builtins-arm.cc revision 8a31eba00023874d4a1dcdc5f411cc4336776874
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "codegen-inl.h"
33#include "debug.h"
34#include "runtime.h"
35
36namespace v8 {
37namespace internal {
38
39
40#define __ ACCESS_MASM(masm)
41
42
43void Builtins::Generate_Adaptor(MacroAssembler* masm,
44                                CFunctionId id,
45                                BuiltinExtraArguments extra_args) {
46  // ----------- S t a t e -------------
47  //  -- r0                 : number of arguments excluding receiver
48  //  -- r1                 : called function (only guaranteed when
49  //                          extra_args requires it)
50  //  -- cp                 : context
51  //  -- sp[0]              : last argument
52  //  -- ...
53  //  -- sp[4 * (argc - 1)] : first argument (argc == r0)
54  //  -- sp[4 * argc]       : receiver
55  // -----------------------------------
56
57  // Insert extra arguments.
58  int num_extra_args = 0;
59  if (extra_args == NEEDS_CALLED_FUNCTION) {
60    num_extra_args = 1;
61    __ push(r1);
62  } else {
63    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
64  }
65
66  // JumpToExternalReference expects r0 to contain the number of arguments
67  // including the receiver and the extra arguments.
68  __ add(r0, r0, Operand(num_extra_args + 1));
69  __ JumpToExternalReference(ExternalReference(id));
70}
71
72
73// Load the built-in Array function from the current context.
74static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
75  // Load the global context.
76
77  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
78  __ ldr(result,
79         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
80  // Load the Array function from the global context.
81  __ ldr(result,
82         MemOperand(result,
83                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
84}
85
86
87// This constant has the same value as JSArray::kPreallocatedArrayElements and
88// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
89// below should be reconsidered.
90static const int kLoopUnfoldLimit = 4;
91
92
93// Allocate an empty JSArray. The allocated array is put into the result
94// register. An elements backing store is allocated with size initial_capacity
95// and filled with the hole values.
96static void AllocateEmptyJSArray(MacroAssembler* masm,
97                                 Register array_function,
98                                 Register result,
99                                 Register scratch1,
100                                 Register scratch2,
101                                 Register scratch3,
102                                 int initial_capacity,
103                                 Label* gc_required) {
104  ASSERT(initial_capacity > 0);
105  // Load the initial map from the array function.
106  __ ldr(scratch1, FieldMemOperand(array_function,
107                                   JSFunction::kPrototypeOrInitialMapOffset));
108
109  // Allocate the JSArray object together with space for a fixed array with the
110  // requested elements.
111  int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
112  __ AllocateInNewSpace(size,
113                        result,
114                        scratch2,
115                        scratch3,
116                        gc_required,
117                        TAG_OBJECT);
118
119  // Allocated the JSArray. Now initialize the fields except for the elements
120  // array.
121  // result: JSObject
122  // scratch1: initial map
123  // scratch2: start of next object
124  __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
125  __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
126  __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
127  // Field JSArray::kElementsOffset is initialized later.
128  __ mov(scratch3,  Operand(0, RelocInfo::NONE));
129  __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
130
131  // Calculate the location of the elements array and set elements array member
132  // of the JSArray.
133  // result: JSObject
134  // scratch2: start of next object
135  __ add(scratch1, result, Operand(JSArray::kSize));
136  __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
137
138  // Clear the heap tag on the elements array.
139  ASSERT(kSmiTag == 0);
140  __ sub(scratch1, scratch1, Operand(kHeapObjectTag));
141
142  // Initialize the FixedArray and fill it with holes. FixedArray length is
143  // stored as a smi.
144  // result: JSObject
145  // scratch1: elements array (untagged)
146  // scratch2: start of next object
147  __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
148  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
149  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
150  __ mov(scratch3,  Operand(Smi::FromInt(initial_capacity)));
151  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
152  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
153
154  // Fill the FixedArray with the hole value.
155  ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
156  ASSERT(initial_capacity <= kLoopUnfoldLimit);
157  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
158  for (int i = 0; i < initial_capacity; i++) {
159    __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
160  }
161}
162
163// Allocate a JSArray with the number of elements stored in a register. The
164// register array_function holds the built-in Array function and the register
165// array_size holds the size of the array as a smi. The allocated array is put
166// into the result register and beginning and end of the FixedArray elements
167// storage is put into registers elements_array_storage and elements_array_end
168// (see  below for when that is not the case). If the parameter fill_with_holes
169// is true the allocated elements backing store is filled with the hole values
170// otherwise it is left uninitialized. When the backing store is filled the
171// register elements_array_storage is scratched.
172static void AllocateJSArray(MacroAssembler* masm,
173                            Register array_function,  // Array function.
174                            Register array_size,  // As a smi.
175                            Register result,
176                            Register elements_array_storage,
177                            Register elements_array_end,
178                            Register scratch1,
179                            Register scratch2,
180                            bool fill_with_hole,
181                            Label* gc_required) {
182  Label not_empty, allocated;
183
184  // Load the initial map from the array function.
185  __ ldr(elements_array_storage,
186         FieldMemOperand(array_function,
187                         JSFunction::kPrototypeOrInitialMapOffset));
188
189  // Check whether an empty sized array is requested.
190  __ tst(array_size, array_size);
191  __ b(nz, &not_empty);
192
193  // If an empty array is requested allocate a small elements array anyway. This
194  // keeps the code below free of special casing for the empty array.
195  int size = JSArray::kSize +
196             FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
197  __ AllocateInNewSpace(size,
198                        result,
199                        elements_array_end,
200                        scratch1,
201                        gc_required,
202                        TAG_OBJECT);
203  __ jmp(&allocated);
204
205  // Allocate the JSArray object together with space for a FixedArray with the
206  // requested number of elements.
207  __ bind(&not_empty);
208  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
209  __ mov(elements_array_end,
210         Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
211  __ add(elements_array_end,
212         elements_array_end,
213         Operand(array_size, ASR, kSmiTagSize));
214  __ AllocateInNewSpace(
215      elements_array_end,
216      result,
217      scratch1,
218      scratch2,
219      gc_required,
220      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
221
222  // Allocated the JSArray. Now initialize the fields except for the elements
223  // array.
