1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19/**
20 * <p>
21 * This class represents a {@link android.hardware.Sensor Sensor} event and
22 * holds informations such as the sensor's type, the time-stamp, accuracy and of
23 * course the sensor's {@link SensorEvent#values data}.
24 * </p>
25 *
26 * <p>
27 * <u>Definition of the coordinate system used by the SensorEvent API.</u>
28 * </p>
29 *
30 * <p>
31 * The coordinate-system is defined relative to the screen of the phone in its
32 * default orientation. The axes are not swapped when the device's screen
33 * orientation changes.
34 * </p>
35 *
36 * <p>
37 * The X axis is horizontal and points to the right, the Y axis is vertical and
38 * points up and the Z axis points towards the outside of the front face of the
39 * screen. In this system, coordinates behind the screen have negative Z values.
40 * </p>
41 *
42 * <p>
43 * <center><img src="../../../images/axis_device.png"
44 * alt="Sensors coordinate-system diagram." border="0" /></center>
45 * </p>
46 *
47 * <p>
48 * <b>Note:</b> This coordinate system is different from the one used in the
49 * Android 2D APIs where the origin is in the top-left corner.
50 * </p>
51 *
52 * @see SensorManager
53 * @see SensorEvent
54 * @see Sensor
55 *
56 */
57
58public class SensorEvent {
59    /**
60     * <p>
61     * The length and contents of the {@link #values values} array depends on
62     * which {@link android.hardware.Sensor sensor} type is being monitored (see
63     * also {@link SensorEvent} for a definition of the coordinate system used).
64     * </p>
65     *
66     * <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
67     * Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
68     *
69     * <ul>
70     * <p>
71     * values[0]: Acceleration minus Gx on the x-axis
72     * </p>
73     * <p>
74     * values[1]: Acceleration minus Gy on the y-axis
75     * </p>
76     * <p>
77     * values[2]: Acceleration minus Gz on the z-axis
78     * </p>
79     * </ul>
80     *
81     * <p>
82     * A sensor of this type measures the acceleration applied to the device
83     * (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
84     * sensor itself (<b>Fs</b>) using the relation:
85     * </p>
86     *
87     * <b><center>Ad = - &#8721;Fs / mass</center></b>
88     *
89     * <p>
90     * In particular, the force of gravity is always influencing the measured
91     * acceleration:
92     * </p>
93     *
94     * <b><center>Ad = -g - &#8721;F / mass</center></b>
95     *
96     * <p>
97     * For this reason, when the device is sitting on a table (and obviously not
98     * accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
99     * m/s^2
100     * </p>
101     *
102     * <p>
103     * Similarly, when the device is in free-fall and therefore dangerously
104     * accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
105     * magnitude of 0 m/s^2.
106     * </p>
107     *
108     * <p>
109     * It should be apparent that in order to measure the real acceleration of
110     * the device, the contribution of the force of gravity must be eliminated.
111     * This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
112     * <i>low-pass</i> filter can be used to isolate the force of gravity.
113     * </p>
114     *
115     * <pre class="prettyprint">
116     *
117     *     public void onSensorChanged(SensorEvent event)
118     *     {
119     *          // alpha is calculated as t / (t + dT)
120     *          // with t, the low-pass filter's time-constant
121     *          // and dT, the event delivery rate
122     *
123     *          final float alpha = 0.8;
124     *
125     *          gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
126     *          gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
127     *          gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
128     *
129     *          linear_acceleration[0] = event.values[0] - gravity[0];
130     *          linear_acceleration[1] = event.values[1] - gravity[1];
131     *          linear_acceleration[2] = event.values[2] - gravity[2];
132     *     }
133     * </pre>
134     *
135     * <p>
136     * <u>Examples</u>:
137     * <ul>
138     * <li>When the device lies flat on a table and is pushed on its left side
139     * toward the right, the x acceleration value is positive.</li>
140     *
141     * <li>When the device lies flat on a table, the acceleration value is
142     * +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
143     * the force of gravity (-9.81 m/s^2).</li>
144     *
145     * <li>When the device lies flat on a table and is pushed toward the sky
146     * with an acceleration of A m/s^2, the acceleration value is equal to
147     * A+9.81 which correspond to the acceleration of the device (+A m/s^2)
148     * minus the force of gravity (-9.81 m/s^2).</li>
149     * </ul>
150     *
151     *
152     * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
153     * Sensor.TYPE_MAGNETIC_FIELD}:</h4>
154     * All values are in micro-Tesla (uT) and measure the ambient magnetic field
155     * in the X, Y and Z axis.
156     *
157     * <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
158     * </h4> All values are in radians/second and measure the rate of rotation
159     * around the device's local X, Y and Z axis. The coordinate system is the
160     * same as is used for the acceleration sensor. Rotation is positive in the
161     * counter-clockwise direction. That is, an observer looking from some
162     * positive location on the x, y or z axis at a device positioned on the
163     * origin would report positive rotation if the device appeared to be
164     * rotating counter clockwise. Note that this is the standard mathematical
165     * definition of positive rotation and does not agree with the definition of
166     * roll given earlier.
