exec-all.h revision a1204591a52bf668ee72c86f98f53189621572a2
1/* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA 19 */ 20 21#ifndef _EXEC_ALL_H_ 22#define _EXEC_ALL_H_ 23 24#include "qemu-common.h" 25 26/* allow to see translation results - the slowdown should be negligible, so we leave it */ 27#define DEBUG_DISAS 28 29/* is_jmp field values */ 30#define DISAS_NEXT 0 /* next instruction can be analyzed */ 31#define DISAS_JUMP 1 /* only pc was modified dynamically */ 32#define DISAS_UPDATE 2 /* cpu state was modified dynamically */ 33#define DISAS_TB_JUMP 3 /* only pc was modified statically */ 34 35typedef struct TranslationBlock TranslationBlock; 36 37/* XXX: make safe guess about sizes */ 38#define MAX_OP_PER_INSTR 64 39/* A Call op needs up to 6 + 2N parameters (N = number of arguments). */ 40#define MAX_OPC_PARAM 10 41#define OPC_BUF_SIZE 2048 42#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) 43 44/* Maximum size a TCG op can expand to. This is complicated because a 45 single op may require several host instructions and regirster reloads. 46 For now take a wild guess at 128 bytes, which should allow at least 47 a couple of fixup instructions per argument. */ 48#define TCG_MAX_OP_SIZE 128 49 50#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) 51 52extern target_ulong gen_opc_pc[OPC_BUF_SIZE]; 53extern target_ulong gen_opc_npc[OPC_BUF_SIZE]; 54extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE]; 55extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE]; 56extern uint16_t gen_opc_icount[OPC_BUF_SIZE]; 57extern target_ulong gen_opc_jump_pc[2]; 58extern uint32_t gen_opc_hflags[OPC_BUF_SIZE]; 59 60#include "qemu-log.h" 61 62void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb); 63void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb); 64void gen_pc_load(CPUState *env, struct TranslationBlock *tb, 65 unsigned long searched_pc, int pc_pos, void *puc); 66 67unsigned long code_gen_max_block_size(void); 68void cpu_gen_init(void); 69int cpu_gen_code(CPUState *env, struct TranslationBlock *tb, 70 int *gen_code_size_ptr); 71int cpu_restore_state(struct TranslationBlock *tb, 72 CPUState *env, unsigned long searched_pc, 73 void *puc); 74int cpu_restore_state_copy(struct TranslationBlock *tb, 75 CPUState *env, unsigned long searched_pc, 76 void *puc); 77void cpu_resume_from_signal(CPUState *env1, void *puc); 78void cpu_io_recompile(CPUState *env, void *retaddr); 79TranslationBlock *tb_gen_code(CPUState *env, 80 target_ulong pc, target_ulong cs_base, int flags, 81 int cflags); 82void cpu_exec_init(CPUState *env); 83void QEMU_NORETURN cpu_loop_exit(void); 84int page_unprotect(target_ulong address, unsigned long pc, void *puc); 85void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, 86 int is_cpu_write_access); 87void tb_invalidate_page_range(target_ulong start, target_ulong end); 88void tlb_flush_page(CPUState *env, target_ulong addr); 89void tlb_flush(CPUState *env, int flush_global); 90int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 91 target_phys_addr_t paddr, int prot, 92 int mmu_idx, int is_softmmu); 93static inline int tlb_set_page(CPUState *env1, target_ulong vaddr, 94 target_phys_addr_t paddr, int prot, 95 int mmu_idx, int is_softmmu) 96{ 97 if (prot & PAGE_READ) 98 prot |= PAGE_EXEC; 99 return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu); 100} 101 102#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 103 104#define CODE_GEN_PHYS_HASH_BITS 15 105#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) 106 107#define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024) 108 109/* estimated block size for TB allocation */ 110/* XXX: use a per code average code fragment size and modulate it 111 according to the host CPU */ 112#if defined(CONFIG_SOFTMMU) 113#define CODE_GEN_AVG_BLOCK_SIZE 128 114#else 115#define CODE_GEN_AVG_BLOCK_SIZE 64 116#endif 117 118#if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__) 119#define USE_DIRECT_JUMP 120#endif 121#if defined(__i386__) && !defined(_WIN32) 122#define USE_DIRECT_JUMP 123#endif 124 125struct TranslationBlock { 126 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 127 target_ulong cs_base; /* CS base for this block */ 128 uint64_t flags; /* flags defining in which context the code was generated */ 129 uint16_t size; /* size of target code for this block (1 <= 130 size <= TARGET_PAGE_SIZE) */ 131 uint16_t cflags; /* compile flags */ 132#define CF_COUNT_MASK 0x7fff 133#define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ 134 135 uint8_t *tc_ptr; /* pointer to the translated code */ 136 /* next matching tb for physical address. */ 137 struct TranslationBlock *phys_hash_next; 138 /* first and second physical page containing code. The lower bit 139 of the pointer tells the index in page_next[] */ 140 struct TranslationBlock *page_next[2]; 141 target_ulong page_addr[2]; 142 143 /* the following data are used to