1/*
2**********************************************************************
3* Copyright (c) 2003-2011, International Business Machines
4* Corporation and others.  All Rights Reserved.
5**********************************************************************
6* Author: Alan Liu
7* Created: July 21 2003
8* Since: ICU 2.8
9**********************************************************************
10*/
11#ifndef OLSONTZ_H
12#define OLSONTZ_H
13
14#include "unicode/utypes.h"
15
16#if !UCONFIG_NO_FORMATTING
17
18#include "unicode/basictz.h"
19
20struct UResourceBundle;
21
22U_NAMESPACE_BEGIN
23
24class SimpleTimeZone;
25
26/**
27 * A time zone based on the Olson tz database.  Olson time zones change
28 * behavior over time.  The raw offset, rules, presence or absence of
29 * daylight savings time, and even the daylight savings amount can all
30 * vary.
31 *
32 * This class uses a resource bundle named "zoneinfo".  Zoneinfo is a
33 * table containing different kinds of resources.  In several places,
34 * zones are referred to using integers.  A zone's integer is a number
35 * from 0..n-1, where n is the number of zones, with the zones sorted
36 * in lexicographic order.
37 *
38 * 1. Zones.  These have keys corresponding to the Olson IDs, e.g.,
39 * "Asia/Shanghai".  Each resource describes the behavior of the given
40 * zone.  Zones come in two different formats.
41 *
42 *   a. Zone (table).  A zone is a table resource contains several
43 *   type of resources below:
44 *
45 *   - typeOffsets:intvector (Required)
46 *
47 *   Sets of UTC raw/dst offset pairs in seconds.  Entries at
48 *   2n represents raw offset and 2n+1 represents dst offset
49 *   paired with the raw offset at 2n.  The very first pair represents
50 *   the initial zone offset (before the first transition) always.
51 *
52 *   - trans:intvector (Optional)
53 *
54 *   List of transition times represented by 32bit seconds from the
55 *   epoch (1970-01-01T00:00Z) in ascending order.
56 *
57 *   - transPre32/transPost32:intvector (Optional)
58 *
59 *   List of transition times before/after 32bit minimum seconds.
60 *   Each time is represented by a pair of 32bit integer.
61 *
62 *   - typeMap:bin (Optional)
63 *
64 *   Array of bytes representing the mapping between each transition
65 *   time (transPre32/trans/transPost32) and its corresponding offset
66 *   data (typeOffsets).
67 *
68 *   - finalRule:string (Optional)
69 *
70 *   If a recurrent transition rule is applicable to a zone forever
71 *   after the final transition time, finalRule represents the rule
72 *   in Rules data.
73 *
74 *   - finalRaw:int (Optional)
75 *
76 *   When finalRule is available, finalRaw is required and specifies
77 *   the raw (base) offset of the rule.
78 *
79 *   - finalYear:int (Optional)
80 *
81 *   When finalRule is available, finalYear is required and specifies
82 *   the start year of the rule.
83 *
84 *   - links:intvector (Optional)
85 *
86 *   When this zone data is shared with other zones, links specifies
87 *   all zones including the zone itself.  Each zone is referenced by
88 *   integer index.
89 *
90 *  b. Link (int, length 1).  A link zone is an int resource.  The
91 *  integer is the zone number of the target zone.  The key of this
92 *  resource is an alternate name for the target zone.  This data
93 *  is corresponding to Link data in the tz database.
94 *
95 *
96 * 2. Rules.  These have keys corresponding to the Olson rule IDs,
97 * with an underscore prepended, e.g., "_EU".  Each resource describes
98 * the behavior of the given rule using an intvector, containing the
99 * onset list, the cessation list, and the DST savings.  The onset and
100 * cessation lists consist of the month, dowim, dow, time, and time
101 * mode.  The end result is that the 11 integers describing the rule
102 * can be passed directly into the SimpleTimeZone 13-argument
103 * constructor (the other two arguments will be the raw offset, taken
104 * from the complex zone element 5, and the ID string, which is not
105 * used), with the times and the DST savings multiplied by 1000 to
106 * scale from seconds to milliseconds.
