InetAddresses.java revision 1d580d0f6ee4f21eb309ba7b509d2c6d671c4044
1/*
2 * Copyright (C) 2008 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package com.google.common.net;
18
19import com.google.common.annotations.Beta;
20import com.google.common.annotations.VisibleForTesting;
21import com.google.common.base.Preconditions;
22import com.google.common.io.ByteStreams;
23import com.google.common.primitives.Ints;
24
25import java.net.Inet4Address;
26import java.net.Inet6Address;
27import java.net.InetAddress;
28import java.net.UnknownHostException;
29import java.nio.ByteBuffer;
30import java.util.Arrays;
31
32import javax.annotation.Nullable;
33
34/**
35 * Static utility methods pertaining to {@link InetAddress} instances.
36 *
37 * <p><b>Important note:</b> Unlike {@code InetAddress.getByName()}, the
38 * methods of this class never cause DNS services to be accessed. For
39 * this reason, you should prefer these methods as much as possible over
40 * their JDK equivalents whenever you are expecting to handle only
41 * IP address string literals -- there is no blocking DNS penalty for a
42 * malformed string.
43 *
44 * <p>This class hooks into the {@code sun.net.util.IPAddressUtil} class
45 * to make use of the {@code textToNumericFormatV4} and
46 * {@code textToNumericFormatV6} methods directly as a means to avoid
47 * accidentally traversing all nameservices (it can be vitally important
48 * to avoid, say, blocking on DNS at times).
49 *
50 * <p>When dealing with {@link Inet4Address} and {@link Inet6Address}
51 * objects as byte arrays (vis. {@code InetAddress.getAddress()}) they
52 * are 4 and 16 bytes in length, respectively, and represent the address
53 * in network byte order.
54 *
55 * <p>Examples of IP addresses and their byte representations:
56 * <ul>
57 * <li>The IPv4 loopback address, {@code "127.0.0.1"}.<br/>
58 *     {@code 7f 00 00 01}
59 *
60 * <li>The IPv6 loopback address, {@code "::1"}.<br/>
61 *     {@code 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01}
62 *
63 * <li>From the IPv6 reserved documentation prefix ({@code 2001:db8::/32}),
64 *     {@code "2001:db8::1"}.<br/>
65 *     {@code 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 00 01}
66 *
67 * <li>An IPv6 "IPv4 compatible" (or "compat") address,
68 *     {@code "::192.168.0.1"}.<br/>
69 *     {@code 00 00 00 00 00 00 00 00 00 00 00 00 c0 a8 00 01}
70 *
71 * <li>An IPv6 "IPv4 mapped" address, {@code "::ffff:192.168.0.1"}.<br/>
72 *     {@code 00 00 00 00 00 00 00 00 00 00 ff ff c0 a8 00 01}
73 * </ul>
74 *
75 * <p>A few notes about IPv6 "IPv4 mapped" addresses and their observed
76 * use in Java.
77 * <br><br>
78 * "IPv4 mapped" addresses were originally a representation of IPv4
79 * addresses for use on an IPv6 socket that could receive both IPv4
80 * and IPv6 connections (by disabling the {@code IPV6_V6ONLY} socket
81 * option on an IPv6 socket).  Yes, it's confusing.  Nevertheless,
82 * these "mapped" addresses were never supposed to be seen on the
83 * wire.  That assumption was dropped, some say mistakenly, in later
84 * RFCs with the apparent aim of making IPv4-to-IPv6 transition simpler.
85 *
86 * <p>Technically one <i>can</i> create a 128bit IPv6 address with the wire
87 * format of a "mapped" address, as shown above, and transmit it in an
88 * IPv6 packet header.  However, Java's InetAddress creation methods
89 * appear to adhere doggedly to the original intent of the "mapped"
90 * address: all "mapped" addresses return {@link Inet4Address} objects.
91 *
92 * <p>For added safety, it is common for IPv6 network operators to filter
93 * all packets where either the source or destination address appears to
94 * be a "compat" or "mapped" address.  Filtering suggestions usually
95 * recommend discarding any packets with source or destination addresses
96 * in the invalid range {@code ::/3}, which includes both of these bizarre
97 * address formats.  For more information on "bogons", including lists
98 * of IPv6 bogon space, see:
99 *
100 * <ul>
101 * <li><a target="_parent"
102 *        href="http://en.wikipedia.org/wiki/Bogon_filtering"
103 *       >http://en.wikipedia.org/wiki/Bogon_filtering</a>
104 * <li><a target="_parent"
105 *        href="http://www.cymru.com/Bogons/ipv6.txt"
106 *       >http://www.cymru.com/Bogons/ipv6.txt</a>
107 * <li><a target="_parent"
108 *        href="http://www.cymru.com/Bogons/v6bogon.html"
109 *       >http://www.cymru.com/Bogons/v6bogon.html</a>
110 * <li><a target="_parent"
111 *        href="http://www.space.net/~gert/RIPE/ipv6-filters.html"
112 *       >http://www.space.net/~gert/RIPE/ipv6-filters.html</a>
113 * </ul>
114 *
115 * @author Erik Kline
116 * @since 5.0
117 */
118@Beta
119public final class InetAddresses {
120  private static final int IPV4_PART_COUNT = 4;
121  private static final int IPV6_PART_COUNT = 8;
122  private static final Inet4Address LOOPBACK4 =
123      (Inet4Address) forString("127.0.0.1");
124  private static final Inet4Address ANY4 =
125      (Inet4Address) forString("0.0.0.0");
126
127  private InetAddresses() {}
128
129  /**
130   * Returns an {@link Inet4Address}, given a byte array representation
131   * of the IPv4 address.
