simulator-mips.h revision 592a9fc1d8ea420377a2e7efd0600e20b058be2b
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
29// Declares a Simulator for MIPS instructions if we are not generating a native
30// MIPS binary. This Simulator allows us to run and debug MIPS code generation
31// on regular desktop machines.
32// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33// which will start execution in the Simulator or forwards to the real entry
34// on a MIPS HW platform.
35
36#ifndef V8_MIPS_SIMULATOR_MIPS_H_
37#define V8_MIPS_SIMULATOR_MIPS_H_
38
39#include "allocation.h"
40#include "constants-mips.h"
41
42#if !defined(USE_SIMULATOR)
43// Running without a simulator on a native mips platform.
44
45namespace v8 {
46namespace internal {
47
48// When running without a simulator we call the entry directly.
49#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
50  entry(p0, p1, p2, p3, p4)
51
52typedef int (*mips_regexp_matcher)(String*, int, const byte*, const byte*,
53                                   void*, int*, Address, int, Isolate*);
54
55
56// Call the generated regexp code directly. The code at the entry address
57// should act as a function matching the type arm_regexp_matcher.
58// The fifth argument is a dummy that reserves the space used for
59// the return address added by the ExitFrame in native calls.
60#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
61  (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
62      p0, p1, p2, p3, NULL, p4, p5, p6, p7))
63
64#define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
65  reinterpret_cast<TryCatch*>(try_catch_address)
66
67// The stack limit beyond which we will throw stack overflow errors in
68// generated code. Because generated code on mips uses the C stack, we
69// just use the C stack limit.
70class SimulatorStack : public v8::internal::AllStatic {
71 public:
72  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
73                                            uintptr_t c_limit) {
74    return c_limit;
75  }
76
77  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
78    return try_catch_address;
79  }
80
81  static inline void UnregisterCTryCatch() { }
82};
83
84} }  // namespace v8::internal
85
86// Calculated the stack limit beyond which we will throw stack overflow errors.
87// This macro must be called from a C++ method. It relies on being able to take
88// the address of "this" to get a value on the current execution stack and then
89// calculates the stack limit based on that value.
90// NOTE: The check for overflow is not safe as there is no guarantee that the
91// running thread has its stack in all memory up to address 0x00000000.
92#define GENERATED_CODE_STACK_LIMIT(limit) \
93  (reinterpret_cast<uintptr_t>(this) >= limit ? \
94      reinterpret_cast<uintptr_t>(this) - limit : 0)
95
96#else  // !defined(USE_SIMULATOR)
97// Running with a simulator.
98
99#include "hashmap.h"
100#include "assembler.h"
101
102namespace v8 {
103namespace internal {
104
105// -----------------------------------------------------------------------------
106// Utility functions
107
108class CachePage {
109 public:
110  static const int LINE_VALID = 0;
111  static const int LINE_INVALID = 1;
112
113  static const int kPageShift = 12;
114  static const int kPageSize = 1 << kPageShift;
115  static const int kPageMask = kPageSize - 1;
116  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
117  static const int kLineLength = 1 << kLineShift;
118  static const int kLineMask = kLineLength - 1;
119
120  CachePage() {
121    memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
122  }
123
124  char* ValidityByte(int offset) {
125    return &validity_map_[offset >> kLineShift];
126  }
127
128  char* CachedData(int offset) {
129    return &data_[offset];
130  }
131
132 private:
133  char data_[kPageSize];   // The cached data.
134  static const int kValidityMapSize = kPageSize >> kLineShift;
135  char validity_map_[kValidityMapSize];  // One byte per line.
136};
137
138class Simulator {
139 public:
140  friend class MipsDebugger;
141
142  // Registers are declared in order. See SMRL chapter 2.
143  enum Register {
144    no_reg = -1,
145    zero_reg = 0,
146    at,
147    v0, v1,
148    a0, a1, a2, a3,
149    t0, t1, t2, t3, t4, t5, t6, t7,
150    s0, s1, s2, s3, s4, s5, s6, s7,
151    t8, t9,
152    k0, k1,
153    gp,
154    sp,
155    s8,
156    ra,
157    // LO, HI, and pc.
158    LO,
159    HI,
160    pc,   // pc must be the last register.
161    kNumSimuRegisters,
162    // aliases
163    fp = s8
164  };
165
166  // Coprocessor registers.
167  // Generated code will always use doubles. So we will only use even registers.
168  enum FPURegister {
169    f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
170    f12, f13, f14, f15,   // f12 and f14 are arguments FPURegisters.
