builtins-arm.cc revision 402d937239b0e2fd11bf2f4fe972ad78aa9fd481
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "codegen-inl.h"
31#include "debug.h"
32#include "runtime.h"
33
34namespace v8 {
35namespace internal {
36
37
38#define __ ACCESS_MASM(masm)
39
40
41void Builtins::Generate_Adaptor(MacroAssembler* masm,
42                                CFunctionId id,
43                                BuiltinExtraArguments extra_args) {
44  // ----------- S t a t e -------------
45  //  -- r0                 : number of arguments excluding receiver
46  //  -- r1                 : called function (only guaranteed when
47  //                          extra_args requires it)
48  //  -- cp                 : context
49  //  -- sp[0]              : last argument
50  //  -- ...
51  //  -- sp[4 * (argc - 1)] : first argument (argc == r0)
52  //  -- sp[4 * argc]       : receiver
53  // -----------------------------------
54
55  // Insert extra arguments.
56  int num_extra_args = 0;
57  if (extra_args == NEEDS_CALLED_FUNCTION) {
58    num_extra_args = 1;
59    __ push(r1);
60  } else {
61    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
62  }
63
64  // JumpToRuntime expects r0 to contain the number of arguments
65  // including the receiver and the extra arguments.
66  __ add(r0, r0, Operand(num_extra_args + 1));
67  __ JumpToRuntime(ExternalReference(id));
68}
69
70
71// Load the built-in Array function from the current context.
72static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
73  // Load the global context.
74
75  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
76  __ ldr(result,
77         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
78  // Load the Array function from the global context.
79  __ ldr(result,
80         MemOperand(result,
81                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
82}
83
84
85// This constant has the same value as JSArray::kPreallocatedArrayElements and
86// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
87// below should be reconsidered.
88static const int kLoopUnfoldLimit = 4;
89
90
91// Allocate an empty JSArray. The allocated array is put into the result
92// register. An elements backing store is allocated with size initial_capacity
93// and filled with the hole values.
94static void AllocateEmptyJSArray(MacroAssembler* masm,
95                                 Register array_function,
96                                 Register result,
97                                 Register scratch1,
98                                 Register scratch2,
99                                 Register scratch3,
100                                 int initial_capacity,
101                                 Label* gc_required) {
102  ASSERT(initial_capacity > 0);
103  // Load the initial map from the array function.
104  __ ldr(scratch1, FieldMemOperand(array_function,
105                                   JSFunction::kPrototypeOrInitialMapOffset));
106
107  // Allocate the JSArray object together with space for a fixed array with the
108  // requested elements.
109  int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
110  __ AllocateInNewSpace(size / kPointerSize,
111                        result,
112                        scratch2,
113                        scratch3,
114                        gc_required,
115                        TAG_OBJECT);
116
117  // Allocated the JSArray. Now initialize the fields except for the elements
118  // array.
119  // result: JSObject
120  // scratch1: initial map
121  // scratch2: start of next object
122  __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
123  __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
124  __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
125  // Field JSArray::kElementsOffset is initialized later.
126  __ mov(scratch3,  Operand(0));
127  __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
128
129  // Calculate the location of the elements array and set elements array member
130  // of the JSArray.
131  // result: JSObject
132  // scratch2: start of next object
133  __ lea(scratch1, MemOperand(result, JSArray::kSize));
134  __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
135
136  // Clear the heap tag on the elements array.
137  __ and_(scratch1, scratch1, Operand(~kHeapObjectTagMask));
138
139  // Initialize the FixedArray and fill it with holes. FixedArray length is not
140  // stored as a smi.
141  // result: JSObject
142  // scratch1: elements array (untagged)
143  // scratch2: start of next object
144  __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
145  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
146  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
147  __ mov(scratch3,  Operand(initial_capacity));
148  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
149  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
150
151  // Fill the FixedArray with the hole value.
152  ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
153  ASSERT(initial_capacity <= kLoopUnfoldLimit);
154  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
155  for (int i = 0; i < initial_capacity; i++) {
156    __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
157  }
158}
159
160// Allocate a JSArray with the number of elements stored in a register. The
161// register array_function holds the built-in Array function and the register
162// array_size holds the size of the array as a smi. The allocated array is put
163// into the result register and beginning and end of the FixedArray elements
164// storage is put into registers elements_array_storage and elements_array_end
165// (see  below for when that is not the case). If the parameter fill_with_holes
166// is true the allocated elements backing store is filled with the hole values
167// otherwise it is left uninitialized. When the backing store is filled the
168// register elements_array_storage is scratched.
169static void AllocateJSArray(MacroAssembler* masm,
170                            Register array_function,  // Array function.
171                            Register array_size,  // As a smi.
172                            Register result,
173                            Register elements_array_storage,
174                            Register elements_array_end,
175                            Register scratch1,
176                            Register scratch2,
177                            bool fill_with_hole,
178                            Label* gc_required) {
179  Label not_empty, allocated;
180
181  // Load the initial map from the array function.
182  __ ldr(elements_array_storage,
183         FieldMemOperand(array_function,
184                         JSFunction::kPrototypeOrInitialMapOffset));
185
186  // Check whether an empty sized array is requested.
187  __ tst(array_size, array_size);
188  __ b(nz, &not_empty);
189
190  // If an empty array is requested allocate a small elements array anyway. This
191  // keeps the code below free of special casing for the empty array.
