exec-all.h revision d3d4468189618e89f74d8f51b8470f277e000938
1/*
2 * internal execution defines for qemu
3 *
4 *  Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#ifndef _EXEC_ALL_H_
21#define _EXEC_ALL_H_
22
23#include "qemu-common.h"
24
25/* allow to see translation results - the slowdown should be negligible, so we leave it */
26#define DEBUG_DISAS
27
28/* is_jmp field values */
29#define DISAS_NEXT    0 /* next instruction can be analyzed */
30#define DISAS_JUMP    1 /* only pc was modified dynamically */
31#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
32#define DISAS_TB_JUMP 3 /* only pc was modified statically */
33
34typedef struct TranslationBlock TranslationBlock;
35
36/* XXX: make safe guess about sizes */
37#define MAX_OP_PER_INSTR 96
38/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
39#define MAX_OPC_PARAM 10
40#define OPC_BUF_SIZE 2048
41#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
42
43/* Maximum size a TCG op can expand to.  This is complicated because a
44   single op may require several host instructions and register reloads.
45   For now take a wild guess at 192 bytes, which should allow at least
46   a couple of fixup instructions per argument.  */
47#define TCG_MAX_OP_SIZE 192
48
49#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
50
51extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
52extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
53extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
54extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
55extern uint16_t gen_opc_icount[OPC_BUF_SIZE];
56extern target_ulong gen_opc_jump_pc[2];
57extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
58
59#include "qemu-log.h"
60
61void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
62void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
63void restore_state_to_opc(CPUState *env, struct TranslationBlock *tb, int pc_pos);
64
65unsigned long code_gen_max_block_size(void);
66void cpu_gen_init(void);
67int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
68                 int *gen_code_size_ptr);
69int cpu_restore_state(struct TranslationBlock *tb,
70                      CPUState *env, unsigned long searched_pc,
71                      void *puc);
72int cpu_restore_state_copy(struct TranslationBlock *tb,
73                           CPUState *env, unsigned long searched_pc,
74                           void *puc);
75void cpu_resume_from_signal(CPUState *env1, void *puc);
76void cpu_io_recompile(CPUState *env, void *retaddr);
77TranslationBlock *tb_gen_code(CPUState *env,
78                              target_ulong pc, target_ulong cs_base, int flags,
79                              int cflags);
80void cpu_exec_init(CPUState *env);
81void QEMU_NORETURN cpu_loop_exit(void);
82int page_unprotect(target_ulong address, unsigned long pc, void *puc);
83void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
84                                   int is_cpu_write_access);
85void tb_invalidate_page_range(target_ulong start, target_ulong end);
86void tlb_flush_page(CPUState *env, target_ulong addr);
87void tlb_flush(CPUState *env, int flush_global);
88int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
89                      target_phys_addr_t paddr, int prot,
90                      int mmu_idx, int is_softmmu);
91static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
92                               target_phys_addr_t paddr, int prot,
93                               int mmu_idx, int is_softmmu)
94{
95    if (prot & PAGE_READ)
96        prot |= PAGE_EXEC;
97    return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
98}
99
100#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
101
102#define CODE_GEN_PHYS_HASH_BITS     15
103#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
104
105#define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
106
107/* estimated block size for TB allocation */
108/* XXX: use a per code average code fragment size and modulate it
109   according to the host CPU */
110#if defined(CONFIG_SOFTMMU)
111#define CODE_GEN_AVG_BLOCK_SIZE 128
112#else
113#define CODE_GEN_AVG_BLOCK_SIZE 64
114#endif
115
116#if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__) || defined(__i386__)
117#define USE_DIRECT_JUMP
118#endif
119
120struct TranslationBlock {
121    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
122    target_ulong cs_base; /* CS base for this block */
123    uint64_t flags; /* flags defining in which context the code was generated */
124    uint16_t size;      /* size of target code for this block (1 <=
125                           size <= TARGET_PAGE_SIZE) */
126    uint16_t cflags;    /* compile flags */
127#define CF_COUNT_MASK  0x7fff
128#define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
129
130    uint8_t *tc_ptr;    /* pointer to the translated code */
131    /* next matching tb for physical address. */
132    struct TranslationBlock *phys_hash_next;
133    /* first and second physical page containing code. The lower bit
134       of the pointer tells the index in page_next[] */
135    struct TranslationBlock *page_next[2];
136    target_ulong page_addr[2];
137
138    /* the following data are used to directly call another TB from
139       the code of this one. */
140    uint16_t tb_next_offset[2]; /* offset of original jump target */
141#ifdef USE_DIRECT_JUMP
142    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
143#else
144    unsigned long tb_next[2]; /* address of jump generated code */
145#endif
146    /* list of TBs jumping to this one. This is a circular list using
147       the two least significant bits of the pointers to tell what is
148       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
149       jmp_first */
150    struct TranslationBlock *jmp_next[2];
151    struct TranslationBlock *jmp_first;
152#ifdef CONFIG_TRACE
153    struct BBRec *bb_rec;
154    uint64_t prev_time;
155#endif
156
157#ifdef CONFIG_MEMCHECK
158    /* Maps PCs in this translation block to corresponding PCs in guest address
159     * space. The array is arranged in such way, that every even entry contains
160     * PC in the translation block, followed by an odd entry that contains
161     * guest PC corresponding to that PC in the translation block. This
162     * arrangement is set by tcg_gen_code_common that initializes this array
163     * when performing guest code translation. */
164    target_ulong*   tpc2gpc;
165    /* Number of pairs (pc_tb, pc_guest) in tpc2gpc array. */
166    unsigned int    tpc2gpc_pairs;
167#endif  // CONFIG_MEMCHECK
168
169    uint32_t icount;
170};
171
172static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
173{
174    target_ulong tmp;
175    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
176    return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
177}
178
179static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
180{
181    target_ulong tmp;
182    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
183    return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
184	    | (tmp & TB_JMP_ADDR_MASK));
185}
186
187static inline unsigned int tb_phys_hash_func(unsigned long pc)
188{
189    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
190}
191
192#ifdef CONFIG_MEMCHECK
193/* Gets translated PC for a given (translated PC, guest PC) pair.