132   *
133   * @param bytes byte array representing an IPv4 address (should be
134   *              of length 4).
135   * @return {@link Inet4Address} corresponding to the supplied byte
136   *         array.
137   * @throws IllegalArgumentException if a valid {@link Inet4Address}
138   *         can not be created.
139   */
140  private static Inet4Address getInet4Address(byte[] bytes) {
141    Preconditions.checkArgument(bytes.length == 4,
142        "Byte array has invalid length for an IPv4 address: %s != 4.",
143        bytes.length);
144
145    try {
146      InetAddress ipv4 = InetAddress.getByAddress(bytes);
147      if (!(ipv4 instanceof Inet4Address)) {
148        throw new UnknownHostException(
149            String.format("'%s' is not an IPv4 address.",
150                          ipv4.getHostAddress()));
151      }
152
153      return (Inet4Address) ipv4;
154    } catch (UnknownHostException e) {
155
156      /*
157       * This really shouldn't happen in practice since all our byte
158       * sequences should be valid IP addresses.
159       *
160       * However {@link InetAddress#getByAddress} is documented as
161       * potentially throwing this "if IP address is of illegal length".
162       *
163       * This is mapped to IllegalArgumentException since, presumably,
164       * the argument triggered some bizarre processing bug.
165       */
166      throw new IllegalArgumentException(
167          String.format("Host address '%s' is not a valid IPv4 address.",
168                        Arrays.toString(bytes)),
169          e);
170    }
171  }
172
173  /**
174   * Returns the {@link InetAddress} having the given string
175   * representation.
176   *
177   * <p>This deliberately avoids all nameservice lookups (e.g. no DNS).
178   *
179   * @param ipString {@code String} containing an IPv4 or IPv6 string literal,
180   *                 e.g. {@code "192.168.0.1"} or {@code "2001:db8::1"}
181   * @return {@link InetAddress} representing the argument
182   * @throws IllegalArgumentException if the argument is not a valid
183   *         IP string literal
184   */
185  public static InetAddress forString(String ipString) {
186    byte[] addr = ipStringToBytes(ipString);
187
188    // The argument was malformed, i.e. not an IP string literal.
189    if (addr == null) {
190      throw new IllegalArgumentException(
191          String.format("'%s' is not an IP string literal.", ipString));
192    }
193
194    try {
195      return InetAddress.getByAddress(addr);
196    } catch (UnknownHostException e) {
197
198      /*
199       * This really shouldn't happen in practice since all our byte
200       * sequences should be valid IP addresses.
201       *
202       * However {@link InetAddress#getByAddress} is documented as
203       * potentially throwing this "if IP address is of illegal length".
204       *
205       * This is mapped to IllegalArgumentException since, presumably,
206       * the argument triggered some processing bug in either
207       * {@link IPAddressUtil#textToNumericFormatV4} or
208       * {@link IPAddressUtil#textToNumericFormatV6}.
209       */
210      throw new IllegalArgumentException(
211          String.format("'%s' is extremely broken.", ipString), e);
212    }
213  }
214
215  /**
216   * Returns {@code true} if the supplied string is a valid IP string
217   * literal, {@code false} otherwise.
218   *
219   * @param ipString {@code String} to evaluated as an IP string literal
220   * @return {@code true} if the argument is a valid IP string literal
221   */
222  public static boolean isInetAddress(String ipString) {
223    return ipStringToBytes(ipString) != null;
224  }
225
226  private static byte[] ipStringToBytes(String ipString) {
227    // Make a first pass to categorize the characters in this string.
228    boolean hasColon = false;
229    boolean hasDot = false;
230    for (int i = 0; i < ipString.length(); i++) {
231      char c = ipString.charAt(i);
232      if (c == '.') {
233        hasDot = true;
234      } else if (c == ':') {
235        if (hasDot) {
236          return null;  // Colons must not appear after dots.
237        }
238        hasColon = true;
239      } else if (Character.digit(c, 16) == -1) {
240        return null;  // Everything else must be a decimal or hex digit.
241      }
242    }
243
244    // Now decide which address family to parse.
245    if (hasColon) {
246      if (hasDot) {
247        ipString = convertDottedQuadToHex(ipString);
248        if (ipString == null) {
249          return null;
250        }
251      }
252      return textToNumericFormatV6(ipString);
253    } else if (hasDot) {
254      return textToNumericFormatV4(ipString);
255    }
256    return null;
257  }
258
259  private static byte[] textToNumericFormatV4(String ipString) {
260    String[] address = ipString.split("\\.", IPV4_PART_COUNT + 1);
261    if (address.length != IPV4_PART_COUNT) {
262      return null;
263    }
264
265    byte[] bytes = new byte[IPV4_PART_COUNT];
266    try {
267      for (int i = 0; i < bytes.length; i++) {
268        bytes[i] = parseOctet(address[i]);
269      }
270    } catch (NumberFormatException ex) {
271      return null;
272    }
273
274    return bytes;
275  }
276
277  private static byte[] textToNumericFormatV6(String ipString) {
278    // An address can have [2..8] colons, and N colons make N+1 parts.
279    String[] parts = ipString.split(":", IPV6_PART_COUNT + 2);
280    if (parts.length < 3 || parts.length > IPV6_PART_COUNT + 1) {
281      return null;
282    }
283
284    // Disregarding the endpoints, find "::" with nothing in between.
285    // This indicates that a run of zeroes has been skipped.
