Uri.java revision b8b8f044f4735b08f5a422637cfdcef43ac1a824
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.net;
18
19import android.os.Parcel;
20import android.os.Parcelable;
21import android.util.Log;
22
23import java.io.File;
24import java.io.IOException;
25import java.io.UnsupportedEncodingException;
26import java.io.ByteArrayOutputStream;
27import java.net.URLEncoder;
28import java.util.AbstractList;
29import java.util.ArrayList;
30import java.util.Collections;
31import java.util.List;
32import java.util.RandomAccess;
33
34/**
35 * Immutable URI reference. A URI reference includes a URI and a fragment, the
36 * component of the URI following a '#'. Builds and parses URI references
37 * which conform to
38 * <a href="http://www.faqs.org/rfcs/rfc2396.html">RFC 2396</a>.
39 *
40 * <p>In the interest of performance, this class performs little to no
41 * validation. Behavior is undefined for invalid input. This class is very
42 * forgiving--in the face of invalid input, it will return garbage
43 * rather than throw an exception unless otherwise specified.
44 */
45public abstract class Uri implements Parcelable, Comparable<Uri> {
46
47    /*
48
49    This class aims to do as little up front work as possible. To accomplish
50    that, we vary the implementation dependending on what the user passes in.
51    For example, we have one implementation if the user passes in a
52    URI string (StringUri) and another if the user passes in the
53    individual components (OpaqueUri).
54
55    *Concurrency notes*: Like any truly immutable object, this class is safe
56    for concurrent use. This class uses a caching pattern in some places where
57    it doesn't use volatile or synchronized. This is safe to do with ints
58    because getting or setting an int is atomic. It's safe to do with a String
59    because the internal fields are final and the memory model guarantees other
60    threads won't see a partially initialized instance. We are not guaranteed
61    that some threads will immediately see changes from other threads on
62    certain platforms, but we don't mind if those threads reconstruct the
63    cached result. As a result, we get thread safe caching with no concurrency
64    overhead, which means the most common case, access from a single thread,
65    is as fast as possible.
66
67    From the Java Language spec.:
68
69    "17.5 Final Field Semantics
70
71    ... when the object is seen by another thread, that thread will always
72    see the correctly constructed version of that object's final fields.
73    It will also see versions of any object or array referenced by
74    those final fields that are at least as up-to-date as the final fields
75    are."
76
77    In that same vein, all non-transient fields within Uri
78    implementations should be final and immutable so as to ensure true
79    immutability for clients even when they don't use proper concurrency
80    control.
81
82    For reference, from RFC 2396:
83
84    "4.3. Parsing a URI Reference
85
86       A URI reference is typically parsed according to the four main
87       components and fragment identifier in order to determine what
88       components are present and whether the reference is relative or
89       absolute.  The individual components are then parsed for their
90       subparts and, if not opaque, to verify their validity.
91
92       Although the BNF defines what is allowed in each component, it is
93       ambiguous in terms of differentiating between an authority component
94       and a path component that begins with two slash characters.  The
95       greedy algorithm is used for disambiguation: the left-most matching
96       rule soaks up as much of the URI reference string as it is capable of
97       matching.  In other words, the authority component wins."
98
99    The "four main components" of a hierarchical URI consist of
100    <scheme>://<authority><path>?<query>
101
102    */
103
104    /** Log tag. */
105    private static final String LOG = Uri.class.getSimpleName();
106
107    /**
108     * NOTE: EMPTY accesses this field during its own initialization, so this
109     * field *must* be initialized first, or else EMPTY will see a null value!
110     *
111     * Placeholder for strings which haven't been cached. This enables us
112     * to cache null. We intentionally create a new String instance so we can
113     * compare its identity and there is no chance we will confuse it with
114     * user data.
115     */
116    @SuppressWarnings("RedundantStringConstructorCall")
117    private static final String NOT_CACHED = new String("NOT CACHED");
118
119    /**
120     * The empty URI, equivalent to "".
121     */
122    public static final Uri EMPTY = new HierarchicalUri(null, Part.NULL,
123            PathPart.EMPTY, Part.NULL, Part.NULL);
124
125    /**
126     * Prevents external subclassing.
127     */
128    private Uri() {}
129
130    /**
131     * Returns true if this URI is hierarchical like "http://google.com".
132     * Absolute URIs are hierarchical if the scheme-specific part starts with
133     * a '/'. Relative URIs are always hierarchical.
134     */
135    public abstract boolean isHierarchical();
136
137    /**
138     * Returns true if this URI is opaque like "mailto:nobody@google.com". The
139     * scheme-specific part of an opaque URI cannot start with a '/'.
140     */
141    public boolean isOpaque() {
142        return !isHierarchical();
143    }
144
145    /**
146     * Returns true if this URI is relative, i.e. if it doesn't contain an
147     * explicit scheme.
148     *
149     * @return true if this URI is relative, false if it's absolute
150     */
151    public abstract boolean isRelative();
152
153    /**
154     * Returns true if this URI is absolute, i.e. if it contains an
155     * explicit scheme.
156     *
157     * @return true if this URI is absolute, false if it's relative
158     */
159    public boolean isAbsolute() {
160        return !isRelative();
161    }
162
163    /**
164     * Gets the scheme of this URI. Example: "http"
165     *
166     * @return the scheme or null if this is a relative URI
167     */
168    public abstract String getScheme();
169
170    /**
171     * Gets the scheme-specific part of this URI, i.e. everything between the
172     * scheme separator ':' and the fragment separator '#'. If this is a
173     * relative URI, this method returns the entire URI. Decodes escaped octets.
174     *
175     * <p>Example: "//www.google.com/search?q=android"
176     *
177     * @return the decoded scheme-specific-part
178     */
179    public abstract String getSchemeSpecificPart();
180
181    /**
182     * Gets the scheme-specific part of this URI, i.e. everything between the
183     * scheme separator ':' and the fragment separator '#'. If this is a
184     * relative URI, this method returns the entire URI. Leaves escaped octets
185     * intact.
186     *
187     * <p>Example: "//www.google.com/search?q=android"
188     *
189     * @return the decoded scheme-specific-part
190     */
191    public abstract String getEncodedSchemeSpecificPart();
192
193    /**
194     * Gets the decoded authority part of this URI. For
195     * server addresses, the authority is structured as follows:
196     * {@code [ userinfo '@' ] host [ ':' port ]}
197     *
198     * <p>Examples: "google.com", "bob@google.com:80"
199     *
200     * @return the authority for this URI or null if not present
201     */
202    public abstract String getAuthority();
203
204    /**
205     * Gets the encoded authority part of this URI. For
206     * server addresses, the authority is structured as follows:
207     * {@code [ userinfo '@' ] host [ ':' port ]}
208     *
209     * <p>Examples: "google.com", "bob@google.com:80"
210     *
211     * @return the authority for this URI or null if not present
212     */
213    public abstract String getEncodedAuthority();
214
215    /**
216     * Gets the decoded user information from the authority.
217     * For example, if the authority is "nobody@google.com", this method will
218     * return "nobody".
219     *
220     * @return the user info for this URI or null if not present
221     */
222    public abstract String getUserInfo();
223
224    /**
225     * Gets the encoded user information from the authority.
226     * For example, if the authority is "nobody@google.com", this method will
227     * return "nobody".