194 * Return:
195 *  Translated PC, or NULL if pair index was too large.
196 */
197static inline target_ulong
198tb_get_tb_pc(const TranslationBlock* tb, unsigned int pair)
199{
200    return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ?
201                                                    tb->tpc2gpc[pair * 2] : 0;
202}
203
204/* Gets guest PC for a given (translated PC, guest PC) pair.
205 * Return:
206 *  Guest PC, or NULL if pair index was too large.
207 */
208static inline target_ulong
209tb_get_guest_pc(const TranslationBlock* tb, unsigned int pair)
210{
211    return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ?
212            tb->tpc2gpc[pair * 2 + 1] : 0;
213}
214
215/* Gets guest PC for a given translated PC.
216 * Return:
217 *  Guest PC for a given translated PC, or NULL if there was no pair, matching
218 *  translated PC in tb's tpc2gpc array.
219 */
220static inline target_ulong
221tb_search_guest_pc_from_tb_pc(const TranslationBlock* tb, target_ulong tb_pc)
222{
223    if (tb->tpc2gpc != NULL && tb->tpc2gpc_pairs != 0) {
224        unsigned int m_min = 0;
225        unsigned int m_max = (tb->tpc2gpc_pairs - 1) << 1;
226        /* Make sure that tb_pc is within TB array. */
227        if (tb_pc < tb->tpc2gpc[0]) {
228            return 0;
229        }
230        while (m_min <= m_max) {
231            const unsigned int m = ((m_min + m_max) >> 1) & ~1;
232            if (tb_pc < tb->tpc2gpc[m]) {
233                m_max = m - 2;
234            } else if (m == m_max || tb_pc < tb->tpc2gpc[m + 2]) {
235                return tb->tpc2gpc[m + 1];
236            } else {
237                m_min = m + 2;
238            }
239        }
240        return tb->tpc2gpc[m_max + 1];
241    }
242    return 0;
243}
244#endif  // CONFIG_MEMCHECK
245
246TranslationBlock *tb_alloc(target_ulong pc);
247void tb_free(TranslationBlock *tb);
248void tb_flush(CPUState *env);
249void tb_link_phys(TranslationBlock *tb,
250                  target_ulong phys_pc, target_ulong phys_page2);
251void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr);
252
253extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
254extern uint8_t *code_gen_ptr;
255extern int code_gen_max_blocks;
256
257#if defined(USE_DIRECT_JUMP)
258
259#if defined(_ARCH_PPC)
260extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
261#define tb_set_jmp_target1 ppc_tb_set_jmp_target
262#elif defined(__i386__) || defined(__x86_64__)
263static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
264{
265    /* patch the branch destination */
266    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
267    /* no need to flush icache explicitly */
268}
269#elif defined(__arm__)
270static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
271{
272#if QEMU_GNUC_PREREQ(4, 1)
273    void __clear_cache(char *beg, char *end);
274#else
275    register unsigned long _beg __asm ("a1");
276    register unsigned long _end __asm ("a2");
277    register unsigned long _flg __asm ("a3");
278#endif
279
280    /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
281    *(uint32_t *)jmp_addr =
282        (*(uint32_t *)jmp_addr & ~0xffffff)
283        | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff);
284
285#if QEMU_GNUC_PREREQ(4, 1)
286    __clear_cache((char *) jmp_addr, (char *) jmp_addr + 4);
287#else
288    /* flush icache */
289    _beg = jmp_addr;
290    _end = jmp_addr + 4;
291    _flg = 0;
292    __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
293#endif
294}
295#endif
296
297static inline void tb_set_jmp_target(TranslationBlock *tb,
298                                     int n, unsigned long addr)
299{
300    unsigned long offset;
301
302    offset = tb->tb_jmp_offset[n];
303    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
304    offset = tb->tb_jmp_offset[n + 2];
305    if (offset != 0xffff)
306        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
307}
308
309#else
310
311/* set the jump target */
312static inline void tb_set_jmp_target(TranslationBlock *tb,
313                                     int n, unsigned long addr)
314{
315    tb->tb_next[n] = addr;
316}
317
318#endif
319
320static inline void tb_add_jump(TranslationBlock *tb, int n,
321                               TranslationBlock *tb_next)
322{