286    int skipIndex = -1;
287    for (int i = 1; i < parts.length - 1; i++) {
288      if (parts[i].length() == 0) {
289        if (skipIndex >= 0) {
290          return null;  // Can't have more than one ::
291        }
292        skipIndex = i;
293      }
294    }
295
296    int partsHi;  // Number of parts to copy from above/before the "::"
297    int partsLo;  // Number of parts to copy from below/after the "::"
298    if (skipIndex >= 0) {
299      // If we found a "::", then check if it also covers the endpoints.
300      partsHi = skipIndex;
301      partsLo = parts.length - skipIndex - 1;
302      if (parts[0].length() == 0 && --partsHi != 0) {
303        return null;  // ^: requires ^::
304      }
305      if (parts[parts.length - 1].length() == 0 && --partsLo != 0) {
306        return null;  // :$ requires ::$
307      }
308    } else {
309      // Otherwise, allocate the entire address to partsHi.  The endpoints
310      // could still be empty, but parseHextet() will check for that.
311      partsHi = parts.length;
312      partsLo = 0;
313    }
314
315    // If we found a ::, then we must have skipped at least one part.
316    // Otherwise, we must have exactly the right number of parts.
317    int partsSkipped = IPV6_PART_COUNT - (partsHi + partsLo);
318    if (!(skipIndex >= 0 ? partsSkipped >= 1 : partsSkipped == 0)) {
319      return null;
320    }
321
322    // Now parse the hextets into a byte array.
323    ByteBuffer rawBytes = ByteBuffer.allocate(2 * IPV6_PART_COUNT);
324    try {
325      for (int i = 0; i < partsHi; i++) {
326        rawBytes.putShort(parseHextet(parts[i]));
327      }
328      for (int i = 0; i < partsSkipped; i++) {
329        rawBytes.putShort((short) 0);
330      }
331      for (int i = partsLo; i > 0; i--) {
332        rawBytes.putShort(parseHextet(parts[parts.length - i]));
333      }
334    } catch (NumberFormatException ex) {
335      return null;
336    }
337    return rawBytes.array();
338  }
339
340  private static String convertDottedQuadToHex(String ipString) {
341    int lastColon = ipString.lastIndexOf(':');
342    String initialPart = ipString.substring(0, lastColon + 1);
343    String dottedQuad = ipString.substring(lastColon + 1);
344    byte[] quad = textToNumericFormatV4(dottedQuad);
345    if (quad == null) {
346      return null;
347    }
348    String penultimate = Integer.toHexString(((quad[0] & 0xff) << 8) | (quad[1] & 0xff));
349    String ultimate = Integer.toHexString(((quad[2] & 0xff) << 8) | (quad[3] & 0xff));
350    return initialPart + penultimate + ":" + ultimate;
351  }
352
353  private static byte parseOctet(String ipPart) {
354    // Note: we already verified that this string contains only hex digits.
355    int octet = Integer.parseInt(ipPart);
356    // Disallow leading zeroes, because no clear standard exists on
357    // whether these should be interpreted as decimal or octal.
358    if (octet > 255 || (ipPart.startsWith("0") && ipPart.length() > 1)) {
359      throw new NumberFormatException();
360    }
361    return (byte) octet;
362  }
363
364  private static short parseHextet(String ipPart) {
365    // Note: we already verified that this string contains only hex digits.
366    int hextet = Integer.parseInt(ipPart, 16);
367    if (hextet > 0xffff) {
368      throw new NumberFormatException();
369    }
370    return (short) hextet;
371  }
372
373  /**
374   * Returns the string representation of an {@link InetAddress}.
375   *
376   * <p>For IPv4 addresses, this is identical to
377   * {@link InetAddress#getHostAddress()}, but for IPv6 addresses, the output
378   * follows <a href="http://tools.ietf.org/html/rfc5952">RFC 5952</a>
379   * section 4.  The main difference is that this method uses "::" for zero
380   * compression, while Java's version uses the uncompressed form.
381   *
382   * <p>This method uses hexadecimal for all IPv6 addresses, including
383   * IPv4-mapped IPv6 addresses such as "::c000:201".  The output does not
384   * include a Scope ID.
385   *
386   * @param ip {@link InetAddress} to be converted to an address string
387   * @return {@code String} containing the text-formatted IP address
388   * @since 10.0
389   */
390  public static String toAddrString(InetAddress ip) {
391    Preconditions.checkNotNull(ip);
392    if (ip instanceof Inet4Address) {
393      // For IPv4, Java's formatting is good enough.
394      return ip.getHostAddress();
395    }
396    Preconditions.checkArgument(ip instanceof Inet6Address);
397    byte[] bytes = ip.getAddress();
398    int[] hextets = new int[IPV6_PART_COUNT];
399    for (int i = 0; i < hextets.length; i++) {
400      hextets[i] = Ints.fromBytes(
401          (byte) 0, (byte) 0, bytes[2 * i], bytes[2 * i + 1]);
402    }
403    compressLongestRunOfZeroes(hextets);
404    return hextetsToIPv6String(hextets);
405  }
406
407  /**
408   * Identify and mark the longest run of zeroes in an IPv6 address.
409   *
410   * <p>Only runs of two or more hextets are considered.  In case of a tie, the
411   * leftmost run wins.  If a qualifying run is found, its hextets are replaced
412   * by the sentinel value -1.
413   *
414   * @param hextets {@code int[]} mutable array of eight 16-bit hextets.