107 *
108 * 3. Regions.  An array specifies mapping between zones and regions.
109 * Each item is either a 2-letter ISO country code or "001"
110 * (UN M.49 - World).  This data is generated from "zone.tab"
111 * in the tz database.
112 */
113class U_I18N_API OlsonTimeZone: public BasicTimeZone {
114 public:
115    /**
116     * Construct from a resource bundle.
117     * @param top the top-level zoneinfo resource bundle.  This is used
118     * to lookup the rule that `res' may refer to, if there is one.
119     * @param res the resource bundle of the zone to be constructed
120     * @param tzid the time zone ID
121     * @param ec input-output error code
122     */
123    OlsonTimeZone(const UResourceBundle* top,
124                  const UResourceBundle* res,
125                  const UnicodeString& tzid,
126                  UErrorCode& ec);
127
128    /**
129     * Copy constructor
130     */
131    OlsonTimeZone(const OlsonTimeZone& other);
132
133    /**
134     * Destructor
135     */
136    virtual ~OlsonTimeZone();
137
138    /**
139     * Assignment operator
140     */
141    OlsonTimeZone& operator=(const OlsonTimeZone& other);
142
143    /**
144     * Returns true if the two TimeZone objects are equal.
145     */
146    virtual UBool operator==(const TimeZone& other) const;
147
148    /**
149     * TimeZone API.
150     */
151    virtual TimeZone* clone() const;
152
153    /**
154     * TimeZone API.
155     */
156    static UClassID U_EXPORT2 getStaticClassID();
157
158    /**
159     * TimeZone API.
160     */
161    virtual UClassID getDynamicClassID() const;
162
163    /**
164     * TimeZone API.  Do not call this; prefer getOffset(UDate,...).
165     */
166    virtual int32_t getOffset(uint8_t era, int32_t year, int32_t month,
167                              int32_t day, uint8_t dayOfWeek,
168                              int32_t millis, UErrorCode& ec) const;
169
170    /**
171     * TimeZone API.  Do not call this; prefer getOffset(UDate,...).
172     */
173    virtual int32_t getOffset(uint8_t era, int32_t year, int32_t month,
174                              int32_t day, uint8_t dayOfWeek,
175                              int32_t millis, int32_t monthLength,
176                              UErrorCode& ec) const;
177
178    /**
179     * TimeZone API.
180     */
181    virtual void getOffset(UDate date, UBool local, int32_t& rawOffset,
182                   int32_t& dstOffset, UErrorCode& ec) const;
183
184    /**
185     * BasicTimeZone API.
186     */
187    virtual void getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt,
188        int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) /*const*/;
189
190    /**
191     * TimeZone API.  This method has no effect since objects of this
192     * class are quasi-immutable (the base class allows the ID to be
193     * changed).
194     */
195    virtual void setRawOffset(int32_t offsetMillis);
196
197    /**
198     * TimeZone API.  For a historical zone, the raw offset can change
199     * over time, so this API is not useful.  In order to approximate
200     * expected behavior, this method returns the raw offset for the
201     * current moment in time.
202     */
203    virtual int32_t getRawOffset() const;
204
205    /**
206     * TimeZone API.  For a historical zone, whether DST is used or
207     * not varies over time.  In order to approximate expected
208     * behavior, this method returns TRUE if DST is observed at any
209     * point in the current year.
210     */
211    virtual UBool useDaylightTime() const;
212
213    /**
214     * TimeZone API.
215     */
216    virtual UBool inDaylightTime(UDate date, UErrorCode& ec) const;
217
218    /**
219     * TimeZone API.
220     */
221    virtual int32_t getDSTSavings() const;
222
223    /**
224     * TimeZone API.  Also comare historic transitions.
225     */
226    virtual UBool hasSameRules(const TimeZone& other) const;
227
228    /**
229     * BasicTimeZone API.
