate,
2127                                      QualType ResultType,
2128                                      Expr *Value,
2129                                      bool AllowNRVO) {
2130  // C++0x [class.copy]p33:
2131  //   When the criteria for elision of a copy operation are met or would
2132  //   be met save for the fact that the source object is a function
2133  //   parameter, and the object to be copied is designated by an lvalue,
2134  //   overload resolution to select the constructor for the copy is first
2135  //   performed as if the object were designated by an rvalue.
2136  ExprResult Res = ExprError();
2137  if (AllowNRVO &&
2138      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2139    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2140                              Value->getType(), CK_NoOp, Value, VK_XValue);
2141
2142    Expr *InitExpr = &AsRvalue;
2143    InitializationKind Kind
2144      = InitializationKind::CreateCopy(Value->getLocStart(),
2145                                       Value->getLocStart());
2146    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2147
2148    //   [...] If overload resolution fails, or if the type of the first
2149    //   parameter of the selected constructor is not an rvalue reference
2150    //   to the object's type (possibly cv-qualified), overload resolution
2151    //   is performed again, considering the object as an lvalue.
2152    if (Seq) {
2153      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2154           StepEnd = Seq.step_end();
2155           Step != StepEnd; ++Step) {
2156        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2157          continue;
2158
2159        CXXConstructorDecl *Constructor
2160        = cast<CXXConstructorDecl>(Step->Function.Function);
2161
2162        const RValueReferenceType *RRefType
2163          = Constructor->getParamDecl(0)->getType()
2164                                                 ->getAs<RValueReferenceType>();
2165
2166        // If we don't meet the criteria, break out now.
2167        if (!RRefType ||
2168            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2169                            Context.getTypeDeclType(Constructor->getParent())))
2170          break;
2171
2172        // Promote "AsRvalue" to the heap, since we now need this
2173        // expression node to persist.
2174        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2175                                         CK_NoOp, Value, 0, VK_XValue);
2176
2177        // Complete type-checking the initialization of the return type
2178        // using the constructor we found.
2179        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2180      }
2181    }
2182  }
2183
2184  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2185  // above, or overload resolution failed. Either way, we need to try
2186  // (again) now with the return value expression as written.
2187  if (Res.isInvalid())
2188    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2189
2190  return Res;
2191}
2192
2193/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2194/// for capturing scopes.
2195///
2196StmtResult
2197Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2198  // If this is the first return we've seen, infer the return type.
2199  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2200  // rules which allows multiple return statements.
2201  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2202  QualType FnRetType = CurCap->ReturnType;
2203
2204  // For blocks/lambdas with implicit return types, we check each return
2205  // statement individually, and deduce the common return type when the block
2206  // or lambda is completed.
2207  if (CurCap->HasImplicitReturnType) {
2208    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2209      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2210      if (Result.isInvalid())
2211        return StmtError();
2212      RetValExp = Result.take();
2213
2214      if (!RetValExp->isTypeDependent())
2215        FnRetType = RetValExp->getType();
2216      else
2217        FnRetType = CurCap->ReturnType = Context.DependentTy;
2218    } else {
2219      if (RetValExp) {
2220        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2221        // initializer list, because it is not an expression (even
2222        // though we represent it as one). We still deduce 'void'.
2223        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2224          << RetValExp->getSourceRange();
2225      }
2226
2227      FnRetType = Context.VoidTy;
2228    }
2229
2230    // Although we'll properly infer the type of the block once it's completed,
2231    // make sure we provide a return type now for better error recovery.
2232    if (CurCap->ReturnType.isNull())
2233      CurCap->ReturnType = FnRetType;
2234  }
2235  assert(!FnRetType.isNull());
2236
2237  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2238    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2239      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2240      return StmtError();
2241    }
2242  } else {
2243    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2244    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2245      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2246      return StmtError();
2247    }
2248  }
2249
2250  // Otherwise, verify that this result type matches the previous one.  We are
2251  // pickier with blocks than for normal functions because we don't have GCC
2252  // compatibility to worry about here.
2253  const VarDecl *NRVOCandidate = 0;
2254  if (FnRetType->isDependentType()) {
2255    // Delay processing for now.  TODO: there are lots of dependent
2256    // types we can conclusively prove aren't void.