415   */
416  private static void compressLongestRunOfZeroes(int[] hextets) {
417    int bestRunStart = -1;
418    int bestRunLength = -1;
419    int runStart = -1;
420    for (int i = 0; i < hextets.length + 1; i++) {
421      if (i < hextets.length && hextets[i] == 0) {
422        if (runStart < 0) {
423          runStart = i;
424        }
425      } else if (runStart >= 0) {
426        int runLength = i - runStart;
427        if (runLength > bestRunLength) {
428          bestRunStart = runStart;
429          bestRunLength = runLength;
430        }
431        runStart = -1;
432      }
433    }
434    if (bestRunLength >= 2) {
435      Arrays.fill(hextets, bestRunStart, bestRunStart + bestRunLength, -1);
436    }
437  }
438
439  /**
440   * Convert a list of hextets into a human-readable IPv6 address.
441   *
442   * <p>In order for "::" compression to work, the input should contain negative
443   * sentinel values in place of the elided zeroes.
444   *
445   * @param hextets {@code int[]} array of eight 16-bit hextets, or -1s.
446   */
447  private static String hextetsToIPv6String(int[] hextets) {
448    /*
449     * While scanning the array, handle these state transitions:
450     *   start->num => "num"     start->gap => "::"
451     *   num->num   => ":num"    num->gap   => "::"
452     *   gap->num   => "num"     gap->gap   => ""
453     */
454    StringBuilder buf = new StringBuilder(39);
455    boolean lastWasNumber = false;
456    for (int i = 0; i < hextets.length; i++) {
457      boolean thisIsNumber = hextets[i] >= 0;
458      if (thisIsNumber) {
459        if (lastWasNumber) {
460          buf.append(':');
461        }
462        buf.append(Integer.toHexString(hextets[i]));
463      } else {
464        if (i == 0 || lastWasNumber) {
465          buf.append("::");
466        }
467      }
468      lastWasNumber = thisIsNumber;
469    }
470    return buf.toString();
471  }
472
473  /**
474   * Returns the string representation of an {@link InetAddress} suitable
475   * for inclusion in a URI.
476   *
477   * <p>For IPv4 addresses, this is identical to
478   * {@link InetAddress#getHostAddress()}, but for IPv6 addresses it
479   * compresses zeroes and surrounds the text with square brackets; for example
480   * {@code "[2001:db8::1]"}.
481   *
482   * <p>Per section 3.2.2 of
483   * <a target="_parent"
484   *    href="http://tools.ietf.org/html/rfc3986#section-3.2.2"
485   *  >http://tools.ietf.org/html/rfc3986</a>,
486   * a URI containing an IPv6 string literal is of the form
487   * {@code "http://[2001:db8::1]:8888/index.html"}.
488   *
489   * <p>Use of either {@link InetAddresses#toAddrString},
490   * {@link InetAddress#getHostAddress()}, or this method is recommended over
491   * {@link InetAddress#toString()} when an IP address string literal is
492   * desired.  This is because {@link InetAddress#toString()} prints the
493   * hostname and the IP address string joined by a "/".
494   *
495   * @param ip {@link InetAddress} to be converted to URI string literal
496   * @return {@code String} containing URI-safe string literal
497   */
498  public static String toUriString(InetAddress ip) {
499    if (ip instanceof Inet6Address) {
500      return "[" + toAddrString(ip) + "]";
501    }
502    return toAddrString(ip);
503  }
504
505  /**
506   * Returns an InetAddress representing the literal IPv4 or IPv6 host
507   * portion of a URL, encoded in the format specified by RFC 3986 section 3.2.2.
508   *
509   * <p>This function is similar to {@link InetAddresses#forString(String)},
510   * however, it requires that IPv6 addresses are surrounded by square brackets.
511   *
512   * <p>This function is the inverse of
513   * {@link InetAddresses#toUriString(java.net.InetAddress)}.
514   *
515   * @param hostAddr A RFC 3986 section 3.2.2 encoded IPv4 or IPv6 address
516   * @return an InetAddress representing the address in {@code hostAddr}
517   * @throws IllegalArgumentException if {@code hostAddr} is not a valid
518   *     IPv4 address, or IPv6 address surrounded by square brackets
519   */
520  public static InetAddress forUriString(String hostAddr) {
521    Preconditions.checkNotNull(hostAddr);
522    Preconditions.checkArgument(hostAddr.length() > 0, "host string is empty");
523    InetAddress retval = null;
524
525    // IPv4 address?
526    try {
527      retval = forString(hostAddr);
528      if (retval instanceof Inet4Address) {
529        return retval;
530      }
531    } catch (IllegalArgumentException e) {
532      // Not a valid IP address, fall through.
533    }
534
535    // IPv6 address
536    if (!(hostAddr.startsWith("[") && hostAddr.endsWith("]"))) {
537      throw new IllegalArgumentException("Not a valid address: \"" + hostAddr + '"');
538    }
539
540    retval = forString(hostAddr.substring(1, hostAddr.length() - 1));
541    if (retval instanceof Inet6Address) {
542      return retval;
543    }
544
545    throw new IllegalArgumentException("Not a valid address: \"" + hostAddr + '"');
546  }
547
548  /**
549   * Returns {@code true} if the supplied string is a valid URI IP string
550   * literal, {@code false} otherwise.
551   *
552   * @param ipString {@code String} to evaluated as an IP URI host string literal
553   * @return {@code true} if the argument is a valid IP URI host
554   */
555  public static boolean isUriInetAddress(String ipString) {
556    try {
557      forUriString(ipString);
558      return true;
559    } catch (IllegalArgumentException e) {
560      return false;
561    }
562  }
563
564  /**
565   * Evaluates whether the argument is an IPv6 "compat" address.