192  int size = JSArray::kSize +
193             FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
194  __ AllocateInNewSpace(size / kPointerSize,
195                        result,
196                        elements_array_end,
197                        scratch1,
198                        gc_required,
199                        TAG_OBJECT);
200  __ jmp(&allocated);
201
202  // Allocate the JSArray object together with space for a FixedArray with the
203  // requested number of elements.
204  __ bind(&not_empty);
205  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
206  __ mov(elements_array_end,
207         Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
208  __ add(elements_array_end,
209         elements_array_end,
210         Operand(array_size, ASR, kSmiTagSize));
211  __ AllocateInNewSpace(elements_array_end,
212                        result,
213                        scratch1,
214                        scratch2,
215                        gc_required,
216                        TAG_OBJECT);
217
218  // Allocated the JSArray. Now initialize the fields except for the elements
219  // array.
220  // result: JSObject
221  // elements_array_storage: initial map
222  // array_size: size of array (smi)
223  __ bind(&allocated);
224  __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
225  __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
226  __ str(elements_array_storage,
227         FieldMemOperand(result, JSArray::kPropertiesOffset));
228  // Field JSArray::kElementsOffset is initialized later.
229  __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
230
231  // Calculate the location of the elements array and set elements array member
232  // of the JSArray.
233  // result: JSObject
234  // array_size: size of array (smi)
235  __ add(elements_array_storage, result, Operand(JSArray::kSize));
236  __ str(elements_array_storage,
237         FieldMemOperand(result, JSArray::kElementsOffset));
238
239  // Clear the heap tag on the elements array.
240  __ and_(elements_array_storage,
241          elements_array_storage,
242          Operand(~kHeapObjectTagMask));
243  // Initialize the fixed array and fill it with holes. FixedArray length is not
244  // stored as a smi.
245  // result: JSObject
246  // elements_array_storage: elements array (untagged)
247  // array_size: size of array (smi)
248  ASSERT(kSmiTag == 0);
249  __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
250  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
251  __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
252  // Convert array_size from smi to value.
253  __ mov(array_size,
254         Operand(array_size, ASR, kSmiTagSize));
255  __ tst(array_size, array_size);
256  // Length of the FixedArray is the number of pre-allocated elements if
257  // the actual JSArray has length 0 and the size of the JSArray for non-empty
258  // JSArrays. The length of a FixedArray is not stored as a smi.
259  __ mov(array_size, Operand(JSArray::kPreallocatedArrayElements), LeaveCC, eq);
260  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
261  __ str(array_size,
262         MemOperand(elements_array_storage, kPointerSize, PostIndex));
263
264  // Calculate elements array and elements array end.
265  // result: JSObject
266  // elements_array_storage: elements array element storage
267  // array_size: size of elements array
268  __ add(elements_array_end,
269         elements_array_storage,
270         Operand(array_size, LSL, kPointerSizeLog2));
271
272  // Fill the allocated FixedArray with the hole value if requested.
273  // result: JSObject
274  // elements_array_storage: elements array element storage
275  // elements_array_end: start of next object
276  if (fill_with_hole) {
277    Label loop, entry;
278    __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
279    __ jmp(&entry);
280    __ bind(&loop);
281    __ str(scratch1,
282           MemOperand(elements_array_storage, kPointerSize, PostIndex));
283    __ bind(&entry);
284    __ cmp(elements_array_storage, elements_array_end);
285    __ b(lt, &loop);
286  }
287}
288
289// Create a new array for the built-in Array function. This function allocates
290// the JSArray object and the FixedArray elements array and initializes these.
291// If the Array cannot be constructed in native code the runtime is called. This
292// function assumes the following state:
293//   r0: argc
294//   r1: constructor (built-in Array function)
295//   lr: return address
296//   sp[0]: last argument
297// This function is used for both construct and normal calls of Array. The only
298// difference between handling a construct call and a normal call is that for a
299// construct call the constructor function in r1 needs to be preserved for
300// entering the generic code. In both cases argc in r0 needs to be preserved.
301// Both registers are preserved by this code so no need to differentiate between
302// construct call and normal call.
303static void ArrayNativeCode(MacroAssembler* masm,
304                            Label* call_generic_code) {
305  Label argc_one_or_more, argc_two_or_more;
306
307  // Check for array construction with zero arguments or one.
308  __ cmp(r0, Operand(0));
309  __ b(ne, &argc_one_or_more);
310
311  // Handle construction of an empty array.
312  AllocateEmptyJSArray(masm,
313                       r1,
314                       r2,
315                       r3,
316                       r4,
317                       r5,
318                       JSArray::kPreallocatedArrayElements,
319                       call_generic_code);
320  __ IncrementCounter(&Counters::array_function_native, 1, r3, r4);
321  // Setup return value, remove receiver from stack and return.
322  __ mov(r0, r2);
323  __ add(sp, sp, Operand(kPointerSize));
324  __ Jump(lr);
325
326  // Check for one argument. Bail out if argument is not smi or if it is
327  // negative.
328  __ bind(&argc_one_or_more);
329  __ cmp(r0, Operand(1));
330  __ b(ne, &argc_two_or_more);
331  ASSERT(kSmiTag == 0);
332  __ ldr(r2, MemOperand(sp));  // Get the argument from the stack.
333  __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
334  __ b(ne, call_generic_code);
335
336  // Handle construction of an empty array of a certain size. Bail out if size
337  // is too large to actually allocate an elements array.