224  // result: JSObject
225  // elements_array_storage: initial map
226  // array_size: size of array (smi)
227  __ bind(&allocated);
228  __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
229  __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
230  __ str(elements_array_storage,
231         FieldMemOperand(result, JSArray::kPropertiesOffset));
232  // Field JSArray::kElementsOffset is initialized later.
233  __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
234
235  // Calculate the location of the elements array and set elements array member
236  // of the JSArray.
237  // result: JSObject
238  // array_size: size of array (smi)
239  __ add(elements_array_storage, result, Operand(JSArray::kSize));
240  __ str(elements_array_storage,
241         FieldMemOperand(result, JSArray::kElementsOffset));
242
243  // Clear the heap tag on the elements array.
244  ASSERT(kSmiTag == 0);
245  __ sub(elements_array_storage,
246         elements_array_storage,
247         Operand(kHeapObjectTag));
248  // Initialize the fixed array and fill it with holes. FixedArray length is
249  // stored as a smi.
250  // result: JSObject
251  // elements_array_storage: elements array (untagged)
252  // array_size: size of array (smi)
253  __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
254  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
255  __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
256  ASSERT(kSmiTag == 0);
257  __ tst(array_size, array_size);
258  // Length of the FixedArray is the number of pre-allocated elements if
259  // the actual JSArray has length 0 and the size of the JSArray for non-empty
260  // JSArrays. The length of a FixedArray is stored as a smi.
261  __ mov(array_size,
262         Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)),
263         LeaveCC,
264         eq);
265  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
266  __ str(array_size,
267         MemOperand(elements_array_storage, kPointerSize, PostIndex));
268
269  // Calculate elements array and elements array end.
270  // result: JSObject
271  // elements_array_storage: elements array element storage
272  // array_size: smi-tagged size of elements array
273  ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
274  __ add(elements_array_end,
275         elements_array_storage,
276         Operand(array_size, LSL, kPointerSizeLog2 - kSmiTagSize));
277
278  // Fill the allocated FixedArray with the hole value if requested.
279  // result: JSObject
280  // elements_array_storage: elements array element storage
281  // elements_array_end: start of next object
282  if (fill_with_hole) {
283    Label loop, entry;
284    __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
285    __ jmp(&entry);
286    __ bind(&loop);
287    __ str(scratch1,
288           MemOperand(elements_array_storage, kPointerSize, PostIndex));
289    __ bind(&entry);
290    __ cmp(elements_array_storage, elements_array_end);
291    __ b(lt, &loop);
292  }
293}
294
295// Create a new array for the built-in Array function. This function allocates
296// the JSArray object and the FixedArray elements array and initializes these.
297// If the Array cannot be constructed in native code the runtime is called. This
298// function assumes the following state:
299//   r0: argc
300//   r1: constructor (built-in Array function)
301//   lr: return address
302//   sp[0]: last argument
303// This function is used for both construct and normal calls of Array. The only
304// difference between handling a construct call and a normal call is that for a
305// construct call the constructor function in r1 needs to be preserved for
306// entering the generic code. In both cases argc in r0 needs to be preserved.
307// Both registers are preserved by this code so no need to differentiate between
308// construct call and normal call.
309static void ArrayNativeCode(MacroAssembler* masm,
310                            Label* call_generic_code) {
311  Label argc_one_or_more, argc_two_or_more;
312
313  // Check for array construction with zero arguments or one.
314  __ cmp(r0, Operand(0, RelocInfo::NONE));
315  __ b(ne, &argc_one_or_more);
316
317  // Handle construction of an empty array.
318  AllocateEmptyJSArray(masm,
319                       r1,
320                       r2,
321                       r3,
322                       r4,
323                       r5,
324                       JSArray::kPreallocatedArrayElements,
325                       call_generic_code);
326  __ IncrementCounter(&Counters::array_function_native, 1, r3, r4);
327  // Setup return value, remove receiver from stack and return.
328  __ mov(r0, r2);
329  __ add(sp, sp, Operand(kPointerSize));
330  __ Jump(lr);
331
332  // Check for one argument. Bail out if argument is not smi or if it is
333  // negative.
334  __ bind(&argc_one_or_more);
335  __ cmp(r0, Operand(1));
336  __ b(ne, &argc_two_or_more);
337  ASSERT(kSmiTag == 0);
338  __ ldr(r2, MemOperand(sp));  // Get the argument from the stack.
339  __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
340  __ b(ne, call_generic_code);
341
342  // Handle construction of an empty array of a certain size. Bail out if size
343  // is too large to actually allocate an elements array.
344  ASSERT(kSmiTag == 0);
345  __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
346  __ b(ge, call_generic_code);
347
348  // r0: argc
349  // r1: constructor
350  // r2: array_size (smi)
351  // sp[0]: argument
352  AllocateJSArray(masm,
353                  r1,
354                  r2,
355                  r3,
356                  r4,
357                  r5,
358                  r6,
359                  r7,
360                  true,
361                  call_generic_code);
362  __ IncrementCounter(&Counters::array_function_native, 1, r2, r4);
363  // Setup return value, remove receiver and argument from stack and return.
364  __ mov(r0, r3);
365  __ add(sp, sp, Operand(2 * kPointerSize));
366  __ Jump(lr);
367
368  // Handle construction of an array from a list of arguments.
369  __ bind(&argc_two_or_more);
370  __ mov(r2, Operand(r0, LSL, kSmiTagSize));  // Convet argc to a smi.
371
372  // r0: argc
373  // r1: constructor
374  // r2: array_size (smi)
375  // sp[0]: last argument
376  AllocateJSArray(masm,
377                  r1,
378                  r2,
379                  r3,
380                  r4,
381                  r5,
382                  r6,
383                  r7,
384                  false,
385                  call_generic_code);
386  __ IncrementCounter(&Counters::array_function_native, 1, r2, r6);
387
388  // Fill arguments as array elements. Copy from the top of the stack (last
389  // element) to the array backing store filling it backwards. Note:
390  // elements_array_end points after the backing store therefore PreIndex is
391  // used when filling the backing store.