566   *
567   * <p>An "IPv4 compatible", or "compat", address is one with 96 leading
568   * bits of zero, with the remaining 32 bits interpreted as an
569   * IPv4 address.  These are conventionally represented in string
570   * literals as {@code "::192.168.0.1"}, though {@code "::c0a8:1"} is
571   * also considered an IPv4 compatible address (and equivalent to
572   * {@code "::192.168.0.1"}).
573   *
574   * <p>For more on IPv4 compatible addresses see section 2.5.5.1 of
575   * <a target="_parent"
576   *    href="http://tools.ietf.org/html/rfc4291#section-2.5.5.1"
577   *    >http://tools.ietf.org/html/rfc4291</a>
578   *
579   * <p>NOTE: This method is different from
580   * {@link Inet6Address#isIPv4CompatibleAddress} in that it more
581   * correctly classifies {@code "::"} and {@code "::1"} as
582   * proper IPv6 addresses (which they are), NOT IPv4 compatible
583   * addresses (which they are generally NOT considered to be).
584   *
585   * @param ip {@link Inet6Address} to be examined for embedded IPv4
586   *           compatible address format
587   * @return {@code true} if the argument is a valid "compat" address
588   */
589  public static boolean isCompatIPv4Address(Inet6Address ip) {
590    if (!ip.isIPv4CompatibleAddress()) {
591      return false;
592    }
593
594    byte[] bytes = ip.getAddress();
595    if ((bytes[12] == 0) && (bytes[13] == 0) && (bytes[14] == 0)
596            && ((bytes[15] == 0) || (bytes[15] == 1))) {
597      return false;
598    }
599
600    return true;
601  }
602
603  /**
604   * Returns the IPv4 address embedded in an IPv4 compatible address.
605   *
606   * @param ip {@link Inet6Address} to be examined for an embedded
607   *           IPv4 address
608   * @return {@link Inet4Address} of the embedded IPv4 address
609   * @throws IllegalArgumentException if the argument is not a valid
610   *         IPv4 compatible address
611   */
612  public static Inet4Address getCompatIPv4Address(Inet6Address ip) {
613    Preconditions.checkArgument(isCompatIPv4Address(ip),
614        "Address '%s' is not IPv4-compatible.", toAddrString(ip));
615
616    return getInet4Address(copyOfRange(ip.getAddress(), 12, 16));
617  }
618
619  /**
620   * Evaluates whether the argument is a 6to4 address.
621   *
622   * <p>6to4 addresses begin with the {@code "2002::/16"} prefix.
623   * The next 32 bits are the IPv4 address of the host to which
624   * IPv6-in-IPv4 tunneled packets should be routed.
625   *
626   * <p>For more on 6to4 addresses see section 2 of
627   * <a target="_parent" href="http://tools.ietf.org/html/rfc3056#section-2"
628   *    >http://tools.ietf.org/html/rfc3056</a>
629   *
630   * @param ip {@link Inet6Address} to be examined for 6to4 address
631   *        format
632   * @return {@code true} if the argument is a 6to4 address
633   */
634  public static boolean is6to4Address(Inet6Address ip) {
635    byte[] bytes = ip.getAddress();
636    return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x02);
637  }
638
639  /**
640   * Returns the IPv4 address embedded in a 6to4 address.
641   *
642   * @param ip {@link Inet6Address} to be examined for embedded IPv4
643   *           in 6to4 address.
644   * @return {@link Inet4Address} of embedded IPv4 in 6to4 address.
645   * @throws IllegalArgumentException if the argument is not a valid
646   *         IPv6 6to4 address.
647   */
648  public static Inet4Address get6to4IPv4Address(Inet6Address ip) {
649    Preconditions.checkArgument(is6to4Address(ip),
650        "Address '%s' is not a 6to4 address.", toAddrString(ip));
651
652    return getInet4Address(copyOfRange(ip.getAddress(), 2, 6));
653  }
654
655  /**
656   * A simple data class to encapsulate the information to be found in a
657   * Teredo address.
658   *
659   * <p>All of the fields in this class are encoded in various portions
660   * of the IPv6 address as part of the protocol.  More protocols details
661   * can be found at:
662   * <a target="_parent" href="http://en.wikipedia.org/wiki/Teredo_tunneling"
663   *    >http://en.wikipedia.org/wiki/Teredo_tunneling</a>.
664   *
665   * <p>The RFC can be found here:
666   * <a target="_parent" href="http://tools.ietf.org/html/rfc4380"
667   *    >http://tools.ietf.org/html/rfc4380</a>.
668   *
669   * @since 5.0
670   */
671  @Beta
672  public static final class TeredoInfo {
673    private final Inet4Address server;
674    private final Inet4Address client;
675    private final int port;
676    private final int flags;
677
678    /**
679     * Constructs a TeredoInfo instance.
680     *
681     * <p>Both server and client can be {@code null}, in which case the
682     * value {@code "0.0.0.0"} will be assumed.
683     *
684     * @throws IllegalArgumentException if either of the {@code port}
685     *         or the {@code flags} arguments are out of range of an
686     *         unsigned short
687     */
688    // TODO: why is this public?
