macro-assembler-arm.h revision d0582a6c46733687d045e4188a1bcd0123c758a1
1// Copyright 2006-2009 the V8 project authors. All rights reserved. 2// Redistribution and use in source and binary forms, with or without 3// modification, are permitted provided that the following conditions are 4// met: 5// 6// * Redistributions of source code must retain the above copyright 7// notice, this list of conditions and the following disclaimer. 8// * Redistributions in binary form must reproduce the above 9// copyright notice, this list of conditions and the following 10// disclaimer in the documentation and/or other materials provided 11// with the distribution. 12// * Neither the name of Google Inc. nor the names of its 13// contributors may be used to endorse or promote products derived 14// from this software without specific prior written permission. 15// 16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28#ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_ 29#define V8_ARM_MACRO_ASSEMBLER_ARM_H_ 30 31#include "assembler.h" 32 33namespace v8 { 34namespace internal { 35 36 37// Give alias names to registers 38const Register cp = { 8 }; // JavaScript context pointer 39 40 41enum InvokeJSFlags { 42 CALL_JS, 43 JUMP_JS 44}; 45 46 47// MacroAssembler implements a collection of frequently used macros. 48class MacroAssembler: public Assembler { 49 public: 50 MacroAssembler(void* buffer, int size); 51 52 // --------------------------------------------------------------------------- 53 // Low-level helpers for compiler 54 55 // Jump, Call, and Ret pseudo instructions implementing inter-working 56 private: 57 void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al); 58 void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = al); 59 public: 60 void Jump(Register target, Condition cond = al); 61 void Jump(byte* target, RelocInfo::Mode rmode, Condition cond = al); 62 void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); 63 void Call(Register target, Condition cond = al); 64 void Call(byte* target, RelocInfo::Mode rmode, Condition cond = al); 65 void Call(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); 66 void Ret(Condition cond = al); 67 // Jumps to the label at the index given by the Smi in "index". 68 void SmiJumpTable(Register index, Vector<Label*> targets); 69 // Load an object from the root table. 70 void LoadRoot(Register destination, 71 Heap::RootListIndex index, 72 Condition cond = al); 73 74 // Sets the remembered set bit for [address+offset], where address is the 75 // address of the heap object 'object'. The address must be in the first 8K 76 // of an allocated page. The 'scratch' register is used in the 77 // implementation and all 3 registers are clobbered by the operation, as 78 // well as the ip register. 79 void RecordWrite(Register object, Register offset, Register scratch); 80 81 // --------------------------------------------------------------------------- 82 // Stack limit support 83 84 void StackLimitCheck(Label* on_stack_limit_hit); 85 86 // --------------------------------------------------------------------------- 87 // Activation frames 88 89 void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } 90 void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } 91 92 void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } 93 void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } 94 95 // Enter specific kind of exit frame; either normal or debug mode. 96 // Expects the number of arguments in register r0 and 97 // the builtin function to call in register r1. Exits with argc in 98 // r4, argv in r6, and and the builtin function to call in r5. 99 void EnterExitFrame(ExitFrame::Mode mode); 100 101 // Leave the current exit frame. Expects the return value in r0. 102 void LeaveExitFrame(ExitFrame::Mode mode); 103 104 // Align the stack by optionally pushing a Smi zero. 105 void AlignStack(int offset); 106 107 void LoadContext(Register dst, int context_chain_length); 108 109 // --------------------------------------------------------------------------- 110 // JavaScript invokes 111 112 // Invoke the JavaScript function code by either calling or jumping. 113 void InvokeCode(Register code, 114 const ParameterCount& expected, 115 const ParameterCount& actual, 116 InvokeFlag flag); 117 118 void InvokeCode(Handle<Code> code, 119 const ParameterCount& expected, 120 const ParameterCount& actual, 121 RelocInfo::Mode rmode, 122 InvokeFlag flag); 123 124 // Invoke the JavaScript function in the given register. Changes the 125 // current context to the context in the function before invoking. 126 void InvokeFunction(Register function, 127 const ParameterCount& actual, 128 InvokeFlag flag); 129 130 131#ifdef ENABLE_DEBUGGER_SUPPORT 132 // --------------------------------------------------------------------------- 133 // Debugger Support 134 135 void SaveRegistersToMemory(RegList regs); 136 void RestoreRegistersFromMemory(RegList regs); 137 void CopyRegistersFromMemoryToStack(Register base, RegList regs); 138 void CopyRegistersFromStackToMemory(Register base, 139 Register scratch, 140 RegList regs); 141#endif 142 143 // --------------------------------------------------------------------------- 144 // Exception handling 145 146 // Push a new try handler and link into try handler chain. 