2257  } else if (FnRetType->isVoidType()) {
2258    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2259        !(getLangOpts().CPlusPlus &&
2260          (RetValExp->isTypeDependent() ||
2261           RetValExp->getType()->isVoidType()))) {
2262      if (!getLangOpts().CPlusPlus &&
2263          RetValExp->getType()->isVoidType())
2264        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2265      else {
2266        Diag(ReturnLoc, diag::err_return_block_has_expr);
2267        RetValExp = 0;
2268      }
2269    }
2270  } else if (!RetValExp) {
2271    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2272  } else if (!RetValExp->isTypeDependent()) {
2273    // we have a non-void block with an expression, continue checking
2274
2275    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2276    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2277    // function return.
2278
2279    // In C++ the return statement is handled via a copy initialization.
2280    // the C version of which boils down to CheckSingleAssignmentConstraints.
2281    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2282    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2283                                                                   FnRetType,
2284                                                          NRVOCandidate != 0);
2285    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2286                                                     FnRetType, RetValExp);
2287    if (Res.isInvalid()) {
2288      // FIXME: Cleanup temporaries here, anyway?
2289      return StmtError();
2290    }
2291    RetValExp = Res.take();
2292    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2293  }
2294
2295  if (RetValExp) {
2296    CheckImplicitConversions(RetValExp, ReturnLoc);
2297    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2298  }
2299  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2300                                                NRVOCandidate);
2301
2302  // If we need to check for the named return value optimization,
2303  // or if we need to infer the return type,
2304  // save the return statement in our scope for later processing.
2305  if (CurCap->HasImplicitReturnType ||
2306      (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2307       !CurContext->isDependentContext()))
2308    FunctionScopes.back()->Returns.push_back(Result);
2309
2310  return Owned(Result);
2311}
2312
2313StmtResult
2314Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2315  // Check for unexpanded parameter packs.
2316  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2317    return StmtError();
2318
2319  if (isa<CapturingScopeInfo>(getCurFunction()))
2320    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2321
2322  QualType FnRetType;
2323  QualType RelatedRetType;
2324  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2325    FnRetType = FD->getResultType();
2326    if (FD->hasAttr<NoReturnAttr>() ||
2327        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
2328      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2329        << FD->getDeclName();
2330  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2331    FnRetType = MD->getResultType();
2332    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2333      // In the implementation of a method with a related return type, the
2334      // type used to type-check the validity of return statements within the
2335      // method body is a pointer to the type of the class being implemented.
2336      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2337      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2338    }
2339  } else // If we don't have a function/method context, bail.
2340    return StmtError();
2341
2342  ReturnStmt *Result = 0;
2343  if (FnRetType->isVoidType()) {
2344    if (RetValExp) {
2345      if (isa<InitListExpr>(RetValExp)) {
2346        // We simply never allow init lists as the return value of void
2347        // functions. This is compatible because this was never allowed before,
2348        // so there's no legacy code to deal with.
2349        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2350        int FunctionKind = 0;
2351        if (isa<ObjCMethodDecl>(CurDecl))
2352          FunctionKind = 1;
2353        else if (isa<CXXConstructorDecl>(CurDecl))
2354          FunctionKind = 2;
2355        else if (isa<CXXDestructorDecl>(CurDecl))
2356          FunctionKind = 3;
2357
2358        Diag(ReturnLoc, diag::err_return_init_list)
2359          << CurDecl->getDeclName() << FunctionKind
2360          << RetValExp->getSourceRange();
2361
2362        // Drop the expression.
2363        RetValExp = 0;
2364      } else if (!RetValExp->isTypeDependent()) {
2365        // C99 6.8.6.4p1 (ext_ since GCC warns)
2366        unsigned D = diag::ext_return_has_expr;
2367        if (RetValExp->getType()->isVoidType())
2368          D = diag::ext_return_has_void_expr;
2369        else {
2370          ExprResult Result = Owned(RetValExp);
2371          Result = IgnoredValueConversions(Result.take());
2372          if (Result.isInvalid())
2373            return StmtError();
2374          RetValExp = Result.take();
2375          RetValExp = ImpCastExprToType(RetValExp,
2376                                        Context.VoidTy, CK_ToVoid).take();
2377        }
2378
2379        // return (some void expression); is legal in C++.
