assembler-arm-inl.h revision d0582a6c46733687d045e4188a1bcd0123c758a1
1a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// Copyright (c) 1994-2006 Sun Microsystems Inc.
2a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// All Rights Reserved.
3a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block//
4a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// Redistribution and use in source and binary forms, with or without
5a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// modification, are permitted provided that the following conditions
6a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// are met:
7a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block//
8a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// - Redistributions of source code must retain the above copyright notice,
9a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// this list of conditions and the following disclaimer.
10a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block//
11a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// - Redistribution in binary form must reproduce the above copyright
12a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// notice, this list of conditions and the following disclaimer in the
13a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// documentation and/or other materials provided with the
14a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// distribution.
15a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block//
16a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// - Neither the name of Sun Microsystems or the names of contributors may
17a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// be used to endorse or promote products derived from this software without
18a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// specific prior written permission.
19a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block//
20a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// OF THE POSSIBILITY OF SUCH DAMAGE.
32a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
33a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// The original source code covered by the above license above has been modified
34a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// significantly by Google Inc.
35a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block// Copyright 2006-2008 the V8 project authors. All rights reserved.
36a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
37a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
38a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block#define V8_ARM_ASSEMBLER_ARM_INL_H_
39a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
40a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block#include "arm/assembler-arm.h"
41a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block#include "cpu.h"
42a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
43a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
44a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blocknamespace v8 {
45a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blocknamespace internal {
46a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
47a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockCondition NegateCondition(Condition cc) {
48a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(cc != al);
49a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return static_cast<Condition>(cc ^ ne);
50a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
51a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
52a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
53a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockvoid RelocInfo::apply(intptr_t delta) {
54a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  if (RelocInfo::IsInternalReference(rmode_)) {
55a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block    // absolute code pointer inside code object moves with the code object.
56a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block    int32_t* p = reinterpret_cast<int32_t*>(pc_);
57a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block    *p += delta;  // relocate entry
58a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  }
59a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // We do not use pc relative addressing on ARM, so there is
60a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // nothing else to do.
61a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
62a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
63a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
64a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockAddress RelocInfo::target_address() {
65a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
66a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return Assembler::target_address_at(pc_);
67a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
68a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
69a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
70a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockAddress RelocInfo::target_address_address() {
71a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
72a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return reinterpret_cast<Address>(Assembler::target_address_address_at(pc_));
73a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
74a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
75a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
76a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockvoid RelocInfo::set_target_address(Address target) {
77a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
78a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  Assembler::set_target_address_at(pc_, target);
79a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
80a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
81a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
82a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockObject* RelocInfo::target_object() {
83a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
843ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block  return Memory::Object_at(Assembler::target_address_address_at(pc_));
853ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block}
863ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block
873ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block
88d0582a6c46733687d045e4188a1bcd0123c758a1Steve BlockHandle<Object> RelocInfo::target_object_handle(Assembler* origin) {
893ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
903ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block  return Memory::Object_Handle_at(Assembler::target_address_address_at(pc_));
91a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
92a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
93a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
94a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockObject** RelocInfo::target_object_address() {
95a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
96a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_));
97a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
98a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
99a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
100a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockvoid RelocInfo::set_target_object(Object* target) {
101a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
102a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
103a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
104a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
105a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
106a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockAddress* RelocInfo::target_reference_address() {
107a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(rmode_ == EXTERNAL_REFERENCE);
108a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return reinterpret_cast<Address*>(Assembler::target_address_address_at(pc_));
109a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
110a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
111a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
112a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockAddress RelocInfo::call_address() {
1133ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block  ASSERT(IsPatchedReturnSequence());
114a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // The 2 instructions offset assumes patched return sequence.
115a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsJSReturn(rmode()));
116a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
117a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
118a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
119a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
120a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockvoid RelocInfo::set_call_address(Address target) {
1213ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block  ASSERT(IsPatchedReturnSequence());
122a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // The 2 instructions offset assumes patched return sequence.
123a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsJSReturn(rmode()));
124a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
125a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
126a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
127a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
128a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockObject* RelocInfo::call_object() {
129a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return *call_object_address();
130a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
131a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
132a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
133a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockObject** RelocInfo::call_object_address() {
1343ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Block  ASSERT(IsPatchedReturnSequence());
135a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // The 2 instructions offset assumes patched return sequence.
136a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(IsJSReturn(rmode()));
137a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
138a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
139a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
140a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
141a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockvoid RelocInfo::set_call_object(Object* target) {
142a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  *call_object_address() = target;
143a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
144a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
145a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
1463ce2e2076e8e3e60cf1810eec160ea2d8557e9e7Steve Blockbool RelocInfo::IsPatchedReturnSequence() {
147a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // On ARM a "call instruction" is actually two instructions.