338  ASSERT(kSmiTag == 0);
339  __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
340  __ b(ge, call_generic_code);
341
342  // r0: argc
343  // r1: constructor
344  // r2: array_size (smi)
345  // sp[0]: argument
346  AllocateJSArray(masm,
347                  r1,
348                  r2,
349                  r3,
350                  r4,
351                  r5,
352                  r6,
353                  r7,
354                  true,
355                  call_generic_code);
356  __ IncrementCounter(&Counters::array_function_native, 1, r2, r4);
357  // Setup return value, remove receiver and argument from stack and return.
358  __ mov(r0, r3);
359  __ add(sp, sp, Operand(2 * kPointerSize));
360  __ Jump(lr);
361
362  // Handle construction of an array from a list of arguments.
363  __ bind(&argc_two_or_more);
364  __ mov(r2, Operand(r0, LSL, kSmiTagSize));  // Convet argc to a smi.
365
366  // r0: argc
367  // r1: constructor
368  // r2: array_size (smi)
369  // sp[0]: last argument
370  AllocateJSArray(masm,
371                  r1,
372                  r2,
373                  r3,
374                  r4,
375                  r5,
376                  r6,
377                  r7,
378                  false,
379                  call_generic_code);
380  __ IncrementCounter(&Counters::array_function_native, 1, r2, r6);
381
382  // Fill arguments as array elements. Copy from the top of the stack (last
383  // element) to the array backing store filling it backwards. Note:
384  // elements_array_end points after the backing store therefore PreIndex is
385  // used when filling the backing store.
386  // r0: argc
387  // r3: JSArray
388  // r4: elements_array storage start (untagged)
389  // r5: elements_array_end (untagged)
390  // sp[0]: last argument
391  Label loop, entry;
392  __ jmp(&entry);
393  __ bind(&loop);
394  __ ldr(r2, MemOperand(sp, kPointerSize, PostIndex));
395  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
396  __ bind(&entry);
397  __ cmp(r4, r5);
398  __ b(lt, &loop);
399
400  // Remove caller arguments and receiver from the stack, setup return value and
401  // return.
402  // r0: argc
403  // r3: JSArray
404  // sp[0]: receiver
405  __ add(sp, sp, Operand(kPointerSize));
406  __ mov(r0, r3);
407  __ Jump(lr);
408}
409
410
411void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
412  // ----------- S t a t e -------------
413  //  -- r0     : number of arguments
414  //  -- lr     : return address
415  //  -- sp[...]: constructor arguments
416  // -----------------------------------
417  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
418
419  // Get the Array function.
420  GenerateLoadArrayFunction(masm, r1);
421
422  if (FLAG_debug_code) {
423    // Initial map for the builtin Array function shoud be a map.
424    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
425    __ tst(r2, Operand(kSmiTagMask));
426    __ Assert(ne, "Unexpected initial map for Array function");
427    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
428    __ Assert(eq, "Unexpected initial map for Array function");
429  }
430
431  // Run the native code for the Array function called as a normal function.
432  ArrayNativeCode(masm, &generic_array_code);
433
434  // Jump to the generic array code if the specialized code cannot handle
435  // the construction.
436  __ bind(&generic_array_code);
437  Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
438  Handle<Code> array_code(code);
439  __ Jump(array_code, RelocInfo::CODE_TARGET);
440}
441
442
443void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
444  // ----------- S t a t e -------------
445  //  -- r0     : number of arguments
446  //  -- r1     : constructor function
447  //  -- lr     : return address
448  //  -- sp[...]: constructor arguments
449  // -----------------------------------
450  Label generic_constructor;
451
452  if (FLAG_debug_code) {
453    // The array construct code is only set for the builtin Array function which
454    // always have a map.
455    GenerateLoadArrayFunction(masm, r2);
456    __ cmp(r1, r2);
457    __ Assert(eq, "Unexpected Array function");
458    // Initial map for the builtin Array function should be a map.
459    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
460    __ tst(r2, Operand(kSmiTagMask));
461    __ Assert(ne, "Unexpected initial map for Array function");
462    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
463    __ Assert(eq, "Unexpected initial map for Array function");
464  }
465
466  // Run the native code for the Array function called as a constructor.
467  ArrayNativeCode(masm, &generic_constructor);
468
469  // Jump to the generic construct code in case the specialized code cannot
470  // handle the construction.
471  __ bind(&generic_constructor);
472  Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
473  Handle<Code> generic_construct_stub(code);
474  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
475}
476
477
478void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
479  // ----------- S t a t e -------------
480  //  -- r0     : number of arguments
481  //  -- r1     : constructor function
482  //  -- lr     : return address
483  //  -- sp[...]: constructor arguments
484  // -----------------------------------
485
486  Label non_function_call;
487  // Check that the function is not a smi.
488  __ tst(r1, Operand(kSmiTagMask));
489  __ b(eq, &non_function_call);
490  // Check that the function is a JSFunction.
491  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
492  __ b(ne, &non_function_call);
493
494  // Jump to the function-specific construct stub.
495  __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
496  __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
497  __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
498
499  // r0: number of arguments
500  // r1: called object
501  __ bind(&non_function_call);
502  // CALL_NON_FUNCTION expects the non-function constructor as receiver
503  // (instead of the original receiver from the call site).  The receiver is
504  // stack element argc.