2380        if (D != diag::ext_return_has_void_expr ||
2381            !getLangOpts().CPlusPlus) {
2382          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2383
2384          int FunctionKind = 0;
2385          if (isa<ObjCMethodDecl>(CurDecl))
2386            FunctionKind = 1;
2387          else if (isa<CXXConstructorDecl>(CurDecl))
2388            FunctionKind = 2;
2389          else if (isa<CXXDestructorDecl>(CurDecl))
2390            FunctionKind = 3;
2391
2392          Diag(ReturnLoc, D)
2393            << CurDecl->getDeclName() << FunctionKind
2394            << RetValExp->getSourceRange();
2395        }
2396      }
2397
2398      if (RetValExp) {
2399        CheckImplicitConversions(RetValExp, ReturnLoc);
2400        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2401      }
2402    }
2403
2404    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2405  } else if (!RetValExp && !FnRetType->isDependentType()) {
2406    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2407    // C99 6.8.6.4p1 (ext_ since GCC warns)
2408    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2409
2410    if (FunctionDecl *FD = getCurFunctionDecl())
2411      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2412    else
2413      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2414    Result = new (Context) ReturnStmt(ReturnLoc);
2415  } else {
2416    const VarDecl *NRVOCandidate = 0;
2417    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2418      // we have a non-void function with an expression, continue checking
2419
2420      if (!RelatedRetType.isNull()) {
2421        // If we have a related result type, perform an extra conversion here.
2422        // FIXME: The diagnostics here don't really describe what is happening.
2423        InitializedEntity Entity =
2424            InitializedEntity::InitializeTemporary(RelatedRetType);
2425
2426        ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2427                                                   RetValExp);
2428        if (Res.isInvalid()) {
2429          // FIXME: Cleanup temporaries here, anyway?
2430          return StmtError();
2431        }
2432        RetValExp = Res.takeAs<Expr>();
2433      }
2434
2435      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2436      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2437      // function return.
2438
2439      // In C++ the return statement is handled via a copy initialization,
2440      // the C version of which boils down to CheckSingleAssignmentConstraints.
2441      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2442      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2443                                                                     FnRetType,
2444                                                            NRVOCandidate != 0);
2445      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2446                                                       FnRetType, RetValExp);
2447      if (Res.isInvalid()) {
2448        // FIXME: Cleanup temporaries here, anyway?
2449        return StmtError();
2450      }
2451
2452      RetValExp = Res.takeAs<Expr>();
2453      if (RetValExp)
2454        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2455    }
2456
2457    if (RetValExp) {
2458      CheckImplicitConversions(RetValExp, ReturnLoc);
2459      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2460    }
2461    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2462  }
2463
2464  // If we need to check for the named return value optimization, save the
2465  // return statement in our scope for later processing.
2466  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2467      !CurContext->isDependentContext())
2468    FunctionScopes.back()->Returns.push_back(Result);
2469
2470  return Owned(Result);
2471}
2472
2473/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2474/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2475/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2476/// provide a strong guidance to not use it.
2477///
2478/// This method checks to see if the argument is an acceptable l-value and
2479/// returns false if it is a case we can handle.
2480static bool CheckAsmLValue(const Expr *E, Sema &S) {
2481  // Type dependent expressions will be checked during instantiation.
2482  if (E->isTypeDependent())
2483    return false;
2484
2485  if (E->isLValue())
2486    return false;  // Cool, this is an lvalue.
2487
2488  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2489  // are supposed to allow.
2490  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2491  if (E != E2 && E2->isLValue()) {
2492    if (!S.getLangOpts().HeinousExtensions)
2493      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2494        << E->getSourceRange();
2495    else
2496      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2497        << E->getSourceRange();
2498    // Accept, even if we emitted an error diagnostic.
2499    return false;
2500  }
2501
2502  // None of the above, just randomly invalid non-lvalue.
2503  return true;
2504}
2505
2506/// isOperandMentioned - Return true if the specified operand # is mentioned
2507/// anywhere in the decomposed asm string.
