exec-all.h revision d3d4468189618e89f74d8f51b8470f277e000938
1/* 2 * internal execution defines for qemu 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20#ifndef _EXEC_ALL_H_ 21#define _EXEC_ALL_H_ 22 23#include "qemu-common.h" 24 25/* allow to see translation results - the slowdown should be negligible, so we leave it */ 26#define DEBUG_DISAS 27 28/* is_jmp field values */ 29#define DISAS_NEXT 0 /* next instruction can be analyzed */ 30#define DISAS_JUMP 1 /* only pc was modified dynamically */ 31#define DISAS_UPDATE 2 /* cpu state was modified dynamically */ 32#define DISAS_TB_JUMP 3 /* only pc was modified statically */ 33 34typedef struct TranslationBlock TranslationBlock; 35 36/* XXX: make safe guess about sizes */ 37#define MAX_OP_PER_INSTR 96 38/* A Call op needs up to 6 + 2N parameters (N = number of arguments). */ 39#define MAX_OPC_PARAM 10 40#define OPC_BUF_SIZE 2048 41#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) 42 43/* Maximum size a TCG op can expand to. This is complicated because a 44 single op may require several host instructions and register reloads. 45 For now take a wild guess at 192 bytes, which should allow at least 46 a couple of fixup instructions per argument. */ 47#define TCG_MAX_OP_SIZE 192 48 49#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) 50 51extern target_ulong gen_opc_pc[OPC_BUF_SIZE]; 52extern target_ulong gen_opc_npc[OPC_BUF_SIZE]; 53extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE]; 54extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE]; 55extern uint16_t gen_opc_icount[OPC_BUF_SIZE]; 56extern target_ulong gen_opc_jump_pc[2]; 57extern uint32_t gen_opc_hflags[OPC_BUF_SIZE]; 58 59#include "qemu-log.h" 60 61void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb); 62void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb); 63void restore_state_to_opc(CPUState *env, struct TranslationBlock *tb, int pc_pos); 64 65unsigned long code_gen_max_block_size(void); 66void cpu_gen_init(void); 67int cpu_gen_code(CPUState *env, struct TranslationBlock *tb, 68 int *gen_code_size_ptr); 69int cpu_restore_state(struct TranslationBlock *tb, 70 CPUState *env, unsigned long searched_pc, 71 void *puc); 72int cpu_restore_state_copy(struct TranslationBlock *tb, 73 CPUState *env, unsigned long searched_pc, 74 void *puc); 75void cpu_resume_from_signal(CPUState *env1, void *puc); 76void cpu_io_recompile(CPUState *env, void *retaddr); 77TranslationBlock *tb_gen_code(CPUState *env, 78 target_ulong pc, target_ulong cs_base, int flags, 79 int cflags); 80void cpu_exec_init(CPUState *env); 81void QEMU_NORETURN cpu_loop_exit(void); 82int page_unprotect(target_ulong address, unsigned long pc, void *puc); 83void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, 84 int is_cpu_write_access); 85void tb_invalidate_page_range(target_ulong start, target_ulong end); 86void tlb_flush_page(CPUState *env, target_ulong addr); 87void tlb_flush(CPUState *env, int flush_global); 88int tlb_set_page_exec(CPUState *env, target_ulong vaddr, 89 target_phys_addr_t paddr, int prot, 90 int mmu_idx, int is_softmmu); 91static inline int tlb_set_page(CPUState *env1, target_ulong vaddr, 92 target_phys_addr_t paddr, int prot, 93 int mmu_idx, int is_softmmu) 94{ 95 if (prot & PAGE_READ) 96 prot |= PAGE_EXEC; 97 return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu); 98} 99 100#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ 101 102#define CODE_GEN_PHYS_HASH_BITS 15 103#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) 104 105#define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024) 106 107/* estimated block size for TB allocation */ 108/* XXX: use a per code average code fragment size and modulate it 109 according to the host CPU */ 110#if defined(CONFIG_SOFTMMU) 111#define CODE_GEN_AVG_BLOCK_SIZE 128 112#else 113#define CODE_GEN_AVG_BLOCK_SIZE 64 114#endif 115 116#if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__) || defined(__i386__) 117#define USE_DIRECT_JUMP 118#endif 119 120struct TranslationBlock { 121 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ 122 target_ulong cs_base; /* CS base for this block */ 123 uint64_t flags; /* flags defining in which context the code was generated */ 124 uint16_t size; /* size of target code for this block (1 <= 125 size <= TARGET_PAGE_SIZE) */ 126 uint16_t cflags; /* compile flags */ 127#define CF_COUNT_MASK 0x7fff 128#define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ 129 130 uint8_t *tc_ptr; /* pointer to the translated code */ 131 /* next matching tb for physical address. */ 132 struct TranslationBlock *phys_hash_next; 133 /* first and second physical page containing code. The lower bit 134 of the pointer tells the index in page_next[] */ 135 struct TranslationBlock *page_next[2]; 136 target_ulong page_addr[2]; 137 138 /* the following data are used to directly call another TB from 139 the code of this one. */ 140 uint16_t