230     * Gets the first time zone transition after the base time.
231     * @param base      The base time.
232     * @param inclusive Whether the base time is inclusive or not.
233     * @param result    Receives the first transition after the base time.
234     * @return  TRUE if the transition is found.
235     */
236    virtual UBool getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/;
237
238    /**
239     * BasicTimeZone API.
240     * Gets the most recent time zone transition before the base time.
241     * @param base      The base time.
242     * @param inclusive Whether the base time is inclusive or not.
243     * @param result    Receives the most recent transition before the base time.
244     * @return  TRUE if the transition is found.
245     */
246    virtual UBool getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/;
247
248    /**
249     * BasicTimeZone API.
250     * Returns the number of <code>TimeZoneRule</code>s which represents time transitions,
251     * for this time zone, that is, all <code>TimeZoneRule</code>s for this time zone except
252     * <code>InitialTimeZoneRule</code>.  The return value range is 0 or any positive value.
253     * @param status    Receives error status code.
254     * @return The number of <code>TimeZoneRule</code>s representing time transitions.
255     */
256    virtual int32_t countTransitionRules(UErrorCode& status) /*const*/;
257
258    /**
259     * Gets the <code>InitialTimeZoneRule</code> and the set of <code>TimeZoneRule</code>
260     * which represent time transitions for this time zone.  On successful return,
261     * the argument initial points to non-NULL <code>InitialTimeZoneRule</code> and
262     * the array trsrules is filled with 0 or multiple <code>TimeZoneRule</code>
263     * instances up to the size specified by trscount.  The results are referencing the
264     * rule instance held by this time zone instance.  Therefore, after this time zone
265     * is destructed, they are no longer available.
266     * @param initial       Receives the initial timezone rule
267     * @param trsrules      Receives the timezone transition rules
268     * @param trscount      On input, specify the size of the array 'transitions' receiving
269     *                      the timezone transition rules.  On output, actual number of
270     *                      rules filled in the array will be set.
271     * @param status        Receives error status code.
272     */
273    virtual void getTimeZoneRules(const InitialTimeZoneRule*& initial,
274        const TimeZoneRule* trsrules[], int32_t& trscount, UErrorCode& status) /*const*/;
275
276    /**
277     * Internal API returning the canonical ID of this zone.
278     * This ID won't be affected by setID().
279     */
280    const UChar *getCanonicalID() const;
281
282private:
283    /**
284     * Default constructor.  Creates a time zone with an empty ID and
285     * a fixed GMT offset of zero.
286     */
287    OlsonTimeZone();
288
289private:
290
291    void constructEmpty();
292
293    void getHistoricalOffset(UDate date, UBool local,
294        int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt,
295        int32_t& rawoff, int32_t& dstoff) const;
296
297    int16_t transitionCount() const;
298
299    int64_t transitionTimeInSeconds(int16_t transIdx) const;
300    double transitionTime(int16_t transIdx) const;
301
302    /*
303     * Following 3 methods return an offset at the given transition time index.
304     * When the index is negative, return the initial offset.
305     */
306    int32_t zoneOffsetAt(int16_t transIdx) const;
307    int32_t rawOffsetAt(int16_t transIdx) const;
308    int32_t dstOffsetAt(int16_t transIdx) const;
309
310    /*
311     * Following methods return the initial offset.
312     */
313    int32_t initialRawOffset() const;
314    int32_t initialDstOffset() const;
315
316    /**
317     * Number of transitions in each time range
318     */
319    int16_t transitionCountPre32;
320    int16_t transitionCount32;
321    int16_t transitionCountPost32;
322
323    /**
324     * Time of each transition in seconds from 1970 epoch before 32bit second range (<= 1900).
325     * Each transition in this range is represented by a pair of int32_t.
326     * Length is transitionCount int32_t's.  NULL if no transitions in this range.
327     */
328    const int32_t *transitionTimesPre32; // alias into res; do not delete
329
330    /**
331     * Time of each transition in seconds from 1970 epoch in 32bit second range.