167     * <ul>
168     * <p>
169     * values[0]: Angular speed around the x-axis
170     * </p>
171     * <p>
172     * values[1]: Angular speed around the y-axis
173     * </p>
174     * <p>
175     * values[2]: Angular speed around the z-axis
176     * </p>
177     * </ul>
178     * <p>
179     * Typically the output of the gyroscope is integrated over time to
180     * calculate a rotation describing the change of angles over the timestep,
181     * for example:
182     * </p>
183     *
184     * <pre class="prettyprint">
185     *     private static final float NS2S = 1.0f / 1000000000.0f;
186     *     private final float[] deltaRotationVector = new float[4]();
187     *     private float timestamp;
188     *
189     *     public void onSensorChanged(SensorEvent event) {
190     *          // This timestep's delta rotation to be multiplied by the current rotation
191     *          // after computing it from the gyro sample data.
192     *          if (timestamp != 0) {
193     *              final float dT = (event.timestamp - timestamp) * NS2S;
194     *              // Axis of the rotation sample, not normalized yet.
195     *              float axisX = event.values[0];
196     *              float axisY = event.values[1];
197     *              float axisZ = event.values[2];
198     *
199     *              // Calculate the angular speed of the sample
200     *              float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
201     *
202     *              // Normalize the rotation vector if it's big enough to get the axis
203     *              if (omegaMagnitude > EPSILON) {
204     *                  axisX /= omegaMagnitude;
205     *                  axisY /= omegaMagnitude;
206     *                  axisZ /= omegaMagnitude;
207     *              }
208     *
209     *              // Integrate around this axis with the angular speed by the timestep
210     *              // in order to get a delta rotation from this sample over the timestep
211     *              // We will convert this axis-angle representation of the delta rotation
212     *              // into a quaternion before turning it into the rotation matrix.
213     *              float thetaOverTwo = omegaMagnitude * dT / 2.0f;
214     *              float sinThetaOverTwo = sin(thetaOverTwo);
215     *              float cosThetaOverTwo = cos(thetaOverTwo);
216     *              deltaRotationVector[0] = sinThetaOverTwo * axisX;
217     *              deltaRotationVector[1] = sinThetaOverTwo * axisY;
218     *              deltaRotationVector[2] = sinThetaOverTwo * axisZ;
219     *              deltaRotationVector[3] = cosThetaOverTwo;
220     *          }
221     *          timestamp = event.timestamp;
222     *          float[] deltaRotationMatrix = new float[9];
223     *          SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
224     *          // User code should concatenate the delta rotation we computed with the current rotation
225     *          // in order to get the updated rotation.
226     *          // rotationCurrent = rotationCurrent * deltaRotationMatrix;
227     *     }
228     * </pre>
229     * <p>
230     * In practice, the gyroscope noise and offset will introduce some errors
231     * which need to be compensated for. This is usually done using the
232     * information from other sensors, but is beyond the scope of this document.
233     * </p>
234     * <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
235     * <ul>
236     * <p>
237     * values[0]: Ambient light level in SI lux units
238     * </ul>
239     *
240     * <h4>{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:</h4>
241     * <ul>
242     * <p>
243     * values[0]: Atmospheric pressure in hPa (millibar)
244     * </ul>
245     *
246     * <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
247     * </h4>
248     *
249     * <ul>
250     * <p>
251     * values[0]: Proximity sensor distance measured in centimeters
252     * </ul>
253     *
254     * <p>
255     * <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
256     * <i>far</i> measurement. In this case, the sensor should report its
257     * {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
258     * the <i>far</i> state and a lesser value in the <i>near</i> state.
259     * </p>
260     *
261     *  <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
262     *  <p>A three dimensional vector indicating the direction and magnitude of gravity.  Units
263     *  are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
264     *  <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be identical
265     *  to that of the accelerometer.</p>
266     *
267     *  <h4>{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:</h4>
268     *  A three dimensional vector indicating acceleration along each device axis, not including
269     *  gravity.  All values have units of m/s^2.  The coordinate system is the same as is used by the
270     *  acceleration sensor.
271     *  <p>The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
272     *  following relation:</p>
273     *   <p><ul>acceleration = gravity + linear-acceleration</ul></p>
274     *
275     *  <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
276     *  <p>The rotation vector represents the orientation of the device as a combination of an <i>angle</i>
277     *  and an <i>axis</i>, in which the device has rotated through an angle &#952 around an axis
278     *  &lt;x, y, z>.</p>
279     *  <p>The three elements of the rotation vector are
280     *  &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
281     *  vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
282     *  direction of the axis of rotation.</p>
283     *  </p>The three elements of the rotation vector are equal to
284     *  the last three components of a <b>unit</b> quaternion
285     *  &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
286     *  <p>Elements of the rotation vector are unitless.
