SemaStmt.cpp revision f64c11815e68f025737dc41d8d94e31e1426274d
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/Triple.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCInst.h"
40#include "llvm/MC/MCInstPrinter.h"
41#include "llvm/MC/MCInstrInfo.h"
42#include "llvm/MC/MCObjectFileInfo.h"
43#include "llvm/MC/MCRegisterInfo.h"
44#include "llvm/MC/MCStreamer.h"
45#include "llvm/MC/MCSubtargetInfo.h"
46#include "llvm/MC/MCTargetAsmParser.h"
47#include "llvm/MC/MCParser/MCAsmLexer.h"
48#include "llvm/MC/MCParser/MCAsmParser.h"
49#include "llvm/Support/SourceMgr.h"
50#include "llvm/Support/TargetRegistry.h"
51#include "llvm/Support/TargetSelect.h"
52using namespace clang;
53using namespace sema;
54
55StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
56  Expr *E = expr.get();
57  if (!E) // FIXME: FullExprArg has no error state?
58    return StmtError();
59
60  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
61  // void expression for its side effects.  Conversion to void allows any
62  // operand, even incomplete types.
63
64  // Same thing in for stmt first clause (when expr) and third clause.
65  return Owned(static_cast<Stmt*>(E));
66}
67
68
69StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
70                               bool HasLeadingEmptyMacro) {
71  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
72}
73
74StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
75                               SourceLocation EndLoc) {
76  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
77
78  // If we have an invalid decl, just return an error.
79  if (DG.isNull()) return StmtError();
80
81  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
82}
83
84void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
85  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
86
87  // If we have an invalid decl, just return.
88  if (DG.isNull() || !DG.isSingleDecl()) return;
89  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
90
91  // suppress any potential 'unused variable' warning.
92  var->setUsed();
93
94  // foreach variables are never actually initialized in the way that
95  // the parser came up with.
96  var->setInit(0);
97
98  // In ARC, we don't need to retain the iteration variable of a fast
99  // enumeration loop.  Rather than actually trying to catch that
100  // during declaration processing, we remove the consequences here.
101  if (getLangOpts().ObjCAutoRefCount) {
102    QualType type = var->getType();
103
104    // Only do this if we inferred the lifetime.  Inferred lifetime
105    // will show up as a local qualifier because explicit lifetime
106    // should have shown up as an AttributedType instead.
107    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
108      // Add 'const' and mark the variable as pseudo-strong.
109      var->setType(type.withConst());
110      var->setARCPseudoStrong(true);
111    }
112  }
113}
114
115/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
116///
117/// Adding a cast to void (or other expression wrappers) will prevent the
118/// warning from firing.
119static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
120  SourceLocation Loc;
121  bool IsNotEqual, CanAssign;
122
123  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
124    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
125      return false;
126
127    Loc = Op->getOperatorLoc();
128    IsNotEqual = Op->getOpcode() == BO_NE;
129    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
130  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
131    if (Op->getOperator() != OO_EqualEqual &&
132        Op->getOperator() != OO_ExclaimEqual)
133      return false;
134
135    Loc = Op->getOperatorLoc();
136    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
137    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
138  } else {
139    // Not a typo-prone comparison.
140    return false;
141  }
142
143  // Suppress warnings when the operator, suspicious as it may be, comes from
144  // a macro expansion.
145  if (Loc.isMacroID())
146    return false;
147
148  S.Diag(Loc, diag::warn_unused_comparison)
149    << (unsigned)IsNotEqual << E->getSourceRange();
150
151  // If the LHS is a plausible entity to assign to, provide a fixit hint to
152  // correct common typos.
153  if (CanAssign) {
154    if (IsNotEqual)
155      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
156        << FixItHint::CreateReplacement(Loc, "|=");
157    else
158      S.Diag(Loc, diag::note_equality_comparison_to_assign)
159        << FixItHint::CreateReplacement(Loc, "=");
160  }
161
162  return true;
163}
164
165void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
166  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
167    return DiagnoseUnusedExprResult(Label->getSubStmt());
168
169  const Expr *E = dyn_cast_or_null<Expr>(S);
170  if (!E)
171    return;
172
173  const Expr *WarnExpr;
174  SourceLocation Loc;
175  SourceRange R1, R2;
176  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
177      !E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
178    return;
179
180  // Okay, we have an unused result.  Depending on what the base expression is,
181  // we might want to make a more specific diagnostic.  Check for one of these
182  // cases now.
183  unsigned DiagID = diag::warn_unused_expr;
184  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
185    E = Temps->getSubExpr();
186  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
187    E = TempExpr->getSubExpr();
188
189  if (DiagnoseUnusedComparison(*this, E))
190    return;
191
192  E = WarnExpr;
193  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
194    if (E->getType()->isVoidType())
195      return;
196
197    // If the callee has attribute pure, const, or warn_unused_result, warn with
198    // a more specific message to make it clear what is happening.
199    if (const Decl *FD = CE->getCalleeDecl()) {
200      if (FD->getAttr<WarnUnusedResultAttr>()) {
201        Diag(Loc, diag::warn_unused_result) << R1 << R2;
202        return;
203      }
204      if (FD->getAttr<PureAttr>()) {
205        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
206        return;
207      }
208      if (FD->getAttr<ConstAttr>()) {
209        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
210        return;
211      }
212    }
213  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
214    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
215      Diag(Loc, diag::err_arc_unused_init_message) << R1;
216      return;
217    }
218    const ObjCMethodDecl *MD = ME->getMethodDecl();
219    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
220      Diag(Loc, diag::warn_unused_result) << R1 << R2;
221      return;
222    }
223  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
224    const Expr *Source = POE->getSyntacticForm();
225    if (isa<ObjCSubscriptRefExpr>(Source))
226      DiagID = diag::warn_unused_container_subscript_expr;
227    else
228      DiagID = diag::warn_unused_property_expr;
229  } else if (const CXXFunctionalCastExpr *FC
230                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
231    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
232        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
233      return;
234  }
235  // Diagnose "(void*) blah" as a typo for "(void) blah".
236  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
237    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
238    QualType T = TI->getType();
239
240    // We really do want to use the non-canonical type here.
241    if (T == Context.VoidPtrTy) {
242      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
243
244      Diag(Loc, diag::warn_unused_voidptr)
245        << FixItHint::CreateRemoval(TL.getStarLoc());
246      return;
247    }
248  }
249
250  if (E->isGLValue() && E->getType().isVolatileQualified()) {
251    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
252    return;
253  }
254
255  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
256}
257
258void Sema::ActOnStartOfCompoundStmt() {
259  PushCompoundScope();
260}
261
262void Sema::ActOnFinishOfCompoundStmt() {
263  PopCompoundScope();
264}
265
266sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
267  return getCurFunction()->CompoundScopes.back();
268}
269
270StmtResult
271Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
272                        MultiStmtArg elts, bool isStmtExpr) {
273  unsigned NumElts = elts.size();
274  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
275  // If we're in C89 mode, check that we don't have any decls after stmts.  If
276  // so, emit an extension diagnostic.
277  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
278    // Note that __extension__ can be around a decl.
279    unsigned i = 0;
280    // Skip over all declarations.
281    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
282      /*empty*/;
283
284    // We found the end of the list or a statement.  Scan for another declstmt.
285    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
286      /*empty*/;
287
288    if (i != NumElts) {
289      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
290      Diag(D->getLocation(), diag::ext_mixed_decls_code);
291    }
292  }
293  // Warn about unused expressions in statements.
294  for (unsigned i = 0; i != NumElts; ++i) {
295    // Ignore statements that are last in a statement expression.
296    if (isStmtExpr && i == NumElts - 1)
297      continue;
298
299    DiagnoseUnusedExprResult(Elts[i]);
300  }
301
302  // Check for suspicious empty body (null statement) in `for' and `while'
303  // statements.  Don't do anything for template instantiations, this just adds
304  // noise.
305  if (NumElts != 0 && !CurrentInstantiationScope &&
306      getCurCompoundScope().HasEmptyLoopBodies) {
307    for (unsigned i = 0; i != NumElts - 1; ++i)
308      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
309  }
310
311  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
312}
313
314StmtResult
315Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
316                    SourceLocation DotDotDotLoc, Expr *RHSVal,
317                    SourceLocation ColonLoc) {
318  assert((LHSVal != 0) && "missing expression in case statement");
319
320  if (getCurFunction()->SwitchStack.empty()) {
321    Diag(CaseLoc, diag::err_case_not_in_switch);
322    return StmtError();
323  }
324
325  if (!getLangOpts().CPlusPlus0x) {
326    // C99 6.8.4.2p3: The expression shall be an integer constant.
327    // However, GCC allows any evaluatable integer expression.
328    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
329      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
330      if (!LHSVal)
331        return StmtError();
332    }
333
334    // GCC extension: The expression shall be an integer constant.
335
336    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
337      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
338      // Recover from an error by just forgetting about it.
339    }
340  }
341
342  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
343                                        ColonLoc);
344  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
345  return Owned(CS);
346}
347
348/// ActOnCaseStmtBody - This installs a statement as the body of a case.
349void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
350  DiagnoseUnusedExprResult(SubStmt);
351
352  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
353  CS->setSubStmt(SubStmt);
354}
355
356StmtResult
357Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
358                       Stmt *SubStmt, Scope *CurScope) {
359  DiagnoseUnusedExprResult(SubStmt);
360
361  if (getCurFunction()->SwitchStack.empty()) {
362    Diag(DefaultLoc, diag::err_default_not_in_switch);
363    return Owned(SubStmt);
364  }
365
366  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
367  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
368  return Owned(DS);
369}
370
371StmtResult
372Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
373                     SourceLocation ColonLoc, Stmt *SubStmt) {
374  // If the label was multiply defined, reject it now.
375  if (TheDecl->getStmt()) {
376    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
377    Diag(TheDecl->getLocation(), diag::note_previous_definition);
378    return Owned(SubStmt);
379  }
380
381  // Otherwise, things are good.  Fill in the declaration and return it.
382  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
383  TheDecl->setStmt(LS);
384  if (!TheDecl->isGnuLocal())
385    TheDecl->setLocation(IdentLoc);
386  return Owned(LS);
387}
388
389StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
390                                     ArrayRef<const Attr*> Attrs,
391                                     Stmt *SubStmt) {
392  // Fill in the declaration and return it.
393  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
394  return Owned(LS);
395}
396
397StmtResult
398Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
399                  Stmt *thenStmt, SourceLocation ElseLoc,
400                  Stmt *elseStmt) {
401  ExprResult CondResult(CondVal.release());
402
403  VarDecl *ConditionVar = 0;
404  if (CondVar) {
405    ConditionVar = cast<VarDecl>(CondVar);
406    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
407    if (CondResult.isInvalid())
408      return StmtError();
409  }
410  Expr *ConditionExpr = CondResult.takeAs<Expr>();
411  if (!ConditionExpr)
412    return StmtError();
413
414  DiagnoseUnusedExprResult(thenStmt);
415
416  if (!elseStmt) {
417    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
418                          diag::warn_empty_if_body);
419  }
420
421  DiagnoseUnusedExprResult(elseStmt);
422
423  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
424                                    thenStmt, ElseLoc, elseStmt));
425}
426
427/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
428/// the specified width and sign.  If an overflow occurs, detect it and emit
429/// the specified diagnostic.
430void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
431                                              unsigned NewWidth, bool NewSign,
432                                              SourceLocation Loc,
433                                              unsigned DiagID) {
434  // Perform a conversion to the promoted condition type if needed.
435  if (NewWidth > Val.getBitWidth()) {
436    // If this is an extension, just do it.
437    Val = Val.extend(NewWidth);
438    Val.setIsSigned(NewSign);
439
440    // If the input was signed and negative and the output is
441    // unsigned, don't bother to warn: this is implementation-defined
442    // behavior.
443    // FIXME: Introduce a second, default-ignored warning for this case?
444  } else if (NewWidth < Val.getBitWidth()) {
445    // If this is a truncation, check for overflow.
446    llvm::APSInt ConvVal(Val);
447    ConvVal = ConvVal.trunc(NewWidth);
448    ConvVal.setIsSigned(NewSign);
449    ConvVal = ConvVal.extend(Val.getBitWidth());
450    ConvVal.setIsSigned(Val.isSigned());
451    if (ConvVal != Val)
452      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
453
454    // Regardless of whether a diagnostic was emitted, really do the
455    // truncation.
456    Val = Val.trunc(NewWidth);
457    Val.setIsSigned(NewSign);
458  } else if (NewSign != Val.isSigned()) {
459    // Convert the sign to match the sign of the condition.  This can cause
460    // overflow as well: unsigned(INTMIN)
461    // We don't diagnose this overflow, because it is implementation-defined
462    // behavior.
463    // FIXME: Introduce a second, default-ignored warning for this case?