2508static bool isOperandMentioned(unsigned OpNo,
2509                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2510  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2511    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2512    if (!Piece.isOperand()) continue;
2513
2514    // If this is a reference to the input and if the input was the smaller
2515    // one, then we have to reject this asm.
2516    if (Piece.getOperandNo() == OpNo)
2517      return true;
2518  }
2519  return false;
2520}
2521
2522StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2523                              bool IsVolatile, unsigned NumOutputs,
2524                              unsigned NumInputs, IdentifierInfo **Names,
2525                              MultiExprArg constraints, MultiExprArg exprs,
2526                              Expr *asmString, MultiExprArg clobbers,
2527                              SourceLocation RParenLoc, bool MSAsm) {
2528  unsigned NumClobbers = clobbers.size();
2529  StringLiteral **Constraints =
2530    reinterpret_cast<StringLiteral**>(constraints.get());
2531  Expr **Exprs = exprs.get();
2532  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2533  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2534
2535  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2536
2537  // The parser verifies that there is a string literal here.
2538  if (!AsmString->isAscii())
2539    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2540      << AsmString->getSourceRange());
2541
2542  for (unsigned i = 0; i != NumOutputs; i++) {
2543    StringLiteral *Literal = Constraints[i];
2544    if (!Literal->isAscii())
2545      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2546        << Literal->getSourceRange());
2547
2548    StringRef OutputName;
2549    if (Names[i])
2550      OutputName = Names[i]->getName();
2551
2552    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2553    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2554      return StmtError(Diag(Literal->getLocStart(),
2555                            diag::err_asm_invalid_output_constraint)
2556                       << Info.getConstraintStr());
2557
2558    // Check that the output exprs are valid lvalues.
2559    Expr *OutputExpr = Exprs[i];
2560    if (CheckAsmLValue(OutputExpr, *this)) {
2561      return StmtError(Diag(OutputExpr->getLocStart(),
2562                  diag::err_asm_invalid_lvalue_in_output)
2563        << OutputExpr->getSourceRange());
2564    }
2565
2566    OutputConstraintInfos.push_back(Info);
2567  }
2568
2569  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2570
2571  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2572    StringLiteral *Literal = Constraints[i];
2573    if (!Literal->isAscii())
2574      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2575        << Literal->getSourceRange());
2576
2577    StringRef InputName;
2578    if (Names[i])
2579      InputName = Names[i]->getName();
2580
2581    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2582    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2583                                                NumOutputs, Info)) {
2584      return StmtError(Diag(Literal->getLocStart(),
2585                            diag::err_asm_invalid_input_constraint)
2586                       << Info.getConstraintStr());
2587    }
2588
2589    Expr *InputExpr = Exprs[i];
2590
2591    // Only allow void types for memory constraints.
2592    if (Info.allowsMemory() && !Info.allowsRegister()) {
2593      if (CheckAsmLValue(InputExpr, *this))
2594        return StmtError(Diag(InputExpr->getLocStart(),
2595                              diag::err_asm_invalid_lvalue_in_input)
2596                         << Info.getConstraintStr()
2597                         << InputExpr->getSourceRange());
2598    }
2599
2600    if (Info.allowsRegister()) {
2601      if (InputExpr->getType()->isVoidType()) {
2602        return StmtError(Diag(InputExpr->getLocStart(),
2603                              diag::err_asm_invalid_type_in_input)
2604          << InputExpr->getType() << Info.getConstraintStr()
2605          << InputExpr->getSourceRange());
2606      }
2607    }
2608
2609    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2610    if (Result.isInvalid())
2611      return StmtError();
2612
2613    Exprs[i] = Result.take();
2614    InputConstraintInfos.push_back(Info);
2615  }
2616
2617  // Check that the clobbers are valid.
2618  for (unsigned i = 0; i != NumClobbers; i++) {
2619    StringLiteral *Literal = Clobbers[i];
2620    if (!Literal->isAscii())
2621      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2622        << Literal->getSourceRange());
2623
2624    StringRef Clobber = Literal->getString();
2625
2626    if (!Context.getTargetInfo().isValidClobber(Clobber))
2627      return StmtError(Diag(Literal->getLocStart(),
2628                  diag::err_asm_unknown_register_name) << Clobber);
2629  }
2630
2631  AsmStmt *NS =
2632    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2633                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2634                          AsmString, NumClobbers, Clobbers, RParenLoc);
2635  // Validate the asm string, ensuring it makes sense given the operands we
2636  // have.