505  __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
506  // Set expected number of arguments to zero (not changing r0).
507  __ mov(r2, Operand(0));
508  __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
509  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
510          RelocInfo::CODE_TARGET);
511}
512
513
514static void Generate_JSConstructStubHelper(MacroAssembler* masm,
515                                           bool is_api_function) {
516  // Enter a construct frame.
517  __ EnterConstructFrame();
518
519  // Preserve the two incoming parameters on the stack.
520  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
521  __ push(r0);  // Smi-tagged arguments count.
522  __ push(r1);  // Constructor function.
523
524  // Use r7 for holding undefined which is used in several places below.
525  __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
526
527  // Try to allocate the object without transitioning into C code. If any of the
528  // preconditions is not met, the code bails out to the runtime call.
529  Label rt_call, allocated;
530  if (FLAG_inline_new) {
531    Label undo_allocation;
532#ifdef ENABLE_DEBUGGER_SUPPORT
533    ExternalReference debug_step_in_fp =
534        ExternalReference::debug_step_in_fp_address();
535    __ mov(r2, Operand(debug_step_in_fp));
536    __ ldr(r2, MemOperand(r2));
537    __ tst(r2, r2);
538    __ b(nz, &rt_call);
539#endif
540
541    // Load the initial map and verify that it is in fact a map.
542    // r1: constructor function
543    // r7: undefined
544    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
545    __ tst(r2, Operand(kSmiTagMask));
546    __ b(eq, &rt_call);
547    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
548    __ b(ne, &rt_call);
549
550    // Check that the constructor is not constructing a JSFunction (see comments
551    // in Runtime_NewObject in runtime.cc). In which case the initial map's
552    // instance type would be JS_FUNCTION_TYPE.
553    // r1: constructor function
554    // r2: initial map
555    // r7: undefined
556    __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
557    __ b(eq, &rt_call);
558
559    // Now allocate the JSObject on the heap.
560    // r1: constructor function
561    // r2: initial map
562    // r7: undefined
563    __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
564    __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, NO_ALLOCATION_FLAGS);
565
566    // Allocated the JSObject, now initialize the fields. Map is set to initial
567    // map and properties and elements are set to empty fixed array.
568    // r1: constructor function
569    // r2: initial map
570    // r3: object size
571    // r4: JSObject (not tagged)
572    // r7: undefined
573    __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
574    __ mov(r5, r4);
575    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
576    __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
577    ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
578    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
579    ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
580    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
581
582    // Fill all the in-object properties with undefined.
583    // r1: constructor function
584    // r2: initial map
585    // r3: object size (in words)
586    // r4: JSObject (not tagged)
587    // r5: First in-object property of JSObject (not tagged)
588    // r7: undefined
589    __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
590    ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
591    { Label loop, entry;
592      __ b(&entry);
593      __ bind(&loop);
594      __ str(r7, MemOperand(r5, kPointerSize, PostIndex));
595      __ bind(&entry);
596      __ cmp(r5, Operand(r6));
597      __ b(lt, &loop);
598    }
599
600    // Add the object tag to make the JSObject real, so that we can continue and
601    // jump into the continuation code at any time from now on. Any failures
602    // need to undo the allocation, so that the heap is in a consistent state
603    // and verifiable.
604    __ add(r4, r4, Operand(kHeapObjectTag));
605
606    // Check if a non-empty properties array is needed. Continue with allocated
607    // object if not fall through to runtime call if it is.
608    // r1: constructor function
609    // r4: JSObject
610    // r5: start of next object (not tagged)
611    // r7: undefined
612    __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
613    // The field instance sizes contains both pre-allocated property fields and
614    // in-object properties.
615    __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
616    __ and_(r6,
617            r0,
618            Operand(0x000000FF << Map::kPreAllocatedPropertyFieldsByte * 8));
619    __ add(r3, r3, Operand(r6, LSR, Map::kPreAllocatedPropertyFieldsByte * 8));
620    __ and_(r6, r0, Operand(0x000000FF << Map::kInObjectPropertiesByte * 8));
621    __ sub(r3, r3, Operand(r6, LSR, Map::kInObjectPropertiesByte * 8), SetCC);
622
623    // Done if no extra properties are to be allocated.
624    __ b(eq, &allocated);
625    __ Assert(pl, "Property allocation count failed.");
626
627    // Scale the number of elements by pointer size and add the header for
628    // FixedArrays to the start of the next object calculation from above.
629    // r1: constructor
630    // r3: number of elements in properties array
631    // r4: JSObject
632    // r5: start of next object
633    // r7: undefined
634    __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
635    __ AllocateInNewSpace(r0,
636                          r5,
637                          r6,
638                          r2,
639                          &undo_allocation,
640                          RESULT_CONTAINS_TOP);
641
642    // Initialize the FixedArray.
643    // r1: constructor
644    // r3: number of elements in properties array
645    // r4: JSObject
646    // r5: FixedArray (not tagged)
647    // r7: undefined
648    __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
649    __ mov(r2, r5);
650    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
651    __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
652    ASSERT_EQ(1 * kPointerSize, Array::kLengthOffset);
653    __ str(r3, MemOperand(r2, kPointerSize, PostIndex));
654
655    // Initialize the fields to undefined.