392  // r0: argc
393  // r3: JSArray
394  // r4: elements_array storage start (untagged)
395  // r5: elements_array_end (untagged)
396  // sp[0]: last argument
397  Label loop, entry;
398  __ jmp(&entry);
399  __ bind(&loop);
400  __ ldr(r2, MemOperand(sp, kPointerSize, PostIndex));
401  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
402  __ bind(&entry);
403  __ cmp(r4, r5);
404  __ b(lt, &loop);
405
406  // Remove caller arguments and receiver from the stack, setup return value and
407  // return.
408  // r0: argc
409  // r3: JSArray
410  // sp[0]: receiver
411  __ add(sp, sp, Operand(kPointerSize));
412  __ mov(r0, r3);
413  __ Jump(lr);
414}
415
416
417void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
418  // ----------- S t a t e -------------
419  //  -- r0     : number of arguments
420  //  -- lr     : return address
421  //  -- sp[...]: constructor arguments
422  // -----------------------------------
423  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
424
425  // Get the Array function.
426  GenerateLoadArrayFunction(masm, r1);
427
428  if (FLAG_debug_code) {
429    // Initial map for the builtin Array function shoud be a map.
430    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
431    __ tst(r2, Operand(kSmiTagMask));
432    __ Assert(ne, "Unexpected initial map for Array function");
433    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
434    __ Assert(eq, "Unexpected initial map for Array function");
435  }
436
437  // Run the native code for the Array function called as a normal function.
438  ArrayNativeCode(masm, &generic_array_code);
439
440  // Jump to the generic array code if the specialized code cannot handle
441  // the construction.
442  __ bind(&generic_array_code);
443  Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
444  Handle<Code> array_code(code);
445  __ Jump(array_code, RelocInfo::CODE_TARGET);
446}
447
448
449void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
450  // ----------- S t a t e -------------
451  //  -- r0     : number of arguments
452  //  -- r1     : constructor function
453  //  -- lr     : return address
454  //  -- sp[...]: constructor arguments
455  // -----------------------------------
456  Label generic_constructor;
457
458  if (FLAG_debug_code) {
459    // The array construct code is only set for the builtin Array function which
460    // always have a map.
461    GenerateLoadArrayFunction(masm, r2);
462    __ cmp(r1, r2);
463    __ Assert(eq, "Unexpected Array function");
464    // Initial map for the builtin Array function should be a map.
465    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
466    __ tst(r2, Operand(kSmiTagMask));
467    __ Assert(ne, "Unexpected initial map for Array function");
468    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
469    __ Assert(eq, "Unexpected initial map for Array function");
470  }
471
472  // Run the native code for the Array function called as a constructor.
473  ArrayNativeCode(masm, &generic_constructor);
474
475  // Jump to the generic construct code in case the specialized code cannot
476  // handle the construction.
477  __ bind(&generic_constructor);
478  Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
479  Handle<Code> generic_construct_stub(code);
480  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
481}
482
483
484void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
485  // ----------- S t a t e -------------
486  //  -- r0                     : number of arguments
487  //  -- r1                     : constructor function
488  //  -- lr                     : return address
489  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
490  //  -- sp[argc * 4]           : receiver
491  // -----------------------------------
492  __ IncrementCounter(&Counters::string_ctor_calls, 1, r2, r3);
493
494  Register function = r1;
495  if (FLAG_debug_code) {
496    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, r2);
497    __ cmp(function, Operand(r2));
498    __ Assert(eq, "Unexpected String function");
499  }
500
501  // Load the first arguments in r0 and get rid of the rest.
502  Label no_arguments;
503  __ cmp(r0, Operand(0));
504  __ b(eq, &no_arguments);
505  // First args = sp[(argc - 1) * 4].
506  __ sub(r0, r0, Operand(1));
507  __ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex));
508  // sp now point to args[0], drop args[0] + receiver.
509  __ Drop(2);
510
511  Register argument = r2;
512  Label not_cached, argument_is_string;
513  NumberToStringStub::GenerateLookupNumberStringCache(
514      masm,
515      r0,        // Input.
516      argument,  // Result.
517      r3,        // Scratch.
518      r4,        // Scratch.
519      r5,        // Scratch.
520      false,     // Is it a Smi?
521      &not_cached);
522  __ IncrementCounter(&Counters::string_ctor_cached_number, 1, r3, r4);
523  __ bind(&argument_is_string);
524
525  // ----------- S t a t e -------------
526  //  -- r2     : argument converted to string
527  //  -- r1     : constructor function
528  //  -- lr     : return address
529  // -----------------------------------
530
531  Label gc_required;
532  __ AllocateInNewSpace(JSValue::kSize,
533                        r0,  // Result.
534                        r3,  // Scratch.
535                        r4,  // Scratch.
536                        &gc_required,
537                        TAG_OBJECT);
538
539  // Initialising the String Object.
540  Register map = r3;
541  __ LoadGlobalFunctionInitialMap(function, map, r4);
542  if (FLAG_debug_code) {
543    __ ldrb(r4, FieldMemOperand(map, Map::kInstanceSizeOffset));
544    __ cmp(r4, Operand(JSValue::kSize >> kPointerSizeLog2));
545    __ Assert(eq, "Unexpected string wrapper instance size");
546    __ ldrb(r4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
547    __ cmp(r4, Operand(0));
548    __ Assert(eq, "Unexpected unused properties of string wrapper");
549  }
550  __ str(map, FieldMemOperand(r0, HeapObject::kMapOffset));
551
552  __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
553  __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
554  __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
555
556  __ str(argument, FieldMemOperand(r0, JSValue::kValueOffset));
557
558  // Ensure the object is fully initialized.
559  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
560
561  __ Ret();
562
563  // The argument was not found in the number to string cache. Check
564  // if it's a string already before calling the conversion builtin.
565  Label convert_argument;
566  __ bind(&not_cached);
567  __ BranchOnSmi(r0, &convert_argument);
568
569  // Is it a String?
570  __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
571  __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset));
572  ASSERT(kNotStringTag != 0);
573  __ tst(r3, Operand(kIsNotStringMask));
574  __ b(ne, &convert_argument);
575  __ mov(argument, r0);
576  __ IncrementCounter(&Counters::string_ctor_conversions, 1, r3, r4);
577  __ b(&argument_is_string);
578
579  // Invoke the conversion builtin and put the result into r2.