2637  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2638  unsigned DiagOffs;
2639  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2640    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2641           << AsmString->getSourceRange();
2642    return StmtError();
2643  }
2644
2645  // Validate tied input operands for type mismatches.
2646  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2647    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2648
2649    // If this is a tied constraint, verify that the output and input have
2650    // either exactly the same type, or that they are int/ptr operands with the
2651    // same size (int/long, int*/long, are ok etc).
2652    if (!Info.hasTiedOperand()) continue;
2653
2654    unsigned TiedTo = Info.getTiedOperand();
2655    unsigned InputOpNo = i+NumOutputs;
2656    Expr *OutputExpr = Exprs[TiedTo];
2657    Expr *InputExpr = Exprs[InputOpNo];
2658
2659    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2660      continue;
2661
2662    QualType InTy = InputExpr->getType();
2663    QualType OutTy = OutputExpr->getType();
2664    if (Context.hasSameType(InTy, OutTy))
2665      continue;  // All types can be tied to themselves.
2666
2667    // Decide if the input and output are in the same domain (integer/ptr or
2668    // floating point.
2669    enum AsmDomain {
2670      AD_Int, AD_FP, AD_Other
2671    } InputDomain, OutputDomain;
2672
2673    if (InTy->isIntegerType() || InTy->isPointerType())
2674      InputDomain = AD_Int;
2675    else if (InTy->isRealFloatingType())
2676      InputDomain = AD_FP;
2677    else
2678      InputDomain = AD_Other;
2679
2680    if (OutTy->isIntegerType() || OutTy->isPointerType())
2681      OutputDomain = AD_Int;
2682    else if (OutTy->isRealFloatingType())
2683      OutputDomain = AD_FP;
2684    else
2685      OutputDomain = AD_Other;
2686
2687    // They are ok if they are the same size and in the same domain.  This
2688    // allows tying things like:
2689    //   void* to int*
2690    //   void* to int            if they are the same size.
2691    //   double to long double   if they are the same size.
2692    //
2693    uint64_t OutSize = Context.getTypeSize(OutTy);
2694    uint64_t InSize = Context.getTypeSize(InTy);
2695    if (OutSize == InSize && InputDomain == OutputDomain &&
2696        InputDomain != AD_Other)
2697      continue;
2698
2699    // If the smaller input/output operand is not mentioned in the asm string,
2700    // then we can promote the smaller one to a larger input and the asm string
2701    // won't notice.
2702    bool SmallerValueMentioned = false;
2703
2704    // If this is a reference to the input and if the input was the smaller
2705    // one, then we have to reject this asm.
2706    if (isOperandMentioned(InputOpNo, Pieces)) {
2707      // This is a use in the asm string of the smaller operand.  Since we
2708      // codegen this by promoting to a wider value, the asm will get printed
2709      // "wrong".
2710      SmallerValueMentioned |= InSize < OutSize;
2711    }
2712    if (isOperandMentioned(TiedTo, Pieces)) {
2713      // If this is a reference to the output, and if the output is the larger
2714      // value, then it's ok because we'll promote the input to the larger type.
2715      SmallerValueMentioned |= OutSize < InSize;
2716    }
2717
2718    // If the smaller value wasn't mentioned in the asm string, and if the
2719    // output was a register, just extend the shorter one to the size of the
2720    // larger one.
2721    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2722        OutputConstraintInfos[TiedTo].allowsRegister())
2723      continue;
2724
2725    // Either both of the operands were mentioned or the smaller one was
2726    // mentioned.  One more special case that we'll allow: if the tied input is
2727    // integer, unmentioned, and is a constant, then we'll allow truncating it
2728    // down to the size of the destination.
2729    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2730        !isOperandMentioned(InputOpNo, Pieces) &&
2731        InputExpr->isEvaluatable(Context)) {
2732      CastKind castKind =
2733        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2734      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2735      Exprs[InputOpNo] = InputExpr;
2736      NS->setInputExpr(i, InputExpr);
2737      continue;
2738    }
2739
2740    Diag(InputExpr->getLocStart(),
2741         diag::err_asm_tying_incompatible_types)
2742      << InTy << OutTy << OutputExpr->getSourceRange()
2743      << InputExpr->getSourceRange();
2744    return StmtError();
2745  }
2746
2747  return Owned(NS);
2748}
2749
2750// needSpaceAsmToken - This function handles whitespace around asm punctuation.