656    // r1: constructor function
657    // r2: First element of FixedArray (not tagged)
658    // r3: number of elements in properties array
659    // r4: JSObject
660    // r5: FixedArray (not tagged)
661    // r7: undefined
662    __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
663    ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
664    { Label loop, entry;
665      __ b(&entry);
666      __ bind(&loop);
667      __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
668      __ bind(&entry);
669      __ cmp(r2, Operand(r6));
670      __ b(lt, &loop);
671    }
672
673    // Store the initialized FixedArray into the properties field of
674    // the JSObject
675    // r1: constructor function
676    // r4: JSObject
677    // r5: FixedArray (not tagged)
678    __ add(r5, r5, Operand(kHeapObjectTag));  // Add the heap tag.
679    __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
680
681    // Continue with JSObject being successfully allocated
682    // r1: constructor function
683    // r4: JSObject
684    __ jmp(&allocated);
685
686    // Undo the setting of the new top so that the heap is verifiable. For
687    // example, the map's unused properties potentially do not match the
688    // allocated objects unused properties.
689    // r4: JSObject (previous new top)
690    __ bind(&undo_allocation);
691    __ UndoAllocationInNewSpace(r4, r5);
692  }
693
694  // Allocate the new receiver object using the runtime call.
695  // r1: constructor function
696  __ bind(&rt_call);
697  __ push(r1);  // argument for Runtime_NewObject
698  __ CallRuntime(Runtime::kNewObject, 1);
699  __ mov(r4, r0);
700
701  // Receiver for constructor call allocated.
702  // r4: JSObject
703  __ bind(&allocated);
704  __ push(r4);
705
706  // Push the function and the allocated receiver from the stack.
707  // sp[0]: receiver (newly allocated object)
708  // sp[1]: constructor function
709  // sp[2]: number of arguments (smi-tagged)
710  __ ldr(r1, MemOperand(sp, kPointerSize));
711  __ push(r1);  // Constructor function.
712  __ push(r4);  // Receiver.
713
714  // Reload the number of arguments from the stack.
715  // r1: constructor function
716  // sp[0]: receiver
717  // sp[1]: constructor function
718  // sp[2]: receiver
719  // sp[3]: constructor function
720  // sp[4]: number of arguments (smi-tagged)
721  __ ldr(r3, MemOperand(sp, 4 * kPointerSize));
722
723  // Setup pointer to last argument.
724  __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
725
726  // Setup number of arguments for function call below
727  __ mov(r0, Operand(r3, LSR, kSmiTagSize));
728
729  // Copy arguments and receiver to the expression stack.
730  // r0: number of arguments
731  // r2: address of last argument (caller sp)
732  // r1: constructor function
733  // r3: number of arguments (smi-tagged)
734  // sp[0]: receiver
735  // sp[1]: constructor function
736  // sp[2]: receiver
737  // sp[3]: constructor function
738  // sp[4]: number of arguments (smi-tagged)
739  Label loop, entry;
740  __ b(&entry);
741  __ bind(&loop);
742  __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
743  __ push(ip);
744  __ bind(&entry);
745  __ sub(r3, r3, Operand(2), SetCC);
746  __ b(ge, &loop);
747
748  // Call the function.
749  // r0: number of arguments
750  // r1: constructor function
751  if (is_api_function) {
752    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
753    Handle<Code> code = Handle<Code>(
754        Builtins::builtin(Builtins::HandleApiCallConstruct));
755    ParameterCount expected(0);
756    __ InvokeCode(code, expected, expected,
757                  RelocInfo::CODE_TARGET, CALL_FUNCTION);
758  } else {
759    ParameterCount actual(r0);
760    __ InvokeFunction(r1, actual, CALL_FUNCTION);
761  }
762
763  // Pop the function from the stack.
764  // sp[0]: constructor function
765  // sp[2]: receiver
766  // sp[3]: constructor function
767  // sp[4]: number of arguments (smi-tagged)
768  __ pop();
769
770  // Restore context from the frame.
771  // r0: result
772  // sp[0]: receiver
773  // sp[1]: constructor function
774  // sp[2]: number of arguments (smi-tagged)
775  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
776
777  // If the result is an object (in the ECMA sense), we should get rid
778  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
779  // on page 74.
780  Label use_receiver, exit;
781
782  // If the result is a smi, it is *not* an object in the ECMA sense.
783  // r0: result
784  // sp[0]: receiver (newly allocated object)
785  // sp[1]: constructor function
786  // sp[2]: number of arguments (smi-tagged)
787  __ tst(r0, Operand(kSmiTagMask));
788  __ b(eq, &use_receiver);
789
790  // If the type of the result (stored in its map) is less than
791  // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
792  __ CompareObjectType(r0, r3, r3, FIRST_JS_OBJECT_TYPE);
793  __ b(ge, &exit);
794
795  // Throw away the result of the constructor invocation and use the
796  // on-stack receiver as the result.
797  __ bind(&use_receiver);
798  __ ldr(r0, MemOperand(sp));
799
800  // Remove receiver from the stack, remove caller arguments, and
801  // return.
802  __ bind(&exit);
803  // r0: result
804  // sp[0]: receiver (newly allocated object)
805  // sp[1]: constructor function
806  // sp[2]: number of arguments (smi-tagged)
807  __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
808  __ LeaveConstructFrame();
809  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
810  __ add(sp, sp, Operand(kPointerSize));
811  __ IncrementCounter(&Counters::constructed_objects, 1, r1, r2);
812  __ Jump(lr);
813}
814
815
816void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
817  Generate_JSConstructStubHelper(masm, false);
818}
819
820
821void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
822  Generate_JSConstructStubHelper(masm, true);
823}
824
825
826static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
827                                             bool is_construct) {
828  // Called from Generate_JS_Entry
829  // r0: code entry
830  // r1: function
831  // r2: receiver
832  // r3: argc
833  // r4: argv
834  // r5-r7, cp may be clobbered
835
836  // Clear the context before we push it when entering the JS frame.