228     *
229     * @return the user info for this URI or null if not present
230     */
231    public abstract String getEncodedUserInfo();
232
233    /**
234     * Gets the encoded host from the authority for this URI. For example,
235     * if the authority is "bob@google.com", this method will return
236     * "google.com".
237     *
238     * @return the host for this URI or null if not present
239     */
240    public abstract String getHost();
241
242    /**
243     * Gets the port from the authority for this URI. For example,
244     * if the authority is "google.com:80", this method will return 80.
245     *
246     * @return the port for this URI or -1 if invalid or not present
247     */
248    public abstract int getPort();
249
250    /**
251     * Gets the decoded path.
252     *
253     * @return the decoded path, or null if this is not a hierarchical URI
254     * (like "mailto:nobody@google.com") or the URI is invalid
255     */
256    public abstract String getPath();
257
258    /**
259     * Gets the encoded path.
260     *
261     * @return the encoded path, or null if this is not a hierarchical URI
262     * (like "mailto:nobody@google.com") or the URI is invalid
263     */
264    public abstract String getEncodedPath();
265
266    /**
267     * Gets the decoded query component from this URI. The query comes after
268     * the query separator ('?') and before the fragment separator ('#'). This
269     * method would return "q=android" for
270     * "http://www.google.com/search?q=android".
271     *
272     * @return the decoded query or null if there isn't one
273     */
274    public abstract String getQuery();
275
276    /**
277     * Gets the encoded query component from this URI. The query comes after
278     * the query separator ('?') and before the fragment separator ('#'). This
279     * method would return "q=android" for
280     * "http://www.google.com/search?q=android".
281     *
282     * @return the encoded query or null if there isn't one
283     */
284    public abstract String getEncodedQuery();
285
286    /**
287     * Gets the decoded fragment part of this URI, everything after the '#'.
288     *
289     * @return the decoded fragment or null if there isn't one
290     */
291    public abstract String getFragment();
292
293    /**
294     * Gets the encoded fragment part of this URI, everything after the '#'.
295     *
296     * @return the encoded fragment or null if there isn't one
297     */
298    public abstract String getEncodedFragment();
299
300    /**
301     * Gets the decoded path segments.
302     *
303     * @return decoded path segments, each without a leading or trailing '/'
304     */
305    public abstract List<String> getPathSegments();
306
307    /**
308     * Gets the decoded last segment in the path.
309     *
310     * @return the decoded last segment or null if the path is empty
311     */
312    public abstract String getLastPathSegment();
313
314    /**
315     * Compares this Uri to another object for equality. Returns true if the
316     * encoded string representations of this Uri and the given Uri are
317     * equal. Case counts. Paths are not normalized. If one Uri specifies a
318     * default port explicitly and the other leaves it implicit, they will not
319     * be considered equal.
320     */
321    public boolean equals(Object o) {
322        if (!(o instanceof Uri)) {
323            return false;
324        }
325
326        Uri other = (Uri) o;
327
328        return toString().equals(other.toString());
329    }
330
331    /**
332     * Hashes the encoded string represention of this Uri consistently with
333     * {@link #equals(Object)}.
334     */
335    public int hashCode() {
336        return toString().hashCode();
337    }
338
339    /**
340     * Compares the string representation of this Uri with that of
341     * another.
342     */
343    public int compareTo(Uri other) {
344        return toString().compareTo(other.toString());
345    }
346
347    /**
348     * Returns the encoded string representation of this URI.
349     * Example: "http://google.com/"
350     */
351    public abstract String toString();
352
353    /**
354     * Constructs a new builder, copying the attributes from this Uri.
355     */
356    public abstract Builder buildUpon();
357
358    /** Index of a component which was not found. */
359    private final static int NOT_FOUND = -1;
360
361    /** Placeholder value for an index which hasn't been calculated yet. */
362    private final static int NOT_CALCULATED = -2;
363
364    /**
365     * Error message presented when a user tries to treat an opaque URI as
366     * hierarchical.
367     */
368    private static final String NOT_HIERARCHICAL
369            = "This isn't a hierarchical URI.";
370
371    /** Default encoding. */
372    private static final String DEFAULT_ENCODING = "UTF-8";
373
374    /**
375     * Creates a Uri which parses the given encoded URI string.
376     *
377     * @param uriString an RFC 3296-compliant, encoded URI
378     * @throws NullPointerException if uriString is null
379     * @return Uri for this given uri string
380     */
381    public static Uri parse(String uriString) {
382        return new StringUri(uriString);
383    }
384
385    /**
386     * Creates a Uri from a file. The URI has the form
387     * "file://<absolute path>". Encodes path characters with the exception of
388     * '/'.
389     *
390     * <p>Example: "file:///tmp/android.txt"
391     *
392     * @throws NullPointerException if file is null
393     * @return a Uri for the given file
394     */
395    public static Uri fromFile(File file) {
396        if (file == null) {
397            throw new NullPointerException("file");
398        }
399
400        PathPart path = PathPart.fromDecoded(file.getAbsolutePath());
401        return new HierarchicalUri(
402                "file", Part.EMPTY, path, Part.NULL, Part.NULL);
403    }
404
405    /**
406     * An implementation which wraps a String URI. This URI can be opaque or
407     * hierarchical, but we extend AbstractHierarchicalUri in case we need
408     * the hierarchical functionality.
409     */
410    private static class StringUri extends AbstractHierarchicalUri {
411
412        /** Used in parcelling. */
413        static final int TYPE_ID = 1;
414
415        /** URI string representation. */
416        private final String uriString;
417
418        private StringUri(String uriString) {
419            if (uriString == null) {
420                throw new NullPointerException("uriString");
421            }
422
423            this.uriString = uriString;
424        }
425
426        static Uri readFrom(Parcel parcel) {
427            return new StringUri(parcel.readString());
428        }
429
430        public int describeContents() {
431            return 0;
432        }
433
434        public void writeToParcel(Parcel parcel, int flags) {
435            parcel.writeInt(TYPE_ID);
436            parcel.writeString(uriString);
437        }
438
439        /** Cached scheme separator index. */
440        private volatile int cachedSsi = NOT_CALCULATED;
441
442        /** Finds the first ':'. Returns -1 if none found. */
443        private int findSchemeSeparator() {
444            return cachedSsi == NOT_CALCULATED
445                    ? cachedSsi = uriString.indexOf(':')
446                    : cachedSsi;
447        }
448
449        /** Cached fragment separator index. */
450        private volatile int cachedFsi = NOT_CALCULATED;
451
452        /** Finds the first '#'. Returns -1 if none found. */
453        private int findFragmentSeparator() {
454            return cachedFsi == NOT_CALCULATED
455                    ? cachedFsi = uriString.indexOf('#', findSchemeSeparator())
456                    : cachedFsi;
457        }
458
459        public boolean isHierarchical() {
460            int ssi = findSchemeSeparator();
461
462            if (ssi == NOT_FOUND) {
463                // All relative URIs are hierarchical.
464                return true;
465            }
466
467            if (uriString.length() == ssi + 1) {
468                // No ssp.
469                return false;
470            }
471
472            // If the ssp starts with a '/', this is hierarchical.