580  __ bind(&convert_argument);
581  __ push(function);  // Preserve the function.
582  __ IncrementCounter(&Counters::string_ctor_conversions, 1, r3, r4);
583  __ EnterInternalFrame();
584  __ push(r0);
585  __ InvokeBuiltin(Builtins::TO_STRING, CALL_JS);
586  __ LeaveInternalFrame();
587  __ pop(function);
588  __ mov(argument, r0);
589  __ b(&argument_is_string);
590
591  // Load the empty string into r2, remove the receiver from the
592  // stack, and jump back to the case where the argument is a string.
593  __ bind(&no_arguments);
594  __ LoadRoot(argument, Heap::kEmptyStringRootIndex);
595  __ Drop(1);
596  __ b(&argument_is_string);
597
598  // At this point the argument is already a string. Call runtime to
599  // create a string wrapper.
600  __ bind(&gc_required);
601  __ IncrementCounter(&Counters::string_ctor_gc_required, 1, r3, r4);
602  __ EnterInternalFrame();
603  __ push(argument);
604  __ CallRuntime(Runtime::kNewStringWrapper, 1);
605  __ LeaveInternalFrame();
606  __ Ret();
607}
608
609
610void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
611  // ----------- S t a t e -------------
612  //  -- r0     : number of arguments
613  //  -- r1     : constructor function
614  //  -- lr     : return address
615  //  -- sp[...]: constructor arguments
616  // -----------------------------------
617
618  Label non_function_call;
619  // Check that the function is not a smi.
620  __ tst(r1, Operand(kSmiTagMask));
621  __ b(eq, &non_function_call);
622  // Check that the function is a JSFunction.
623  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
624  __ b(ne, &non_function_call);
625
626  // Jump to the function-specific construct stub.
627  __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
628  __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
629  __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
630
631  // r0: number of arguments
632  // r1: called object
633  __ bind(&non_function_call);
634  // Set expected number of arguments to zero (not changing r0).
635  __ mov(r2, Operand(0, RelocInfo::NONE));
636  __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
637  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
638          RelocInfo::CODE_TARGET);
639}
640
641
642static void Generate_JSConstructStubHelper(MacroAssembler* masm,
643                                           bool is_api_function,
644                                           bool count_constructions) {
645  // Should never count constructions for api objects.
646  ASSERT(!is_api_function || !count_constructions);
647
648  // Enter a construct frame.
649  __ EnterConstructFrame();
650
651  // Preserve the two incoming parameters on the stack.
652  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
653  __ push(r0);  // Smi-tagged arguments count.
654  __ push(r1);  // Constructor function.
655
656  // Try to allocate the object without transitioning into C code. If any of the
657  // preconditions is not met, the code bails out to the runtime call.
658  Label rt_call, allocated;
659  if (FLAG_inline_new) {
660    Label undo_allocation;
661#ifdef ENABLE_DEBUGGER_SUPPORT
662    ExternalReference debug_step_in_fp =
663        ExternalReference::debug_step_in_fp_address();
664    __ mov(r2, Operand(debug_step_in_fp));
665    __ ldr(r2, MemOperand(r2));
666    __ tst(r2, r2);
667    __ b(nz, &rt_call);
668#endif
669
670    // Load the initial map and verify that it is in fact a map.
671    // r1: constructor function
672    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
673    __ tst(r2, Operand(kSmiTagMask));
674    __ b(eq, &rt_call);
675    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
676    __ b(ne, &rt_call);
677
678    // Check that the constructor is not constructing a JSFunction (see comments
679    // in Runtime_NewObject in runtime.cc). In which case the initial map's
680    // instance type would be JS_FUNCTION_TYPE.
681    // r1: constructor function
682    // r2: initial map
683    __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
684    __ b(eq, &rt_call);
685
686    if (count_constructions) {
687      Label allocate;
688      // Decrease generous allocation count.
689      __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
690      MemOperand constructor_count =
691          FieldMemOperand(r3, SharedFunctionInfo::kConstructionCountOffset);
692      __ ldrb(r4, constructor_count);
693      __ sub(r4, r4, Operand(1), SetCC);
694      __ strb(r4, constructor_count);
695      __ b(ne, &allocate);
696
697      __ Push(r1, r2);
698
699      __ push(r1);  // constructor
700      // The call will replace the stub, so the countdown is only done once.
701      __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
702
703      __ pop(r2);
704      __ pop(r1);
705
706      __ bind(&allocate);
707    }
708
709    // Now allocate the JSObject on the heap.
710    // r1: constructor function
711    // r2: initial map
712    __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
713    __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS);
714
715    // Allocated the JSObject, now initialize the fields. Map is set to initial
716    // map and properties and elements are set to empty fixed array.
717    // r1: constructor function
718    // r2: initial map
719    // r3: object size
720    // r4: JSObject (not tagged)
721    __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
722    __ mov(r5, r4);
723    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
724    __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
725    ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
726    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
727    ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
728    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
729
730    // Fill all the in-object properties with the appropriate filler.
731    // r1: constructor function
732    // r2: initial map
733    // r3: object size (in words)
734    // r4: JSObject (not tagged)
735    // r5: First in-object property of JSObject (not tagged)
736    __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
737    ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
738    { Label loop, entry;
739      if (count_constructions) {
740        // To allow for truncation.
741        __ LoadRoot(r7, Heap::kOnePointerFillerMapRootIndex);
742      } else {
743        __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
744      }
745      __ b(&entry);
746      __ bind(&loop);
747      __ str(r7, MemOperand(r5, kPointerSize, PostIndex));
748      __ bind(&entry);
749      __ cmp(r5, r6);
750      __ b(lt, &loop);
751    }
752
753    // Add the object tag to make the JSObject real, so that we can continue and
754    // jump into the continuation code at any time from now on. Any failures
755    // need to undo the allocation, so that the heap is in a consistent state
756    // and verifiable.