837  __ mov(cp, Operand(0));
838
839  // Enter an internal frame.
840  __ EnterInternalFrame();
841
842  // Set up the context from the function argument.
843  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
844
845  // Set up the roots register.
846  ExternalReference roots_address = ExternalReference::roots_address();
847  __ mov(r10, Operand(roots_address));
848
849  // Push the function and the receiver onto the stack.
850  __ push(r1);
851  __ push(r2);
852
853  // Copy arguments to the stack in a loop.
854  // r1: function
855  // r3: argc
856  // r4: argv, i.e. points to first arg
857  Label loop, entry;
858  __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
859  // r2 points past last arg.
860  __ b(&entry);
861  __ bind(&loop);
862  __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
863  __ ldr(r0, MemOperand(r0));  // dereference handle
864  __ push(r0);  // push parameter
865  __ bind(&entry);
866  __ cmp(r4, Operand(r2));
867  __ b(ne, &loop);
868
869  // Initialize all JavaScript callee-saved registers, since they will be seen
870  // by the garbage collector as part of handlers.
871  __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
872  __ mov(r5, Operand(r4));
873  __ mov(r6, Operand(r4));
874  __ mov(r7, Operand(r4));
875  if (kR9Available == 1) {
876    __ mov(r9, Operand(r4));
877  }
878
879  // Invoke the code and pass argc as r0.
880  __ mov(r0, Operand(r3));
881  if (is_construct) {
882    __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
883            RelocInfo::CODE_TARGET);
884  } else {
885    ParameterCount actual(r0);
886    __ InvokeFunction(r1, actual, CALL_FUNCTION);
887  }
888
889  // Exit the JS frame and remove the parameters (except function), and return.
890  // Respect ABI stack constraint.
891  __ LeaveInternalFrame();
892  __ Jump(lr);
893
894  // r0: result
895}
896
897
898void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
899  Generate_JSEntryTrampolineHelper(masm, false);
900}
901
902
903void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
904  Generate_JSEntryTrampolineHelper(masm, true);
905}
906
907
908void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
909  // 1. Make sure we have at least one argument.
910  // r0: actual number of arguments
911  { Label done;
912    __ tst(r0, Operand(r0));
913    __ b(ne, &done);
914    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
915    __ push(r2);
916    __ add(r0, r0, Operand(1));
917    __ bind(&done);
918  }
919
920  // 2. Get the function to call (passed as receiver) from the stack, check
921  //    if it is a function.
922  // r0: actual number of arguments
923  Label non_function;
924  __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
925  __ tst(r1, Operand(kSmiTagMask));
926  __ b(eq, &non_function);
927  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
928  __ b(ne, &non_function);
929
930  // 3a. Patch the first argument if necessary when calling a function.
931  // r0: actual number of arguments
932  // r1: function
933  Label shift_arguments;
934  { Label convert_to_object, use_global_receiver, patch_receiver;
935    // Change context eagerly in case we need the global receiver.
936    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
937
938    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
939    __ ldr(r2, MemOperand(r2, -kPointerSize));
940    // r0: actual number of arguments
941    // r1: function
942    // r2: first argument
943    __ tst(r2, Operand(kSmiTagMask));
944    __ b(eq, &convert_to_object);
945
946    __ LoadRoot(r3, Heap::kNullValueRootIndex);
947    __ cmp(r2, r3);
948    __ b(eq, &use_global_receiver);
949    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
950    __ cmp(r2, r3);
951    __ b(eq, &use_global_receiver);
952
953    __ CompareObjectType(r2, r3, r3, FIRST_JS_OBJECT_TYPE);
954    __ b(lt, &convert_to_object);
955    __ cmp(r3, Operand(LAST_JS_OBJECT_TYPE));
956    __ b(le, &shift_arguments);
957
958    __ bind(&convert_to_object);
959    __ EnterInternalFrame();  // In order to preserve argument count.
960    __ mov(r0, Operand(r0, LSL, kSmiTagSize));  // Smi-tagged.
961    __ push(r0);
962
963    __ push(r2);
964    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
965    __ mov(r2, r0);
966
967    __ pop(r0);
968    __ mov(r0, Operand(r0, ASR, kSmiTagSize));
969    __ LeaveInternalFrame();
970    // Restore the function to r1.
971    __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
972    __ jmp(&patch_receiver);
973
974    // Use the global receiver object from the called function as the
975    // receiver.
976    __ bind(&use_global_receiver);
977    const int kGlobalIndex =
978        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
979    __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
980    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
981    __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
982    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
983
984    __ bind(&patch_receiver);
985    __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
986    __ str(r2, MemOperand(r3, -kPointerSize));
987
988    __ jmp(&shift_arguments);
989  }
990
991  // 3b. Patch the first argument when calling a non-function.  The
992  //     CALL_NON_FUNCTION builtin expects the non-function callee as
993  //     receiver, so overwrite the first argument which will ultimately
994  //     become the receiver.