464    llvm::APSInt OldVal(Val);
465    Val.setIsSigned(NewSign);
466  }
467}
468
469namespace {
470  struct CaseCompareFunctor {
471    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
472                    const llvm::APSInt &RHS) {
473      return LHS.first < RHS;
474    }
475    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
476                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
477      return LHS.first < RHS.first;
478    }
479    bool operator()(const llvm::APSInt &LHS,
480                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
481      return LHS < RHS.first;
482    }
483  };
484}
485
486/// CmpCaseVals - Comparison predicate for sorting case values.
487///
488static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
489                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
490  if (lhs.first < rhs.first)
491    return true;
492
493  if (lhs.first == rhs.first &&
494      lhs.second->getCaseLoc().getRawEncoding()
495       < rhs.second->getCaseLoc().getRawEncoding())
496    return true;
497  return false;
498}
499
500/// CmpEnumVals - Comparison predicate for sorting enumeration values.
501///
502static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
503                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
504{
505  return lhs.first < rhs.first;
506}
507
508/// EqEnumVals - Comparison preficate for uniqing enumeration values.
509///
510static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
511                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
512{
513  return lhs.first == rhs.first;
514}
515
516/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
517/// potentially integral-promoted expression @p expr.
518static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
519  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
520    expr = cleanups->getSubExpr();
521  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
522    if (impcast->getCastKind() != CK_IntegralCast) break;
523    expr = impcast->getSubExpr();
524  }
525  return expr->getType();
526}
527
528StmtResult
529Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
530                             Decl *CondVar) {
531  ExprResult CondResult;
532
533  VarDecl *ConditionVar = 0;
534  if (CondVar) {
535    ConditionVar = cast<VarDecl>(CondVar);
536    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
537    if (CondResult.isInvalid())
538      return StmtError();
539
540    Cond = CondResult.release();
541  }
542
543  if (!Cond)
544    return StmtError();
545
546  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
547    Expr *Cond;
548
549  public:
550    SwitchConvertDiagnoser(Expr *Cond)
551      : ICEConvertDiagnoser(false, true), Cond(Cond) { }
552
553    virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
554                                             QualType T) {
555      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
556    }
557
558    virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
559                                                 QualType T) {
560      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
561               << T << Cond->getSourceRange();
562    }
563
564    virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
565                                                   QualType T,
566                                                   QualType ConvTy) {
567      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
568    }
569
570    virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
571                                               QualType ConvTy) {
572      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
573        << ConvTy->isEnumeralType() << ConvTy;
574    }
575
576    virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
577                                                QualType T) {
578      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
579    }
580
581    virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
582                                            QualType ConvTy) {
583      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
584      << ConvTy->isEnumeralType() << ConvTy;
585    }
586
587    virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
588                                                 QualType T,
589                                                 QualType ConvTy) {
590      return DiagnosticBuilder::getEmpty();
591    }
592  } SwitchDiagnoser(Cond);
593
594  CondResult
595    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
596                                         /*AllowScopedEnumerations*/ true);
597  if (CondResult.isInvalid()) return StmtError();
598  Cond = CondResult.take();
599
600  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
601  CondResult = UsualUnaryConversions(Cond);
602  if (CondResult.isInvalid()) return StmtError();
603  Cond = CondResult.take();
604
605  if (!CondVar) {
606    CheckImplicitConversions(Cond, SwitchLoc);
607    CondResult = MaybeCreateExprWithCleanups(Cond);
608    if (CondResult.isInvalid())
609      return StmtError();
610    Cond = CondResult.take();
611  }
612
613  getCurFunction()->setHasBranchIntoScope();
614
615  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
616  getCurFunction()->SwitchStack.push_back(SS);
617  return Owned(SS);
618}
619
620static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
621  if (Val.getBitWidth() < BitWidth)
622    Val = Val.extend(BitWidth);
623  else if (Val.getBitWidth() > BitWidth)
624    Val = Val.trunc(BitWidth);
625  Val.setIsSigned(IsSigned);
626}
627
628StmtResult
629Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
630                            Stmt *BodyStmt) {
631  SwitchStmt *SS = cast<SwitchStmt>(Switch);
632  assert(SS == getCurFunction()->SwitchStack.back() &&
633         "switch stack missing push/pop!");
634
635  SS->setBody(BodyStmt, SwitchLoc);
636  getCurFunction()->SwitchStack.pop_back();
637
638  Expr *CondExpr = SS->getCond();
639  if (!CondExpr) return StmtError();
640
641  QualType CondType = CondExpr->getType();
642
643  Expr *CondExprBeforePromotion = CondExpr;
644  QualType CondTypeBeforePromotion =
645      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
646
647  // C++ 6.4.2.p2:
648  // Integral promotions are performed (on the switch condition).
649  //
650  // A case value unrepresentable by the original switch condition
651  // type (before the promotion) doesn't make sense, even when it can
652  // be represented by the promoted type.  Therefore we need to find
653  // the pre-promotion type of the switch condition.
654  if (!CondExpr->isTypeDependent()) {
655    // We have already converted the expression to an integral or enumeration
656    // type, when we started the switch statement. If we don't have an
657    // appropriate type now, just return an error.
658    if (!CondType->isIntegralOrEnumerationType())
659      return StmtError();
660
661    if (CondExpr->isKnownToHaveBooleanValue()) {
662      // switch(bool_expr) {...} is often a programmer error, e.g.
663      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
664      // One can always use an if statement instead of switch(bool_expr).
665      Diag(SwitchLoc, diag::warn_bool_switch_condition)
666          << CondExpr->getSourceRange();
667    }
668  }
669
670  // Get the bitwidth of the switched-on value before promotions.  We must
671  // convert the integer case values to this width before comparison.
672  bool HasDependentValue
673    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
674  unsigned CondWidth
675    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
676  bool CondIsSigned
677    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
678
679  // Accumulate all of the case values in a vector so that we can sort them
680  // and detect duplicates.  This vector contains the APInt for the case after
681  // it has been converted to the condition type.
682  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
683  CaseValsTy CaseVals;
684
685  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
686  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
687  CaseRangesTy CaseRanges;
688
689  DefaultStmt *TheDefaultStmt = 0;
690
691  bool CaseListIsErroneous = false;
692
693  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
694       SC = SC->getNextSwitchCase()) {
695
696    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
697      if (TheDefaultStmt) {
698        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
699        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
700
701        // FIXME: Remove the default statement from the switch block so that
702        // we'll return a valid AST.  This requires recursing down the AST and
703        // finding it, not something we are set up to do right now.  For now,
704        // just lop the entire switch stmt out of the AST.
705        CaseListIsErroneous = true;
706      }
707      TheDefaultStmt = DS;
708
709    } else {
710      CaseStmt *CS = cast<CaseStmt>(SC);
711
712      Expr *Lo = CS->getLHS();
713
714      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
715        HasDependentValue = true;
716        break;
717      }
718
719      llvm::APSInt LoVal;
720
721      if (getLangOpts().CPlusPlus0x) {
722        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
723        // constant expression of the promoted type of the switch condition.
724        ExprResult ConvLo =
725          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
726        if (ConvLo.isInvalid()) {
727          CaseListIsErroneous = true;
728          continue;
729        }
730        Lo = ConvLo.take();
731      } else {
732        // We already verified that the expression has a i-c-e value (C99
733        // 6.8.4.2p3) - get that value now.
734        LoVal = Lo->EvaluateKnownConstInt(Context);
735
736        // If the LHS is not the same type as the condition, insert an implicit
737        // cast.
738        Lo = DefaultLvalueConversion(Lo).take();
739        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
740      }
741
742      // Convert the value to the same width/sign as the condition had prior to
743      // integral promotions.
744      //
745      // FIXME: This causes us to reject valid code:
746      //   switch ((char)c) { case 256: case 0: return 0; }
747      // Here we claim there is a duplicated condition value, but there is not.
748      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
749                                         Lo->getLocStart(),
750                                         diag::warn_case_value_overflow);
751
752      CS->setLHS(Lo);
753
754      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
755      if (CS->getRHS()) {
756        if (CS->getRHS()->isTypeDependent() ||
757            CS->getRHS()->isValueDependent()) {
758          HasDependentValue = true;
759          break;
760        }
761        CaseRanges.push_back(std::make_pair(LoVal, CS));
762      } else
763        CaseVals.push_back(std::make_pair(LoVal, CS));
764    }
765  }
766
767  if (!HasDependentValue) {
768    // If we don't have a default statement, check whether the
769    // condition is constant.
770    llvm::APSInt ConstantCondValue;
771    bool HasConstantCond = false;
772    if (!HasDependentValue && !TheDefaultStmt) {
773      HasConstantCond
774        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
775                                                 Expr::SE_AllowSideEffects);
776      assert(!HasConstantCond ||
777             (ConstantCondValue.getBitWidth() == CondWidth &&
778              ConstantCondValue.isSigned() == CondIsSigned));
779    }
780    bool ShouldCheckConstantCond = HasConstantCond;
781
782    // Sort all the scalar case values so we can easily detect duplicates.
783    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
784
785    if (!CaseVals.empty()) {
786      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
787        if (ShouldCheckConstantCond &&
788            CaseVals[i].first == ConstantCondValue)
789          ShouldCheckConstantCond = false;
790
791        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
792          // If we have a duplicate, report it.
793          // First, determine if either case value has a name
794          StringRef PrevString, CurrString;
795          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
796          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
797          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
798            PrevString = DeclRef->getDecl()->getName();
799          }
800          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
801            CurrString = DeclRef->getDecl()->getName();
802          }
803          llvm::SmallString<16> CaseValStr;
804          CaseVals[i-1].first.toString(CaseValStr);
805
806          if (PrevString == CurrString)
807            Diag(CaseVals[i].second->getLHS()->getLocStart(),
808                 diag::err_duplicate_case) <<
809                 (PrevString.empty() ? CaseValStr.str() : PrevString);
810          else
811            Diag(CaseVals[i].second->getLHS()->getLocStart(),
812                 diag::err_duplicate_case_differing_expr) <<
813                 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
814                 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
815                 CaseValStr;
816
817          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
818               diag::note_duplicate_case_prev);
819          // FIXME: We really want to remove the bogus case stmt from the
820          // substmt, but we have no way to do this right now.
821          CaseListIsErroneous = true;
822        }
823      }
824    }
825
826    // Detect duplicate case ranges, which usually don't exist at all in
827    // the first place.
828    if (!CaseRanges.empty()) {
829      // Sort all the case ranges by their low value so we can easily detect
830      // overlaps between ranges.
831      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
832
833      // Scan the ranges, computing the high values and removing empty ranges.
834      std::vector<llvm::APSInt> HiVals;
835      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
836        llvm::APSInt &LoVal = CaseRanges[i].first;
837        CaseStmt *CR = CaseRanges[i].second;
838        Expr *Hi = CR->getRHS();
839        llvm::APSInt HiVal;
840
841        if (getLangOpts().CPlusPlus0x) {
842          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
843          // constant expression of the promoted type of the switch condition.
844          ExprResult ConvHi =
845            CheckConvertedConstantExpression(Hi, CondType, HiVal,
846                                             CCEK_CaseValue);
847          if (ConvHi.isInvalid()) {
848            CaseListIsErroneous = true;
849            continue;
850          }
851          Hi = ConvHi.take();
852        } else {
853          HiVal = Hi->EvaluateKnownConstInt(Context);
854
855          // If the RHS is not the same type as the condition, insert an
856          // implicit cast.
857          Hi = DefaultLvalueConversion(Hi).take();
858          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
859        }
860
861        // Convert the value to the same width/sign as the condition.
862        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
863                                           Hi->getLocStart(),
864                                           diag::warn_case_value_overflow);
865
866        CR->setRHS(Hi);
867
868        // If the low value is bigger than the high value, the case is empty.
869        if (LoVal > HiVal) {
870          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
871            << SourceRange(CR->getLHS()->getLocStart(),
872                           Hi->getLocEnd());
873          CaseRanges.erase(CaseRanges.begin()+i);
874          --i, --e;
875          continue;
876        }
877
878        if (ShouldCheckConstantCond &&
879            LoVal <= ConstantCondValue &&
880            ConstantCondValue <= HiVal)
881          ShouldCheckConstantCond = false;
882
883        HiVals.push_back(HiVal);
884      }
885
886      // Rescan the ranges, looking for overlap with singleton values and other
887      // ranges.  Since the range list is sorted, we only need to compare case
888      // ranges with their neighbors.
889      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
890        llvm::APSInt &CRLo = CaseRanges[i].first;
891        llvm::APSInt &CRHi = HiVals[i];
892        CaseStmt *CR = CaseRanges[i].second;
893
894        // Check to see whether the case range overlaps with any
895        // singleton cases.
896        CaseStmt *OverlapStmt = 0;
897        llvm::APSInt OverlapVal(32);
898
899        // Find the smallest value >= the lower bound.  If I is in the
900        // case range, then we have overlap.