473            return uriString.charAt(ssi + 1) == '/';
474        }
475
476        public boolean isRelative() {
477            // Note: We return true if the index is 0
478            return findSchemeSeparator() == NOT_FOUND;
479        }
480
481        private volatile String scheme = NOT_CACHED;
482
483        public String getScheme() {
484            @SuppressWarnings("StringEquality")
485            boolean cached = (scheme != NOT_CACHED);
486            return cached ? scheme : (scheme = parseScheme());
487        }
488
489        private String parseScheme() {
490            int ssi = findSchemeSeparator();
491            return ssi == NOT_FOUND ? null : uriString.substring(0, ssi);
492        }
493
494        private Part ssp;
495
496        private Part getSsp() {
497            return ssp == null ? ssp = Part.fromEncoded(parseSsp()) : ssp;
498        }
499
500        public String getEncodedSchemeSpecificPart() {
501            return getSsp().getEncoded();
502        }
503
504        public String getSchemeSpecificPart() {
505            return getSsp().getDecoded();
506        }
507
508        private String parseSsp() {
509            int ssi = findSchemeSeparator();
510            int fsi = findFragmentSeparator();
511
512            // Return everything between ssi and fsi.
513            return fsi == NOT_FOUND
514                    ? uriString.substring(ssi + 1)
515                    : uriString.substring(ssi + 1, fsi);
516        }
517
518        private Part authority;
519
520        private Part getAuthorityPart() {
521            if (authority == null) {
522                String encodedAuthority
523                        = parseAuthority(this.uriString, findSchemeSeparator());
524                return authority = Part.fromEncoded(encodedAuthority);
525            }
526
527            return authority;
528        }
529
530        public String getEncodedAuthority() {
531            return getAuthorityPart().getEncoded();
532        }
533
534        public String getAuthority() {
535            return getAuthorityPart().getDecoded();
536        }
537
538        private PathPart path;
539
540        private PathPart getPathPart() {
541            return path == null
542                    ? path = PathPart.fromEncoded(parsePath())
543                    : path;
544        }
545
546        public String getPath() {
547            return getPathPart().getDecoded();
548        }
549
550        public String getEncodedPath() {
551            return getPathPart().getEncoded();
552        }
553
554        public List<String> getPathSegments() {
555            return getPathPart().getPathSegments();
556        }
557
558        private String parsePath() {
559            String uriString = this.uriString;
560            int ssi = findSchemeSeparator();
561
562            // If the URI is absolute.
563            if (ssi > -1) {
564                // Is there anything after the ':'?
565                boolean schemeOnly = ssi + 1 == uriString.length();
566                if (schemeOnly) {
567                    // Opaque URI.
568                    return null;
569                }
570
571                // A '/' after the ':' means this is hierarchical.
572                if (uriString.charAt(ssi + 1) != '/') {
573                    // Opaque URI.
574                    return null;
575                }
576            } else {
577                // All relative URIs are hierarchical.
578            }
579
580            return parsePath(uriString, ssi);
581        }
582
583        private Part query;
584
585        private Part getQueryPart() {
586            return query == null
587                    ? query = Part.fromEncoded(parseQuery()) : query;
588        }
589
590        public String getEncodedQuery() {
591            return getQueryPart().getEncoded();
592        }
593
594        private String parseQuery() {
595            // It doesn't make sense to cache this index. We only ever
596            // calculate it once.
597            int qsi = uriString.indexOf('?', findSchemeSeparator());
598            if (qsi == NOT_FOUND) {
599                return null;
600            }
601
602            int fsi = findFragmentSeparator();
603
604            if (fsi == NOT_FOUND) {
605                return uriString.substring(qsi + 1);
606            }
607
608            if (fsi < qsi) {
609                // Invalid.
610                return null;
611            }
612
613            return uriString.substring(qsi + 1, fsi);
614        }
615
616        public String getQuery() {
617            return getQueryPart().getDecoded();
618        }
619
620        private Part fragment;
621
622        private Part getFragmentPart() {
623            return fragment == null
624                    ? fragment = Part.fromEncoded(parseFragment()) : fragment;
625        }
626
627        public String getEncodedFragment() {
628            return getFragmentPart().getEncoded();
629        }
630
631        private String parseFragment() {
632            int fsi = findFragmentSeparator();
633            return fsi == NOT_FOUND ? null : uriString.substring(fsi + 1);
634        }
635
636        public String getFragment() {
637            return getFragmentPart().getDecoded();
638        }
639
640        public String toString() {
641            return uriString;
642        }
643
644        /**
645         * Parses an authority out of the given URI string.
646         *
647         * @param uriString URI string
648         * @param ssi scheme separator index, -1 for a relative URI
649         *
650         * @return the authority or null if none is found
651         */
652        static String parseAuthority(String uriString, int ssi) {
653            int length = uriString.length();
654
655            // If "//" follows the scheme separator, we have an authority.
656            if (length > ssi + 2
657                    && uriString.charAt(ssi + 1) == '/'
658                    && uriString.charAt(ssi + 2) == '/') {
659                // We have an authority.
660
661                // Look for the start of the path, query, or fragment, or the
662                // end of the string.
663                int end = ssi + 3;
664                LOOP: while (end < length) {
665                    switch (uriString.charAt(end)) {
666                        case '/': // Start of path
667                        case '?': // Start of query
668                        case '#': // Start of fragment
669                            break LOOP;
670                    }
671                    end++;
672                }
673
674                return uriString.substring(ssi + 3, end);
675            } else {
676                return null;
677            }
678
679        }
680
681        /**
682         * Parses a path out of this given URI string.
683         *
684         * @param uriString URI string
685         * @param ssi scheme separator index, -1 for a relative URI
686         *
687         * @return the path
688         */
689        static String parsePath(String uriString, int ssi) {
690            int length = uriString.length();
691
692            // Find start of path.
693            int pathStart;
694            if (length > ssi + 2
695                    && uriString.charAt(ssi + 1) == '/'
696                    && uriString.charAt(ssi + 2) == '/') {
697                // Skip over authority to path.
698                pathStart = ssi + 3;
699                LOOP: while (pathStart < length) {
700                    switch (uriString.charAt(pathStart)) {
701                        case '?': // Start of query
702                        case '#': // Start of fragment
703                            return ""; // Empty path.
704                        case '/': // Start of path!
705                            break LOOP;
706                    }
707                    pathStart++;
708                }
709            } else {
710                // Path starts immediately after scheme separator.
711                pathStart = ssi + 1;
712            }
713
714            // Find end of path.
715            int pathEnd = pathStart;
716            LOOP: while (pathEnd < length) {
717                switch (uriString.charAt(pathEnd)) {
718                    case '?': // Start of query
719                    case '#': // Start of fragment
720                        break LOOP;
721                }
722                pathEnd++;
723            }
724
725            return uriString.substring(pathStart, pathEnd);
726        }
727
728        public Builder buildUpon() {
729            if (isHierarchical()) {
730                return new Builder()
731                        .scheme(getScheme())
732                        .authority(getAuthorityPart())
733                        .path(getPathPart())
734                        .query(getQueryPart())
735                        .fragment(getFragmentPart());
736            } else {
737                return new Builder()
738                        .scheme(getScheme())
739                        .opaquePart(getSsp())
740                        .fragment(getFragmentPart());
741            }
742        }
743    }
744
745    /**
746     * Creates an opaque Uri from the given components. Encodes the ssp
747     * which means this method cannot be used to create hierarchical URIs.