332     * Length is transitionCount int32_t's.  NULL if no transitions in this range.
333     */
334    const int32_t *transitionTimes32; // alias into res; do not delete
335
336    /**
337     * Time of each transition in seconds from 1970 epoch after 32bit second range (>= 2038).
338     * Each transition in this range is represented by a pair of int32_t.
339     * Length is transitionCount int32_t's.  NULL if no transitions in this range.
340     */
341    const int32_t *transitionTimesPost32; // alias into res; do not delete
342
343    /**
344     * Number of types, 1..255
345     */
346    int16_t typeCount;
347
348    /**
349     * Offset from GMT in seconds for each type.
350     * Length is typeCount int32_t's.  At least one type (a pair of int32_t)
351     * is required.
352     */
353    const int32_t *typeOffsets; // alias into res; do not delete
354
355    /**
356     * Type description data, consisting of transitionCount uint8_t
357     * type indices (from 0..typeCount-1).
358     * Length is transitionCount int16_t's.  NULL if no transitions.
359     */
360    const uint8_t *typeMapData; // alias into res; do not delete
361
362    /**
363     * A SimpleTimeZone that governs the behavior for date >= finalMillis.
364     */
365    SimpleTimeZone *finalZone; // owned, may be NULL
366
367    /**
368     * For date >= finalMillis, the finalZone will be used.
369     */
370    double finalStartMillis;
371
372    /**
373     * For year >= finalYear, the finalZone will be used.
374     */
375    int32_t finalStartYear;
376
377    /*
378     * Canonical (CLDR) ID of this zone
379     */
380    const UChar *canonicalID;
381
382    /* BasicTimeZone support */
383    void clearTransitionRules(void);
384    void deleteTransitionRules(void);
385    void initTransitionRules(UErrorCode& status);
386
387    InitialTimeZoneRule *initialRule;
388    TimeZoneTransition  *firstTZTransition;
389    int16_t             firstTZTransitionIdx;
390    TimeZoneTransition  *firstFinalTZTransition;
391    TimeArrayTimeZoneRule   **historicRules;
392    int16_t             historicRuleCount;
393    SimpleTimeZone      *finalZoneWithStartYear; // hack
394    UBool               transitionRulesInitialized;
395};
396
397inline int16_t
398OlsonTimeZone::transitionCount() const {
399    return transitionCountPre32 + transitionCount32 + transitionCountPost32;
400}
401
402inline double
403OlsonTimeZone::transitionTime(int16_t transIdx) const {
404    return (double)transitionTimeInSeconds(transIdx) * U_MILLIS_PER_SECOND;
405}
406
407inline int32_t
408OlsonTimeZone::zoneOffsetAt(int16_t transIdx) const {
409    int16_t typeIdx = (transIdx >= 0 ? typeMapData[transIdx] : 0) << 1;
410    return typeOffsets[typeIdx] + typeOffsets[typeIdx + 1];
411}
412
413inline int32_t
414OlsonTimeZone::rawOffsetAt(int16_t transIdx) const {
415    int16_t typeIdx = (transIdx >= 0 ? typeMapData[transIdx] : 0) << 1;
416    return typeOffsets[typeIdx];
417}
418
419inline int32_t
420OlsonTimeZone::dstOffsetAt(int16_t transIdx) const {
421    int16_t typeIdx = (transIdx >= 0 ? typeMapData[transIdx] : 0) << 1;
422    return typeOffsets[typeIdx + 1];
423}
424
425inline int32_t
426OlsonTimeZone::initialRawOffset() const {
427    return typeOffsets[0];
428}
429
430inline int32_t
431OlsonTimeZone::initialDstOffset() const {
432    return typeOffsets[1];
433}
434
435inline const UChar*
436OlsonTimeZone::getCanonicalID() const {
437    return canonicalID;
438}
439
440
441U_NAMESPACE_END
442
443#endif // !UCONFIG_NO_FORMATTING
444#endif // OLSONTZ_H
445
446//eof
447