147 // The return address must be passed in register lr. 148 // On exit, r0 contains TOS (code slot). 149 void PushTryHandler(CodeLocation try_location, HandlerType type); 150 151 152 // --------------------------------------------------------------------------- 153 // Inline caching support 154 155 // Generates code that verifies that the maps of objects in the 156 // prototype chain of object hasn't changed since the code was 157 // generated and branches to the miss label if any map has. If 158 // necessary the function also generates code for security check 159 // in case of global object holders. The scratch and holder 160 // registers are always clobbered, but the object register is only 161 // clobbered if it the same as the holder register. The function 162 // returns a register containing the holder - either object_reg or 163 // holder_reg. 164 Register CheckMaps(JSObject* object, Register object_reg, 165 JSObject* holder, Register holder_reg, 166 Register scratch, Label* miss); 167 168 // Generate code for checking access rights - used for security checks 169 // on access to global objects across environments. The holder register 170 // is left untouched, whereas both scratch registers are clobbered. 171 void CheckAccessGlobalProxy(Register holder_reg, 172 Register scratch, 173 Label* miss); 174 175 176 // --------------------------------------------------------------------------- 177 // Allocation support 178 179 // Allocate an object in new space. The object_size is specified in words (not 180 // bytes). If the new space is exhausted control continues at the gc_required 181 // label. The allocated object is returned in result. If the flag 182 // tag_allocated_object is true the result is tagged as as a heap object. 183 void AllocateInNewSpace(int object_size, 184 Register result, 185 Register scratch1, 186 Register scratch2, 187 Label* gc_required, 188 AllocationFlags flags); 189 void AllocateInNewSpace(Register object_size, 190 Register result, 191 Register scratch1, 192 Register scratch2, 193 Label* gc_required, 194 AllocationFlags flags); 195 196 // Undo allocation in new space. The object passed and objects allocated after 197 // it will no longer be allocated. The caller must make sure that no pointers 198 // are left to the object(s) no longer allocated as they would be invalid when 199 // allocation is undone. 200 void UndoAllocationInNewSpace(Register object, Register scratch); 201 202 // --------------------------------------------------------------------------- 203 // Support functions. 204 205 // Try to get function prototype of a function and puts the value in 206 // the result register. Checks that the function really is a 207 // function and jumps to the miss label if the fast checks fail. The 208 // function register will be untouched; the other registers may be 209 // clobbered. 210 void TryGetFunctionPrototype(Register function, 211 Register result, 212 Register scratch, 213 Label* miss); 214 215 // Compare object type for heap object. heap_object contains a non-Smi 216 // whose object type should be compared with the given type. This both 217 // sets the flags and leaves the object type in the type_reg register. 218 // It leaves the map in the map register (unless the type_reg and map register 219 // are the same register). It leaves the heap object in the heap_object 220 // register unless the heap_object register is the same register as one of the 221 // other registers. 222 void CompareObjectType(Register heap_object, 223 Register map, 224 Register type_reg, 225 InstanceType type); 226 227 // Compare instance type in a map. map contains a valid map object whose 228 // object type should be compared with the given type. This both 229 // sets the flags and leaves the object type in the type_reg register. It 230 // leaves the heap object in the heap_object register unless the heap_object 231 // register is the same register as type_reg. 232 void CompareInstanceType(Register map, 233 Register type_reg, 234 InstanceType type); 235 236 inline void BranchOnSmi(Register value, Label* smi_label) { 237 tst(value, Operand(kSmiTagMask)); 238 b(eq, smi_label); 239 } 240 241 inline void BranchOnNotSmi(Register value, Label* not_smi_label) { 242 tst(value, Operand(kSmiTagMask)); 243 b(ne, not_smi_label); 244 } 245 246 // Generates code for reporting that an illegal operation has 247 // occurred. 248 void IllegalOperation(int num_arguments); 249 250 // Uses VFP instructions to Convert a Smi to a double. 251 void IntegerToDoubleConversionWithVFP3(Register inReg, 252 Register outHighReg, 253 Register outLowReg); 254 255 256 // --------------------------------------------------------------------------- 257 // Runtime calls 258 259 // Call a code stub. 260 void CallStub(CodeStub* stub, Condition cond = al); 261 262 // Return from a code stub after popping its arguments. 263 void StubReturn(int argc); 264 265 // Call a runtime routine. 266 // Eventually this should be used for all C calls. 267 void CallRuntime(Runtime::Function* f, int num_arguments); 268 269 // Convenience function: Same as above, but takes the fid instead. 270 void CallRuntime(Runtime::FunctionId fid, int num_arguments); 271 272 // Tail call of a runtime routine (jump). 