757    __ add(r4, r4, Operand(kHeapObjectTag));
758
759    // Check if a non-empty properties array is needed. Continue with allocated
760    // object if not fall through to runtime call if it is.
761    // r1: constructor function
762    // r4: JSObject
763    // r5: start of next object (not tagged)
764    __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
765    // The field instance sizes contains both pre-allocated property fields and
766    // in-object properties.
767    __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
768    __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * 8, 8);
769    __ add(r3, r3, Operand(r6));
770    __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * 8, 8);
771    __ sub(r3, r3, Operand(r6), SetCC);
772
773    // Done if no extra properties are to be allocated.
774    __ b(eq, &allocated);
775    __ Assert(pl, "Property allocation count failed.");
776
777    // Scale the number of elements by pointer size and add the header for
778    // FixedArrays to the start of the next object calculation from above.
779    // r1: constructor
780    // r3: number of elements in properties array
781    // r4: JSObject
782    // r5: start of next object
783    __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
784    __ AllocateInNewSpace(
785        r0,
786        r5,
787        r6,
788        r2,
789        &undo_allocation,
790        static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
791
792    // Initialize the FixedArray.
793    // r1: constructor
794    // r3: number of elements in properties array
795    // r4: JSObject
796    // r5: FixedArray (not tagged)
797    __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
798    __ mov(r2, r5);
799    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
800    __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
801    ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
802    __ mov(r0, Operand(r3, LSL, kSmiTagSize));
803    __ str(r0, MemOperand(r2, kPointerSize, PostIndex));
804
805    // Initialize the fields to undefined.
806    // r1: constructor function
807    // r2: First element of FixedArray (not tagged)
808    // r3: number of elements in properties array
809    // r4: JSObject
810    // r5: FixedArray (not tagged)
811    __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
812    ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
813    { Label loop, entry;
814      if (count_constructions) {
815        __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
816      } else if (FLAG_debug_code) {
817        __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
818        __ cmp(r7, r8);
819        __ Assert(eq, "Undefined value not loaded.");
820      }
821      __ b(&entry);
822      __ bind(&loop);
823      __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
824      __ bind(&entry);
825      __ cmp(r2, r6);
826      __ b(lt, &loop);
827    }
828
829    // Store the initialized FixedArray into the properties field of
830    // the JSObject
831    // r1: constructor function
832    // r4: JSObject
833    // r5: FixedArray (not tagged)
834    __ add(r5, r5, Operand(kHeapObjectTag));  // Add the heap tag.
835    __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
836
837    // Continue with JSObject being successfully allocated
838    // r1: constructor function
839    // r4: JSObject
840    __ jmp(&allocated);
841
842    // Undo the setting of the new top so that the heap is verifiable. For
843    // example, the map's unused properties potentially do not match the
844    // allocated objects unused properties.
845    // r4: JSObject (previous new top)
846    __ bind(&undo_allocation);
847    __ UndoAllocationInNewSpace(r4, r5);
848  }
849
850  // Allocate the new receiver object using the runtime call.
851  // r1: constructor function
852  __ bind(&rt_call);
853  __ push(r1);  // argument for Runtime_NewObject
854  __ CallRuntime(Runtime::kNewObject, 1);
855  __ mov(r4, r0);
856
857  // Receiver for constructor call allocated.
858  // r4: JSObject
859  __ bind(&allocated);
860  __ push(r4);
861
862  // Push the function and the allocated receiver from the stack.
863  // sp[0]: receiver (newly allocated object)
864  // sp[1]: constructor function
865  // sp[2]: number of arguments (smi-tagged)
866  __ ldr(r1, MemOperand(sp, kPointerSize));
867  __ push(r1);  // Constructor function.
868  __ push(r4);  // Receiver.
869
870  // Reload the number of arguments from the stack.
871  // r1: constructor function
872  // sp[0]: receiver
873  // sp[1]: constructor function
874  // sp[2]: receiver
875  // sp[3]: constructor function
876  // sp[4]: number of arguments (smi-tagged)
877  __ ldr(r3, MemOperand(sp, 4 * kPointerSize));
878
879  // Setup pointer to last argument.
880  __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
881
882  // Setup number of arguments for function call below
883  __ mov(r0, Operand(r3, LSR, kSmiTagSize));
884
885  // Copy arguments and receiver to the expression stack.
886  // r0: number of arguments
887  // r2: address of last argument (caller sp)
888  // r1: constructor function
889  // r3: number of arguments (smi-tagged)
890  // sp[0]: receiver
891  // sp[1]: constructor function
892  // sp[2]: receiver
893  // sp[3]: constructor function
894  // sp[4]: number of arguments (smi-tagged)
895  Label loop, entry;
896  __ b(&entry);
897  __ bind(&loop);
898  __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
899  __ push(ip);
900  __ bind(&entry);
901  __ sub(r3, r3, Operand(2), SetCC);
902  __ b(ge, &loop);
903
904  // Call the function.
905  // r0: number of arguments
906  // r1: constructor function
907  if (is_api_function) {
908    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
909    Handle<Code> code = Handle<Code>(
910        Builtins::builtin(Builtins::HandleApiCallConstruct));
911    ParameterCount expected(0);
912    __ InvokeCode(code, expected, expected,
913                  RelocInfo::CODE_TARGET, CALL_FUNCTION);
914  } else {
915    ParameterCount actual(r0);
916    __ InvokeFunction(r1, actual, CALL_FUNCTION);
917  }
918
919  // Pop the function from the stack.
920  // sp[0]: constructor function
921  // sp[2]: receiver
922  // sp[3]: constructor function
923  // sp[4]: number of arguments (smi-tagged)
924  __ pop();
925
926  // Restore context from the frame.
927  // r0: result
928  // sp[0]: receiver
929  // sp[1]: constructor function
930  // sp[2]: number of arguments (smi-tagged)
931  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
932
933  // If the result is an object (in the ECMA sense), we should get rid
934  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
935  // on page 74.
936  Label use_receiver, exit;
937
938  // If the result is a smi, it is *not* an object in the ECMA sense.