901        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
902                                                  CaseVals.end(), CRLo,
903                                                  CaseCompareFunctor());
904        if (I != CaseVals.end() && I->first < CRHi) {
905          OverlapVal  = I->first;   // Found overlap with scalar.
906          OverlapStmt = I->second;
907        }
908
909        // Find the smallest value bigger than the upper bound.
910        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
911        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
912          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
913          OverlapStmt = (I-1)->second;
914        }
915
916        // Check to see if this case stmt overlaps with the subsequent
917        // case range.
918        if (i && CRLo <= HiVals[i-1]) {
919          OverlapVal  = HiVals[i-1];       // Found overlap with range.
920          OverlapStmt = CaseRanges[i-1].second;
921        }
922
923        if (OverlapStmt) {
924          // If we have a duplicate, report it.
925          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
926            << OverlapVal.toString(10);
927          Diag(OverlapStmt->getLHS()->getLocStart(),
928               diag::note_duplicate_case_prev);
929          // FIXME: We really want to remove the bogus case stmt from the
930          // substmt, but we have no way to do this right now.
931          CaseListIsErroneous = true;
932        }
933      }
934    }
935
936    // Complain if we have a constant condition and we didn't find a match.
937    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
938      // TODO: it would be nice if we printed enums as enums, chars as
939      // chars, etc.
940      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
941        << ConstantCondValue.toString(10)
942        << CondExpr->getSourceRange();
943    }
944
945    // Check to see if switch is over an Enum and handles all of its
946    // values.  We only issue a warning if there is not 'default:', but
947    // we still do the analysis to preserve this information in the AST
948    // (which can be used by flow-based analyes).
949    //
950    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
951
952    // If switch has default case, then ignore it.
953    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
954      const EnumDecl *ED = ET->getDecl();
955      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
956        EnumValsTy;
957      EnumValsTy EnumVals;
958
959      // Gather all enum values, set their type and sort them,
960      // allowing easier comparison with CaseVals.
961      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
962           EDI != ED->enumerator_end(); ++EDI) {
963        llvm::APSInt Val = EDI->getInitVal();
964        AdjustAPSInt(Val, CondWidth, CondIsSigned);
965        EnumVals.push_back(std::make_pair(Val, *EDI));
966      }
967      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
968      EnumValsTy::iterator EIend =
969        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
970
971      // See which case values aren't in enum.
972      EnumValsTy::const_iterator EI = EnumVals.begin();
973      for (CaseValsTy::const_iterator CI = CaseVals.begin();
974           CI != CaseVals.end(); CI++) {
975        while (EI != EIend && EI->first < CI->first)
976          EI++;
977        if (EI == EIend || EI->first > CI->first)
978          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
979            << CondTypeBeforePromotion;
980      }
981      // See which of case ranges aren't in enum
982      EI = EnumVals.begin();
983      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
984           RI != CaseRanges.end() && EI != EIend; RI++) {
985        while (EI != EIend && EI->first < RI->first)
986          EI++;
987
988        if (EI == EIend || EI->first != RI->first) {
989          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
990            << CondTypeBeforePromotion;
991        }
992
993        llvm::APSInt Hi =
994          RI->second->getRHS()->EvaluateKnownConstInt(Context);
995        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
996        while (EI != EIend && EI->first < Hi)
997          EI++;
998        if (EI == EIend || EI->first != Hi)
999          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
1000            << CondTypeBeforePromotion;
1001      }
1002
1003      // Check which enum vals aren't in switch
1004      CaseValsTy::const_iterator CI = CaseVals.begin();
1005      CaseRangesTy::const_iterator RI = CaseRanges.begin();
1006      bool hasCasesNotInSwitch = false;
1007
1008      SmallVector<DeclarationName,8> UnhandledNames;
1009
1010      for (EI = EnumVals.begin(); EI != EIend; EI++){
1011        // Drop unneeded case values
1012        llvm::APSInt CIVal;
1013        while (CI != CaseVals.end() && CI->first < EI->first)
1014          CI++;
1015
1016        if (CI != CaseVals.end() && CI->first == EI->first)
1017          continue;
1018
1019        // Drop unneeded case ranges
1020        for (; RI != CaseRanges.end(); RI++) {
1021          llvm::APSInt Hi =
1022            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1023          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1024          if (EI->first <= Hi)
1025            break;
1026        }
1027
1028        if (RI == CaseRanges.end() || EI->first < RI->first) {
1029          hasCasesNotInSwitch = true;
1030          UnhandledNames.push_back(EI->second->getDeclName());
1031        }
1032      }
1033
1034      if (TheDefaultStmt && UnhandledNames.empty())
1035        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1036
1037      // Produce a nice diagnostic if multiple values aren't handled.
1038      switch (UnhandledNames.size()) {
1039      case 0: break;
1040      case 1:
1041        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1042          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1043          << UnhandledNames[0];
1044        break;
1045      case 2:
1046        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1047          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1048          << UnhandledNames[0] << UnhandledNames[1];
1049        break;
1050      case 3:
1051        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1052          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1053          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1054        break;
1055      default:
1056        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1057          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1058          << (unsigned)UnhandledNames.size()
1059          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1060        break;
1061      }
1062
1063      if (!hasCasesNotInSwitch)
1064        SS->setAllEnumCasesCovered();
1065    }
1066  }
1067
1068  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1069                        diag::warn_empty_switch_body);
1070
1071  // FIXME: If the case list was broken is some way, we don't have a good system
1072  // to patch it up.  Instead, just return the whole substmt as broken.
1073  if (CaseListIsErroneous)
1074    return StmtError();
1075
1076  return Owned(SS);
1077}
1078
1079void
1080Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1081                             Expr *SrcExpr) {
1082  unsigned DIAG = diag::warn_not_in_enum_assignement;
1083  if (Diags.getDiagnosticLevel(DIAG, SrcExpr->getExprLoc())
1084      == DiagnosticsEngine::Ignored)
1085    return;
1086
1087  if (const EnumType *ET = DstType->getAs<EnumType>())
1088    if (!Context.hasSameType(SrcType, DstType) &&
1089        SrcType->isIntegerType()) {
1090      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1091          SrcExpr->isIntegerConstantExpr(Context)) {
1092        // Get the bitwidth of the enum value before promotions.
1093        unsigned DstWith = Context.getIntWidth(DstType);
1094        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1095
1096        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1097        const EnumDecl *ED = ET->getDecl();
1098        typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1099        EnumValsTy;
1100        EnumValsTy EnumVals;
1101
1102        // Gather all enum values, set their type and sort them,
1103        // allowing easier comparison with rhs constant.
1104        for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1105             EDI != ED->enumerator_end(); ++EDI) {
1106          llvm::APSInt Val = EDI->getInitVal();
1107          AdjustAPSInt(Val, DstWith, DstIsSigned);
1108          EnumVals.push_back(std::make_pair(Val, *EDI));
1109        }
1110        if (EnumVals.empty())
1111          return;
1112        std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1113        EnumValsTy::iterator EIend =
1114        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1115
1116        // See which case values aren't in enum.
1117        EnumValsTy::const_iterator EI = EnumVals.begin();
1118        while (EI != EIend && EI->first < RhsVal)
1119          EI++;
1120        if (EI == EIend || EI->first != RhsVal) {
1121          Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignement)
1122          << DstType;
1123        }
1124      }
1125    }
1126}
1127
1128StmtResult
1129Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1130                     Decl *CondVar, Stmt *Body) {
1131  ExprResult CondResult(Cond.release());
1132
1133  VarDecl *ConditionVar = 0;
1134  if (CondVar) {
1135    ConditionVar = cast<VarDecl>(CondVar);
1136    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1137    if (CondResult.isInvalid())
1138      return StmtError();
1139  }
1140  Expr *ConditionExpr = CondResult.take();
1141  if (!ConditionExpr)
1142    return StmtError();
1143
1144  DiagnoseUnusedExprResult(Body);
1145
1146  if (isa<NullStmt>(Body))
1147    getCurCompoundScope().setHasEmptyLoopBodies();
1148
1149  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1150                                       Body, WhileLoc));
1151}
1152
1153StmtResult
1154Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1155                  SourceLocation WhileLoc, SourceLocation CondLParen,
1156                  Expr *Cond, SourceLocation CondRParen) {
1157  assert(Cond && "ActOnDoStmt(): missing expression");
1158
1159  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1160  if (CondResult.isInvalid() || CondResult.isInvalid())
1161    return StmtError();
1162  Cond = CondResult.take();
1163
1164  CheckImplicitConversions(Cond, DoLoc);
1165  CondResult = MaybeCreateExprWithCleanups(Cond);
1166  if (CondResult.isInvalid())
1167    return StmtError();
1168  Cond = CondResult.take();
1169
1170  DiagnoseUnusedExprResult(Body);
1171
1172  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1173}
1174
1175namespace {
1176  // This visitor will traverse a conditional statement and store all
1177  // the evaluated decls into a vector.  Simple is set to true if none
1178  // of the excluded constructs are used.
1179  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1180    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1181    llvm::SmallVector<SourceRange, 10> &Ranges;
1182    bool Simple;
1183public:
1184  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1185
1186  DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1187                llvm::SmallVector<SourceRange, 10> &Ranges) :
1188      Inherited(S.Context),
1189      Decls(Decls),
1190      Ranges(Ranges),
1191      Simple(true) {}
1192
1193  bool isSimple() { return Simple; }
1194
1195  // Replaces the method in EvaluatedExprVisitor.
1196  void VisitMemberExpr(MemberExpr* E) {
1197    Simple = false;
1198  }
1199
1200  // Any Stmt not whitelisted will cause the condition to be marked complex.
1201  void VisitStmt(Stmt *S) {
1202    Simple = false;
1203  }
1204
1205  void VisitBinaryOperator(BinaryOperator *E) {
1206    Visit(E->getLHS());
1207    Visit(E->getRHS());
1208  }
1209
1210  void VisitCastExpr(CastExpr *E) {
1211    Visit(E->getSubExpr());
1212  }
1213
1214  void VisitUnaryOperator(UnaryOperator *E) {
1215    // Skip checking conditionals with derefernces.
1216    if (E->getOpcode() == UO_Deref)
1217      Simple = false;
1218    else
1219      Visit(E->getSubExpr());
1220  }
1221
1222  void VisitConditionalOperator(ConditionalOperator *E) {
1223    Visit(E->getCond());
1224    Visit(E->getTrueExpr());
1225    Visit(E->getFalseExpr());
1226  }
1227
1228  void VisitParenExpr(ParenExpr *E) {
1229    Visit(E->getSubExpr());
1230  }
1231
1232  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1233    Visit(E->getOpaqueValue()->getSourceExpr());
1234    Visit(E->getFalseExpr());
1235  }
1236
1237  void VisitIntegerLiteral(IntegerLiteral *E) { }
1238  void VisitFloatingLiteral(FloatingLiteral *E) { }
1239  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1240  void VisitCharacterLiteral(CharacterLiteral *E) { }
1241  void VisitGNUNullExpr(GNUNullExpr *E) { }
1242  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1243
1244  void VisitDeclRefExpr(DeclRefExpr *E) {
1245    VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1246    if (!VD) return;
1247
1248    Ranges.push_back(E->getSourceRange());
1249
1250    Decls.insert(VD);
1251  }
1252
1253  }; // end class DeclExtractor
1254
1255  // DeclMatcher checks to see if the decls are used in a non-evauluated
1256  // context.
1257  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1258    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1259    bool FoundDecl;
1260
1261public:
1262  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1263
1264  DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1265      Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1266    if (!Statement) return;
1267
1268    Visit(Statement);
1269  }
1270
1271  void VisitReturnStmt(ReturnStmt *S) {
1272    FoundDecl = true;
1273  }
1274
1275  void VisitBreakStmt(BreakStmt *S) {
1276    FoundDecl = true;
1277  }
1278
1279  void VisitGotoStmt(GotoStmt *S) {
1280    FoundDecl = true;
1281  }
1282
1283  void VisitCastExpr(CastExpr *E) {
1284    if (E->getCastKind() == CK_LValueToRValue)
1285      CheckLValueToRValueCast(E->getSubExpr());
1286    else
1287      Visit(E->getSubExpr());
1288  }
1289
1290  void CheckLValueToRValueCast(Expr *E) {
1291    E = E->IgnoreParenImpCasts();
1292
1293    if (isa<DeclRefExpr>(E)) {
1294      return;
1295    }
1296
1297    if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1298      Visit(CO->getCond());
1299      CheckLValueToRValueCast(CO->getTrueExpr());
1300      CheckLValueToRValueCast(CO->getFalseExpr());
1301      return;
1302    }
1303
1304    if (BinaryConditionalOperator *BCO =
1305            dyn_cast<BinaryConditionalOperator>(E)) {
1306      CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1307      CheckLValueToRValueCast(BCO->getFalseExpr());
1308      return;
1309    }
1310
1311    Visit(E);
1312  }
1313
1314  void VisitDeclRefExpr(DeclRefExpr *E) {
1315    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1316      if (Decls.count(VD))
1317        FoundDecl = true;
1318  }
1319
1320  bool FoundDeclInUse() { return FoundDecl; }
1321
1322  };  // end class DeclMatcher
1323
1324  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1325                                        Expr *Third, Stmt *Body) {
1326    // Condition is empty
1327    if (!Second) return;
1328
1329    if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1330                                   Second->getLocStart())
1331        == DiagnosticsEngine::Ignored)
1332      return;
1333
1334    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1335    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1336    llvm::SmallVector<SourceRange, 10> Ranges;
1337    DeclExtractor DE(S, Decls, Ranges);
1338    DE.Visit(Second);
1339
1340    // Don't analyze complex conditionals.