2751// Returns true if a space should be emitted.
2752//
2753// FIXME: This is replicated in ParseStmt.cpp.  Maybe we should defer building
2754// the AsmString (i.e., non-patched AsmString) until Sema.
2755static inline bool needSpaceAsmToken(Token currTok) {
2756  static Token prevTok;
2757
2758  // No need for space after prevToken.
2759  switch(prevTok.getKind()) {
2760  default:
2761    break;
2762  case tok::l_square:
2763  case tok::r_square:
2764  case tok::l_brace:
2765  case tok::r_brace:
2766  case tok::colon:
2767    prevTok = currTok;
2768    return false;
2769  }
2770
2771  // No need for a space before currToken.
2772  switch(currTok.getKind()) {
2773  default:
2774    break;
2775  case tok::l_square:
2776  case tok::r_square:
2777  case tok::l_brace:
2778  case tok::r_brace:
2779  case tok::comma:
2780  case tok::colon:
2781    prevTok = currTok;
2782    return false;
2783  }
2784  prevTok = currTok;
2785  return true;
2786}
2787
2788static std::string PatchMSAsmString(Sema &SemaRef, bool &IsSimple,
2789                                    SourceLocation AsmLoc,
2790                                    ArrayRef<Token> AsmToks,
2791                                    const TargetInfo &TI) {
2792  std::string Res;
2793  IdentifierInfo *II = AsmToks[0].getIdentifierInfo();
2794  Res = II->getName().str();
2795
2796  // Assume simple asm stmt until we parse a non-register identifer.
2797  IsSimple = true;
2798
2799  // Check the operands.
2800  for (unsigned i = 1, e = AsmToks.size(); i != e; ++i) {
2801    if (needSpaceAsmToken(AsmToks[i]))
2802        Res += " ";
2803
2804    switch (AsmToks[i].getKind()) {
2805    default:
2806      //llvm_unreachable("Unknown token.");
2807      break;
2808    case tok::comma: Res += ","; break;
2809    case tok::colon: Res += ":"; break;
2810    case tok::l_square: Res += "["; break;
2811    case tok::r_square: Res += "]"; break;
2812    case tok::l_brace: Res += "{"; break;
2813    case tok::r_brace: Res += "}"; break;
2814    case tok::numeric_constant: {
2815      SmallString<32> TokenBuf;
2816      TokenBuf.resize(32);
2817      bool StringInvalid = false;
2818      const char *ThisTokBuf = &TokenBuf[0];
2819      unsigned ThisTokLen =
2820        Lexer::getSpelling(AsmToks[i], ThisTokBuf, SemaRef.getSourceManager(),
2821                           SemaRef.getLangOpts(), &StringInvalid);
2822      Res += StringRef(ThisTokBuf, ThisTokLen);
2823      break;
2824    }
2825    case tok::identifier: {
2826      II = AsmToks[i].getIdentifierInfo();
2827      StringRef Name = II->getName();
2828
2829      // Valid registers don't need modification.
2830      if (TI.isValidGCCRegisterName(Name)) {
2831        Res += Name;
2832        break;
2833      }
2834
2835      // TODO: Lookup the identifier.
2836      IsSimple = false;
2837    }
2838    } // AsmToks[i].getKind()
2839  }
2840  return Res;
2841}
2842
2843StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc,
2844                                ArrayRef<Token> AsmToks,
2845                                std::string &AsmString,
2846                                SourceLocation EndLoc) {
2847  // MS-style inline assembly is not fully supported, so emit a warning.
2848  Diag(AsmLoc, diag::warn_unsupported_msasm);
2849
2850  bool IsSimple;
2851  // Rewrite operands to appease the AsmParser.
2852  std::string PatchedAsmString =
2853    PatchMSAsmString(*this, IsSimple, AsmLoc, AsmToks, Context.getTargetInfo());
2854
2855  // Silence compiler warnings.  Eventually, the PatchedAsmString will be
2856  // passed to the AsmParser.