273 // Like JumpToRuntime, but also takes care of passing the number 274 // of parameters. 275 void TailCallRuntime(const ExternalReference& ext, 276 int num_arguments, 277 int result_size); 278 279 // Jump to a runtime routine. 280 void JumpToRuntime(const ExternalReference& builtin); 281 282 // Invoke specified builtin JavaScript function. Adds an entry to 283 // the unresolved list if the name does not resolve. 284 void InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags); 285 286 // Store the code object for the given builtin in the target register and 287 // setup the function in r1. 288 void GetBuiltinEntry(Register target, Builtins::JavaScript id); 289 290 struct Unresolved { 291 int pc; 292 uint32_t flags; // see Bootstrapper::FixupFlags decoders/encoders. 293 const char* name; 294 }; 295 List<Unresolved>* unresolved() { return &unresolved_; } 296 297 Handle<Object> CodeObject() { return code_object_; } 298 299 300 // --------------------------------------------------------------------------- 301 // StatsCounter support 302 303 void SetCounter(StatsCounter* counter, int value, 304 Register scratch1, Register scratch2); 305 void IncrementCounter(StatsCounter* counter, int value, 306 Register scratch1, Register scratch2); 307 void DecrementCounter(StatsCounter* counter, int value, 308 Register scratch1, Register scratch2); 309 310 311 // --------------------------------------------------------------------------- 312 // Debugging 313 314 // Calls Abort(msg) if the condition cc is not satisfied. 315 // Use --debug_code to enable. 316 void Assert(Condition cc, const char* msg); 317 318 // Like Assert(), but always enabled. 319 void Check(Condition cc, const char* msg); 320 321 // Print a message to stdout and abort execution. 322 void Abort(const char* msg); 323 324 // Verify restrictions about code generated in stubs. 325 void set_generating_stub(bool value) { generating_stub_ = value; } 326 bool generating_stub() { return generating_stub_; } 327 void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } 328 bool allow_stub_calls() { return allow_stub_calls_; } 329 330 private: 331 List<Unresolved> unresolved_; 332 bool generating_stub_; 333 bool allow_stub_calls_; 334 Handle<Object> code_object_; // This handle will be patched with the code 335 // object on installation. 336 337 // Helper functions for generating invokes. 338 void InvokePrologue(const ParameterCount& expected, 339 const ParameterCount& actual, 340 Handle<Code> code_constant, 341 Register code_reg, 342 Label* done, 343 InvokeFlag flag); 344 345 // Prepares for a call or jump to a builtin by doing two things: 346 // 1. Emits code that fetches the builtin's function object from the context 347 // at runtime, and puts it in the register rdi. 348 // 2. Fetches the builtin's code object, and returns it in a handle, at 349 // compile time, so that later code can emit instructions to jump or call 350 // the builtin directly. If the code object has not yet been created, it 351 // returns the builtin code object for IllegalFunction, and sets the 352 // output parameter "resolved" to false. Code that uses the return value 353 // should then add the address and the builtin name to the list of fixups 354 // called unresolved_, which is fixed up by the bootstrapper. 355 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved); 356 357 // Activation support. 358 void EnterFrame(StackFrame::Type type); 359 void LeaveFrame(StackFrame::Type type); 360}; 361 362 363#ifdef ENABLE_DEBUGGER_SUPPORT 364// The code patcher is used to patch (typically) small parts of code e.g. for 365// debugging and other types of instrumentation. When using the code patcher 366// the exact number of bytes specified must be emitted. It is not legal to emit 367// relocation information. If any of these constraints are violated it causes 368// an assertion to fail. 369class CodePatcher { 370 public: 371 CodePatcher(byte* address, int instructions); 372 virtual ~CodePatcher(); 373 374 // Macro assembler to emit code. 375 MacroAssembler* masm() { return &masm_; } 376 377 // Emit an instruction directly. 378 void Emit(Instr x); 379 380 // Emit an address directly. 381 void Emit(Address addr); 382 383 private: 384 byte* address_; // The address of the code being patched. 385 int instructions_; // Number of instructions of the expected patch size. 386 int size_; // Number of bytes of the expected patch size. 387 MacroAssembler masm_; // Macro assembler used to generate the code. 388}; 389#endif // ENABLE_DEBUGGER_SUPPORT 390 391 392// ----------------------------------------------------------------------------- 393// Static helper functions. 394 395// Generate a MemOperand for loading a field from an object. 396static inline MemOperand FieldMemOperand(Register object, int offset) { 397 return MemOperand(object, offset - kHeapObjectTag); 398} 399 400 401#ifdef GENERATED_CODE_COVERAGE 402#define CODE_COVERAGE_STRINGIFY(x) #x 403#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) 404#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) 405#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> 406#else 407#define ACCESS_MASM(masm) masm-> 408#endif 409 410 411} } // namespace v8::internal 412 413#endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_ 414