748     *
749     * @param scheme of the URI
750     * @param ssp scheme-specific-part, everything between the
751     *  scheme separator (':') and the fragment separator ('#'), which will
752     *  get encoded
753     * @param fragment fragment, everything after the '#', null if undefined,
754     *  will get encoded
755     *
756     * @throws NullPointerException if scheme or ssp is null
757     * @return Uri composed of the given scheme, ssp, and fragment
758     *
759     * @see Builder if you don't want the ssp and fragment to be encoded
760     */
761    public static Uri fromParts(String scheme, String ssp,
762            String fragment) {
763        if (scheme == null) {
764            throw new NullPointerException("scheme");
765        }
766        if (ssp == null) {
767            throw new NullPointerException("ssp");
768        }
769
770        return new OpaqueUri(scheme, Part.fromDecoded(ssp),
771                Part.fromDecoded(fragment));
772    }
773
774    /**
775     * Opaque URI.
776     */
777    private static class OpaqueUri extends Uri {
778
779        /** Used in parcelling. */
780        static final int TYPE_ID = 2;
781
782        private final String scheme;
783        private final Part ssp;
784        private final Part fragment;
785
786        private OpaqueUri(String scheme, Part ssp, Part fragment) {
787            this.scheme = scheme;
788            this.ssp = ssp;
789            this.fragment = fragment == null ? Part.NULL : fragment;
790        }
791
792        static Uri readFrom(Parcel parcel) {
793            return new OpaqueUri(
794                parcel.readString(),
795                Part.readFrom(parcel),
796                Part.readFrom(parcel)
797            );
798        }
799
800        public int describeContents() {
801            return 0;
802        }
803
804        public void writeToParcel(Parcel parcel, int flags) {
805            parcel.writeInt(TYPE_ID);
806            parcel.writeString(scheme);
807            ssp.writeTo(parcel);
808            fragment.writeTo(parcel);
809        }
810
811        public boolean isHierarchical() {
812            return false;
813        }
814
815        public boolean isRelative() {
816            return scheme == null;
817        }
818
819        public String getScheme() {
820            return this.scheme;
821        }
822
823        public String getEncodedSchemeSpecificPart() {
824            return ssp.getEncoded();
825        }
826
827        public String getSchemeSpecificPart() {
828            return ssp.getDecoded();
829        }
830
831        public String getAuthority() {
832            return null;
833        }
834
835        public String getEncodedAuthority() {
836            return null;
837        }
838
839        public String getPath() {
840            return null;
841        }
842
843        public String getEncodedPath() {
844            return null;
845        }
846
847        public String getQuery() {
848            return null;
849        }
850
851        public String getEncodedQuery() {
852            return null;
853        }
854
855        public String getFragment() {
856            return fragment.getDecoded();
857        }
858
859        public String getEncodedFragment() {
860            return fragment.getEncoded();
861        }
862
863        public List<String> getPathSegments() {
864            return Collections.emptyList();
865        }
866
867        public String getLastPathSegment() {
868            return null;
869        }
870
871        public String getUserInfo() {
872            return null;
873        }
874
875        public String getEncodedUserInfo() {
876            return null;
877        }
878
879        public String getHost() {
880            return null;
881        }
882
883        public int getPort() {
884            return -1;
885        }
886
887        private volatile String cachedString = NOT_CACHED;
888
889        public String toString() {
890            @SuppressWarnings("StringEquality")
891            boolean cached = cachedString != NOT_CACHED;
892            if (cached) {
893                return cachedString;
894            }
895
896            StringBuilder sb = new StringBuilder();
897
898            sb.append(scheme).append(':');
899            sb.append(getEncodedSchemeSpecificPart());
900
901            if (!fragment.isEmpty()) {
902                sb.append('#').append(fragment.getEncoded());
903            }
904
905            return cachedString = sb.toString();
906        }
907
908        public Builder buildUpon() {
909            return new Builder()
910                    .scheme(this.scheme)
911                    .opaquePart(this.ssp)
912                    .fragment(this.fragment);
913        }
914    }
915
916    /**
917     * Wrapper for path segment array.
918     */
919    static class PathSegments extends AbstractList<String>
920            implements RandomAccess {
921
922        static final PathSegments EMPTY = new PathSegments(null, 0);
923
924        final String[] segments;
925        final int size;
926
927        PathSegments(String[] segments, int size) {
928            this.segments = segments;
929            this.size = size;
930        }
931
932        public String get(int index) {
933            if (index >= size) {
934                throw new IndexOutOfBoundsException();
935            }
936
937            return segments[index];
938        }
939
940        public int size() {
941            return this.size;
942        }
943    }
944
945    /**
946     * Builds PathSegments.
947     */
948    static class PathSegmentsBuilder {
949
950        String[] segments;
951        int size = 0;
952
953        void add(String segment) {
954            if (segments == null) {
955                segments = new String[4];
956            } else if (size + 1 == segments.length) {
957                String[] expanded = new String[segments.length * 2];
958                System.arraycopy(segments, 0, expanded, 0, segments.length);
959                segments = expanded;
960            }
961
962            segments[size++] = segment;
963        }
964
965        PathSegments build() {
966            if (segments == null) {
967                return PathSegments.EMPTY;
968            }
969
970            try {
971                return new PathSegments(segments, size);
972            } finally {
973                // Makes sure this doesn't get reused.
974                segments = null;
975            }
976        }
977    }
978
979    /**
980     * Support for hierarchical URIs.
981     */
982    private abstract static class AbstractHierarchicalUri extends Uri {
983
984        public String getLastPathSegment() {
985            // TODO: If we haven't parsed all of the segments already, just
986            // grab the last one directly so we only allocate one string.
987
988            List<String> segments = getPathSegments();
989            int size = segments.size();
990            if (size == 0) {
991                return null;
992            }
993            return segments.get(size - 1);
994        }
995
996        private Part userInfo;
997
998        private Part getUserInfoPart() {
999            return userInfo == null
1000                    ? userInfo = Part.fromEncoded(parseUserInfo()) : userInfo;
1001        }
1002
1003        public final String getEncodedUserInfo() {
1004            return getUserInfoPart().getEncoded();
1005        }
1006
1007        private String parseUserInfo() {
1008            String authority = getEncodedAuthority();
1009            if (authority == null) {
1010                return null;
1011            }
1012
1013            int end = authority.indexOf('@');
1014            return end == NOT_FOUND ? null : authority.substring(0, end);
1015        }
1016
1017        public String getUserInfo() {
1018            return getUserInfoPart().getDecoded();
1019        }
1020
1021        private volatile String host = NOT_CACHED;
1022
1023        public String getHost() {
1024            @SuppressWarnings("StringEquality")
1025            boolean cached = (host != NOT_CACHED);
1026            return cached ? host
1027                    : (host = parseHost());
1028        }
1029
1030        private String parseHost() {
1031            String authority = getAuthority();
1032            if (authority == null) {
1033                return null;
1034            }
1035
1036            // Parse out user info and then port.
1037            int userInfoSeparator = authority.indexOf('@');
1038            int portSeparator = authority.indexOf(':', userInfoSeparator);
1039
1040            return portSeparator == NOT_FOUND
1041                    ? authority.substring(userInfoSeparator + 1)
1042                    : authority.substring(userInfoSeparator + 1, portSeparator);
1043        }
1044
1045        private volatile int port = NOT_CALCULATED;
1046
1047        public int getPort() {
1048            return port == NOT_CALCULATED
1049                    ? port = parsePort()
1050                    : port;
1051        }
1052
1053        private int parsePort() {
1054            String authority = getAuthority();
1055            if (authority == null) {
1056                return -1;
1057            }
1058
1059            // Make sure we look for the port separtor *after* the user info
1060            // separator. We have URLs with a ':' in the user info.