1341    if (!DE.isSimple()) return;
1342
1343    // No decls found.
1344    if (Decls.size() == 0) return;
1345
1346    // Don't warn on volatile, static, or global variables.
1347    for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1348                                                  E = Decls.end();
1349         I != E; ++I)
1350      if ((*I)->getType().isVolatileQualified() ||
1351          (*I)->hasGlobalStorage()) return;
1352
1353    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1354        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1355        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1356      return;
1357
1358    // Load decl names into diagnostic.
1359    if (Decls.size() > 4)
1360      PDiag << 0;
1361    else {
1362      PDiag << Decls.size();
1363      for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1364                                                    E = Decls.end();
1365           I != E; ++I)
1366        PDiag << (*I)->getDeclName();
1367    }
1368
1369    // Load SourceRanges into diagnostic if there is room.
1370    // Otherwise, load the SourceRange of the conditional expression.
1371    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1372      for (llvm::SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1373                                                        E = Ranges.end();
1374           I != E; ++I)
1375        PDiag << *I;
1376    else
1377      PDiag << Second->getSourceRange();
1378
1379    S.Diag(Ranges.begin()->getBegin(), PDiag);
1380  }
1381
1382} // end namespace
1383
1384StmtResult
1385Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1386                   Stmt *First, FullExprArg second, Decl *secondVar,
1387                   FullExprArg third,
1388                   SourceLocation RParenLoc, Stmt *Body) {
1389  if (!getLangOpts().CPlusPlus) {
1390    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1391      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1392      // declare identifiers for objects having storage class 'auto' or
1393      // 'register'.
1394      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1395           DI!=DE; ++DI) {
1396        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1397        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1398          VD = 0;
1399        if (VD == 0)
1400          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1401        // FIXME: mark decl erroneous!
1402      }
1403    }
1404  }
1405
1406  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1407
1408  ExprResult SecondResult(second.release());
1409  VarDecl *ConditionVar = 0;
1410  if (secondVar) {
1411    ConditionVar = cast<VarDecl>(secondVar);
1412    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1413    if (SecondResult.isInvalid())
1414      return StmtError();
1415  }
1416
1417  Expr *Third  = third.release().takeAs<Expr>();
1418
1419  DiagnoseUnusedExprResult(First);
1420  DiagnoseUnusedExprResult(Third);
1421  DiagnoseUnusedExprResult(Body);
1422
1423  if (isa<NullStmt>(Body))
1424    getCurCompoundScope().setHasEmptyLoopBodies();
1425
1426  return Owned(new (Context) ForStmt(Context, First,
1427                                     SecondResult.take(), ConditionVar,
1428                                     Third, Body, ForLoc, LParenLoc,
1429                                     RParenLoc));
1430}
1431
1432/// In an Objective C collection iteration statement:
1433///   for (x in y)
1434/// x can be an arbitrary l-value expression.  Bind it up as a
1435/// full-expression.
1436StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1437  // Reduce placeholder expressions here.  Note that this rejects the
1438  // use of pseudo-object l-values in this position.
1439  ExprResult result = CheckPlaceholderExpr(E);
1440  if (result.isInvalid()) return StmtError();
1441  E = result.take();
1442
1443  CheckImplicitConversions(E);
1444
1445  result = MaybeCreateExprWithCleanups(E);
1446  if (result.isInvalid()) return StmtError();
1447
1448  return Owned(static_cast<Stmt*>(result.take()));
1449}
1450
1451ExprResult
1452Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1453  if (!collection)
1454    return ExprError();
1455
1456  // Bail out early if we've got a type-dependent expression.
1457  if (collection->isTypeDependent()) return Owned(collection);
1458
1459  // Perform normal l-value conversion.
1460  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1461  if (result.isInvalid())
1462    return ExprError();
1463  collection = result.take();
1464
1465  // The operand needs to have object-pointer type.
1466  // TODO: should we do a contextual conversion?
1467  const ObjCObjectPointerType *pointerType =
1468    collection->getType()->getAs<ObjCObjectPointerType>();
1469  if (!pointerType)
1470    return Diag(forLoc, diag::err_collection_expr_type)
1471             << collection->getType() << collection->getSourceRange();
1472
1473  // Check that the operand provides
1474  //   - countByEnumeratingWithState:objects:count:
1475  const ObjCObjectType *objectType = pointerType->getObjectType();
1476  ObjCInterfaceDecl *iface = objectType->getInterface();
1477
1478  // If we have a forward-declared type, we can't do this check.
1479  // Under ARC, it is an error not to have a forward-declared class.
1480  if (iface &&
1481      RequireCompleteType(forLoc, QualType(objectType, 0),
1482                          getLangOpts().ObjCAutoRefCount
1483                            ? diag::err_arc_collection_forward
1484                            : 0,
1485                          collection)) {
1486    // Otherwise, if we have any useful type information, check that
1487    // the type declares the appropriate method.
1488  } else if (iface || !objectType->qual_empty()) {
1489    IdentifierInfo *selectorIdents[] = {
1490      &Context.Idents.get("countByEnumeratingWithState"),
1491      &Context.Idents.get("objects"),
1492      &Context.Idents.get("count")
1493    };
1494    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1495
1496    ObjCMethodDecl *method = 0;
1497
1498    // If there's an interface, look in both the public and private APIs.
1499    if (iface) {
1500      method = iface->lookupInstanceMethod(selector);
1501      if (!method) method = iface->lookupPrivateMethod(selector);
1502    }
1503
1504    // Also check protocol qualifiers.
1505    if (!method)
1506      method = LookupMethodInQualifiedType(selector, pointerType,
1507                                           /*instance*/ true);
1508
1509    // If we didn't find it anywhere, give up.
1510    if (!method) {
1511      Diag(forLoc, diag::warn_collection_expr_type)
1512        << collection->getType() << selector << collection->getSourceRange();
1513    }
1514
1515    // TODO: check for an incompatible signature?
1516  }
1517
1518  // Wrap up any cleanups in the expression.
1519  return Owned(MaybeCreateExprWithCleanups(collection));
1520}
1521
1522StmtResult
1523Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1524                                 SourceLocation LParenLoc,
1525                                 Stmt *First, Expr *collection,
1526                                 SourceLocation RParenLoc) {
1527
1528  ExprResult CollectionExprResult =
1529    CheckObjCForCollectionOperand(ForLoc, collection);
1530
1531  if (First) {
1532    QualType FirstType;
1533    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1534      if (!DS->isSingleDecl())
1535        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1536                         diag::err_toomany_element_decls));
1537
1538      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1539      FirstType = D->getType();
1540      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1541      // declare identifiers for objects having storage class 'auto' or
1542      // 'register'.
1543      if (!D->hasLocalStorage())
1544        return StmtError(Diag(D->getLocation(),
1545                              diag::err_non_variable_decl_in_for));
1546    } else {
1547      Expr *FirstE = cast<Expr>(First);
1548      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1549        return StmtError(Diag(First->getLocStart(),
1550                   diag::err_selector_element_not_lvalue)
1551          << First->getSourceRange());
1552
1553      FirstType = static_cast<Expr*>(First)->getType();
1554    }
1555    if (!FirstType->isDependentType() &&
1556        !FirstType->isObjCObjectPointerType() &&
1557        !FirstType->isBlockPointerType())
1558        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1559                           << FirstType << First->getSourceRange());
1560  }
1561
1562  if (CollectionExprResult.isInvalid())
1563    return StmtError();
1564
1565  return Owned(new (Context) ObjCForCollectionStmt(First,
1566                                                   CollectionExprResult.take(), 0,
1567                                                   ForLoc, RParenLoc));
1568}
1569
1570namespace {
1571
1572enum BeginEndFunction {
1573  BEF_begin,
1574  BEF_end
1575};
1576
1577/// Build a variable declaration for a for-range statement.
1578static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1579                                     QualType Type, const char *Name) {
1580  DeclContext *DC = SemaRef.CurContext;
1581  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1582  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1583  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1584                                  TInfo, SC_Auto, SC_None);
1585  Decl->setImplicit();
1586  return Decl;
1587}
1588
1589/// Finish building a variable declaration for a for-range statement.
1590/// \return true if an error occurs.
1591static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1592                                  SourceLocation Loc, int diag) {
1593  // Deduce the type for the iterator variable now rather than leaving it to
1594  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1595  TypeSourceInfo *InitTSI = 0;
1596  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1597      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1598          Sema::DAR_Failed)
1599    SemaRef.Diag(Loc, diag) << Init->getType();
1600  if (!InitTSI) {
1601    Decl->setInvalidDecl();
1602    return true;
1603  }
1604  Decl->setTypeSourceInfo(InitTSI);
1605  Decl->setType(InitTSI->getType());
1606
1607  // In ARC, infer lifetime.
1608  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1609  // we're doing the equivalent of fast iteration.
1610  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1611      SemaRef.inferObjCARCLifetime(Decl))
1612    Decl->setInvalidDecl();
1613
1614  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1615                               /*TypeMayContainAuto=*/false);
1616  SemaRef.FinalizeDeclaration(Decl);
1617  SemaRef.CurContext->addHiddenDecl(Decl);
1618  return false;
1619}
1620
1621/// Produce a note indicating which begin/end function was implicitly called
1622/// by a C++0x for-range statement. This is often not obvious from the code,
1623/// nor from the diagnostics produced when analysing the implicit expressions
1624/// required in a for-range statement.
1625void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1626                                  BeginEndFunction BEF) {
1627  CallExpr *CE = dyn_cast<CallExpr>(E);
1628  if (!CE)
1629    return;
1630  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1631  if (!D)
1632    return;
1633  SourceLocation Loc = D->getLocation();
1634
1635  std::string Description;
1636  bool IsTemplate = false;
1637  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1638    Description = SemaRef.getTemplateArgumentBindingsText(
1639      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1640    IsTemplate = true;
1641  }
1642
1643  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1644    << BEF << IsTemplate << Description << E->getType();
1645}
1646
1647/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1648/// given LookupResult is non-empty, it is assumed to describe a member which
1649/// will be invoked. Otherwise, the function will be found via argument
1650/// dependent lookup.
1651static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1652                                            SourceLocation Loc,
1653                                            VarDecl *Decl,
1654                                            BeginEndFunction BEF,
1655                                            const DeclarationNameInfo &NameInfo,
1656                                            LookupResult &MemberLookup,
1657                                            Expr *Range) {
1658  ExprResult CallExpr;
1659  if (!MemberLookup.empty()) {
1660    ExprResult MemberRef =
1661      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1662                                       /*IsPtr=*/false, CXXScopeSpec(),
1663                                       /*TemplateKWLoc=*/SourceLocation(),
1664                                       /*FirstQualifierInScope=*/0,
1665                                       MemberLookup,
1666                                       /*TemplateArgs=*/0);
1667    if (MemberRef.isInvalid())
1668      return ExprError();
1669    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1670                                     Loc, 0);
1671    if (CallExpr.isInvalid())
1672      return ExprError();
1673  } else {
1674    UnresolvedSet<0> FoundNames;
1675    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1676    // std is an associated namespace.
1677    UnresolvedLookupExpr *Fn =
1678      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1679                                   NestedNameSpecifierLoc(), NameInfo,
1680                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1681                                   FoundNames.begin(), FoundNames.end(),
1682                                   /*LookInStdNamespace=*/true);
1683    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1684                                               0, /*AllowTypoCorrection=*/false);
1685    if (CallExpr.isInvalid()) {
1686      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1687        << Range->getType();
1688      return ExprError();
1689    }
1690  }
1691  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1692                            diag::err_for_range_iter_deduction_failure)) {
1693    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1694    return ExprError();
1695  }
1696  return CallExpr;
1697}
1698
1699}
1700
1701static bool ObjCEnumerationCollection(Expr *Collection) {
1702  return !Collection->isTypeDependent()
1703          && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1704}
1705
1706/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1707///
1708/// C++0x [stmt.ranged]:
1709///   A range-based for statement is equivalent to
1710///
1711///   {
1712///     auto && __range = range-init;
1713///     for ( auto __begin = begin-expr,
1714///           __end = end-expr;
1715///           __begin != __end;
1716///           ++__begin ) {
1717///       for-range-declaration = *__begin;
1718///       statement
1719///     }
1720///   }
1721///
1722/// The body of the loop is not available yet, since it cannot be analysed until
1723/// we have determined the type of the for-range-declaration.