995  // r0: actual number of arguments
996  // r1: function
997  __ bind(&non_function);
998  __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
999  __ str(r1, MemOperand(r2, -kPointerSize));
1000  // Clear r1 to indicate a non-function being called.
1001  __ mov(r1, Operand(0));
1002
1003  // 4. Shift arguments and return address one slot down on the stack
1004  //    (overwriting the original receiver).  Adjust argument count to make
1005  //    the original first argument the new receiver.
1006  // r0: actual number of arguments
1007  // r1: function
1008  __ bind(&shift_arguments);
1009  { Label loop;
1010    // Calculate the copy start address (destination). Copy end address is sp.
1011    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1012
1013    __ bind(&loop);
1014    __ ldr(ip, MemOperand(r2, -kPointerSize));
1015    __ str(ip, MemOperand(r2));
1016    __ sub(r2, r2, Operand(kPointerSize));
1017    __ cmp(r2, sp);
1018    __ b(ne, &loop);
1019    // Adjust the actual number of arguments and remove the top element
1020    // (which is a copy of the last argument).
1021    __ sub(r0, r0, Operand(1));
1022    __ pop();
1023  }
1024
1025  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
1026  // r0: actual number of arguments
1027  // r1: function
1028  { Label function;
1029    __ tst(r1, r1);
1030    __ b(ne, &function);
1031    __ mov(r2, Operand(0));  // expected arguments is 0 for CALL_NON_FUNCTION
1032    __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
1033    __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1034                         RelocInfo::CODE_TARGET);
1035    __ bind(&function);
1036  }
1037
1038  // 5b. Get the code to call from the function and check that the number of
1039  //     expected arguments matches what we're providing.  If so, jump
1040  //     (tail-call) to the code in register edx without checking arguments.
1041  // r0: actual number of arguments
1042  // r1: function
1043  __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1044  __ ldr(r2,
1045         FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
1046  __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
1047  __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
1048  __ cmp(r2, r0);  // Check formal and actual parameter counts.
1049  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1050          RelocInfo::CODE_TARGET, ne);
1051
1052  ParameterCount expected(0);
1053  __ InvokeCode(r3, expected, expected, JUMP_FUNCTION);
1054}
1055
1056
1057void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1058  const int kIndexOffset    = -5 * kPointerSize;
1059  const int kLimitOffset    = -4 * kPointerSize;
1060  const int kArgsOffset     =  2 * kPointerSize;
1061  const int kRecvOffset     =  3 * kPointerSize;
1062  const int kFunctionOffset =  4 * kPointerSize;
1063
1064  __ EnterInternalFrame();
1065
1066  __ ldr(r0, MemOperand(fp, kFunctionOffset));  // get the function
1067  __ push(r0);
1068  __ ldr(r0, MemOperand(fp, kArgsOffset));  // get the args array
1069  __ push(r0);
1070  __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_JS);
1071
1072  // Check the stack for overflow. We are not trying need to catch
1073  // interruptions (e.g. debug break and preemption) here, so the "real stack
1074  // limit" is checked.
1075  Label okay;
1076  __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
1077  // Make r2 the space we have left. The stack might already be overflowed
1078  // here which will cause r2 to become negative.
1079  __ sub(r2, sp, r2);
1080  // Check if the arguments will overflow the stack.
1081  __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1082  __ b(gt, &okay);  // Signed comparison.
1083
1084  // Out of stack space.
1085  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1086  __ push(r1);
1087  __ push(r0);
1088  __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_JS);
1089  // End of stack check.
1090
1091  // Push current limit and index.
1092  __ bind(&okay);
1093  __ push(r0);  // limit
1094  __ mov(r1, Operand(0));  // initial index
1095  __ push(r1);
1096
1097  // Change context eagerly to get the right global object if necessary.
1098  __ ldr(r0, MemOperand(fp, kFunctionOffset));
1099  __ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
1100
1101  // Compute the receiver.
1102  Label call_to_object, use_global_receiver, push_receiver;
1103  __ ldr(r0, MemOperand(fp, kRecvOffset));
1104  __ tst(r0, Operand(kSmiTagMask));
1105  __ b(eq, &call_to_object);
1106  __ LoadRoot(r1, Heap::kNullValueRootIndex);
1107  __ cmp(r0, r1);
1108  __ b(eq, &use_global_receiver);
1109  __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1110  __ cmp(r0, r1);
1111  __ b(eq, &use_global_receiver);
1112
1113  // Check if the receiver is already a JavaScript object.
1114  // r0: receiver
1115  __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
1116  __ b(lt, &call_to_object);
1117  __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
1118  __ b(le, &push_receiver);
1119
1120  // Convert the receiver to a regular object.
1121  // r0: receiver
1122  __ bind(&call_to_object);
1123  __ push(r0);
1124  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
1125  __ b(&push_receiver);
1126
1127  // Use the current global receiver object as the receiver.
1128  __ bind(&use_global_receiver);
1129  const int kGlobalOffset =
1130      Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1131  __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
1132  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
1133  __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
1134  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
1135
1136  // Push the receiver.
1137  // r0: receiver
1138  __ bind(&push_receiver);
1139  __ push(r0);
1140
1141  // Copy all arguments from the array to the stack.
1142  Label entry, loop;
1143  __ ldr(r0, MemOperand(fp, kIndexOffset));
1144  __ b(&entry);
1145
1146  // Load the current argument from the arguments array and push it to the
1147  // stack.