1061            int userInfoSeparator = authority.indexOf('@');
1062            int portSeparator = authority.indexOf(':', userInfoSeparator);
1063
1064            if (portSeparator == NOT_FOUND) {
1065                return -1;
1066            }
1067
1068            String portString = authority.substring(portSeparator + 1);
1069            try {
1070                return Integer.parseInt(portString);
1071            } catch (NumberFormatException e) {
1072                Log.w(LOG, "Error parsing port string.", e);
1073                return -1;
1074            }
1075        }
1076    }
1077
1078    /**
1079     * Hierarchical Uri.
1080     */
1081    private static class HierarchicalUri extends AbstractHierarchicalUri {
1082
1083        /** Used in parcelling. */
1084        static final int TYPE_ID = 3;
1085
1086        private final String scheme;
1087        private final Part authority;
1088        private final PathPart path;
1089        private final Part query;
1090        private final Part fragment;
1091
1092        private HierarchicalUri(String scheme, Part authority, PathPart path,
1093                Part query, Part fragment) {
1094            this.scheme = scheme;
1095            this.authority = authority;
1096            this.path = path;
1097            this.query = query;
1098            this.fragment = fragment;
1099        }
1100
1101        static Uri readFrom(Parcel parcel) {
1102            return new HierarchicalUri(
1103                parcel.readString(),
1104                Part.readFrom(parcel),
1105                PathPart.readFrom(parcel),
1106                Part.readFrom(parcel),
1107                Part.readFrom(parcel)
1108            );
1109        }
1110
1111        public int describeContents() {
1112            return 0;
1113        }
1114
1115        public void writeToParcel(Parcel parcel, int flags) {
1116            parcel.writeInt(TYPE_ID);
1117            parcel.writeString(scheme);
1118            authority.writeTo(parcel);
1119            path.writeTo(parcel);
1120            query.writeTo(parcel);
1121            fragment.writeTo(parcel);
1122        }
1123
1124        public boolean isHierarchical() {
1125            return true;
1126        }
1127
1128        public boolean isRelative() {
1129            return scheme == null;
1130        }
1131
1132        public String getScheme() {
1133            return scheme;
1134        }
1135
1136        private Part ssp;
1137
1138        private Part getSsp() {
1139            return ssp == null
1140                    ? ssp = Part.fromEncoded(makeSchemeSpecificPart()) : ssp;
1141        }
1142
1143        public String getEncodedSchemeSpecificPart() {
1144            return getSsp().getEncoded();
1145        }
1146
1147        public String getSchemeSpecificPart() {
1148            return getSsp().getDecoded();
1149        }
1150
1151        /**
1152         * Creates the encoded scheme-specific part from its sub parts.
1153         */
1154        private String makeSchemeSpecificPart() {
1155            StringBuilder builder = new StringBuilder();
1156            appendSspTo(builder);
1157            return builder.toString();
1158        }
1159
1160        private void appendSspTo(StringBuilder builder) {
1161            if (authority != null) {
1162                String encodedAuthority = authority.getEncoded();
1163                if (encodedAuthority != null) {
1164                    // Even if the authority is "", we still want to append "//".
1165                    builder.append("//").append(encodedAuthority);
1166                }
1167            }
1168
1169            // path is never null.
1170            String encodedPath = path.getEncoded();
1171            if (encodedPath != null) {
1172                builder.append(encodedPath);
1173            }
1174
1175            if (query != null && !query.isEmpty()) {
1176                builder.append('?').append(query.getEncoded());
1177            }
1178        }
1179
1180        public String getAuthority() {
1181            return this.authority.getDecoded();
1182        }
1183
1184        public String getEncodedAuthority() {
1185            return this.authority.getEncoded();
1186        }
1187
1188        public String getEncodedPath() {
1189            return this.path.getEncoded();
1190        }
1191
1192        public String getPath() {
1193            return this.path.getDecoded();
1194        }
1195
1196        public String getQuery() {
1197            return this.query.getDecoded();
1198        }
1199
1200        public String getEncodedQuery() {
1201            return this.query.getEncoded();
1202        }
1203
1204        public String getFragment() {
1205            return this.fragment.getDecoded();
1206        }
1207
1208        public String getEncodedFragment() {
1209            return this.fragment.getEncoded();
1210        }
1211
1212        public List<String> getPathSegments() {
1213            return this.path.getPathSegments();
1214        }
1215
1216        private volatile String uriString = NOT_CACHED;
1217
1218        @Override
1219        public String toString() {
1220            @SuppressWarnings("StringEquality")
1221            boolean cached = (uriString != NOT_CACHED);
1222            return cached ? uriString
1223                    : (uriString = makeUriString());
1224        }
1225
1226        private String makeUriString() {
1227            StringBuilder builder = new StringBuilder();
1228
1229            if (scheme != null) {
1230                builder.append(scheme).append(':');
1231            }
1232
1233            appendSspTo(builder);
1234
1235            if (fragment != null && !fragment.isEmpty()) {
1236                builder.append('#').append(fragment.getEncoded());
1237            }
1238
1239            return builder.toString();
1240        }
1241
1242        public Builder buildUpon() {
1243            return new Builder()
1244                    .scheme(scheme)
1245                    .authority(authority)
1246                    .path(path)
1247                    .query(query)
1248                    .fragment(fragment);
1249        }
1250    }
1251
1252    /**
1253     * Helper class for building or manipulating URI references. Not safe for
1254     * concurrent use.
1255     *
1256     * <p>An absolute hierarchical URI reference follows the pattern:
1257     * {@code &lt;scheme&gt;://&lt;authority&gt;&lt;absolute path&gt;?&lt;query&gt;#&lt;fragment&gt;}
1258     *
1259     * <p>Relative URI references (which are always hierarchical) follow one
1260     * of two patterns: {@code &lt;relative or absolute path&gt;?&lt;query&gt;#&lt;fragment&gt;}
1261     * or {@code //&lt;authority&gt;&lt;absolute path&gt;?&lt;query&gt;#&lt;fragment&gt;}
1262     *
1263     * <p>An opaque URI follows this pattern:
1264     * {@code &lt;scheme&gt;:&lt;opaque part&gt;#&lt;fragment&gt;}
1265     */
1266    public static final class Builder {
1267
1268        private String scheme;
1269        private Part opaquePart;
1270        private Part authority;
1271        private PathPart path;
1272        private Part query;
1273        private Part fragment;
1274
1275        /**
1276         * Constructs a new Builder.
1277         */
1278        public Builder() {}
1279
1280        /**
1281         * Sets the scheme.
1282         *
1283         * @param scheme name or {@code null} if this is a relative Uri
1284         */
1285        public Builder scheme(String scheme) {
1286            this.scheme = scheme;
1287            return this;
1288        }
1289
1290        Builder opaquePart(Part opaquePart) {
1291            this.opaquePart = opaquePart;
1292            return this;
1293        }
1294
1295        /**
1296         * Encodes and sets the given opaque scheme-specific-part.