tb_next_offset[2]; /* offset of original jump target */ 141#ifdef USE_DIRECT_JUMP 142 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */ 143#else 144 unsigned long tb_next[2]; /* address of jump generated code */ 145#endif 146 /* list of TBs jumping to this one. This is a circular list using 147 the two least significant bits of the pointers to tell what is 148 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = 149 jmp_first */ 150 struct TranslationBlock *jmp_next[2]; 151 struct TranslationBlock *jmp_first; 152#ifdef CONFIG_TRACE 153 struct BBRec *bb_rec; 154 uint64_t prev_time; 155#endif 156 157#ifdef CONFIG_MEMCHECK 158 /* Maps PCs in this translation block to corresponding PCs in guest address 159 * space. The array is arranged in such way, that every even entry contains 160 * PC in the translation block, followed by an odd entry that contains 161 * guest PC corresponding to that PC in the translation block. This 162 * arrangement is set by tcg_gen_code_common that initializes this array 163 * when performing guest code translation. */ 164 target_ulong* tpc2gpc; 165 /* Number of pairs (pc_tb, pc_guest) in tpc2gpc array. */ 166 unsigned int tpc2gpc_pairs; 167#endif // CONFIG_MEMCHECK 168 169 uint32_t icount; 170}; 171 172static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) 173{ 174 target_ulong tmp; 175 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 176 return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK; 177} 178 179static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) 180{ 181 target_ulong tmp; 182 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); 183 return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK) 184 | (tmp & TB_JMP_ADDR_MASK)); 185} 186 187static inline unsigned int tb_phys_hash_func(unsigned long pc) 188{ 189 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1); 190} 191 192#ifdef CONFIG_MEMCHECK 193/* Gets translated PC for a given (translated PC, guest PC) pair. 194 * Return: 195 * Translated PC, or NULL if pair index was too large. 196 */ 197static inline target_ulong 198tb_get_tb_pc(const TranslationBlock* tb, unsigned int pair) 199{ 200 return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ? 201 tb->tpc2gpc[pair * 2] : 0; 202} 203 204/* Gets guest PC for a given (translated PC, guest PC) pair. 205 * Return: 206 * Guest PC, or NULL if pair index was too large. 207 */ 208static inline target_ulong 209tb_get_guest_pc(const TranslationBlock* tb, unsigned int pair) 210{ 211 return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ? 212 tb->tpc2gpc[pair * 2 + 1] : 0; 213} 214 215/* Gets guest PC for a given translated PC. 216 * Return: 217 * Guest PC for a given translated PC, or NULL if there was no pair, matching 218 * translated PC in tb's tpc2gpc array. 219 */ 220static inline target_ulong 221tb_search_guest_pc_from_tb_pc(const TranslationBlock* tb, target_ulong tb_pc) 222{ 223 if (tb->tpc2gpc != NULL && tb->tpc2gpc_pairs != 0) { 224 unsigned int m_min = 0; 225 unsigned int m_max = (tb->tpc2gpc_pairs - 1) << 1; 226 /* Make sure that tb_pc is within TB array. */ 227 if (tb_pc < tb->tpc2gpc[0]) { 228 return 0; 229 } 230 while (m_min <= m_max) { 231 const unsigned int m = ((m_min + m_max) >> 1) & ~1; 232 if (tb_pc < tb->tpc2gpc[m]) { 233 m_max = m - 2; 234 } else if (m == m_max || tb_pc < tb->tpc2gpc[m + 2]) { 235 return tb->tpc2gpc[m + 1]; 236 } else { 237 m_min = m + 2; 238 } 239 } 240 return tb->tpc2gpc[m_max + 1]; 241 } 242 return 0; 243} 244#endif // CONFIG_MEMCHECK 245 246TranslationBlock *tb_alloc(target_ulong pc); 247void tb_free(TranslationBlock *tb); 248void tb_flush(CPUState *env); 249void tb_link_phys(TranslationBlock *tb, 250 target_ulong phys_pc, target_ulong phys_page2); 251void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr); 252 253extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; 254extern uint8_t *code_gen_ptr; 255extern int code_gen_max_blocks; 256 257#if defined(USE_DIRECT_JUMP) 258 259#if defined(_ARCH_PPC) 260extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr); 261#define tb_set_jmp_target1 ppc_tb_set_jmp_target 262#elif defined(__i386__) || defined(__x86_64__) 263static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) 264{ 265 /* patch the branch destination */ 266 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); 267 /* no need to flush icache explicitly */ 268} 269#elif defined(__arm__) 270static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) 271{ 272#if QEMU_GNUC_PREREQ(4, 1) 273 void __clear_cache(char *beg, char *end); 274#else 275 register unsigned long _beg __asm ("a1"); 276 register unsigned long _end __asm ("a2"); 277 register unsigned long _flg __asm ("a3"); 278#endif 279 280 /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ 281 *(uint32_t *)jmp_addr = 282 (*(uint32_t *)jmp_addr & ~0xffffff) 283 | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff); 284 285#if QEMU_GNUC_PREREQ(4, 1) 