directly call another TB from 144 the code of this one. */ 145 uint16_t tb_next_offset[2]; /* offset of original jump target */ 146#ifdef USE_DIRECT_JUMP 147 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */ 148#else 149 unsigned long tb_next[2]; /* address of jump generated code */ 150#endif 151 /* list of TBs jumping to this one. This is a circular list using 152 the two least significant bits of the pointers to tell what is 153 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = 154 jmp_first */ 155 struct TranslationBlock *jmp_next[2]; 156 struct TranslationBlock *jmp_first; 157#ifdef CONFIG_TRACE 158 struct BBRec *bb_rec; 159 uint64_t prev_time; 160#endif 161 162#ifdef CONFIG_MEMCHECK 163 /* Maps PCs in this translation block to corresponding PCs in guest address 164 * space. The array is arranged in such way, that every even entry contains 165 * PC in the translation block, followed by an odd entry that contains 166 * guest PC corresponding to that PC in the translation block. This 167 * arrangement is set by tcg_gen_code_common that initializes this array 168 * when performing guest code translation. */ 169 target_ulong* tpc2gpc; 170 /* Number of pairs (pc_tb, pc_guest) in tpc2gpc array. */ 171 unsigned int tpc2gpc_pairs; 172#endif // CONFIG_MEMCHECK 173 174 uint32_t icount; 175}; 176 177static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) 178{ 179 target_ulong tmp; 180 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 181 return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK; 182} 183 184static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) 185{ 186 target_ulong tmp; 187 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 188 return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK) 189 | (tmp & TB_JMP_ADDR_MASK)); 190} 191 192static inline unsigned int tb_phys_hash_func(unsigned long pc) 193{ 194 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1); 195} 196 197#ifdef CONFIG_MEMCHECK 198/* Gets translated PC for a given (translated PC, guest PC) pair. 199 * Return: 200 * Translated PC, or NULL if pair index was too large. 201 */ 202static inline target_ulong 203tb_get_tb_pc(const TranslationBlock* tb, unsigned int pair) 204{ 205 return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ? 206 tb->tpc2gpc[pair * 2] : 0; 207} 208 209/* Gets guest PC for a given (translated PC, guest PC) pair. 210 * Return: 211 * Guest PC, or NULL if pair index was too large. 212 */ 213static inline target_ulong 214tb_get_guest_pc(const TranslationBlock* tb, unsigned int pair) 215{ 216 return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ? 217 tb->tpc2gpc[pair * 2 + 1] : 0; 218} 219 220/* Gets guest PC for a given translated PC. 221 * Return: 222 * Guest PC for a given translated PC, or NULL if there was no pair, matching 223 * translated PC in tb's tpc2gpc array. 224 */ 225static inline target_ulong 226tb_search_guest_pc_from_tb_pc(const TranslationBlock* tb, target_ulong tb_pc) 227{ 228 if (tb->tpc2gpc != NULL && tb->tpc2gpc_pairs != 0) { 229 unsigned int m_min = 0; 230 unsigned int m_max = (tb->tpc2gpc_pairs - 1) << 1; 231 /* Make sure that tb_pc is within TB array. */ 232 if (tb_pc < tb->tpc2gpc[0]) { 233 return 0; 234 } 235 while (m_min <= m_max) { 236 const unsigned int m = ((m_min + m_max) >> 1) & ~1; 237 if (tb_pc < tb->tpc2gpc[m]) { 238 m_max = m - 2; 239 } else if (m == m_max || tb_pc < tb->tpc2gpc[m + 2]) { 240 return tb->tpc2gpc[m + 1]; 241 } else { 242 m_min = m + 2; 243 } 244 } 245 return tb->tpc2gpc[m_max + 1]; 246 } 247 return 0; 248} 249#endif // CONFIG_MEMCHECK 250 251TranslationBlock *tb_alloc(target_ulong pc); 252void tb_free(TranslationBlock *tb); 253void tb_flush(CPUState *env); 254void tb_link_phys(TranslationBlock *tb, 255 target_ulong phys_pc, target_ulong phys_page2); 256void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr); 257 258extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; 259extern uint8_t *code_gen_ptr; 260extern int code_gen_max_blocks; 261 262#if defined(USE_DIRECT_JUMP) 263 264#if defined(_ARCH_PPC) 265extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr); 266#define tb_set_jmp_target1 ppc_tb_set_jmp_target 267#elif defined(__i386__) || defined(__x86_64__) 268static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) 269{ 270 /* patch the branch destination */ 271 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); 272 /* no need to flush icache explicitly */ 273} 274#elif defined(__arm__) 275static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) 276{ 277#if QEMU_GNUC_PREREQ(4, 1) 278 void __clear_cache(char *beg, char *end); 279#else 280 register unsigned long _beg __asm ("a1"); 281 register unsigned long _end __asm ("a2"); 282 register unsigned long _flg __asm ("a3"); 283#endif 284 285 /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ 286 *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff; 287 288#if