1297         *
1298         * @param opaquePart decoded opaque part
1299         */
1300        public Builder opaquePart(String opaquePart) {
1301            return opaquePart(Part.fromDecoded(opaquePart));
1302        }
1303
1304        /**
1305         * Sets the previously encoded opaque scheme-specific-part.
1306         *
1307         * @param opaquePart encoded opaque part
1308         */
1309        public Builder encodedOpaquePart(String opaquePart) {
1310            return opaquePart(Part.fromEncoded(opaquePart));
1311        }
1312
1313        Builder authority(Part authority) {
1314            // This URI will be hierarchical.
1315            this.opaquePart = null;
1316
1317            this.authority = authority;
1318            return this;
1319        }
1320
1321        /**
1322         * Encodes and sets the authority.
1323         */
1324        public Builder authority(String authority) {
1325            return authority(Part.fromDecoded(authority));
1326        }
1327
1328        /**
1329         * Sets the previously encoded authority.
1330         */
1331        public Builder encodedAuthority(String authority) {
1332            return authority(Part.fromEncoded(authority));
1333        }
1334
1335        Builder path(PathPart path) {
1336            // This URI will be hierarchical.
1337            this.opaquePart = null;
1338
1339            this.path = path;
1340            return this;
1341        }
1342
1343        /**
1344         * Sets the path. Leaves '/' characters intact but encodes others as
1345         * necessary.
1346         *
1347         * <p>If the path is not null and doesn't start with a '/', and if
1348         * you specify a scheme and/or authority, the builder will prepend the
1349         * given path with a '/'.
1350         */
1351        public Builder path(String path) {
1352            return path(PathPart.fromDecoded(path));
1353        }
1354
1355        /**
1356         * Sets the previously encoded path.
1357         *
1358         * <p>If the path is not null and doesn't start with a '/', and if
1359         * you specify a scheme and/or authority, the builder will prepend the
1360         * given path with a '/'.
1361         */
1362        public Builder encodedPath(String path) {
1363            return path(PathPart.fromEncoded(path));
1364        }
1365
1366        /**
1367         * Encodes the given segment and appends it to the path.
1368         */
1369        public Builder appendPath(String newSegment) {
1370            return path(PathPart.appendDecodedSegment(path, newSegment));
1371        }
1372
1373        /**
1374         * Appends the given segment to the path.
1375         */
1376        public Builder appendEncodedPath(String newSegment) {
1377            return path(PathPart.appendEncodedSegment(path, newSegment));
1378        }
1379
1380        Builder query(Part query) {
1381            // This URI will be hierarchical.
1382            this.opaquePart = null;
1383
1384            this.query = query;
1385            return this;
1386        }
1387
1388        /**
1389         * Encodes and sets the query.
1390         */
1391        public Builder query(String query) {
1392            return query(Part.fromDecoded(query));
1393        }
1394
1395        /**
1396         * Sets the previously encoded query.
1397         */
1398        public Builder encodedQuery(String query) {
1399            return query(Part.fromEncoded(query));
1400        }
1401
1402        Builder fragment(Part fragment) {
1403            this.fragment = fragment;
1404            return this;
1405        }
1406
1407        /**
1408         * Encodes and sets the fragment.
1409         */
1410        public Builder fragment(String fragment) {
1411            return fragment(Part.fromDecoded(fragment));
1412        }
1413
1414        /**
1415         * Sets the previously encoded fragment.
1416         */
1417        public Builder encodedFragment(String fragment) {
1418            return fragment(Part.fromEncoded(fragment));
1419        }
1420
1421        /**
1422         * Encodes the key and value and then appends the parameter to the
1423         * query string.
1424         *
1425         * @param key which will be encoded
1426         * @param value which will be encoded
1427         */
1428        public Builder appendQueryParameter(String key, String value) {
1429            // This URI will be hierarchical.
1430            this.opaquePart = null;
1431
1432            String encodedParameter = encode(key, null) + "="
1433                    + encode(value, null);
1434
1435            if (query == null) {
1436                query = Part.fromEncoded(encodedParameter);
1437                return this;
1438            }
1439
1440            String oldQuery = query.getEncoded();
1441            if (oldQuery == null || oldQuery.length() == 0) {
1442                query = Part.fromEncoded(encodedParameter);
1443            } else {
1444                query = Part.fromEncoded(oldQuery + "&" + encodedParameter);
1445            }
1446
1447            return this;
1448        }
1449
1450        /**
1451         * Constructs a Uri with the current attributes.
1452         *
1453         * @throws UnsupportedOperationException if the URI is opaque and the
1454         *  scheme is null
1455         */
1456        public Uri build() {
1457            if (opaquePart != null) {
1458                if (this.scheme == null) {
1459                    throw new UnsupportedOperationException(
1460                            "An opaque URI must have a scheme.");
1461                }
1462
1463                return new OpaqueUri(scheme, opaquePart, fragment);
1464            } else {
1465                // Hierarchical URIs should not return null for getPath().
1466                PathPart path = this.path;
1467                if (path == null || path == PathPart.NULL) {
1468                    path = PathPart.EMPTY;
1469                } else {
1470                    // If we have a scheme and/or authority, the path must
1471                    // be absolute. Prepend it with a '/' if necessary.
1472                    if (hasSchemeOrAuthority()) {
1473                        path = PathPart.makeAbsolute(path);
1474                    }
1475                }
1476
1477                return new HierarchicalUri(
1478                        scheme, authority, path, query, fragment);
1479            }
1480        }
1481
1482        private boolean hasSchemeOrAuthority() {
1483            return scheme != null
1484                    || (authority != null && authority != Part.NULL);
1485
1486        }
1487
1488        @Override
1489        public String toString() {
1490            return build().toString();
1491        }
1492    }
1493
1494    /**
1495     * Searches the query string for parameter values with the given key.
1496     *
1497     * @param key which will be encoded
1498     *
1499     * @throws UnsupportedOperationException if this isn't a hierarchical URI
1500     * @throws NullPointerException if key is null
1501     *
1502     * @return a list of decoded values
1503     */
1504    public List<String> getQueryParameters(String key) {
1505        if (isOpaque()) {
1506            throw new UnsupportedOperationException(NOT_HIERARCHICAL);
1507        }
1508
1509        String query = getQuery();
1510        if (query == null) {
1511            return Collections.emptyList();
1512        }
1513
1514        String encodedKey;
1515        try {
1516            encodedKey = URLEncoder.encode(key, DEFAULT_ENCODING);
1517        } catch (UnsupportedEncodingException e) {
1518            throw new AssertionError(e);
1519        }
1520
1521        // Prepend query with "&" making the first parameter the same as the
1522        // rest.
1523        query = "&" + query;
1524
1525        // Parameter prefix.
1526        String prefix = "&" + encodedKey + "=";
1527
1528        ArrayList<String> values = new ArrayList<String>();
1529
1530        int start = 0;
1531        int length = query.length();
1532        while (start < length) {
1533            start = query.indexOf(prefix, start);
1534
1535            if (start == -1) {
1536                // No more values.
1537                break;
1538            }
1539
1540            // Move start to start of value.
1541            start += prefix.length();
1542
1543            // Find end of value.
1544            int end = query.indexOf('&', start);
1545            if (end == -1) {
1546                end = query.length();
1547            }
1548
1549            String value = query.substring(start, end);
1550            values.add(decode(value));
1551
1552            start = end;
1553        }
1554
1555        return Collections.unmodifiableList(values);
1556    }
1557
1558    /**
1559     * Searches the query string for the first value with the given key.