2857  (void)PatchedAsmString;
2858
2859  MSAsmStmt *NS =
2860    new (Context) MSAsmStmt(Context, AsmLoc, IsSimple, /* IsVolatile */ true,
2861                            AsmToks, AsmString, EndLoc);
2862
2863  return Owned(NS);
2864}
2865
2866StmtResult
2867Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2868                           SourceLocation RParen, Decl *Parm,
2869                           Stmt *Body) {
2870  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2871  if (Var && Var->isInvalidDecl())
2872    return StmtError();
2873
2874  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2875}
2876
2877StmtResult
2878Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2879  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2880}
2881
2882StmtResult
2883Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2884                         MultiStmtArg CatchStmts, Stmt *Finally) {
2885  if (!getLangOpts().ObjCExceptions)
2886    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2887
2888  getCurFunction()->setHasBranchProtectedScope();
2889  unsigned NumCatchStmts = CatchStmts.size();
2890  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2891                                     CatchStmts.release(),
2892                                     NumCatchStmts,
2893                                     Finally));
2894}
2895
2896StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2897  if (Throw) {
2898    ExprResult Result = DefaultLvalueConversion(Throw);
2899    if (Result.isInvalid())
2900      return StmtError();
2901
2902    Throw = MaybeCreateExprWithCleanups(Result.take());
2903    QualType ThrowType = Throw->getType();
2904    // Make sure the expression type is an ObjC pointer or "void *".
2905    if (!ThrowType->isDependentType() &&
2906        !ThrowType->isObjCObjectPointerType()) {
2907      const PointerType *PT = ThrowType->getAs<PointerType>();
2908      if (!PT || !PT->getPointeeType()->isVoidType())
2909        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2910                         << Throw->getType() << Throw->getSourceRange());
2911    }
2912  }
2913
2914  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2915}
2916
2917StmtResult
2918Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2919                           Scope *CurScope) {
2920  if (!getLangOpts().ObjCExceptions)
2921    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2922
2923  if (!Throw) {
2924    // @throw without an expression designates a rethrow (which much occur
2925    // in the context of an @catch clause).
2926    Scope *AtCatchParent = CurScope;
2927    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2928      AtCatchParent = AtCatchParent->getParent();
2929    if (!AtCatchParent)
2930      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2931  }
2932  return BuildObjCAtThrowStmt(AtLoc, Throw);
2933}
2934
2935ExprResult
2936Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2937  ExprResult result = DefaultLvalueConversion(operand);
2938  if (result.isInvalid())
2939    return ExprError();
2940  operand = result.take();
2941
2942  // Make sure the expression type is an ObjC pointer or "void *".
2943  QualType type = operand->getType();
2944  if (!type->isDependentType() &&
2945      !type->isObjCObjectPointerType()) {
2946    const PointerType *pointerType = type->getAs<PointerType>();
2947    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2948      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2949               << type << operand->getSourceRange();
2950  }
2951
2952  // The operand to @synchronized is a full-expression.
2953  return MaybeCreateExprWithCleanups(operand);
2954}
2955
2956StmtResult
2957Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2958                                  Stmt *SyncBody) {
2959  // We can't jump into or indirect-jump out of a @synchronized block.
2960  getCurFunction()->setHasBranchProtectedScope();
2961  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2962}
2963
2964/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2965/// and creates a proper catch handler from them.
2966StmtResult
2967Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2968                         Stmt *HandlerBlock) {
2969  // There's nothing to test that ActOnExceptionDecl didn't already test.
2970  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2971                                          cast_or_null<VarDecl>(ExDecl),
2972                                          HandlerBlock));
2973}
2974
2975StmtResult
2976Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2977  getCurFunction()->setHasBranchProtectedScope();
2978  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2979}
2980
2981namespace {
2982
2983class TypeWithHandler {
2984  QualType t;
2985  CXXCatchStmt *stmt;
2986public:
2987  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2988  : t(type), stmt(statement) {}
2989
2990  // An arbitrary order is fine as long as it places identical
2991  // types next to each other.