286 __clear_cache((char *) jmp_addr, (char *) jmp_addr + 4); 287#else 288 /* flush icache */ 289 _beg = jmp_addr; 290 _end = jmp_addr + 4; 291 _flg = 0; 292 __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); 293#endif 294} 295#endif 296 297static inline void tb_set_jmp_target(TranslationBlock *tb, 298 int n, unsigned long addr) 299{ 300 unsigned long offset; 301 302 offset = tb->tb_jmp_offset[n]; 303 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); 304 offset = tb->tb_jmp_offset[n + 2]; 305 if (offset != 0xffff) 306 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); 307} 308 309#else 310 311/* set the jump target */ 312static inline void tb_set_jmp_target(TranslationBlock *tb, 313 int n, unsigned long addr) 314{ 315 tb->tb_next[n] = addr; 316} 317 318#endif 319 320static inline void tb_add_jump(TranslationBlock *tb, int n, 321 TranslationBlock *tb_next) 322{ 323 /* NOTE: this test is only needed for thread safety */ 324 if (!tb->jmp_next[n]) { 325 /* patch the native jump address */ 326 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr); 327 328 /* add in TB jmp circular list */ 329 tb->jmp_next[n] = tb_next->jmp_first; 330 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n)); 331 } 332} 333 334TranslationBlock *tb_find_pc(unsigned long pc_ptr); 335 336extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; 337extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; 338extern void *io_mem_opaque[IO_MEM_NB_ENTRIES]; 339 340#include "qemu-lock.h" 341 342extern spinlock_t tb_lock; 343 344extern int tb_invalidated_flag; 345 346#if !defined(CONFIG_USER_ONLY) 347 348void tlb_fill(target_ulong addr, int is_write, int mmu_idx, 349 void *retaddr); 350 351#include "softmmu_defs.h" 352 353#define ACCESS_TYPE (NB_MMU_MODES + 1) 354#define MEMSUFFIX _code 355#define env cpu_single_env 356 357#define DATA_SIZE 1 358#include "softmmu_header.h" 359 360#define DATA_SIZE 2 361#include "softmmu_header.h" 362 363#define DATA_SIZE 4 364#include "softmmu_header.h" 365 366#define DATA_SIZE 8 367#include "softmmu_header.h" 368 369#undef ACCESS_TYPE 370#undef MEMSUFFIX 371#undef env 372 373#endif 374 375#if defined(CONFIG_USER_ONLY) 376static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr) 377{ 378 return addr; 379} 380#else 381/* NOTE: this function can trigger an exception */ 382/* NOTE2: the returned address is not exactly the physical address: it 383 is the offset relative to phys_ram_base */ 384static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr) 385{ 386 int mmu_idx, page_index, pd; 387 void *p; 388 389 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); 390 mmu_idx = cpu_mmu_index(env1); 391 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != 392 (addr & TARGET_PAGE_MASK))) { 393 ldub_code(addr); 394 } 395 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK; 396 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { 397#if defined(TARGET_SPARC) || defined(TARGET_MIPS) 398 do_unassigned_access(addr, 0, 1, 0, 4); 399#else 400 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); 401#endif 402 } 403 p = (void *)(unsigned long)addr 404 + env1->tlb_table[mmu_idx][page_index].addend; 405 return qemu_ram_addr_from_host(p); 406} 407 408#if 0 409/* Deterministic execution requires that IO only be performed on the last 410 instruction of a TB so that interrupts take effect immediately. */ 411static inline int can_do_io(CPUState *env) 412{ 413 if (!use_icount) 414 return 1; 415 416 /* If not executing code then assume we are ok. */ 417 if (!env->current_tb) 418 return 1; 419 420 return env->can_do_io != 0; 421} 422#endif 423#endif /* 0 */ 424 425#ifdef CONFIG_KQEMU 426#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG)) 427 428#define MSR_QPI_COMMBASE 0xfabe0010 429 430int kqemu_init(CPUState *env); 431int kqemu_cpu_exec(CPUState *env); 432void kqemu_flush_page(CPUState *env, target_ulong addr); 433void kqemu_flush(CPUState *env, int global); 434void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr); 435void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr); 436void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 437 ram_addr_t phys_offset); 438void kqemu_cpu_interrupt(CPUState *env); 439void kqemu_record_dump(void); 440 441extern uint32_t kqemu_comm_base; 442 443extern ram_addr_t kqemu_phys_ram_size; 444extern uint8_t *kqemu_phys_ram_base; 445 446static inline int kqemu_is_ok(CPUState *env) 447{ 448 return(env->kqemu_enabled && 449 (env->cr[0] & CR0_PE_MASK) && 450 !(env->hflags & HF_INHIBIT_IRQ_MASK) && 451 (env->eflags & IF_MASK) && 452 !(env->eflags & VM_MASK) && 453 (env->kqemu_enabled == 2 || 454 ((env->hflags & HF_CPL_MASK) == 3 && 455 (env->eflags & IOPL_MASK) != IOPL_MASK))); 456} 457 458#endif 459 460typedef void (CPUDebugExcpHandler)(CPUState *env); 461 462CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler); 463 464/* vl.c */ 465extern int singlestep; 466 467#endif 468