689    public TeredoInfo(@Nullable Inet4Address server,
690                      @Nullable Inet4Address client,
691                      int port, int flags) {
692      Preconditions.checkArgument((port >= 0) && (port <= 0xffff),
693          "port '%s' is out of range (0 <= port <= 0xffff)", port);
694      Preconditions.checkArgument((flags >= 0) && (flags <= 0xffff),
695          "flags '%s' is out of range (0 <= flags <= 0xffff)", flags);
696
697      if (server != null) {
698        this.server = server;
699      } else {
700        this.server = ANY4;
701      }
702
703      if (client != null) {
704        this.client = client;
705      } else {
706        this.client = ANY4;
707      }
708
709      this.port = port;
710      this.flags = flags;
711    }
712
713    public Inet4Address getServer() {
714      return server;
715    }
716
717    public Inet4Address getClient() {
718      return client;
719    }
720
721    public int getPort() {
722      return port;
723    }
724
725    public int getFlags() {
726      return flags;
727    }
728  }
729
730  /**
731   * Evaluates whether the argument is a Teredo address.
732   *
733   * <p>Teredo addresses begin with the {@code "2001::/32"} prefix.
734   *
735   * @param ip {@link Inet6Address} to be examined for Teredo address
736   *        format.
737   * @return {@code true} if the argument is a Teredo address
738   */
739  public static boolean isTeredoAddress(Inet6Address ip) {
740    byte[] bytes = ip.getAddress();
741    return (bytes[0] == (byte) 0x20) && (bytes[1] == (byte) 0x01)
742           && (bytes[2] == 0) && (bytes[3] == 0);
743  }
744
745  /**
746   * Returns the Teredo information embedded in a Teredo address.
747   *
748   * @param ip {@link Inet6Address} to be examined for embedded Teredo
749   *           information
750   * @return extracted {@code TeredoInfo}
751   * @throws IllegalArgumentException if the argument is not a valid
752   *         IPv6 Teredo address
753   */
754  public static TeredoInfo getTeredoInfo(Inet6Address ip) {
755    Preconditions.checkArgument(isTeredoAddress(ip),
756        "Address '%s' is not a Teredo address.", toAddrString(ip));
757
758    byte[] bytes = ip.getAddress();
759    Inet4Address server = getInet4Address(copyOfRange(bytes, 4, 8));
760
761    int flags = ByteStreams.newDataInput(bytes, 8).readShort() & 0xffff;
762
763    // Teredo obfuscates the mapped client port, per section 4 of the RFC.
764    int port = ~ByteStreams.newDataInput(bytes, 10).readShort() & 0xffff;
765
766    byte[] clientBytes = copyOfRange(bytes, 12, 16);
767    for (int i = 0; i < clientBytes.length; i++) {
768      // Teredo obfuscates the mapped client IP, per section 4 of the RFC.
769      clientBytes[i] = (byte) ~clientBytes[i];
770    }
771    Inet4Address client = getInet4Address(clientBytes);
772
773    return new TeredoInfo(server, client, port, flags);
774  }
775
776  /**
777   * Evaluates whether the argument is an ISATAP address.
778   *
779   * <p>From RFC 5214: "ISATAP interface identifiers are constructed in
780   * Modified EUI-64 format [...] by concatenating the 24-bit IANA OUI
781   * (00-00-5E), the 8-bit hexadecimal value 0xFE, and a 32-bit IPv4
782   * address in network byte order [...]"
783   *
784   * <p>For more on ISATAP addresses see section 6.1 of
785   * <a target="_parent" href="http://tools.ietf.org/html/rfc5214#section-6.1"
786   *    >http://tools.ietf.org/html/rfc5214</a>
787   *
788   * @param ip {@link Inet6Address} to be examined for ISATAP address
789   *        format.
790   * @return {@code true} if the argument is an ISATAP address
791   */
792  public static boolean isIsatapAddress(Inet6Address ip) {
793
794    // If it's a Teredo address with the right port (41217, or 0xa101)
795    // which would be encoded as 0x5efe then it can't be an ISATAP address.
796    if (isTeredoAddress(ip)) {
797      return false;
798    }
799
800    byte[] bytes = ip.getAddress();
801
802    if ((bytes[8] | (byte) 0x03) != (byte) 0x03) {
803
804      // Verify that high byte of the 64 bit identifier is zero, modulo
805      // the U/L and G bits, with which we are not concerned.
806      return false;
807    }
808
809    return (bytes[9] == (byte) 0x00) && (bytes[10] == (byte) 0x5e)
810           && (bytes[11] == (byte) 0xfe);
811  }
812
813  /**
814   * Returns the IPv4 address embedded in an ISATAP address.
815   *
816   * @param ip {@link Inet6Address} to be examined for embedded IPv4
817   *           in ISATAP address
818   * @return {@link Inet4Address} of embedded IPv4 in an ISATAP address
819   * @throws IllegalArgumentException if the argument is not a valid
820   *         IPv6 ISATAP address
821   */
822  public static Inet4Address getIsatapIPv4Address(Inet6Address ip) {
823    Preconditions.checkArgument(isIsatapAddress(ip),
824        "Address '%s' is not an ISATAP address.", toAddrString(ip));
825
826    return getInet4Address(copyOfRange(ip.getAddress(), 12, 16));
827  }
828
829  /**
830   * Examines the Inet6Address to determine if it is an IPv6 address of one
831   * of the specified address types that contain an embedded IPv4 address.
832   *
833   * <p>NOTE: ISATAP addresses are explicitly excluded from this method
834   * due to their trivial spoofability.  With other transition addresses
835   * spoofing involves (at least) infection of one's BGP routing table.
836   *
837   * @param ip {@link Inet6Address} to be examined for embedded IPv4
838   *           client address.
839   * @return {@code true} if there is an embedded IPv4 client address.