1724StmtResult
1725Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1726                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1727                           SourceLocation RParenLoc) {
1728  if (!First || !Range)
1729    return StmtError();
1730
1731  if (ObjCEnumerationCollection(Range))
1732    return ActOnObjCForCollectionStmt(ForLoc, LParenLoc, First, Range,
1733                                      RParenLoc);
1734
1735  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1736  assert(DS && "first part of for range not a decl stmt");
1737
1738  if (!DS->isSingleDecl()) {
1739    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1740    return StmtError();
1741  }
1742  if (DS->getSingleDecl()->isInvalidDecl())
1743    return StmtError();
1744
1745  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1746    return StmtError();
1747
1748  // Build  auto && __range = range-init
1749  SourceLocation RangeLoc = Range->getLocStart();
1750  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1751                                           Context.getAutoRRefDeductType(),
1752                                           "__range");
1753  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1754                            diag::err_for_range_deduction_failure))
1755    return StmtError();
1756
1757  // Claim the type doesn't contain auto: we've already done the checking.
1758  DeclGroupPtrTy RangeGroup =
1759    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1760  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1761  if (RangeDecl.isInvalid())
1762    return StmtError();
1763
1764  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1765                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1766                              RParenLoc);
1767}
1768
1769/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1770StmtResult
1771Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1772                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1773                           Expr *Inc, Stmt *LoopVarDecl,
1774                           SourceLocation RParenLoc) {
1775  Scope *S = getCurScope();
1776
1777  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1778  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1779  QualType RangeVarType = RangeVar->getType();
1780
1781  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1782  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1783
1784  StmtResult BeginEndDecl = BeginEnd;
1785  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1786
1787  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1788    SourceLocation RangeLoc = RangeVar->getLocation();
1789
1790    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1791
1792    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1793                                                VK_LValue, ColonLoc);
1794    if (BeginRangeRef.isInvalid())
1795      return StmtError();
1796
1797    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1798                                              VK_LValue, ColonLoc);
1799    if (EndRangeRef.isInvalid())
1800      return StmtError();
1801
1802    QualType AutoType = Context.getAutoDeductType();
1803    Expr *Range = RangeVar->getInit();
1804    if (!Range)
1805      return StmtError();
1806    QualType RangeType = Range->getType();
1807
1808    if (RequireCompleteType(RangeLoc, RangeType,
1809                            diag::err_for_range_incomplete_type))
1810      return StmtError();
1811
1812    // Build auto __begin = begin-expr, __end = end-expr.
1813    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1814                                             "__begin");
1815    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1816                                           "__end");
1817
1818    // Build begin-expr and end-expr and attach to __begin and __end variables.
1819    ExprResult BeginExpr, EndExpr;
1820    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1821      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1822      //   __range + __bound, respectively, where __bound is the array bound. If
1823      //   _RangeT is an array of unknown size or an array of incomplete type,
1824      //   the program is ill-formed;
1825
1826      // begin-expr is __range.
1827      BeginExpr = BeginRangeRef;
1828      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1829                                diag::err_for_range_iter_deduction_failure)) {
1830        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1831        return StmtError();
1832      }
1833
1834      // Find the array bound.
1835      ExprResult BoundExpr;
1836      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1837        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1838                                                 Context.getPointerDiffType(),
1839                                                 RangeLoc));
1840      else if (const VariableArrayType *VAT =
1841               dyn_cast<VariableArrayType>(UnqAT))
1842        BoundExpr = VAT->getSizeExpr();
1843      else {
1844        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1845        // UnqAT is not incomplete and Range is not type-dependent.
1846        llvm_unreachable("Unexpected array type in for-range");
1847      }
1848
1849      // end-expr is __range + __bound.
1850      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1851                           BoundExpr.get());
1852      if (EndExpr.isInvalid())
1853        return StmtError();
1854      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1855                                diag::err_for_range_iter_deduction_failure)) {
1856        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1857        return StmtError();
1858      }
1859    } else {
1860      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1861                                        ColonLoc);
1862      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1863                                      ColonLoc);
1864
1865      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1866      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1867
1868      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1869        // - if _RangeT is a class type, the unqualified-ids begin and end are
1870        //   looked up in the scope of class _RangeT as if by class member access
1871        //   lookup (3.4.5), and if either (or both) finds at least one
1872        //   declaration, begin-expr and end-expr are __range.begin() and
1873        //   __range.end(), respectively;
1874        LookupQualifiedName(BeginMemberLookup, D);
1875        LookupQualifiedName(EndMemberLookup, D);
1876
1877        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1878          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1879            << RangeType << BeginMemberLookup.empty();
1880          return StmtError();
1881        }
1882      } else {
1883        // - otherwise, begin-expr and end-expr are begin(__range) and
1884        //   end(__range), respectively, where begin and end are looked up with
1885        //   argument-dependent lookup (3.4.2). For the purposes of this name
1886        //   lookup, namespace std is an associated namespace.
1887      }
1888
1889      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1890                                            BEF_begin, BeginNameInfo,
1891                                            BeginMemberLookup,
1892                                            BeginRangeRef.get());
1893      if (BeginExpr.isInvalid())
1894        return StmtError();
1895
1896      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1897                                          BEF_end, EndNameInfo,
1898                                          EndMemberLookup, EndRangeRef.get());
1899      if (EndExpr.isInvalid())
1900        return StmtError();
1901    }
1902
1903    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1904    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1905    if (!Context.hasSameType(BeginType, EndType)) {
1906      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1907        << BeginType << EndType;
1908      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1909      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1910    }
1911
1912    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1913    // Claim the type doesn't contain auto: we've already done the checking.
1914    DeclGroupPtrTy BeginEndGroup =
1915      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1916    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1917
1918    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1919    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1920                                           VK_LValue, ColonLoc);
1921    if (BeginRef.isInvalid())
1922      return StmtError();
1923
1924    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1925                                         VK_LValue, ColonLoc);
1926    if (EndRef.isInvalid())
1927      return StmtError();
1928
1929    // Build and check __begin != __end expression.
1930    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1931                           BeginRef.get(), EndRef.get());
1932    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1933    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1934    if (NotEqExpr.isInvalid()) {
1935      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1936      if (!Context.hasSameType(BeginType, EndType))
1937        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1938      return StmtError();
1939    }
1940
1941    // Build and check ++__begin expression.
1942    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1943                                VK_LValue, ColonLoc);
1944    if (BeginRef.isInvalid())
1945      return StmtError();
1946
1947    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1948    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1949    if (IncrExpr.isInvalid()) {
1950      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1951      return StmtError();
1952    }
1953
1954    // Build and check *__begin  expression.
1955    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1956                                VK_LValue, ColonLoc);
1957    if (BeginRef.isInvalid())
1958      return StmtError();
1959
1960    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1961    if (DerefExpr.isInvalid()) {
1962      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1963      return StmtError();
1964    }
1965
1966    // Attach  *__begin  as initializer for VD.
1967    if (!LoopVar->isInvalidDecl()) {
1968      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1969                           /*TypeMayContainAuto=*/true);
1970      if (LoopVar->isInvalidDecl())
1971        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1972    }
1973  } else {
1974    // The range is implicitly used as a placeholder when it is dependent.
1975    RangeVar->setUsed();
1976  }
1977
1978  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1979                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1980                                             NotEqExpr.take(), IncrExpr.take(),
1981                                             LoopVarDS, /*Body=*/0, ForLoc,
1982                                             ColonLoc, RParenLoc));
1983}
1984
1985/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
1986/// statement.
1987StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
1988  if (!S || !B)
1989    return StmtError();
1990  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
1991
1992  ForStmt->setBody(B);
1993  return S;
1994}
1995
1996/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1997/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1998/// body cannot be performed until after the type of the range variable is
1999/// determined.
2000StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2001  if (!S || !B)
2002    return StmtError();
2003
2004  if (isa<ObjCForCollectionStmt>(S))
2005    return FinishObjCForCollectionStmt(S, B);
2006
2007  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2008  ForStmt->setBody(B);
2009
2010  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2011                        diag::warn_empty_range_based_for_body);
2012
2013  return S;
2014}
2015
2016StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2017                               SourceLocation LabelLoc,
2018                               LabelDecl *TheDecl) {
2019  getCurFunction()->setHasBranchIntoScope();
2020  TheDecl->setUsed();
2021  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2022}
2023
2024StmtResult
2025Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2026                            Expr *E) {
2027  // Convert operand to void*
2028  if (!E->isTypeDependent()) {
2029    QualType ETy = E->getType();
2030    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2031    ExprResult ExprRes = Owned(E);
2032    AssignConvertType ConvTy =
2033      CheckSingleAssignmentConstraints(DestTy, ExprRes);
2034    if (ExprRes.isInvalid())
2035      return StmtError();
2036    E = ExprRes.take();
2037    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2038      return StmtError();
2039    E = MaybeCreateExprWithCleanups(E);
2040  }
2041
2042  getCurFunction()->setHasIndirectGoto();
2043
2044  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2045}
2046
2047StmtResult
2048Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2049  Scope *S = CurScope->getContinueParent();
2050  if (!S) {
2051    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2052    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2053  }
2054
2055  return Owned(new (Context) ContinueStmt(ContinueLoc));
2056}
2057
2058StmtResult
2059Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2060  Scope *S = CurScope->getBreakParent();
2061  if (!S) {
2062    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2063    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2064  }
2065
2066  return Owned(new (Context) BreakStmt(BreakLoc));
2067}
2068
2069/// \brief Determine whether the given expression is a candidate for
2070/// copy elision in either a return statement or a throw expression.
2071///
2072/// \param ReturnType If we're determining the copy elision candidate for
2073/// a return statement, this is the return type of the function. If we're
2074/// determining the copy elision candidate for a throw expression, this will
2075/// be a NULL type.
2076///
2077/// \param E The expression being returned from the function or block, or
2078/// being thrown.
2079///
2080/// \param AllowFunctionParameter Whether we allow function parameters to
2081/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2082/// we re-use this logic to determine whether we should try to move as part of
2083/// a return or throw (which does allow function parameters).
2084///
2085/// \returns The NRVO candidate variable, if the return statement may use the
2086/// NRVO, or NULL if there is no such candidate.
2087const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2088                                             Expr *E,
2089                                             bool AllowFunctionParameter) {
2090  QualType ExprType = E->getType();
2091  // - in a return statement in a function with ...
2092  // ... a class return type ...
2093  if (!ReturnType.isNull()) {
2094    if (!ReturnType->isRecordType())
2095      return 0;
2096    // ... the same cv-unqualified type as the function return type ...
2097    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2098      return 0;
2099  }
2100
2101  // ... the expression is the name of a non-volatile automatic object
2102  // (other than a function or catch-clause parameter)) ...
2103  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2104  if (!DR || DR->refersToEnclosingLocal())
2105    return 0;
2106  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2107  if (!VD)
2108    return 0;
2109
2110  // ...object (other than a function or catch-clause parameter)...
2111  if (VD->getKind() != Decl::Var &&
2112      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2113    return 0;
2114  if (VD->isExceptionVariable()) return 0;
2115
2116  // ...automatic...
2117  if (!VD->hasLocalStorage()) return 0;
2118
2119  // ...non-volatile...
2120  if (VD->getType().isVolatileQualified()) return 0;
2121  if (VD->getType()->isReferenceType()) return 0;
2122
2123  // __block variables can't be allocated in a way that permits NRVO.
2124  if (VD->hasAttr<BlocksAttr>()) return 0;
2125
2126  // Variables with higher required alignment than their type's ABI
2127  // alignment cannot use NRVO.
2128  if (VD->hasAttr<AlignedAttr>() &&
2129      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2130    return 0;
2131
2132  return VD;
2133}
2134
2135/// \brief Perform the initialization of a potentially-movable value, which
2136/// is the result of return value.
2137///
2138/// This routine implements C++0x [class.copy]p33, which attempts to treat
2139/// returned lvalues as rvalues in certain cases (to prefer move construction),
2140/// then falls back to treating them as lvalues if that failed.
2141ExprResult
2142Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2143                                      const VarDecl *NRVOCandidate,
2144                                      QualType ResultType,
2145                                      Expr *Value,
2146                                      bool AllowNRVO) {
2147  // C++0x [class.copy]p33:
2148  //   When the criteria for elision of a copy operation are met or would
2149  //   be met save for the fact that the source object is a function
2150  //   parameter, and the object to be copied is designated by an lvalue,
2151  //   overload resolution to select the constructor for the copy is first
2152  //   performed as if the object were designated by an rvalue.