171    f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
172    f26, f27, f28, f29, f30, f31,
173    kNumFPURegisters
174  };
175
176  explicit Simulator(Isolate* isolate);
177  ~Simulator();
178
179  // The currently executing Simulator instance. Potentially there can be one
180  // for each native thread.
181  static Simulator* current(v8::internal::Isolate* isolate);
182
183  // Accessors for register state. Reading the pc value adheres to the MIPS
184  // architecture specification and is off by a 8 from the currently executing
185  // instruction.
186  void set_register(int reg, int32_t value);
187  int32_t get_register(int reg) const;
188  // Same for FPURegisters.
189  void set_fpu_register(int fpureg, int32_t value);
190  void set_fpu_register_float(int fpureg, float value);
191  void set_fpu_register_double(int fpureg, double value);
192  int32_t get_fpu_register(int fpureg) const;
193  int64_t get_fpu_register_long(int fpureg) const;
194  float get_fpu_register_float(int fpureg) const;
195  double get_fpu_register_double(int fpureg) const;
196  void set_fcsr_bit(uint32_t cc, bool value);
197  bool test_fcsr_bit(uint32_t cc);
198  bool set_fcsr_round_error(double original, double rounded);
199
200  // Special case of set_register and get_register to access the raw PC value.
201  void set_pc(int32_t value);
202  int32_t get_pc() const;
203
204  // Accessor to the internal simulator stack area.
205  uintptr_t StackLimit() const;
206
207  // Executes MIPS instructions until the PC reaches end_sim_pc.
208  void Execute();
209
210  // Call on program start.
211  static void Initialize(Isolate* isolate);
212
213  // V8 generally calls into generated JS code with 5 parameters and into
214  // generated RegExp code with 7 parameters. This is a convenience function,
215  // which sets up the simulator state and grabs the result on return.
216  int32_t Call(byte* entry, int argument_count, ...);
217
218  // Push an address onto the JS stack.
219  uintptr_t PushAddress(uintptr_t address);
220
221  // Pop an address from the JS stack.
222  uintptr_t PopAddress();
223
224  // Debugger input.
225  void set_last_debugger_input(char* input);
226  char* last_debugger_input() { return last_debugger_input_; }
227
228  // ICache checking.
229  static void FlushICache(v8::internal::HashMap* i_cache, void* start,
230                          size_t size);
231
232  // Returns true if pc register contains one of the 'special_values' defined
233  // below (bad_ra, end_sim_pc).
234  bool has_bad_pc() const;
235
236 private:
237  enum special_values {
238    // Known bad pc value to ensure that the simulator does not execute
239    // without being properly setup.
240    bad_ra = -1,
241    // A pc value used to signal the simulator to stop execution.  Generally
242    // the ra is set to this value on transition from native C code to
243    // simulated execution, so that the simulator can "return" to the native
244    // C code.
245    end_sim_pc = -2,
246    // Unpredictable value.
247    Unpredictable = 0xbadbeaf
248  };
249
250  // Unsupported instructions use Format to print an error and stop execution.
251  void Format(Instruction* instr, const char* format);
252
253  // Read and write memory.
254  inline uint32_t ReadBU(int32_t addr);
255  inline int32_t ReadB(int32_t addr);
256  inline void WriteB(int32_t addr, uint8_t value);
257  inline void WriteB(int32_t addr, int8_t value);
258
259  inline uint16_t ReadHU(int32_t addr, Instruction* instr);
260  inline int16_t ReadH(int32_t addr, Instruction* instr);
261  // Note: Overloaded on the sign of the value.
262  inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
263  inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
264
265  inline int ReadW(int32_t addr, Instruction* instr);
266  inline void WriteW(int32_t addr, int value, Instruction* instr);
267
268  inline double ReadD(int32_t addr, Instruction* instr);
269  inline void WriteD(int32_t addr, double value, Instruction* instr);
270
271  // Operations depending on endianness.
272  // Get Double Higher / Lower word.
273  inline int32_t GetDoubleHIW(double* addr);
274  inline int32_t GetDoubleLOW(double* addr);
275  // Set Double Higher / Lower word.
276  inline int32_t SetDoubleHIW(double* addr);
277  inline int32_t SetDoubleLOW(double* addr);
278
279  // Executing is handled based on the instruction type.
280  void DecodeTypeRegister(Instruction* instr);
281
282  // Helper function for DecodeTypeRegister.
283  void ConfigureTypeRegister(Instruction* instr,
284                             int32_t& alu_out,
285                             int64_t& i64hilo,
286                             uint64_t& u64hilo,
287                             int32_t& next_pc,
288                             bool& do_interrupt);
289
290  void DecodeTypeImmediate(Instruction* instr);
291  void DecodeTypeJump(Instruction* instr);
292
293  // Used for breakpoints and traps.