QEMU_GNUC_PREREQ(4, 1) 289 __clear_cache((char *) jmp_addr, (char *) jmp_addr + 4); 290#else 291 /* flush icache */ 292 _beg = jmp_addr; 293 _end = jmp_addr + 4; 294 _flg = 0; 295 __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); 296#endif 297} 298#endif 299 300static inline void tb_set_jmp_target(TranslationBlock *tb, 301 int n, unsigned long addr) 302{ 303 unsigned long offset; 304 305 offset = tb->tb_jmp_offset[n]; 306 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); 307 offset = tb->tb_jmp_offset[n + 2]; 308 if (offset != 0xffff) 309 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); 310} 311 312#else 313 314/* set the jump target */ 315static inline void tb_set_jmp_target(TranslationBlock *tb, 316 int n, unsigned long addr) 317{ 318 tb->tb_next[n] = addr; 319} 320 321#endif 322 323static inline void tb_add_jump(TranslationBlock *tb, int n, 324 TranslationBlock *tb_next) 325{ 326 /* NOTE: this test is only needed for thread safety */ 327 if (!tb->jmp_next[n]) { 328 /* patch the native jump address */ 329 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr); 330 331 /* add in TB jmp circular list */ 332 tb->jmp_next[n] = tb_next->jmp_first; 333 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n)); 334 } 335} 336 337TranslationBlock *tb_find_pc(unsigned long pc_ptr); 338 339extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; 340extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; 341extern void *io_mem_opaque[IO_MEM_NB_ENTRIES]; 342 343#include "qemu-lock.h" 344 345extern spinlock_t tb_lock; 346 347extern int tb_invalidated_flag; 348 349#if !defined(CONFIG_USER_ONLY) 350 351void tlb_fill(target_ulong addr, int is_write, int mmu_idx, 352 void *retaddr); 353 354#include "softmmu_defs.h" 355 356#define ACCESS_TYPE (NB_MMU_MODES + 1) 357#define MEMSUFFIX _code 358#define env cpu_single_env 359 360#define DATA_SIZE 1 361#include "softmmu_header.h" 362 363#define DATA_SIZE 2 364#include "softmmu_header.h" 365 366#define DATA_SIZE 4 367#include "softmmu_header.h" 368 369#define DATA_SIZE 8 370#include "softmmu_header.h" 371 372#undef ACCESS_TYPE 373#undef MEMSUFFIX 374#undef env 375 376#endif 377 378#if defined(CONFIG_USER_ONLY) 379static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr) 380{ 381 return addr; 382} 383#else 384/* NOTE: this function can trigger an exception */ 385/* NOTE2: the returned address is not exactly the physical address: it 386 is the offset relative to phys_ram_base */ 387static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr) 388{ 389 int mmu_idx, page_index, pd; 390 void *p; 391 392 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 393 mmu_idx = cpu_mmu_index(env1); 394 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != 395 (addr & TARGET_PAGE_MASK))) { 396 ldub_code(addr); 397 } 398 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK; 399 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { 400#if defined(TARGET_SPARC) || defined(TARGET_MIPS) 401 do_unassigned_access(addr, 0, 1, 0, 4); 402#else 403 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); 404#endif 405 } 406 p = (void *)(unsigned long)addr 407 + env1->tlb_table[mmu_idx][page_index].addend; 408 return qemu_ram_addr_from_host(p); 409} 410 411/* Deterministic execution requires that IO only be performed on the last 412 instruction of a TB so that interrupts take effect immediately. */ 413static inline int can_do_io(CPUState *env) 414{ 415 if (!use_icount) 416 return 1; 417 418 /* If not executing code then assume we are ok. */ 419 if (!env->current_tb) 420 return 1; 421 422 return env->can_do_io != 0; 423} 424#endif 425 426#ifdef CONFIG_KQEMU 427#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG)) 428 429#define MSR_QPI_COMMBASE 0xfabe0010 430 431int kqemu_init(CPUState *env); 432int kqemu_cpu_exec(CPUState *env); 433void kqemu_flush_page(CPUState *env, target_ulong addr); 434void kqemu_flush(CPUState *env, int global); 435void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr); 436void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr); 437void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 438 ram_addr_t phys_offset); 439void kqemu_cpu_interrupt(CPUState *env); 440void kqemu_record_dump(void); 441 442extern uint32_t kqemu_comm_base; 443 444extern ram_addr_t kqemu_phys_ram_size; 445extern uint8_t *kqemu_phys_ram_base; 446 447static inline int kqemu_is_ok(CPUState *env) 448{ 449 return(env->kqemu_enabled && 450 (env->cr[0] & CR0_PE_MASK) && 451 !(env->hflags & HF_INHIBIT_IRQ_MASK) && 452 (env->eflags & IF_MASK) && 453 !(env->eflags & VM_MASK) && 454 (env->kqemu_enabled == 2 || 455 ((env->hflags & HF_CPL_MASK) == 3 && 456 (env->eflags & IOPL_MASK) != IOPL_MASK))); 457} 458 459#endif 460 461typedef void (CPUDebugExcpHandler)(CPUState *env); 462 463CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler); 464 465/* vl.c */ 466extern int singlestep; 467 468#endif 469