1560     *
1561     * @param key which will be encoded
1562     * @throws UnsupportedOperationException if this isn't a hierarchical URI
1563     * @throws NullPointerException if key is null
1564     *
1565     * @return the decoded value or null if no parameter is found
1566     */
1567    public String getQueryParameter(String key) {
1568        if (isOpaque()) {
1569            throw new UnsupportedOperationException(NOT_HIERARCHICAL);
1570        }
1571
1572        String query = getQuery();
1573
1574        if (query == null) {
1575            return null;
1576        }
1577
1578        String encodedKey;
1579        try {
1580            encodedKey = URLEncoder.encode(key, DEFAULT_ENCODING);
1581        } catch (UnsupportedEncodingException e) {
1582            throw new AssertionError(e);
1583        }
1584
1585        String prefix = encodedKey + "=";
1586
1587        if (query.length() < prefix.length()) {
1588            return null;
1589        }
1590
1591        int start;
1592        if (query.startsWith(prefix)) {
1593            // It's the first parameter.
1594            start = prefix.length();
1595        } else {
1596            // It must be later in the query string.
1597            prefix = "&" + prefix;
1598            start = query.indexOf(prefix);
1599
1600            if (start == -1) {
1601                // Not found.
1602                return null;
1603            }
1604
1605            start += prefix.length();
1606        }
1607
1608        // Find end of value.
1609        int end = query.indexOf('&', start);
1610        if (end == -1) {
1611            end = query.length();
1612        }
1613
1614        String value = query.substring(start, end);
1615        return decode(value);
1616    }
1617
1618    /** Identifies a null parcelled Uri. */
1619    private static final int NULL_TYPE_ID = 0;
1620
1621    /**
1622     * Reads Uris from Parcels.
1623     */
1624    public static final Parcelable.Creator<Uri> CREATOR
1625            = new Parcelable.Creator<Uri>() {
1626        public Uri createFromParcel(Parcel in) {
1627            int type = in.readInt();
1628            switch (type) {
1629                case NULL_TYPE_ID: return null;
1630                case StringUri.TYPE_ID: return StringUri.readFrom(in);
1631                case OpaqueUri.TYPE_ID: return OpaqueUri.readFrom(in);
1632                case HierarchicalUri.TYPE_ID:
1633                    return HierarchicalUri.readFrom(in);
1634            }
1635
1636            throw new AssertionError("Unknown URI type: " + type);
1637        }
1638
1639        public Uri[] newArray(int size) {
1640            return new Uri[size];
1641        }
1642    };
1643
1644    /**
1645     * Writes a Uri to a Parcel.
1646     *
1647     * @param out parcel to write to
1648     * @param uri to write, can be null
1649     */
1650    public static void writeToParcel(Parcel out, Uri uri) {
1651        if (uri == null) {
1652            out.writeInt(NULL_TYPE_ID);
1653        } else {
1654            uri.writeToParcel(out, 0);
1655        }
1656    }
1657
1658    private static final char[] HEX_DIGITS = "0123456789ABCDEF".toCharArray();
1659
1660    /**
1661     * Encodes characters in the given string as '%'-escaped octets
1662     * using the UTF-8 scheme. Leaves letters ("A-Z", "a-z"), numbers
1663     * ("0-9"), and unreserved characters ("_-!.~'()*") intact. Encodes
1664     * all other characters.
1665     *
1666     * @param s string to encode
1667     * @return an encoded version of s suitable for use as a URI component,
1668     *  or null if s is null
1669     */
1670    public static String encode(String s) {
1671        return encode(s, null);
1672    }
1673
1674    /**
1675     * Encodes characters in the given string as '%'-escaped octets
1676     * using the UTF-8 scheme. Leaves letters ("A-Z", "a-z"), numbers
1677     * ("0-9"), and unreserved characters ("_-!.~'()*") intact. Encodes
1678     * all other characters with the exception of those specified in the
1679     * allow argument.
1680     *
1681     * @param s string to encode
1682     * @param allow set of additional characters to allow in the encoded form,
1683     *  null if no characters should be skipped
1684     * @return an encoded version of s suitable for use as a URI component,
1685     *  or null if s is null
1686     */
1687    public static String encode(String s, String allow) {
1688        if (s == null) {
1689            return null;
1690        }
1691
1692        // Lazily-initialized buffers.
1693        StringBuilder encoded = null;
1694
1695        int oldLength = s.length();
1696
1697        // This loop alternates between copying over allowed characters and
1698        // encoding in chunks. This results in fewer method calls and
1699        // allocations than encoding one character at a time.
1700        int current = 0;
1701        while (current < oldLength) {
1702            // Start in "copying" mode where we copy over allowed chars.
1703
1704            // Find the next character which needs to be encoded.
1705            int nextToEncode = current;
1706            while (nextToEncode < oldLength
1707                    && isAllowed(s.charAt(nextToEncode), allow)) {
1708                nextToEncode++;
1709            }
1710
1711            // If there's nothing more to encode...
1712            if (nextToEncode == oldLength) {
1713                if (current == 0) {
1714                    // We didn't need to encode anything!
1715                    return s;
1716                } else {
1717                    // Presumably, we've already done some encoding.
1718                    encoded.append(s, current, oldLength);
1719                    return encoded.toString();
1720                }
1721            }
1722
1723            if (encoded == null) {
1724                encoded = new StringBuilder();
1725            }
1726
1727            if (nextToEncode > current) {
1728                // Append allowed characters leading up to this point.
1729                encoded.append(s, current, nextToEncode);
1730            } else {
1731                // assert nextToEncode == current
1732            }
1733
1734            // Switch to "encoding" mode.
1735
1736            // Find the next allowed character.
1737            current = nextToEncode;
1738            int nextAllowed = current + 1;
1739            while (nextAllowed < oldLength
1740                    && !isAllowed(s.charAt(nextAllowed), allow)) {
1741                nextAllowed++;
1742            }
1743
1744            // Convert the substring to bytes and encode the bytes as
1745            // '%'-escaped octets.
1746            String toEncode = s.substring(current, nextAllowed);
1747            try {
1748                byte[] bytes = toEncode.getBytes(DEFAULT_ENCODING);
1749                int bytesLength = bytes.length;
1750                for (int i = 0; i < bytesLength; i++) {
1751                    encoded.append('%');
1752                    encoded.append(HEX_DIGITS[(bytes[i] & 0xf0) >> 4]);
1753                    encoded.append(HEX_DIGITS[bytes[i] & 0xf]);
1754                }
1755            } catch (UnsupportedEncodingException e) {
1756                throw new AssertionError(e);
1757            }
1758
1759            current = nextAllowed;
1760        }
1761
1762        // Encoded could still be null at this point if s is empty.
1763        return encoded == null ? s : encoded.toString();
1764    }
1765
1766    /**
1767     * Returns true if the given character is allowed.