939  // r0: result
940  // sp[0]: receiver (newly allocated object)
941  // sp[1]: constructor function
942  // sp[2]: number of arguments (smi-tagged)
943  __ tst(r0, Operand(kSmiTagMask));
944  __ b(eq, &use_receiver);
945
946  // If the type of the result (stored in its map) is less than
947  // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
948  __ CompareObjectType(r0, r3, r3, FIRST_JS_OBJECT_TYPE);
949  __ b(ge, &exit);
950
951  // Throw away the result of the constructor invocation and use the
952  // on-stack receiver as the result.
953  __ bind(&use_receiver);
954  __ ldr(r0, MemOperand(sp));
955
956  // Remove receiver from the stack, remove caller arguments, and
957  // return.
958  __ bind(&exit);
959  // r0: result
960  // sp[0]: receiver (newly allocated object)
961  // sp[1]: constructor function
962  // sp[2]: number of arguments (smi-tagged)
963  __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
964  __ LeaveConstructFrame();
965  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
966  __ add(sp, sp, Operand(kPointerSize));
967  __ IncrementCounter(&Counters::constructed_objects, 1, r1, r2);
968  __ Jump(lr);
969}
970
971
972void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
973  Generate_JSConstructStubHelper(masm, false, true);
974}
975
976
977void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
978  Generate_JSConstructStubHelper(masm, false, false);
979}
980
981
982void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
983  Generate_JSConstructStubHelper(masm, true, false);
984}
985
986
987static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
988                                             bool is_construct) {
989  // Called from Generate_JS_Entry
990  // r0: code entry
991  // r1: function
992  // r2: receiver
993  // r3: argc
994  // r4: argv
995  // r5-r7, cp may be clobbered
996
997  // Clear the context before we push it when entering the JS frame.
998  __ mov(cp, Operand(0, RelocInfo::NONE));
999
1000  // Enter an internal frame.
1001  __ EnterInternalFrame();
1002
1003  // Set up the context from the function argument.
1004  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1005
1006  // Set up the roots register.
1007  ExternalReference roots_address = ExternalReference::roots_address();
1008  __ mov(r10, Operand(roots_address));
1009
1010  // Push the function and the receiver onto the stack.
1011  __ push(r1);
1012  __ push(r2);
1013
1014  // Copy arguments to the stack in a loop.
1015  // r1: function
1016  // r3: argc
1017  // r4: argv, i.e. points to first arg
1018  Label loop, entry;
1019  __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
1020  // r2 points past last arg.
1021  __ b(&entry);
1022  __ bind(&loop);
1023  __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
1024  __ ldr(r0, MemOperand(r0));  // dereference handle
1025  __ push(r0);  // push parameter
1026  __ bind(&entry);
1027  __ cmp(r4, r2);
1028  __ b(ne, &loop);
1029
1030  // Initialize all JavaScript callee-saved registers, since they will be seen
1031  // by the garbage collector as part of handlers.
1032  __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
1033  __ mov(r5, Operand(r4));
1034  __ mov(r6, Operand(r4));
1035  __ mov(r7, Operand(r4));
1036  if (kR9Available == 1) {
1037    __ mov(r9, Operand(r4));
1038  }
1039
1040  // Invoke the code and pass argc as r0.
1041  __ mov(r0, Operand(r3));
1042  if (is_construct) {
1043    __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
1044            RelocInfo::CODE_TARGET);
1045  } else {
1046    ParameterCount actual(r0);
1047    __ InvokeFunction(r1, actual, CALL_FUNCTION);
1048  }
1049
1050  // Exit the JS frame and remove the parameters (except function), and return.
1051  // Respect ABI stack constraint.
1052  __ LeaveInternalFrame();
1053  __ Jump(lr);
1054
1055  // r0: result
1056}
1057
1058
1059void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
1060  Generate_JSEntryTrampolineHelper(masm, false);
1061}
1062
1063
1064void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
1065  Generate_JSEntryTrampolineHelper(masm, true);
1066}
1067
1068
1069void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
1070  // Enter an internal frame.
1071  __ EnterInternalFrame();
1072
1073  // Preserve the function.
1074  __ push(r1);
1075
1076  // Push the function on the stack as the argument to the runtime function.
1077  __ push(r1);
1078  __ CallRuntime(Runtime::kLazyCompile, 1);
1079  // Calculate the entry point.
1080  __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
1081  // Restore saved function.
1082  __ pop(r1);
1083
1084  // Tear down temporary frame.
1085  __ LeaveInternalFrame();
1086
1087  // Do a tail-call of the compiled function.
1088  __ Jump(r2);
1089}
1090
1091
1092void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1093  // 1. Make sure we have at least one argument.
1094  // r0: actual number of arguments
1095  { Label done;
1096    __ tst(r0, Operand(r0));
1097    __ b(ne, &done);
1098    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1099    __ push(r2);
1100    __ add(r0, r0, Operand(1));
1101    __ bind(&done);
1102  }
1103
1104  // 2. Get the function to call (passed as receiver) from the stack, check
1105  //    if it is a function.
1106  // r0: actual number of arguments
1107  Label non_function;
1108  __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1109  __ tst(r1, Operand(kSmiTagMask));
1110  __ b(eq, &non_function);
1111  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
1112  __ b(ne, &non_function);
1113
1114  // 3a. Patch the first argument if necessary when calling a function.
1115  // r0: actual number of arguments
1116  // r1: function
1117  Label shift_arguments;
1118  { Label convert_to_object, use_global_receiver, patch_receiver;
1119    // Change context eagerly in case we need the global receiver.
1120    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1121
1122    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1123    __ ldr(r2, MemOperand(r2, -kPointerSize));
1124    // r0: actual number of arguments
1125    // r1: function
1126    // r2: first argument
1127    __ tst(r2, Operand(kSmiTagMask));
1128    __ b(eq, &convert_to_object);
1129
1130    __ LoadRoot(r3, Heap::kNullValueRootIndex);
1131    __ cmp(r2, r3);
1132    __ b(eq, &use_global_receiver);
1133    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1134    __ cmp(r2, r3);
1135    __ b(eq, &use_global_receiver);
1136
1137    __ CompareObjectType(r2, r3, r3, FIRST_JS_OBJECT_TYPE);
1138    __ b(lt, &convert_to_object);
1139    __ cmp(r3, Operand(LAST_JS_OBJECT_TYPE));
1140    __ b(le, &shift_arguments);
1141
1142    __ bind(&convert_to_object);
1143    __ EnterInternalFrame();  // In order to preserve argument count.