287     *  The x,y, and z axis are defined in the same way as the acceleration
288     *  sensor.</p>
289     *  The reference coordinate system is defined as a direct orthonormal basis,
290     *  where:
291     * </p>
292     *
293     * <ul>
294     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
295     * the ground at the device's current location and roughly points East).</li>
296     * <li>Y is tangential to the ground at the device's current location and
297     * points towards magnetic north.</li>
298     * <li>Z points towards the sky and is perpendicular to the ground.</li>
299     * </ul>
300     *
301     * <p>
302     * <center><img src="../../../images/axis_globe.png"
303     * alt="World coordinate-system diagram." border="0" /></center>
304     * </p>
305     *
306     * <ul>
307     * <p>
308     * values[0]: x*sin(&#952/2)
309     * </p>
310     * <p>
311     * values[1]: y*sin(&#952/2)
312     * </p>
313     * <p>
314     * values[2]: z*sin(&#952/2)
315     * </p>
316     * <p>
317     * values[3]: cos(&#952/2) <i>(optional: only if value.length = 4)</i>
318     * </p>
319     * </ul>
320     *
321     * <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
322     * Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
323     *
324     * <ul>
325     * <p>
326     * values[0]: Azimuth, angle between the magnetic north direction and the
327     * y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
328     * 270=West
329     * </p>
330     *
331     * <p>
332     * values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
333     * values when the z-axis moves <b>toward</b> the y-axis.
334     * </p>
335     *
336     * <p>
337     * values[2]: Roll, rotation around y-axis (-90 to 90), with positive values
338     * when the x-axis moves <b>toward</b> the z-axis.
339     * </p>
340     * </ul>
341     *
342     * <p>
343     * <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
344     * used in aviation where the X axis is along the long side of the plane
345     * (tail to nose).
346     * </p>
347     *
348     * <p>
349     * <b>Note:</b> This sensor type exists for legacy reasons, please use
350     * {@link android.hardware.SensorManager#getRotationMatrix
351     * getRotationMatrix()} in conjunction with
352     * {@link android.hardware.SensorManager#remapCoordinateSystem
353     * remapCoordinateSystem()} and
354     * {@link android.hardware.SensorManager#getOrientation getOrientation()} to
355     * compute these values instead.
356     * </p>
357     *
358     * <p>
359     * <b>Important note:</b> For historical reasons the roll angle is positive
360     * in the clockwise direction (mathematically speaking, it should be
361     * positive in the counter-clockwise direction).
362     * </p>
363     *
364     * <h4>{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
365     * Sensor.TYPE_RELATIVE_HUMIDITY}:</h4>
366     * <ul>
367     * <p>
368     * values[0]: Relative ambient air humidity in percent
369     * </p>
370     * </ul>
371     * <p>
372     * When relative ambient air humidity and ambient temperature are
373     * measured, the dew point and absolute humidity can be calculated.
374     * </p>
375     * <u>Dew Point</u>
376     * <p>
377     * The dew point is the temperature to which a given parcel of air must be
378     * cooled, at constant barometric pressure, for water vapor to condense
379     * into water.
380     * </p>
381     * <center><pre>
382     *                    ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)
383     * t<sub>d</sub>(t,RH) = T<sub>n</sub> &#183; ------------------------------
384     *                 m - [ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)]
385     * </pre></center>
386     * <dl>
387     * <dt>t<sub>d</sub></dt> <dd>dew point temperature in &deg;C</dd>
388     * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
389     * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
390     * <dt>m</dt>             <dd>17.62</dd>
391     * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
392     * </dl>
393     * <p>for example:</p>
394     * <pre class="prettyprint">
395     * h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
396     * td = 243.12 * h / (17.62 - h);
397     * </pre>
398     * <u>Absolute Humidity</u>
399     * <p>
400     * The absolute humidity is the mass of water vapor in a particular volume
401     * of dry air. The unit is g/m<sup>3</sup>.
402     * </p>
403     * <center><pre>
404     *                    RH/100%&#183;A&#183;exp(m&#183;t/(T<sub>n</sub>+t))
405     * d<sub>v</sub>(t,RH) = 216.7 &#183; -------------------------
406     *                           273.15 + t
407     * </pre></center>
408     * <dl>
409     * <dt>d<sub>v</sub></dt> <dd>absolute humidity in g/m<sup>3</sup></dd>
410     * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
411     * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
412     * <dt>m</dt>             <dd>17.62</dd>
413     * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
414     * <dt>A</dt>             <dd>6.112 hPa</dd>
415     * </dl>
416     * <p>for example:</p>
417     * <pre class="prettyprint">
418     * dv = 216.7 *
419     * (rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
420     * </pre>
421     *
422     * <h4>{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
423     * </h4>
424     *
425     * <ul>
426     * <p>
427     * values[0]: ambient (room) temperature in degree Celsius.
428     * </ul>
429     *
430     * @see SensorEvent
431     * @see GeomagneticField
432     */
433
434    public final float[] values;
435
436    /**
437     * The sensor that generated this event. See
438     * {@link android.hardware.SensorManager SensorManager} for details.
439     */
440   public Sensor sensor;
441
442    /**
443     * The accuracy of this event. See {@link android.hardware.SensorManager
444     * SensorManager} for details.
445     */
446    public int accuracy;
447
448
449    /**
450     * The time in nanosecond at which the event happened
451     */
452    public long timestamp;
453
454
455    SensorEvent(int size) {
456        values = new float[size];
457    }
458}
459