2153  ExprResult Res = ExprError();
2154  if (AllowNRVO &&
2155      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2156    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2157                              Value->getType(), CK_NoOp, Value, VK_XValue);
2158
2159    Expr *InitExpr = &AsRvalue;
2160    InitializationKind Kind
2161      = InitializationKind::CreateCopy(Value->getLocStart(),
2162                                       Value->getLocStart());
2163    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2164
2165    //   [...] If overload resolution fails, or if the type of the first
2166    //   parameter of the selected constructor is not an rvalue reference
2167    //   to the object's type (possibly cv-qualified), overload resolution
2168    //   is performed again, considering the object as an lvalue.
2169    if (Seq) {
2170      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2171           StepEnd = Seq.step_end();
2172           Step != StepEnd; ++Step) {
2173        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2174          continue;
2175
2176        CXXConstructorDecl *Constructor
2177        = cast<CXXConstructorDecl>(Step->Function.Function);
2178
2179        const RValueReferenceType *RRefType
2180          = Constructor->getParamDecl(0)->getType()
2181                                                 ->getAs<RValueReferenceType>();
2182
2183        // If we don't meet the criteria, break out now.
2184        if (!RRefType ||
2185            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2186                            Context.getTypeDeclType(Constructor->getParent())))
2187          break;
2188
2189        // Promote "AsRvalue" to the heap, since we now need this
2190        // expression node to persist.
2191        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2192                                         CK_NoOp, Value, 0, VK_XValue);
2193
2194        // Complete type-checking the initialization of the return type
2195        // using the constructor we found.
2196        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2197      }
2198    }
2199  }
2200
2201  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2202  // above, or overload resolution failed. Either way, we need to try
2203  // (again) now with the return value expression as written.
2204  if (Res.isInvalid())
2205    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2206
2207  return Res;
2208}
2209
2210/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2211/// for capturing scopes.
2212///
2213StmtResult
2214Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2215  // If this is the first return we've seen, infer the return type.
2216  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2217  // rules which allows multiple return statements.
2218  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2219  QualType FnRetType = CurCap->ReturnType;
2220
2221  // For blocks/lambdas with implicit return types, we check each return
2222  // statement individually, and deduce the common return type when the block
2223  // or lambda is completed.
2224  if (CurCap->HasImplicitReturnType) {
2225    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2226      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2227      if (Result.isInvalid())
2228        return StmtError();
2229      RetValExp = Result.take();
2230
2231      if (!RetValExp->isTypeDependent())
2232        FnRetType = RetValExp->getType();
2233      else
2234        FnRetType = CurCap->ReturnType = Context.DependentTy;
2235    } else {
2236      if (RetValExp) {
2237        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2238        // initializer list, because it is not an expression (even
2239        // though we represent it as one). We still deduce 'void'.
2240        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2241          << RetValExp->getSourceRange();
2242      }
2243
2244      FnRetType = Context.VoidTy;
2245    }
2246
2247    // Although we'll properly infer the type of the block once it's completed,
2248    // make sure we provide a return type now for better error recovery.
2249    if (CurCap->ReturnType.isNull())
2250      CurCap->ReturnType = FnRetType;
2251  }
2252  assert(!FnRetType.isNull());
2253
2254  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2255    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2256      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2257      return StmtError();
2258    }
2259  } else {
2260    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2261    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2262      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2263      return StmtError();
2264    }
2265  }
2266
2267  // Otherwise, verify that this result type matches the previous one.  We are
2268  // pickier with blocks than for normal functions because we don't have GCC
2269  // compatibility to worry about here.
2270  const VarDecl *NRVOCandidate = 0;
2271  if (FnRetType->isDependentType()) {
2272    // Delay processing for now.  TODO: there are lots of dependent
2273    // types we can conclusively prove aren't void.
2274  } else if (FnRetType->isVoidType()) {
2275    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2276        !(getLangOpts().CPlusPlus &&
2277          (RetValExp->isTypeDependent() ||
2278           RetValExp->getType()->isVoidType()))) {
2279      if (!getLangOpts().CPlusPlus &&
2280          RetValExp->getType()->isVoidType())
2281        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2282      else {
2283        Diag(ReturnLoc, diag::err_return_block_has_expr);
2284        RetValExp = 0;
2285      }
2286    }
2287  } else if (!RetValExp) {
2288    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2289  } else if (!RetValExp->isTypeDependent()) {
2290    // we have a non-void block with an expression, continue checking
2291
2292    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2293    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2294    // function return.
2295
2296    // In C++ the return statement is handled via a copy initialization.
2297    // the C version of which boils down to CheckSingleAssignmentConstraints.
2298    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2299    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2300                                                                   FnRetType,
2301                                                          NRVOCandidate != 0);
2302    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2303                                                     FnRetType, RetValExp);
2304    if (Res.isInvalid()) {
2305      // FIXME: Cleanup temporaries here, anyway?
2306      return StmtError();
2307    }
2308    RetValExp = Res.take();
2309    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2310  }
2311
2312  if (RetValExp) {
2313    CheckImplicitConversions(RetValExp, ReturnLoc);
2314    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2315  }
2316  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2317                                                NRVOCandidate);
2318
2319  // If we need to check for the named return value optimization,
2320  // or if we need to infer the return type,
2321  // save the return statement in our scope for later processing.
2322  if (CurCap->HasImplicitReturnType ||
2323      (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2324       !CurContext->isDependentContext()))
2325    FunctionScopes.back()->Returns.push_back(Result);
2326
2327  return Owned(Result);
2328}
2329
2330StmtResult
2331Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2332  // Check for unexpanded parameter packs.
2333  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2334    return StmtError();
2335
2336  if (isa<CapturingScopeInfo>(getCurFunction()))
2337    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2338
2339  QualType FnRetType;
2340  QualType RelatedRetType;
2341  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2342    FnRetType = FD->getResultType();
2343    if (FD->hasAttr<NoReturnAttr>() ||
2344        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
2345      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2346        << FD->getDeclName();
2347  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2348    FnRetType = MD->getResultType();
2349    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2350      // In the implementation of a method with a related return type, the
2351      // type used to type-check the validity of return statements within the
2352      // method body is a pointer to the type of the class being implemented.
2353      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2354      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2355    }
2356  } else // If we don't have a function/method context, bail.
2357    return StmtError();
2358
2359  ReturnStmt *Result = 0;
2360  if (FnRetType->isVoidType()) {
2361    if (RetValExp) {
2362      if (isa<InitListExpr>(RetValExp)) {
2363        // We simply never allow init lists as the return value of void
2364        // functions. This is compatible because this was never allowed before,
2365        // so there's no legacy code to deal with.
2366        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2367        int FunctionKind = 0;
2368        if (isa<ObjCMethodDecl>(CurDecl))
2369          FunctionKind = 1;
2370        else if (isa<CXXConstructorDecl>(CurDecl))
2371          FunctionKind = 2;
2372        else if (isa<CXXDestructorDecl>(CurDecl))
2373          FunctionKind = 3;
2374
2375        Diag(ReturnLoc, diag::err_return_init_list)
2376          << CurDecl->getDeclName() << FunctionKind
2377          << RetValExp->getSourceRange();
2378
2379        // Drop the expression.
2380        RetValExp = 0;
2381      } else if (!RetValExp->isTypeDependent()) {
2382        // C99 6.8.6.4p1 (ext_ since GCC warns)
2383        unsigned D = diag::ext_return_has_expr;
2384        if (RetValExp->getType()->isVoidType())
2385          D = diag::ext_return_has_void_expr;
2386        else {
2387          ExprResult Result = Owned(RetValExp);
2388          Result = IgnoredValueConversions(Result.take());
2389          if (Result.isInvalid())
2390            return StmtError();
2391          RetValExp = Result.take();
2392          RetValExp = ImpCastExprToType(RetValExp,
2393                                        Context.VoidTy, CK_ToVoid).take();
2394        }
2395
2396        // return (some void expression); is legal in C++.
2397        if (D != diag::ext_return_has_void_expr ||
2398            !getLangOpts().CPlusPlus) {
2399          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2400
2401          int FunctionKind = 0;
2402          if (isa<ObjCMethodDecl>(CurDecl))
2403            FunctionKind = 1;
2404          else if (isa<CXXConstructorDecl>(CurDecl))
2405            FunctionKind = 2;
2406          else if (isa<CXXDestructorDecl>(CurDecl))
2407            FunctionKind = 3;
2408
2409          Diag(ReturnLoc, D)
2410            << CurDecl->getDeclName() << FunctionKind
2411            << RetValExp->getSourceRange();
2412        }
2413      }
2414
2415      if (RetValExp) {
2416        CheckImplicitConversions(RetValExp, ReturnLoc);
2417        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2418      }
2419    }
2420
2421    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2422  } else if (!RetValExp && !FnRetType->isDependentType()) {
2423    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2424    // C99 6.8.6.4p1 (ext_ since GCC warns)
2425    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2426
2427    if (FunctionDecl *FD = getCurFunctionDecl())
2428      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2429    else
2430      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2431    Result = new (Context) ReturnStmt(ReturnLoc);
2432  } else {
2433    const VarDecl *NRVOCandidate = 0;
2434    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2435      // we have a non-void function with an expression, continue checking
2436
2437      if (!RelatedRetType.isNull()) {
2438        // If we have a related result type, perform an extra conversion here.
2439        // FIXME: The diagnostics here don't really describe what is happening.
2440        InitializedEntity Entity =
2441            InitializedEntity::InitializeTemporary(RelatedRetType);
2442
2443        ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2444                                                   RetValExp);
2445        if (Res.isInvalid()) {
2446          // FIXME: Cleanup temporaries here, anyway?
2447          return StmtError();
2448        }
2449        RetValExp = Res.takeAs<Expr>();
2450      }
2451
2452      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2453      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2454      // function return.
2455
2456      // In C++ the return statement is handled via a copy initialization,
2457      // the C version of which boils down to CheckSingleAssignmentConstraints.
2458      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2459      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2460                                                                     FnRetType,
2461                                                            NRVOCandidate != 0);
2462      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2463                                                       FnRetType, RetValExp);
2464      if (Res.isInvalid()) {
2465        // FIXME: Cleanup temporaries here, anyway?
2466        return StmtError();
2467      }
2468
2469      RetValExp = Res.takeAs<Expr>();
2470      if (RetValExp)
2471        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2472    }
2473
2474    if (RetValExp) {
2475      CheckImplicitConversions(RetValExp, ReturnLoc);
2476      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2477    }
2478    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2479  }
2480
2481  // If we need to check for the named return value optimization, save the
2482  // return statement in our scope for later processing.
2483  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2484      !CurContext->isDependentContext())
2485    FunctionScopes.back()->Returns.push_back(Result);
2486
2487  return Owned(Result);
2488}
2489
2490/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2491/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2492/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2493/// provide a strong guidance to not use it.
2494///
2495/// This method checks to see if the argument is an acceptable l-value and
2496/// returns false if it is a case we can handle.
2497static bool CheckAsmLValue(const Expr *E, Sema &S) {
2498  // Type dependent expressions will be checked during instantiation.
2499  if (E->isTypeDependent())
2500    return false;
2501
2502  if (E->isLValue())
2503    return false;  // Cool, this is an lvalue.
2504
2505  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2506  // are supposed to allow.
2507  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2508  if (E != E2 && E2->isLValue()) {
2509    if (!S.getLangOpts().HeinousExtensions)
2510      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2511        << E->getSourceRange();
2512    else
2513      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2514        << E->getSourceRange();
2515    // Accept, even if we emitted an error diagnostic.
2516    return false;
2517  }
2518
2519  // None of the above, just randomly invalid non-lvalue.
2520  return true;
2521}
2522
2523/// isOperandMentioned - Return true if the specified operand # is mentioned
2524/// anywhere in the decomposed asm string.
2525static bool isOperandMentioned(unsigned OpNo,
2526                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2527  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2528    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2529    if (!Piece.isOperand()) continue;
2530
2531    // If this is a reference to the input and if the input was the smaller
2532    // one, then we have to reject this asm.
2533    if (Piece.getOperandNo() == OpNo)
2534      return true;
2535  }
2536  return false;
2537}
2538
2539StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2540                              bool IsVolatile, unsigned NumOutputs,
2541                              unsigned NumInputs, IdentifierInfo **Names,
2542                              MultiExprArg constraints, MultiExprArg exprs,
2543                              Expr *asmString, MultiExprArg clobbers,
2544                              SourceLocation RParenLoc, bool MSAsm) {
2545  unsigned NumClobbers = clobbers.size();
2546  StringLiteral **Constraints =
2547    reinterpret_cast<StringLiteral**>(constraints.get());
2548  Expr **Exprs = exprs.get();
2549  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2550  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2551
2552  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2553
2554  // The parser verifies that there is a string literal here.
2555  if (!AsmString->isAscii())
2556    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2557      << AsmString->getSourceRange());
2558
2559  for (unsigned i = 0; i != NumOutputs; i++) {
2560    StringLiteral *Literal = Constraints[i];
2561    if (!Literal->isAscii())
2562      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2563        << Literal->getSourceRange());
2564
2565    StringRef OutputName;
2566    if (Names[i])
2567      OutputName = Names[i]->getName();
2568
2569    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2570    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2571      return StmtError(Diag(Literal->getLocStart(),
2572                            diag::err_asm_invalid_output_constraint)
2573                       << Info.getConstraintStr());
2574
2575    // Check that the output exprs are valid lvalues.