1144    __ mov(r0, Operand(r0, LSL, kSmiTagSize));  // Smi-tagged.
1145    __ push(r0);
1146
1147    __ push(r2);
1148    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
1149    __ mov(r2, r0);
1150
1151    __ pop(r0);
1152    __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1153    __ LeaveInternalFrame();
1154    // Restore the function to r1.
1155    __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1156    __ jmp(&patch_receiver);
1157
1158    // Use the global receiver object from the called function as the
1159    // receiver.
1160    __ bind(&use_global_receiver);
1161    const int kGlobalIndex =
1162        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1163    __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
1164    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
1165    __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
1166    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
1167
1168    __ bind(&patch_receiver);
1169    __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
1170    __ str(r2, MemOperand(r3, -kPointerSize));
1171
1172    __ jmp(&shift_arguments);
1173  }
1174
1175  // 3b. Patch the first argument when calling a non-function.  The
1176  //     CALL_NON_FUNCTION builtin expects the non-function callee as
1177  //     receiver, so overwrite the first argument which will ultimately
1178  //     become the receiver.
1179  // r0: actual number of arguments
1180  // r1: function
1181  __ bind(&non_function);
1182  __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1183  __ str(r1, MemOperand(r2, -kPointerSize));
1184  // Clear r1 to indicate a non-function being called.
1185  __ mov(r1, Operand(0, RelocInfo::NONE));
1186
1187  // 4. Shift arguments and return address one slot down on the stack
1188  //    (overwriting the original receiver).  Adjust argument count to make
1189  //    the original first argument the new receiver.
1190  // r0: actual number of arguments
1191  // r1: function
1192  __ bind(&shift_arguments);
1193  { Label loop;
1194    // Calculate the copy start address (destination). Copy end address is sp.
1195    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1196
1197    __ bind(&loop);
1198    __ ldr(ip, MemOperand(r2, -kPointerSize));
1199    __ str(ip, MemOperand(r2));
1200    __ sub(r2, r2, Operand(kPointerSize));
1201    __ cmp(r2, sp);
1202    __ b(ne, &loop);
1203    // Adjust the actual number of arguments and remove the top element
1204    // (which is a copy of the last argument).
1205    __ sub(r0, r0, Operand(1));
1206    __ pop();
1207  }
1208
1209  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
1210  // r0: actual number of arguments
1211  // r1: function
1212  { Label function;
1213    __ tst(r1, r1);
1214    __ b(ne, &function);
1215    // Expected number of arguments is 0 for CALL_NON_FUNCTION.
1216    __ mov(r2, Operand(0, RelocInfo::NONE));
1217    __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
1218    __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1219                         RelocInfo::CODE_TARGET);
1220    __ bind(&function);
1221  }
1222
1223  // 5b. Get the code to call from the function and check that the number of
1224  //     expected arguments matches what we're providing.  If so, jump
1225  //     (tail-call) to the code in register edx without checking arguments.
1226  // r0: actual number of arguments
1227  // r1: function
1228  __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1229  __ ldr(r2,
1230         FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
1231  __ mov(r2, Operand(r2, ASR, kSmiTagSize));
1232  __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
1233  __ cmp(r2, r0);  // Check formal and actual parameter counts.
1234  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1235          RelocInfo::CODE_TARGET, ne);
1236
1237  ParameterCount expected(0);
1238  __ InvokeCode(r3, expected, expected, JUMP_FUNCTION);
1239}
1240
1241
1242void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1243  const int kIndexOffset    = -5 * kPointerSize;
1244  const int kLimitOffset    = -4 * kPointerSize;
1245  const int kArgsOffset     =  2 * kPointerSize;
1246  const int kRecvOffset     =  3 * kPointerSize;
1247  const int kFunctionOffset =  4 * kPointerSize;
1248
1249  __ EnterInternalFrame();
1250
1251  __ ldr(r0, MemOperand(fp, kFunctionOffset));  // get the function
1252  __ push(r0);
1253  __ ldr(r0, MemOperand(fp, kArgsOffset));  // get the args array
1254  __ push(r0);
1255  __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_JS);
1256
1257  // Check the stack for overflow. We are not trying need to catch
1258  // interruptions (e.g. debug break and preemption) here, so the "real stack
1259  // limit" is checked.
1260  Label okay;
1261  __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
1262  // Make r2 the space we have left. The stack might already be overflowed
1263  // here which will cause r2 to become negative.
1264  __ sub(r2, sp, r2);
1265  // Check if the arguments will overflow the stack.
1266  __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1267  __ b(gt, &okay);  // Signed comparison.
1268
1269  // Out of stack space.
1270  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1271  __ push(r1);
1272  __ push(r0);
1273  __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_JS);
1274  // End of stack check.
1275
1276  // Push current limit and index.
1277  __ bind(&okay);
1278  __ push(r0);  // limit
1279  __ mov(r1, Operand(0, RelocInfo::NONE));  // initial index
1280  __ push(r1);
1281
1282  // Change context eagerly to get the right global object if necessary.
1283  __ ldr(r0, MemOperand(fp, kFunctionOffset));
1284  __ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
1285
1286  // Compute the receiver.
1287  Label call_to_object, use_global_receiver, push_receiver;
1288  __ ldr(r0, MemOperand(fp, kRecvOffset));
1289  __ tst(r0, Operand(kSmiTagMask));
1290  __ b(eq, &call_to_object);
1291  __ LoadRoot(r1, Heap::kNullValueRootIndex);
1292  __ cmp(r0, r1);
1293  __ b(eq, &use_global_receiver);
1294  __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1295  __ cmp(r0, r1);
1296  __ b(eq, &use_global_receiver);
1297
1298  // Check if the receiver is already a JavaScript object.
1299  // r0: receiver
1300  __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
1301  __ b(lt, &call_to_object);
1302  __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
1303  __ b(le, &push_receiver);
1304
1305  // Convert the receiver to a regular object.