1148  // r0: current argument index
1149  __ bind(&loop);
1150  __ ldr(r1, MemOperand(fp, kArgsOffset));
1151  __ push(r1);
1152  __ push(r0);
1153
1154  // Call the runtime to access the property in the arguments array.
1155  __ CallRuntime(Runtime::kGetProperty, 2);
1156  __ push(r0);
1157
1158  // Use inline caching to access the arguments.
1159  __ ldr(r0, MemOperand(fp, kIndexOffset));
1160  __ add(r0, r0, Operand(1 << kSmiTagSize));
1161  __ str(r0, MemOperand(fp, kIndexOffset));
1162
1163  // Test if the copy loop has finished copying all the elements from the
1164  // arguments object.
1165  __ bind(&entry);
1166  __ ldr(r1, MemOperand(fp, kLimitOffset));
1167  __ cmp(r0, r1);
1168  __ b(ne, &loop);
1169
1170  // Invoke the function.
1171  ParameterCount actual(r0);
1172  __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1173  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1174  __ InvokeFunction(r1, actual, CALL_FUNCTION);
1175
1176  // Tear down the internal frame and remove function, receiver and args.
1177  __ LeaveInternalFrame();
1178  __ add(sp, sp, Operand(3 * kPointerSize));
1179  __ Jump(lr);
1180}
1181
1182
1183static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1184  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
1185  __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1186  __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
1187  __ add(fp, sp, Operand(3 * kPointerSize));
1188}
1189
1190
1191static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1192  // ----------- S t a t e -------------
1193  //  -- r0 : result being passed through
1194  // -----------------------------------
1195  // Get the number of arguments passed (as a smi), tear down the frame and
1196  // then tear down the parameters.
1197  __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
1198  __ mov(sp, fp);
1199  __ ldm(ia_w, sp, fp.bit() | lr.bit());
1200  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
1201  __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
1202}
1203
1204
1205void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1206  // ----------- S t a t e -------------
1207  //  -- r0 : actual number of arguments
1208  //  -- r1 : function (passed through to callee)
1209  //  -- r2 : expected number of arguments
1210  //  -- r3 : code entry to call
1211  // -----------------------------------
1212
1213  Label invoke, dont_adapt_arguments;
1214
1215  Label enough, too_few;
1216  __ cmp(r0, Operand(r2));
1217  __ b(lt, &too_few);
1218  __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1219  __ b(eq, &dont_adapt_arguments);
1220
1221  {  // Enough parameters: actual >= expected
1222    __ bind(&enough);
1223    EnterArgumentsAdaptorFrame(masm);
1224
1225    // Calculate copy start address into r0 and copy end address into r2.
1226    // r0: actual number of arguments as a smi
1227    // r1: function
1228    // r2: expected number of arguments
1229    // r3: code entry to call
1230    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1231    // adjust for return address and receiver
1232    __ add(r0, r0, Operand(2 * kPointerSize));
1233    __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
1234
1235    // Copy the arguments (including the receiver) to the new stack frame.
1236    // r0: copy start address
1237    // r1: function
1238    // r2: copy end address
1239    // r3: code entry to call
1240
1241    Label copy;
1242    __ bind(&copy);
1243    __ ldr(ip, MemOperand(r0, 0));
1244    __ push(ip);
1245    __ cmp(r0, r2);  // Compare before moving to next argument.
1246    __ sub(r0, r0, Operand(kPointerSize));
1247    __ b(ne, &copy);
1248
1249    __ b(&invoke);
1250  }
1251
1252  {  // Too few parameters: Actual < expected
1253    __ bind(&too_few);
1254    EnterArgumentsAdaptorFrame(masm);
1255
1256    // Calculate copy start address into r0 and copy end address is fp.
1257    // r0: actual number of arguments as a smi
1258    // r1: function
1259    // r2: expected number of arguments
1260    // r3: code entry to call
1261    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1262
1263    // Copy the arguments (including the receiver) to the new stack frame.
1264    // r0: copy start address
1265    // r1: function
1266    // r2: expected number of arguments
1267    // r3: code entry to call
1268    Label copy;
1269    __ bind(&copy);
1270    // Adjust load for return address and receiver.
1271    __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
1272    __ push(ip);
1273    __ cmp(r0, fp);  // Compare before moving to next argument.
1274    __ sub(r0, r0, Operand(kPointerSize));
1275    __ b(ne, &copy);
1276
1277    // Fill the remaining expected arguments with undefined.
1278    // r1: function
1279    // r2: expected number of arguments
1280    // r3: code entry to call
1281    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1282    __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
1283    __ sub(r2, r2, Operand(4 * kPointerSize));  // Adjust for frame.
1284
1285    Label fill;
1286    __ bind(&fill);
1287    __ push(ip);
1288    __ cmp(sp, r2);
1289    __ b(ne, &fill);
1290  }
1291
1292  // Call the entry point.
1293  __ bind(&invoke);
1294  __ Call(r3);
1295
1296  // Exit frame and return.
1297  LeaveArgumentsAdaptorFrame(masm);
1298  __ Jump(lr);
1299
1300
1301  // -------------------------------------------
1302  // Dont adapt arguments.
1303  // -------------------------------------------
1304  __ bind(&dont_adapt_arguments);
1305  __ Jump(r3);
1306}
1307
1308
1309#undef __
1310
1311} }  // namespace v8::internal
1312