294  void SoftwareInterrupt(Instruction* instr);
295
296  // Stop helper functions.
297  bool IsWatchpoint(uint32_t code);
298  void PrintWatchpoint(uint32_t code);
299  void HandleStop(uint32_t code, Instruction* instr);
300  bool IsStopInstruction(Instruction* instr);
301  bool IsEnabledStop(uint32_t code);
302  void EnableStop(uint32_t code);
303  void DisableStop(uint32_t code);
304  void IncreaseStopCounter(uint32_t code);
305  void PrintStopInfo(uint32_t code);
306
307
308  // Executes one instruction.
309  void InstructionDecode(Instruction* instr);
310  // Execute one instruction placed in a branch delay slot.
311  void BranchDelayInstructionDecode(Instruction* instr) {
312    if (instr->IsForbiddenInBranchDelay()) {
313      V8_Fatal(__FILE__, __LINE__,
314               "Eror:Unexpected %i opcode in a branch delay slot.",
315               instr->OpcodeValue());
316    }
317    InstructionDecode(instr);
318  }
319
320  // ICache.
321  static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
322  static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
323                           int size);
324  static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
325
326  enum Exception {
327    none,
328    kIntegerOverflow,
329    kIntegerUnderflow,
330    kDivideByZero,
331    kNumExceptions
332  };
333  int16_t exceptions[kNumExceptions];
334
335  // Exceptions.
336  void SignalExceptions();
337
338  // Runtime call support.
339  static void* RedirectExternalReference(void* external_function,
340                                         ExternalReference::Type type);
341
342  // For use in calls that take double value arguments.
343  void GetFpArgs(double* x, double* y);
344  void GetFpArgs(double* x);
345  void GetFpArgs(double* x, int32_t* y);
346  void SetFpResult(const double& result);
347
348
349  // Architecture state.
350  // Registers.
351  int32_t registers_[kNumSimuRegisters];
352  // Coprocessor Registers.
353  int32_t FPUregisters_[kNumFPURegisters];
354  // FPU control register.
355  uint32_t FCSR_;
356
357  // Simulator support.
358  // Allocate 1MB for stack.
359  static const size_t stack_size_ = 1 * 1024*1024;
360  char* stack_;
361  bool pc_modified_;
362  int icount_;
363  int break_count_;
364
365  // Debugger input.
366  char* last_debugger_input_;
367
368  // Icache simulation.
369  v8::internal::HashMap* i_cache_;
370
371  v8::internal::Isolate* isolate_;
372
373  // Registered breakpoints.
374  Instruction* break_pc_;
375  Instr break_instr_;
376
377  // Stop is disabled if bit 31 is set.
378  static const uint32_t kStopDisabledBit = 1 << 31;
379
380  // A stop is enabled, meaning the simulator will stop when meeting the
381  // instruction, if bit 31 of watched_stops[code].count is unset.
382  // The value watched_stops[code].count & ~(1 << 31) indicates how many times
383  // the breakpoint was hit or gone through.
384  struct StopCountAndDesc {
385    uint32_t count;
386    char* desc;
387  };
388  StopCountAndDesc watched_stops[kMaxStopCode + 1];
389};
390
391
392// When running with the simulator transition into simulated execution at this
393// point.
394#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
395    reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
396      FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
397
398#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
399    Simulator::current(Isolate::Current())->Call( \
400        entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7)
401
402#define TRY_CATCH_FROM_ADDRESS(try_catch_address)                              \
403  try_catch_address == NULL ?                                                  \
404      NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
405
406
407// The simulator has its own stack. Thus it has a different stack limit from
408// the C-based native code.  Setting the c_limit to indicate a very small
409// stack cause stack overflow errors, since the simulator ignores the input.
410// This is unlikely to be an issue in practice, though it might cause testing
411// trouble down the line.
412class SimulatorStack : public v8::internal::AllStatic {
413 public:
414  static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
415                                            uintptr_t c_limit) {
416    return Simulator::current(isolate)->StackLimit();
417  }
418
419  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
420    Simulator* sim = Simulator::current(Isolate::Current());
421    return sim->PushAddress(try_catch_address);
422  }
423
424  static inline void UnregisterCTryCatch() {
425    Simulator::current(Isolate::Current())->PopAddress();
426  }
427};
428
429} }  // namespace v8::internal
430
431#endif  // !defined(USE_SIMULATOR)
432#endif  // V8_MIPS_SIMULATOR_MIPS_H_
433