1306  // r0: receiver
1307  __ bind(&call_to_object);
1308  __ push(r0);
1309  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
1310  __ b(&push_receiver);
1311
1312  // Use the current global receiver object as the receiver.
1313  __ bind(&use_global_receiver);
1314  const int kGlobalOffset =
1315      Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1316  __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
1317  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
1318  __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
1319  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
1320
1321  // Push the receiver.
1322  // r0: receiver
1323  __ bind(&push_receiver);
1324  __ push(r0);
1325
1326  // Copy all arguments from the array to the stack.
1327  Label entry, loop;
1328  __ ldr(r0, MemOperand(fp, kIndexOffset));
1329  __ b(&entry);
1330
1331  // Load the current argument from the arguments array and push it to the
1332  // stack.
1333  // r0: current argument index
1334  __ bind(&loop);
1335  __ ldr(r1, MemOperand(fp, kArgsOffset));
1336  __ push(r1);
1337  __ push(r0);
1338
1339  // Call the runtime to access the property in the arguments array.
1340  __ CallRuntime(Runtime::kGetProperty, 2);
1341  __ push(r0);
1342
1343  // Use inline caching to access the arguments.
1344  __ ldr(r0, MemOperand(fp, kIndexOffset));
1345  __ add(r0, r0, Operand(1 << kSmiTagSize));
1346  __ str(r0, MemOperand(fp, kIndexOffset));
1347
1348  // Test if the copy loop has finished copying all the elements from the
1349  // arguments object.
1350  __ bind(&entry);
1351  __ ldr(r1, MemOperand(fp, kLimitOffset));
1352  __ cmp(r0, r1);
1353  __ b(ne, &loop);
1354
1355  // Invoke the function.
1356  ParameterCount actual(r0);
1357  __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1358  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1359  __ InvokeFunction(r1, actual, CALL_FUNCTION);
1360
1361  // Tear down the internal frame and remove function, receiver and args.
1362  __ LeaveInternalFrame();
1363  __ add(sp, sp, Operand(3 * kPointerSize));
1364  __ Jump(lr);
1365}
1366
1367
1368static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1369  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
1370  __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1371  __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
1372  __ add(fp, sp, Operand(3 * kPointerSize));
1373}
1374
1375
1376static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1377  // ----------- S t a t e -------------
1378  //  -- r0 : result being passed through
1379  // -----------------------------------
1380  // Get the number of arguments passed (as a smi), tear down the frame and
1381  // then tear down the parameters.
1382  __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
1383  __ mov(sp, fp);
1384  __ ldm(ia_w, sp, fp.bit() | lr.bit());
1385  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
1386  __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
1387}
1388
1389
1390void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1391  // ----------- S t a t e -------------
1392  //  -- r0 : actual number of arguments
1393  //  -- r1 : function (passed through to callee)
1394  //  -- r2 : expected number of arguments
1395  //  -- r3 : code entry to call
1396  // -----------------------------------
1397
1398  Label invoke, dont_adapt_arguments;
1399
1400  Label enough, too_few;
1401  __ cmp(r0, r2);
1402  __ b(lt, &too_few);
1403  __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1404  __ b(eq, &dont_adapt_arguments);
1405
1406  {  // Enough parameters: actual >= expected
1407    __ bind(&enough);
1408    EnterArgumentsAdaptorFrame(masm);
1409
1410    // Calculate copy start address into r0 and copy end address into r2.
1411    // r0: actual number of arguments as a smi
1412    // r1: function
1413    // r2: expected number of arguments
1414    // r3: code entry to call
1415    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1416    // adjust for return address and receiver
1417    __ add(r0, r0, Operand(2 * kPointerSize));
1418    __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
1419
1420    // Copy the arguments (including the receiver) to the new stack frame.
1421    // r0: copy start address
1422    // r1: function
1423    // r2: copy end address
1424    // r3: code entry to call
1425
1426    Label copy;
1427    __ bind(&copy);
1428    __ ldr(ip, MemOperand(r0, 0));
1429    __ push(ip);
1430    __ cmp(r0, r2);  // Compare before moving to next argument.
1431    __ sub(r0, r0, Operand(kPointerSize));
1432    __ b(ne, &copy);
1433
1434    __ b(&invoke);
1435  }
1436
1437  {  // Too few parameters: Actual < expected
1438    __ bind(&too_few);
1439    EnterArgumentsAdaptorFrame(masm);
1440
1441    // Calculate copy start address into r0 and copy end address is fp.
1442    // r0: actual number of arguments as a smi
1443    // r1: function
1444    // r2: expected number of arguments
1445    // r3: code entry to call
1446    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1447
1448    // Copy the arguments (including the receiver) to the new stack frame.
1449    // r0: copy start address
1450    // r1: function
1451    // r2: expected number of arguments
1452    // r3: code entry to call
1453    Label copy;
1454    __ bind(&copy);
1455    // Adjust load for return address and receiver.
1456    __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
1457    __ push(ip);
1458    __ cmp(r0, fp);  // Compare before moving to next argument.
1459    __ sub(r0, r0, Operand(kPointerSize));
1460    __ b(ne, &copy);
1461
1462    // Fill the remaining expected arguments with undefined.
1463    // r1: function
1464    // r2: expected number of arguments
1465    // r3: code entry to call
1466    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1467    __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
1468    __ sub(r2, r2, Operand(4 * kPointerSize));  // Adjust for frame.
1469
1470    Label fill;
1471    __ bind(&fill);
1472    __ push(ip);
1473    __ cmp(sp, r2);
1474    __ b(ne, &fill);
1475  }
1476
1477  // Call the entry point.
1478  __ bind(&invoke);
1479  __ Call(r3);
1480
1481  // Exit frame and return.
1482  LeaveArgumentsAdaptorFrame(masm);
1483  __ Jump(lr);
1484
1485
1486  // -------------------------------------------
1487  // Dont adapt arguments.
1488  // -------------------------------------------
1489  __ bind(&dont_adapt_arguments);
1490  __ Jump(r3);
1491}
1492
1493
1494#undef __
1495
1496} }  // namespace v8::internal
1497
1498#endif  // V8_TARGET_ARCH_ARM
1499