840   * @since 7.0
841   */
842  public static boolean hasEmbeddedIPv4ClientAddress(Inet6Address ip) {
843    return isCompatIPv4Address(ip) || is6to4Address(ip) ||
844           isTeredoAddress(ip);
845  }
846
847  /**
848   * Examines the Inet6Address to extract the embedded IPv4 client address
849   * if the InetAddress is an IPv6 address of one of the specified address
850   * types that contain an embedded IPv4 address.
851   *
852   * <p>NOTE: ISATAP addresses are explicitly excluded from this method
853   * due to their trivial spoofability.  With other transition addresses
854   * spoofing involves (at least) infection of one's BGP routing table.
855   *
856   * @param ip {@link Inet6Address} to be examined for embedded IPv4
857   *           client address.
858   * @return {@link Inet4Address} of embedded IPv4 client address.
859   * @throws IllegalArgumentException if the argument does not have a valid
860   *         embedded IPv4 address.
861   */
862  public static Inet4Address getEmbeddedIPv4ClientAddress(Inet6Address ip) {
863    if (isCompatIPv4Address(ip)) {
864      return getCompatIPv4Address(ip);
865    }
866
867    if (is6to4Address(ip)) {
868      return get6to4IPv4Address(ip);
869    }
870
871    if (isTeredoAddress(ip)) {
872      return getTeredoInfo(ip).getClient();
873    }
874
875    throw new IllegalArgumentException(
876        String.format("'%s' has no embedded IPv4 address.",
877                      toAddrString(ip)));
878  }
879
880  /**
881   * Evaluates whether the argument is an "IPv4 mapped" IPv6 address.
882   *
883   * <p>An "IPv4 mapped" address is anything in the range ::ffff:0:0/96
884   * (sometimes written as ::ffff:0.0.0.0/96), with the last 32 bits
885   * interpreted as an IPv4 address.
886   *
887   * <p>For more on IPv4 mapped addresses see section 2.5.5.2 of
888   * <a target="_parent"
889   *    href="http://tools.ietf.org/html/rfc4291#section-2.5.5.2"
890   *    >http://tools.ietf.org/html/rfc4291</a>
891   *
892   * <p>Note: This method takes a {@code String} argument because
893   * {@link InetAddress} automatically collapses mapped addresses to IPv4.
894   * (It is actually possible to avoid this using one of the obscure
895   * {@link Inet6Address} methods, but it would be unwise to depend on such
896   * a poorly-documented feature.)
897   *
898   * @param ipString {@code String} to be examined for embedded IPv4-mapped
899   *     IPv6 address format
900   * @return {@code true} if the argument is a valid "mapped" address
901   * @since 10.0
902   */
903  public static boolean isMappedIPv4Address(String ipString) {
904    byte[] bytes = ipStringToBytes(ipString);
905    if (bytes != null && bytes.length == 16) {
906      for (int i = 0; i < 10; i++) {
907        if (bytes[i] != 0) {
908          return false;
909        }
910      }
911      for (int i = 10; i < 12; i++) {
912        if (bytes[i] != (byte) 0xff) {
913          return false;
914        }
915      }
916      return true;
917    }
918    return false;
919  }
920
921  /**
922   * Coerces an IPv6 address into an IPv4 address.
923   *
924   * <p>HACK: As long as applications continue to use IPv4 addresses for
925   * indexing into tables, accounting, et cetera, it may be necessary to
926   * <b>coerce</b> IPv6 addresses into IPv4 addresses. This function does
927   * so by hashing the upper 64 bits into {@code 224.0.0.0/3}
928   * (64 bits into 29 bits).
929   *
930   * <p>A "coerced" IPv4 address is equivalent to itself.
931   *
932   * <p>NOTE: This function is failsafe for security purposes: ALL IPv6
933   * addresses (except localhost (::1)) are hashed to avoid the security
934   * risk associated with extracting an embedded IPv4 address that might
935   * permit elevated privileges.
936   *
937   * @param ip {@link InetAddress} to "coerce"
938   * @return {@link Inet4Address} represented "coerced" address
939   * @since 7.0
940   */
941  public static Inet4Address getCoercedIPv4Address(InetAddress ip) {
942    if (ip instanceof Inet4Address) {
943      return (Inet4Address) ip;
944    }
945
946    // Special cases:
947    byte[] bytes = ip.getAddress();
948    boolean leadingBytesOfZero = true;
949    for (int i = 0; i < 15; ++i) {
950      if (bytes[i] != 0) {
951        leadingBytesOfZero = false;
952        break;
953      }
954    }
955    if (leadingBytesOfZero && (bytes[15] == 1)) {
956      return LOOPBACK4;  // ::1
957    } else if (leadingBytesOfZero && (bytes[15] == 0)) {
958      return ANY4;  // ::0
959    }
960
961    Inet6Address ip6 = (Inet6Address) ip;
962    long addressAsLong = 0;
963    if (hasEmbeddedIPv4ClientAddress(ip6)) {
964      addressAsLong = getEmbeddedIPv4ClientAddress(ip6).hashCode();
965    } else {
966
967      // Just extract the high 64 bits (assuming the rest is user-modifiable).
968      addressAsLong = ByteBuffer.wrap(ip6.getAddress(), 0, 8).getLong();
969    }
970
971    // Many strategies for hashing are possible.  This might suffice for now.
972    int coercedHash = hash64To32(addressAsLong);
973
974    // Squash into 224/4 Multicast and 240/4 Reserved space (i.e. 224/3).
975    coercedHash |= 0xe0000000;
976
977    // Fixup to avoid some "illegal" values.  Currently the only potential
978    // illegal value is 255.255.255.255.