148a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  //   mov lr, pc
149a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  //   ldr pc, [pc, #XXX]
150a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return (Assembler::instr_at(pc_) == kMovLrPc)
151a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block          && ((Assembler::instr_at(pc_ + Assembler::kInstrSize) & kLdrPCPattern)
152a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block              == kLdrPCPattern);
153a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
154a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
155a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
156a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockOperand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
157a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rm_ = no_reg;
158a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  imm32_ = immediate;
159a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rmode_ = rmode;
160a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
161a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
162a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
163a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockOperand::Operand(const char* s) {
164a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rm_ = no_reg;
165a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  imm32_ = reinterpret_cast<int32_t>(s);
166a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rmode_ = RelocInfo::EMBEDDED_STRING;
167a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
168a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
169a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
170a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockOperand::Operand(const ExternalReference& f)  {
171a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rm_ = no_reg;
172a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  imm32_ = reinterpret_cast<int32_t>(f.address());
173a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
174a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
175a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
176a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
177a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockOperand::Operand(Object** opp) {
178a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rm_ = no_reg;
179a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  imm32_ = reinterpret_cast<int32_t>(opp);
180a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rmode_ = RelocInfo::NONE;
181a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
182a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
183a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
184a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockOperand::Operand(Context** cpp) {
185a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rm_ = no_reg;
186a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  imm32_ = reinterpret_cast<int32_t>(cpp);
187a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rmode_ = RelocInfo::NONE;
188a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
189a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
190a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
191a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockOperand::Operand(Smi* value) {
192a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rm_ = no_reg;
193a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  imm32_ =  reinterpret_cast<intptr_t>(value);
194a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rmode_ = RelocInfo::NONE;
195a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
196a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
197a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
198a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockOperand::Operand(Register rm) {
199a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rm_ = rm;
200a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  rs_ = no_reg;
201a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  shift_op_ = LSL;
202a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  shift_imm_ = 0;
203a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
204a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
205a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
206a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockbool Operand::is_reg() const {
207a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return rm_.is_valid() &&
208a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block         rs_.is(no_reg) &&
209a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block         shift_op_ == LSL &&
210a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block         shift_imm_ == 0;
211a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
212a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
213a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
214a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockvoid Assembler::CheckBuffer() {
215a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  if (buffer_space() <= kGap) {
216a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block    GrowBuffer();
217a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  }
218a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  if (pc_offset() >= next_buffer_check_) {
219a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block    CheckConstPool(false, true);
220a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  }
221a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
222a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
223a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
224a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockvoid Assembler::emit(Instr x) {
225a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  CheckBuffer();
226a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  *reinterpret_cast<Instr*>(pc_) = x;
227a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  pc_ += kInstrSize;
228a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
229a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
230a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
231a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockAddress Assembler::target_address_address_at(Address pc) {
232a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  Instr instr = Memory::int32_at(pc);
233a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // Verify that the instruction at pc is a ldr<cond> <Rd>, [pc +/- offset_12].
234a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT((instr & 0x0f7f0000) == 0x051f0000);
235a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  int offset = instr & 0xfff;  // offset_12 is unsigned
236a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  if ((instr & (1 << 23)) == 0) offset = -offset;  // U bit defines offset sign
237a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // Verify that the constant pool comes after the instruction referencing it.
238a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  ASSERT(offset >= -4);
239a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return pc + offset + 8;
240a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
241a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
242a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
243a7e24c173cf37484693b9abb38e494fa7bd7baebSteve BlockAddress Assembler::target_address_at(Address pc) {
244a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  return Memory::Address_at(target_address_address_at(pc));
245a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
246a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
247a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
248d0582a6c46733687d045e4188a1bcd0123c758a1Steve Blockvoid Assembler::set_target_at(Address constant_pool_entry,
249d0582a6c46733687d045e4188a1bcd0123c758a1Steve Block                              Address target) {
250d0582a6c46733687d045e4188a1bcd0123c758a1Steve Block  Memory::Address_at(constant_pool_entry) = target;
251d0582a6c46733687d045e4188a1bcd0123c758a1Steve Block}
252d0582a6c46733687d045e4188a1bcd0123c758a1Steve Block
253d0582a6c46733687d045e4188a1bcd0123c758a1Steve Block
254a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Blockvoid Assembler::set_target_address_at(Address pc, Address target) {
255a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  Memory::Address_at(target_address_address_at(pc)) = target;
256a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // Intuitively, we would think it is necessary to flush the instruction cache
257a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // after patching a target address in the code as follows:
258a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  //   CPU::FlushICache(pc, sizeof(target));
259a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // However, on ARM, no instruction was actually patched by the assignment
260a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // above; the target address is not part of an instruction, it is patched in
261a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // the constant pool and is read via a data access; the instruction accessing
262a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block  // this address in the constant pool remains unchanged.
263a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block}
264a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
265a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block} }  // namespace v8::internal
266a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block
267a7e24c173cf37484693b9abb38e494fa7bd7baebSteve Block#endif  // V8_ARM_ASSEMBLER_ARM_INL_H_
268