2992  bool operator<(const TypeWithHandler &y) const {
2993    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2994      return true;
2995    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2996      return false;
2997    else
2998      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2999  }
3000
3001  bool operator==(const TypeWithHandler& other) const {
3002    return t == other.t;
3003  }
3004
3005  CXXCatchStmt *getCatchStmt() const { return stmt; }
3006  SourceLocation getTypeSpecStartLoc() const {
3007    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
3008  }
3009};
3010
3011}
3012
3013/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3014/// handlers and creates a try statement from them.
3015StmtResult
3016Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3017                       MultiStmtArg RawHandlers) {
3018  // Don't report an error if 'try' is used in system headers.
3019  if (!getLangOpts().CXXExceptions &&
3020      !getSourceManager().isInSystemHeader(TryLoc))
3021      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3022
3023  unsigned NumHandlers = RawHandlers.size();
3024  assert(NumHandlers > 0 &&
3025         "The parser shouldn't call this if there are no handlers.");
3026  Stmt **Handlers = RawHandlers.get();
3027
3028  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
3029
3030  for (unsigned i = 0; i < NumHandlers; ++i) {
3031    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
3032    if (!Handler->getExceptionDecl()) {
3033      if (i < NumHandlers - 1)
3034        return StmtError(Diag(Handler->getLocStart(),
3035                              diag::err_early_catch_all));
3036
3037      continue;
3038    }
3039
3040    const QualType CaughtType = Handler->getCaughtType();
3041    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
3042    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
3043  }
3044
3045  // Detect handlers for the same type as an earlier one.
3046  if (NumHandlers > 1) {
3047    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
3048
3049    TypeWithHandler prev = TypesWithHandlers[0];
3050    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
3051      TypeWithHandler curr = TypesWithHandlers[i];
3052
3053      if (curr == prev) {
3054        Diag(curr.getTypeSpecStartLoc(),
3055             diag::warn_exception_caught_by_earlier_handler)
3056          << curr.getCatchStmt()->getCaughtType().getAsString();
3057        Diag(prev.getTypeSpecStartLoc(),
3058             diag::note_previous_exception_handler)
3059          << prev.getCatchStmt()->getCaughtType().getAsString();
3060      }
3061
3062      prev = curr;
3063    }
3064  }
3065
3066  getCurFunction()->setHasBranchProtectedScope();
3067
3068  // FIXME: We should detect handlers that cannot catch anything because an
3069  // earlier handler catches a superclass. Need to find a method that is not
3070  // quadratic for this.
3071  // Neither of these are explicitly forbidden, but every compiler detects them
3072  // and warns.
3073
3074  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
3075                                  Handlers, NumHandlers));
3076}
3077
3078StmtResult
3079Sema::ActOnSEHTryBlock(bool IsCXXTry,
3080                       SourceLocation TryLoc,
3081                       Stmt *TryBlock,
3082                       Stmt *Handler) {
3083  assert(TryBlock && Handler);
3084
3085  getCurFunction()->setHasBranchProtectedScope();
3086
3087  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
3088}
3089
3090StmtResult
3091Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3092                          Expr *FilterExpr,
3093                          Stmt *Block) {
3094  assert(FilterExpr && Block);
3095
3096  if(!FilterExpr->getType()->isIntegerType()) {
3097    return StmtError(Diag(FilterExpr->getExprLoc(),
3098                     diag::err_filter_expression_integral)
3099                     << FilterExpr->getType());
3100  }
3101
3102  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
3103}
3104
3105StmtResult
3106Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
3107                           Stmt *Block) {
3108  assert(Block);
3109  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
3110}
3111
3112StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3113                                            bool IsIfExists,
3114                                            NestedNameSpecifierLoc QualifierLoc,
3115                                            DeclarationNameInfo NameInfo,
3116                                            Stmt *Nested)
3117{
3118  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3119                                             QualifierLoc, NameInfo,
3120                                             cast<CompoundStmt>(Nested));
3121}
3122
3123
3124StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3125                                            bool IsIfExists,
3126                                            CXXScopeSpec &SS,
3127                                            UnqualifiedId &Name,
3128                                            Stmt *Nested) {
3129  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3130                                    SS.getWithLocInContext(Context),
3131                                    GetNameFromUnqualifiedId(Name),
3132                                    Nested);
3133}
3134