979    if (coercedHash == 0xffffffff) {
980      coercedHash = 0xfffffffe;
981    }
982
983    return getInet4Address(Ints.toByteArray(coercedHash));
984  }
985
986  /**
987   * Returns an {@code int} hash of a 64-bit long.
988   *
989   * This comes from http://www.concentric.net/~ttwang/tech/inthash.htm
990   *
991   * This hash gives no guarantees on the cryptographic suitability nor the
992   * quality of randomness produced, and the mapping may change in the future.
993   *
994   * @param key A 64-bit number to hash
995   * @return {@code int} the input hashed into 32 bits
996   */
997  @VisibleForTesting static int hash64To32(long key) {
998    key = (~key) + (key << 18);
999    key = key ^ (key >>> 31);
1000    key = key * 21;
1001    key = key ^ (key >>> 11);
1002    key = key + (key << 6);
1003    key = key ^ (key >>> 22);
1004    return (int) key;
1005  }
1006
1007  /**
1008   * Returns an integer representing an IPv4 address regardless of
1009   * whether the supplied argument is an IPv4 address or not.
1010   *
1011   * <p>IPv6 addresses are <b>coerced</b> to IPv4 addresses before being
1012   * converted to integers.
1013   *
1014   * <p>As long as there are applications that assume that all IP addresses
1015   * are IPv4 addresses and can therefore be converted safely to integers
1016   * (for whatever purpose) this function can be used to handle IPv6
1017   * addresses as well until the application is suitably fixed.
1018   *
1019   * <p>NOTE: an IPv6 address coerced to an IPv4 address can only be used
1020   * for such purposes as rudimentary identification or indexing into a
1021   * collection of real {@link InetAddress}es.  They cannot be used as
1022   * real addresses for the purposes of network communication.
1023   *
1024   * @param ip {@link InetAddress} to convert
1025   * @return {@code int}, "coerced" if ip is not an IPv4 address
1026   * @since 7.0
1027   */
1028  public static int coerceToInteger(InetAddress ip) {
1029    return ByteStreams.newDataInput(getCoercedIPv4Address(ip).getAddress()).readInt();
1030  }
1031
1032  /**
1033   * Returns an Inet4Address having the integer value specified by
1034   * the argument.
1035   *
1036   * @param address {@code int}, the 32bit integer address to be converted
1037   * @return {@link Inet4Address} equivalent of the argument
1038   */
1039  public static Inet4Address fromInteger(int address) {
1040    return getInet4Address(Ints.toByteArray(address));
1041  }
1042
1043  /**
1044   * Returns an address from a <b>little-endian ordered</b> byte array
1045   * (the opposite of what {@link InetAddress#getByAddress} expects).
1046   *
1047   * <p>IPv4 address byte array must be 4 bytes long and IPv6 byte array
1048   * must be 16 bytes long.
1049   *
1050   * @param addr the raw IP address in little-endian byte order
1051   * @return an InetAddress object created from the raw IP address
1052   * @throws UnknownHostException if IP address is of illegal length
1053   */
1054  public static InetAddress fromLittleEndianByteArray(byte[] addr)
1055      throws UnknownHostException {
1056    byte[] reversed = new byte[addr.length];
1057    for (int i = 0; i < addr.length; i++) {
1058      reversed[i] = addr[addr.length - i - 1];
1059    }
1060    return InetAddress.getByAddress(reversed);
1061  }
1062
1063  /**
1064   * Returns a new InetAddress that is one more than the passed in address.
1065   * This method works for both IPv4 and IPv6 addresses.
1066   *
1067   * @param address the InetAddress to increment
1068   * @return a new InetAddress that is one more than the passed in address.
1069   * @throws IllegalArgumentException if InetAddress is at the end of its
1070   *         range.
1071   * @since 10.0
1072   */
1073  public static InetAddress increment(InetAddress address) {
1074    byte[] addr = address.getAddress();
1075    int i = addr.length - 1;
1076    while (i >= 0 && addr[i] == (byte) 0xff) {
1077      addr[i] = 0;
1078      i--;
1079    }
1080
1081    Preconditions.checkArgument(i >= 0, "Incrementing %s would wrap.", address);
1082
1083    addr[i]++;
1084    try {
1085      return InetAddress.getByAddress(addr);
1086    } catch (UnknownHostException e) {
1087      throw new AssertionError(e);
1088    }
1089  }
1090
1091  /**
1092   * Returns true if the InetAddress is either 255.255.255.255 for IPv4 or
1093   * ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6.
1094   *
1095   * @return true if the InetAddress is either 255.255.255.255 for IPv4 or
1096   *          ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6.
1097   * @since 10.0
1098   */
1099  public static boolean isMaximum(InetAddress address) {
1100    byte[] addr = address.getAddress();
1101    for (int i = 0; i < addr.length; i++) {
1102      if (addr[i] != (byte) 0xff) {
1103        return false;
1104      }
1105    }
1106    return true;
1107  }
1108
1109  /**
1110   * This method emulates the Java 6 method
1111   * {@code Arrays.copyOfRange(byte, int, int)}, which is not available in
1112   * Java 5, and thus cannot be used in Guava code.
1113   */
1114  private static byte[] copyOfRange(byte[] original, int from, int to) {
1115    Preconditions.checkNotNull(original);
1116
1117    int end = Math.min(to, original.length);
1118    byte[] result = new byte[to - from];
1119
1120    System.arraycopy(original, from, result, 0, end - from);
1121    return result;
1122  }
1123}
1124