2576    Expr *OutputExpr = Exprs[i];
2577    if (CheckAsmLValue(OutputExpr, *this)) {
2578      return StmtError(Diag(OutputExpr->getLocStart(),
2579                  diag::err_asm_invalid_lvalue_in_output)
2580        << OutputExpr->getSourceRange());
2581    }
2582
2583    OutputConstraintInfos.push_back(Info);
2584  }
2585
2586  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2587
2588  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2589    StringLiteral *Literal = Constraints[i];
2590    if (!Literal->isAscii())
2591      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2592        << Literal->getSourceRange());
2593
2594    StringRef InputName;
2595    if (Names[i])
2596      InputName = Names[i]->getName();
2597
2598    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2599    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2600                                                NumOutputs, Info)) {
2601      return StmtError(Diag(Literal->getLocStart(),
2602                            diag::err_asm_invalid_input_constraint)
2603                       << Info.getConstraintStr());
2604    }
2605
2606    Expr *InputExpr = Exprs[i];
2607
2608    // Only allow void types for memory constraints.
2609    if (Info.allowsMemory() && !Info.allowsRegister()) {
2610      if (CheckAsmLValue(InputExpr, *this))
2611        return StmtError(Diag(InputExpr->getLocStart(),
2612                              diag::err_asm_invalid_lvalue_in_input)
2613                         << Info.getConstraintStr()
2614                         << InputExpr->getSourceRange());
2615    }
2616
2617    if (Info.allowsRegister()) {
2618      if (InputExpr->getType()->isVoidType()) {
2619        return StmtError(Diag(InputExpr->getLocStart(),
2620                              diag::err_asm_invalid_type_in_input)
2621          << InputExpr->getType() << Info.getConstraintStr()
2622          << InputExpr->getSourceRange());
2623      }
2624    }
2625
2626    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2627    if (Result.isInvalid())
2628      return StmtError();
2629
2630    Exprs[i] = Result.take();
2631    InputConstraintInfos.push_back(Info);
2632  }
2633
2634  // Check that the clobbers are valid.
2635  for (unsigned i = 0; i != NumClobbers; i++) {
2636    StringLiteral *Literal = Clobbers[i];
2637    if (!Literal->isAscii())
2638      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2639        << Literal->getSourceRange());
2640
2641    StringRef Clobber = Literal->getString();
2642
2643    if (!Context.getTargetInfo().isValidClobber(Clobber))
2644      return StmtError(Diag(Literal->getLocStart(),
2645                  diag::err_asm_unknown_register_name) << Clobber);
2646  }
2647
2648  AsmStmt *NS =
2649    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2650                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2651                          AsmString, NumClobbers, Clobbers, RParenLoc);
2652  // Validate the asm string, ensuring it makes sense given the operands we
2653  // have.
2654  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2655  unsigned DiagOffs;
2656  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2657    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2658           << AsmString->getSourceRange();
2659    return StmtError();
2660  }
2661
2662  // Validate tied input operands for type mismatches.
2663  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2664    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2665
2666    // If this is a tied constraint, verify that the output and input have
2667    // either exactly the same type, or that they are int/ptr operands with the
2668    // same size (int/long, int*/long, are ok etc).
2669    if (!Info.hasTiedOperand()) continue;
2670
2671    unsigned TiedTo = Info.getTiedOperand();
2672    unsigned InputOpNo = i+NumOutputs;
2673    Expr *OutputExpr = Exprs[TiedTo];
2674    Expr *InputExpr = Exprs[InputOpNo];
2675
2676    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2677      continue;
2678
2679    QualType InTy = InputExpr->getType();
2680    QualType OutTy = OutputExpr->getType();
2681    if (Context.hasSameType(InTy, OutTy))
2682      continue;  // All types can be tied to themselves.
2683
2684    // Decide if the input and output are in the same domain (integer/ptr or
2685    // floating point.
2686    enum AsmDomain {
2687      AD_Int, AD_FP, AD_Other
2688    } InputDomain, OutputDomain;
2689
2690    if (InTy->isIntegerType() || InTy->isPointerType())
2691      InputDomain = AD_Int;
2692    else if (InTy->isRealFloatingType())
2693      InputDomain = AD_FP;
2694    else
2695      InputDomain = AD_Other;
2696
2697    if (OutTy->isIntegerType() || OutTy->isPointerType())
2698      OutputDomain = AD_Int;
2699    else if (OutTy->isRealFloatingType())
2700      OutputDomain = AD_FP;
2701    else
2702      OutputDomain = AD_Other;
2703
2704    // They are ok if they are the same size and in the same domain.  This
2705    // allows tying things like:
2706    //   void* to int*
2707    //   void* to int            if they are the same size.
2708    //   double to long double   if they are the same size.
2709    //
2710    uint64_t OutSize = Context.getTypeSize(OutTy);
2711    uint64_t InSize = Context.getTypeSize(InTy);
2712    if (OutSize == InSize && InputDomain == OutputDomain &&
2713        InputDomain != AD_Other)
2714      continue;
2715
2716    // If the smaller input/output operand is not mentioned in the asm string,
2717    // then we can promote the smaller one to a larger input and the asm string
2718    // won't notice.
2719    bool SmallerValueMentioned = false;
2720
2721    // If this is a reference to the input and if the input was the smaller
2722    // one, then we have to reject this asm.
2723    if (isOperandMentioned(InputOpNo, Pieces)) {
2724      // This is a use in the asm string of the smaller operand.  Since we
2725      // codegen this by promoting to a wider value, the asm will get printed
2726      // "wrong".
2727      SmallerValueMentioned |= InSize < OutSize;
2728    }
2729    if (isOperandMentioned(TiedTo, Pieces)) {
2730      // If this is a reference to the output, and if the output is the larger
2731      // value, then it's ok because we'll promote the input to the larger type.
2732      SmallerValueMentioned |= OutSize < InSize;
2733    }
2734
2735    // If the smaller value wasn't mentioned in the asm string, and if the
2736    // output was a register, just extend the shorter one to the size of the
2737    // larger one.
2738    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2739        OutputConstraintInfos[TiedTo].allowsRegister())
2740      continue;
2741
2742    // Either both of the operands were mentioned or the smaller one was
2743    // mentioned.  One more special case that we'll allow: if the tied input is
2744    // integer, unmentioned, and is a constant, then we'll allow truncating it
2745    // down to the size of the destination.
2746    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2747        !isOperandMentioned(InputOpNo, Pieces) &&
2748        InputExpr->isEvaluatable(Context)) {
2749      CastKind castKind =
2750        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2751      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2752      Exprs[InputOpNo] = InputExpr;
2753      NS->setInputExpr(i, InputExpr);
2754      continue;
2755    }
2756
2757    Diag(InputExpr->getLocStart(),
2758         diag::err_asm_tying_incompatible_types)
2759      << InTy << OutTy << OutputExpr->getSourceRange()
2760      << InputExpr->getSourceRange();
2761    return StmtError();
2762  }
2763
2764  return Owned(NS);
2765}
2766
2767static void patchMSAsmStrings(Sema &SemaRef, bool &IsSimple,
2768                              SourceLocation AsmLoc,
2769                              ArrayRef<Token> AsmToks,
2770                              const TargetInfo &TI,
2771                              std::vector<llvm::BitVector> &AsmRegs,
2772                              std::vector<llvm::BitVector> &AsmNames,
2773                              std::vector<std::string> &AsmStrings) {
2774  assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
2775
2776  // Assume simple asm stmt until we parse a non-register identifer.
2777  IsSimple = true;
2778
2779  SmallString<512> Asm;
2780  unsigned NumAsmStrings = 0;
2781  for (unsigned i = 0, e = AsmToks.size(); i != e; ++i) {
2782
2783    // Determine if this should be considered a new asm.
2784    bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() ||
2785      AsmToks[i].is(tok::kw_asm);
2786
2787    // Emit the previous asm string.
2788    if (i && isNewAsm) {
2789      AsmStrings[NumAsmStrings++] = Asm.c_str();
2790      if (AsmToks[i].is(tok::kw_asm)) {
2791        ++i; // Skip __asm
2792        assert (i != e && "Expected another token.");
2793      }
2794    }
2795
2796    // Start a new asm string with the opcode.
2797    if (isNewAsm) {
2798      AsmRegs[NumAsmStrings].resize(AsmToks.size());
2799      AsmNames[NumAsmStrings].resize(AsmToks.size());
2800      Asm = AsmToks[i].getIdentifierInfo()->getName().str();
2801      continue;
2802    }
2803
2804    if (i && AsmToks[i].hasLeadingSpace())
2805      Asm += ' ';
2806
2807    // Check the operand(s).
2808    switch (AsmToks[i].getKind()) {
2809    default:
2810      //llvm_unreachable("Unknown token.");
2811      break;
2812    case tok::comma: Asm += ","; break;
2813    case tok::colon: Asm += ":"; break;
2814    case tok::l_square: Asm += "["; break;
2815    case tok::r_square: Asm += "]"; break;
2816    case tok::l_brace: Asm += "{"; break;
2817    case tok::r_brace: Asm += "}"; break;
2818    case tok::numeric_constant: {
2819      SmallString<32> TokenBuf;
2820      TokenBuf.resize(32);
2821      bool StringInvalid = false;
2822      Asm += SemaRef.PP.getSpelling(AsmToks[i], TokenBuf, &StringInvalid);
2823      assert (!StringInvalid && "Expected valid string!");
2824      break;
2825    }
2826    case tok::identifier: {
2827      StringRef Name = AsmToks[i].getIdentifierInfo()->getName();
2828
2829      // Valid register?
2830      if (TI.isValidGCCRegisterName(Name)) {
2831        AsmRegs[NumAsmStrings].set(i);
2832        Asm += Name;
2833        break;
2834      }
2835
2836      IsSimple = false;
2837
2838      // FIXME: Why are we missing this segment register?
2839      if (Name == "fs") {
2840        Asm += Name;
2841        break;
2842      }
2843
2844      // Not a register, so this must be a variable, function or label
2845      // reference.  Track these as they are either an Input or an Output.
2846      // Unfortunately, we don't know which is which until after we feed
2847      // the patched asms to the AsmParser.
2848      AsmNames[NumAsmStrings].set(i);
2849
2850      // TODO: Lookup the identifier and patch appropriately.
2851      break;
2852    }
2853    } // AsmToks[i].getKind()
2854  }
2855
2856  // Emit the final (and possibly only) asm string.
2857  AsmStrings[NumAsmStrings] = Asm.c_str();
2858}
2859
2860// Build the unmodified MSAsmString.
2861static std::string buildMSAsmString(Sema &SemaRef,
2862                                    ArrayRef<Token> AsmToks,
2863                                    unsigned &NumAsmStrings) {
2864  assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
2865  SmallString<512> Asm;
2866  SmallString<512> TokenBuf;
2867  TokenBuf.resize(512);
2868
2869  NumAsmStrings = 0;
2870  for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) {
2871    bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() ||
2872      AsmToks[i].is(tok::kw_asm);
2873
2874    if (isNewAsm) {
2875      ++NumAsmStrings;
2876      if (i)
2877        Asm += '\n';
2878      if (AsmToks[i].is(tok::kw_asm)) {
2879        i++; // Skip __asm
2880        assert (i != e && "Expected another token");
2881      }
2882    }
2883
2884    if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm)
2885      Asm += ' ';
2886
2887    bool StringInvalid = false;
2888    Asm += SemaRef.PP.getSpelling(AsmToks[i], TokenBuf, &StringInvalid);
2889    assert (!StringInvalid && "Expected valid string!");
2890  }
2891  return Asm.c_str();
2892}
2893
2894StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc,
2895                                SourceLocation LBraceLoc,
2896                                ArrayRef<Token> AsmToks,
2897                                SourceLocation EndLoc) {
2898  // MS-style inline assembly is not fully supported, so emit a warning.
2899  Diag(AsmLoc, diag::warn_unsupported_msasm);
2900  SmallVector<StringRef,4> Clobbers;
2901  std::set<std::string> ClobberRegs;
2902  SmallVector<IdentifierInfo*, 4> Inputs;
2903  SmallVector<IdentifierInfo*, 4> Outputs;
2904
2905  // Empty asm statements don't need to instantiate the AsmParser, etc.
2906  if (AsmToks.empty()) {
2907    StringRef AsmString;
2908    MSAsmStmt *NS =
2909      new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,
2910                              /*IsVolatile*/ true, AsmToks, Inputs, Outputs,
2911                              AsmString, Clobbers, EndLoc);
2912    return Owned(NS);
2913  }
2914
2915  unsigned NumAsmStrings;
2916  std::string AsmString = buildMSAsmString(*this, AsmToks, NumAsmStrings);
2917
2918  bool IsSimple;
2919  std::vector<llvm::BitVector> Regs;
2920  std::vector<llvm::BitVector> Names;
2921  std::vector<std::string> PatchedAsmStrings;
2922
2923  Regs.resize(NumAsmStrings);
2924  Names.resize(NumAsmStrings);
2925  PatchedAsmStrings.resize(NumAsmStrings);
2926
2927  // Rewrite operands to appease the AsmParser.