323    /* NOTE: this test is only needed for thread safety */
324    if (!tb->jmp_next[n]) {
325        /* patch the native jump address */
326        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
327
328        /* add in TB jmp circular list */
329        tb->jmp_next[n] = tb_next->jmp_first;
330        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
331    }
332}
333
334TranslationBlock *tb_find_pc(unsigned long pc_ptr);
335
336extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
337extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
338extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
339
340#include "qemu-lock.h"
341
342extern spinlock_t tb_lock;
343
344extern int tb_invalidated_flag;
345
346#if !defined(CONFIG_USER_ONLY)
347
348void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
349              void *retaddr);
350
351#include "softmmu_defs.h"
352
353#define ACCESS_TYPE (NB_MMU_MODES + 1)
354#define MEMSUFFIX _code
355#define env cpu_single_env
356
357#define DATA_SIZE 1
358#include "softmmu_header.h"
359
360#define DATA_SIZE 2
361#include "softmmu_header.h"
362
363#define DATA_SIZE 4
364#include "softmmu_header.h"
365
366#define DATA_SIZE 8
367#include "softmmu_header.h"
368
369#undef ACCESS_TYPE
370#undef MEMSUFFIX
371#undef env
372
373#endif
374
375#if defined(CONFIG_USER_ONLY)
376static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
377{
378    return addr;
379}
380#else
381/* NOTE: this function can trigger an exception */
382/* NOTE2: the returned address is not exactly the physical address: it
383   is the offset relative to phys_ram_base */
384static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
385{
386    int mmu_idx, page_index, pd;
387    void *p;
388
389    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
390    mmu_idx = cpu_mmu_index(env1);
391    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
392                 (addr & TARGET_PAGE_MASK))) {
393        ldub_code(addr);
394    }
395    pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
396    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
397#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
398        do_unassigned_access(addr, 0, 1, 0, 4);
399#else
400        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
401#endif
402    }
403    p = (void *)(unsigned long)addr
404        + env1->tlb_table[mmu_idx][page_index].addend;
405    return qemu_ram_addr_from_host(p);
406}
407
408#if 0
409/* Deterministic execution requires that IO only be performed on the last
410   instruction of a TB so that interrupts take effect immediately.  */
411static inline int can_do_io(CPUState *env)
412{
413    if (!use_icount)
414        return 1;
415
416    /* If not executing code then assume we are ok.  */
417    if (!env->current_tb)
418        return 1;
419
420    return env->can_do_io != 0;
421}
422#endif
423#endif /* 0 */
424
425#ifdef CONFIG_KQEMU
426#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
427
428#define MSR_QPI_COMMBASE 0xfabe0010
429
430int kqemu_init(CPUState *env);
431int kqemu_cpu_exec(CPUState *env);
432void kqemu_flush_page(CPUState *env, target_ulong addr);
433void kqemu_flush(CPUState *env, int global);
434void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
435void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
436void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size,
437                        ram_addr_t phys_offset);
438void kqemu_cpu_interrupt(CPUState *env);
439void kqemu_record_dump(void);
440
441extern uint32_t kqemu_comm_base;
442
443extern ram_addr_t kqemu_phys_ram_size;
444extern uint8_t *kqemu_phys_ram_base;
445
446static inline int kqemu_is_ok(CPUState *env)
447{
448    return(env->kqemu_enabled &&
449           (env->cr[0] & CR0_PE_MASK) &&
450           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
451           (env->eflags & IF_MASK) &&
452           !(env->eflags & VM_MASK) &&
453           (env->kqemu_enabled == 2 ||
454            ((env->hflags & HF_CPL_MASK) == 3 &&
455             (env->eflags & IOPL_MASK) != IOPL_MASK)));
456}
457
458#endif
459
460typedef void (CPUDebugExcpHandler)(CPUState *env);
461
462CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler);
463
464/* vl.c */
465extern int singlestep;
466
467#endif
468