2928  patchMSAsmStrings(*this, IsSimple, AsmLoc, AsmToks,
2929                    Context.getTargetInfo(), Regs, Names, PatchedAsmStrings);
2930
2931  // patchMSAsmStrings doesn't correctly patch non-simple asm statements.
2932  if (!IsSimple) {
2933    MSAsmStmt *NS =
2934      new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,
2935                              /*IsVolatile*/ true, AsmToks, Inputs, Outputs,
2936                              AsmString, Clobbers, EndLoc);
2937    return Owned(NS);
2938  }
2939
2940  // Initialize targets and assembly printers/parsers.
2941  llvm::InitializeAllTargetInfos();
2942  llvm::InitializeAllTargetMCs();
2943  llvm::InitializeAllAsmParsers();
2944
2945  // Get the target specific parser.
2946  std::string Error;
2947  const std::string &TT = Context.getTargetInfo().getTriple().getTriple();
2948  const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error));
2949
2950  OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT));
2951  OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT));
2952  OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo());
2953  OwningPtr<llvm::MCSubtargetInfo>
2954    STI(TheTarget->createMCSubtargetInfo(TT, "", ""));
2955
2956  for (unsigned i = 0, e = PatchedAsmStrings.size(); i != e; ++i) {
2957    llvm::SourceMgr SrcMgr;
2958    llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr);
2959    llvm::MemoryBuffer *Buffer =
2960      llvm::MemoryBuffer::getMemBuffer(PatchedAsmStrings[i], "<inline asm>");
2961
2962    // Tell SrcMgr about this buffer, which is what the parser will pick up.
2963    SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc());
2964
2965    OwningPtr<llvm::MCStreamer> Str;
2966    OwningPtr<llvm::MCAsmParser>
2967      Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI));
2968    OwningPtr<llvm::MCTargetAsmParser>
2969      TargetParser(TheTarget->createMCAsmParser(*STI, *Parser));
2970    // Change to the Intel dialect.
2971    Parser->setAssemblerDialect(1);
2972    Parser->setTargetParser(*TargetParser.get());
2973
2974    // Prime the lexer.
2975    Parser->Lex();
2976
2977    // Parse the opcode.
2978    StringRef IDVal;
2979    Parser->ParseIdentifier(IDVal);
2980
2981    // Canonicalize the opcode to lower case.
2982    SmallString<128> Opcode;
2983    for (unsigned i = 0, e = IDVal.size(); i != e; ++i)
2984      Opcode.push_back(tolower(IDVal[i]));
2985
2986    // Parse the operands.
2987    llvm::SMLoc IDLoc;
2988    SmallVector<llvm::MCParsedAsmOperand*, 8> Operands;
2989    bool HadError = TargetParser->ParseInstruction(Opcode.str(), IDLoc,
2990                                                   Operands);
2991    assert (!HadError && "Unexpected error parsing instruction");
2992
2993    // Match the MCInstr.
2994    SmallVector<llvm::MCInst, 2> Instrs;
2995    HadError = TargetParser->MatchInstruction(IDLoc, Operands, Instrs);
2996    assert (!HadError && "Unexpected error matching instruction");
2997    assert ((Instrs.size() == 1) && "Expected only a single instruction.");
2998
2999    // Get the instruction descriptor.
3000    llvm::MCInst Inst = Instrs[0];
3001    const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo();
3002    const llvm::MCInstrDesc &Desc = MII->get(Inst.getOpcode());
3003    llvm::MCInstPrinter *IP =
3004      TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI);
3005
3006    // Build the list of clobbers.
3007    for (unsigned i = 0, e = Desc.getNumDefs(); i != e; ++i) {
3008      const llvm::MCOperand &Op = Inst.getOperand(i);
3009      if (!Op.isReg())
3010        continue;
3011
3012      std::string Reg;
3013      llvm::raw_string_ostream OS(Reg);
3014      IP->printRegName(OS, Op.getReg());
3015
3016      StringRef Clobber(OS.str());
3017      if (!Context.getTargetInfo().isValidClobber(Clobber))
3018        return StmtError(Diag(AsmLoc, diag::err_asm_unknown_register_name) <<
3019                         Clobber);
3020      ClobberRegs.insert(Reg);
3021    }
3022  }
3023  for (std::set<std::string>::iterator I = ClobberRegs.begin(),
3024         E = ClobberRegs.end(); I != E; ++I)
3025    Clobbers.push_back(*I);
3026
3027  MSAsmStmt *NS =
3028    new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
3029                            /*IsVolatile*/ true, AsmToks, Inputs, Outputs,
3030                            AsmString, Clobbers, EndLoc);
3031  return Owned(NS);
3032}
3033
3034StmtResult
3035Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3036                           SourceLocation RParen, Decl *Parm,
3037                           Stmt *Body) {
3038  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3039  if (Var && Var->isInvalidDecl())
3040    return StmtError();
3041
3042  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
3043}
3044
3045StmtResult
3046Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3047  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
3048}
3049
3050StmtResult
3051Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3052                         MultiStmtArg CatchStmts, Stmt *Finally) {
3053  if (!getLangOpts().ObjCExceptions)
3054    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3055
3056  getCurFunction()->setHasBranchProtectedScope();
3057  unsigned NumCatchStmts = CatchStmts.size();
3058  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
3059                                     CatchStmts.release(),
3060                                     NumCatchStmts,
3061                                     Finally));
3062}
3063
3064StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3065  if (Throw) {
3066    ExprResult Result = DefaultLvalueConversion(Throw);
3067    if (Result.isInvalid())
3068      return StmtError();
3069
3070    Throw = MaybeCreateExprWithCleanups(Result.take());
3071    QualType ThrowType = Throw->getType();
3072    // Make sure the expression type is an ObjC pointer or "void *".
3073    if (!ThrowType->isDependentType() &&
3074        !ThrowType->isObjCObjectPointerType()) {
3075      const PointerType *PT = ThrowType->getAs<PointerType>();
3076      if (!PT || !PT->getPointeeType()->isVoidType())
3077        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
3078                         << Throw->getType() << Throw->getSourceRange());
3079    }
3080  }
3081
3082  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
3083}
3084
3085StmtResult
3086Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3087                           Scope *CurScope) {
3088  if (!getLangOpts().ObjCExceptions)
3089    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3090
3091  if (!Throw) {
3092    // @throw without an expression designates a rethrow (which much occur
3093    // in the context of an @catch clause).
3094    Scope *AtCatchParent = CurScope;
3095    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3096      AtCatchParent = AtCatchParent->getParent();
3097    if (!AtCatchParent)
3098      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
3099  }
3100  return BuildObjCAtThrowStmt(AtLoc, Throw);
3101}
3102
3103ExprResult
3104Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3105  ExprResult result = DefaultLvalueConversion(operand);
3106  if (result.isInvalid())
3107    return ExprError();
3108  operand = result.take();
3109
3110  // Make sure the expression type is an ObjC pointer or "void *".
3111  QualType type = operand->getType();
3112  if (!type->isDependentType() &&
3113      !type->isObjCObjectPointerType()) {
3114    const PointerType *pointerType = type->getAs<PointerType>();
3115    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
3116      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3117               << type << operand->getSourceRange();
3118  }
3119
3120  // The operand to @synchronized is a full-expression.
3121  return MaybeCreateExprWithCleanups(operand);
3122}
3123
3124StmtResult
3125Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3126                                  Stmt *SyncBody) {
3127  // We can't jump into or indirect-jump out of a @synchronized block.
3128  getCurFunction()->setHasBranchProtectedScope();
3129  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
3130}
3131
3132/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3133/// and creates a proper catch handler from them.
3134StmtResult
3135Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3136                         Stmt *HandlerBlock) {
3137  // There's nothing to test that ActOnExceptionDecl didn't already test.
3138  return Owned(new (Context) CXXCatchStmt(CatchLoc,
3139                                          cast_or_null<VarDecl>(ExDecl),
3140                                          HandlerBlock));
3141}
3142
3143StmtResult
3144Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3145  getCurFunction()->setHasBranchProtectedScope();
3146  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
3147}
3148
3149namespace {
3150
3151class TypeWithHandler {
3152  QualType t;
3153  CXXCatchStmt *stmt;
3154public:
3155  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
3156  : t(type), stmt(statement) {}
3157
3158  // An arbitrary order is fine as long as it places identical
3159  // types next to each other.
3160  bool operator<(const TypeWithHandler &y) const {
3161    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
3162      return true;
3163    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
3164      return false;
3165    else
3166      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
3167  }
3168
3169  bool operator==(const TypeWithHandler& other) const {
3170    return t == other.t;
3171  }
3172
3173  CXXCatchStmt *getCatchStmt() const { return stmt; }
3174  SourceLocation getTypeSpecStartLoc() const {
3175    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
3176  }
3177};
3178
3179}
3180
3181/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3182/// handlers and creates a try statement from them.
3183StmtResult
3184Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3185                       MultiStmtArg RawHandlers) {
3186  // Don't report an error if 'try' is used in system headers.
3187  if (!getLangOpts().CXXExceptions &&
3188      !getSourceManager().isInSystemHeader(TryLoc))
3189      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3190
3191  unsigned NumHandlers = RawHandlers.size();
3192  assert(NumHandlers > 0 &&
3193         "The parser shouldn't call this if there are no handlers.");
3194  Stmt **Handlers = RawHandlers.get();
3195
3196  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
3197
3198  for (unsigned i = 0; i < NumHandlers; ++i) {
3199    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
3200    if (!Handler->getExceptionDecl()) {
3201      if (i < NumHandlers - 1)
3202        return StmtError(Diag(Handler->getLocStart(),
3203                              diag::err_early_catch_all));
3204
3205      continue;
3206    }
3207
3208    const QualType CaughtType = Handler->getCaughtType();
3209    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
3210    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
3211  }
3212
3213  // Detect handlers for the same type as an earlier one.
3214  if (NumHandlers > 1) {
3215    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
3216
3217    TypeWithHandler prev = TypesWithHandlers[0];
3218    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
3219      TypeWithHandler curr = TypesWithHandlers[i];
3220
3221      if (curr == prev) {
3222        Diag(curr.getTypeSpecStartLoc(),
3223             diag::warn_exception_caught_by_earlier_handler)
3224          << curr.getCatchStmt()->getCaughtType().getAsString();
3225        Diag(prev.getTypeSpecStartLoc(),
3226             diag::note_previous_exception_handler)
3227          << prev.getCatchStmt()->getCaughtType().getAsString();
3228      }
3229
3230      prev = curr;
3231    }
3232  }
3233
3234  getCurFunction()->setHasBranchProtectedScope();
3235
3236  // FIXME: We should detect handlers that cannot catch anything because an
3237  // earlier handler catches a superclass. Need to find a method that is not
3238  // quadratic for this.
3239  // Neither of these are explicitly forbidden, but every compiler detects them
3240  // and warns.
3241
3242  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
3243                                  Handlers, NumHandlers));
3244}
3245
3246StmtResult
3247Sema::ActOnSEHTryBlock(bool IsCXXTry,
3248                       SourceLocation TryLoc,
3249                       Stmt *TryBlock,
3250                       Stmt *Handler) {
3251  assert(TryBlock && Handler);
3252
3253  getCurFunction()->setHasBranchProtectedScope();
3254
3255  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
3256}
3257
3258StmtResult
3259Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3260                          Expr *FilterExpr,
3261                          Stmt *Block) {
3262  assert(FilterExpr && Block);
3263
3264  if(!FilterExpr->getType()->isIntegerType()) {
3265    return StmtError(Diag(FilterExpr->getExprLoc(),
3266                     diag::err_filter_expression_integral)
3267                     << FilterExpr->getType());
3268  }
3269
3270  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
3271}
3272
3273StmtResult
3274Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
3275                           Stmt *Block) {
3276  assert(Block);
3277  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
3278}
3279
3280StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3281                                            bool IsIfExists,
3282                                            NestedNameSpecifierLoc QualifierLoc,
3283                                            DeclarationNameInfo NameInfo,
3284                                            Stmt *Nested)
3285{
3286  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3287                                             QualifierLoc, NameInfo,
3288                                             cast<CompoundStmt>(Nested));
3289}
3290
3291
3292StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3293                                            bool IsIfExists,
3294                                            CXXScopeSpec &SS,
3295                                            UnqualifiedId &Name,
3296                                            Stmt *Nested) {
3297  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3298                                    SS.getWithLocInContext(Context),
3299                                    GetNameFromUnqualifiedId(Name),
3300                                    Nested);
3301}
3302