1768     *
1769     * @param c character to check
1770     * @param allow characters to allow
1771     * @return true if the character is allowed or false if it should be
1772     *  encoded
1773     */
1774    private static boolean isAllowed(char c, String allow) {
1775        return (c >= 'A' && c <= 'Z')
1776                || (c >= 'a' && c <= 'z')
1777                || (c >= '0' && c <= '9')
1778                || "_-!.~'()*".indexOf(c) != NOT_FOUND
1779                || (allow != null && allow.indexOf(c) != NOT_FOUND);
1780    }
1781
1782    /** Unicode replacement character: \\uFFFD. */
1783    private static final byte[] REPLACEMENT = { (byte) 0xFF, (byte) 0xFD };
1784
1785    /**
1786     * Decodes '%'-escaped octets in the given string using the UTF-8 scheme.
1787     * Replaces invalid octets with the unicode replacement character
1788     * ("\\uFFFD").
1789     *
1790     * @param s encoded string to decode
1791     * @return the given string with escaped octets decoded, or null if
1792     *  s is null
1793     */
1794    public static String decode(String s) {
1795        /*
1796        Compared to java.net.URLEncoderDecoder.decode(), this method decodes a
1797        chunk at a time instead of one character at a time, and it doesn't
1798        throw exceptions. It also only allocates memory when necessary--if
1799        there's nothing to decode, this method won't do much.
1800        */
1801
1802        if (s == null) {
1803            return null;
1804        }
1805
1806        // Lazily-initialized buffers.
1807        StringBuilder decoded = null;
1808        ByteArrayOutputStream out = null;
1809
1810        int oldLength = s.length();
1811
1812        // This loop alternates between copying over normal characters and
1813        // escaping in chunks. This results in fewer method calls and
1814        // allocations than decoding one character at a time.
1815        int current = 0;
1816        while (current < oldLength) {
1817            // Start in "copying" mode where we copy over normal characters.
1818
1819            // Find the next escape sequence.
1820            int nextEscape = s.indexOf('%', current);
1821
1822            if (nextEscape == NOT_FOUND) {
1823                if (decoded == null) {
1824                    // We didn't actually decode anything.
1825                    return s;
1826                } else {
1827                    // Append the remainder and return the decoded string.
1828                    decoded.append(s, current, oldLength);
1829                    return decoded.toString();
1830                }
1831            }
1832
1833            // Prepare buffers.
1834            if (decoded == null) {
1835                // Looks like we're going to need the buffers...
1836                // We know the new string will be shorter. Using the old length
1837                // may overshoot a bit, but it will save us from resizing the
1838                // buffer.
1839                decoded = new StringBuilder(oldLength);
1840                out = new ByteArrayOutputStream(4);
1841            } else {
1842                // Clear decoding buffer.
1843                out.reset();
1844            }
1845
1846            // Append characters leading up to the escape.
1847            if (nextEscape > current) {
1848                decoded.append(s, current, nextEscape);
1849
1850                current = nextEscape;
1851            } else {
1852                // assert current == nextEscape
1853            }
1854
1855            // Switch to "decoding" mode where we decode a string of escape
1856            // sequences.
1857
1858            // Decode and append escape sequences. Escape sequences look like
1859            // "%ab" where % is literal and a and b are hex digits.
1860            try {
1861                do {
1862                    if (current + 2 >= oldLength) {
1863                        // Truncated escape sequence.
1864                        out.write(REPLACEMENT);
1865                    } else {
1866                        int a = Character.digit(s.charAt(current + 1), 16);
1867                        int b = Character.digit(s.charAt(current + 2), 16);
1868
1869                        if (a == -1 || b == -1) {
1870                            // Non hex digits.
1871                            out.write(REPLACEMENT);
1872                        } else {
1873                            // Combine the hex digits into one byte and write.
1874                            out.write((a << 4) + b);
1875                        }
1876                    }
1877
1878                    // Move passed the escape sequence.
1879                    current += 3;
1880                } while (current < oldLength && s.charAt(current) == '%');
1881
1882                // Decode UTF-8 bytes into a string and append it.
1883                decoded.append(out.toString(DEFAULT_ENCODING));
1884            } catch (UnsupportedEncodingException e) {
1885                throw new AssertionError(e);
1886            } catch (IOException e) {
1887                throw new AssertionError(e);
1888            }
1889        }
1890
1891        // If we don't have a buffer, we didn't have to decode anything.
1892        return decoded == null ? s : decoded.toString();
1893    }
1894
1895    /**
1896     * Support for part implementations.
1897     */
1898    static abstract class AbstractPart {
1899
1900        /**
1901         * Enum which indicates which representation of a given part we have.
1902         */
1903        static class Representation {
1904            static final int BOTH = 0;
1905            static final int ENCODED = 1;
1906            static final int DECODED = 2;
1907        }
1908
1909        volatile String encoded;
1910        volatile String decoded;
1911
1912        AbstractPart(String encoded, String decoded) {
1913            this.encoded = encoded;
1914            this.decoded = decoded;
1915        }
1916
1917        abstract String getEncoded();
1918
1919        final String getDecoded() {
1920            @SuppressWarnings("StringEquality")
1921            boolean hasDecoded = decoded != NOT_CACHED;
1922            return hasDecoded ? decoded : (decoded = decode(encoded));
1923        }
1924
1925        final void writeTo(Parcel parcel) {
1926            @SuppressWarnings("StringEquality")
1927            boolean hasEncoded = encoded != NOT_CACHED;
1928
1929            @SuppressWarnings("StringEquality")
1930            boolean hasDecoded = decoded != NOT_CACHED;
1931
1932            if (hasEncoded && hasDecoded) {
1933                parcel.writeInt(Representation.BOTH);
1934                parcel.writeString(encoded);
1935                parcel.writeString(decoded);
1936            } else if (hasEncoded) {
1937                parcel.writeInt(Representation.ENCODED);
1938                parcel.writeString(encoded);
1939            } else if (hasDecoded) {
1940                parcel.writeInt(Representation.DECODED);
1941                parcel.writeString(decoded);
1942            } else {
1943                throw new AssertionError();
1944            }
1945        }
1946    }
1947
1948    /**
1949     * Immutable wrapper of encoded and decoded versions of a URI part. Lazily
1950     * creates the encoded or decoded version from the other.
1951     */
1952    static class Part extends AbstractPart {
1953
1954        /** A part with null values. */
1955        static final Part NULL = new EmptyPart(null);
1956
1957        /** A part with empty strings for values. */
1958        static final Part EMPTY = new EmptyPart("");
1959
1960        private Part(String encoded, String decoded) {
1961            super(encoded, decoded);
1962        }
1963
1964        boolean isEmpty() {
1965            return false;
1966        }
1967
1968        String getEncoded() {
1969            @SuppressWarnings("StringEquality")
1970            boolean hasEncoded = encoded != NOT_CACHED;
1971            return hasEncoded ? encoded : (encoded = encode(decoded));
1972        }
1973
1974        static Part readFrom(Parcel parcel) {
1975            int representation = parcel.readInt();
1976            switch (representation) {
1977                case Representation.BOTH:
1978                    return from(parcel.readString(), parcel.readString());
1979                case Representation.ENCODED:
1980                    return fromEncoded(parcel.readString());
1981                case Representation.DECODED:
1982                    return fromDecoded(parcel.readString());
1983                default:
1984                    throw new AssertionError();
1985            }
1986        }
1987
1988        /**
1989         * Returns given part or {@link #NULL} if the given part is null.
1990         */
1991        static Part nonNull(Part part) {
1992            return part == null ? NULL : part;
1993        }
1994
1995        /**
1996         * Creates a part from the encoded string.
1997         *
1998         * @param encoded part string
1999         */
2000        static Part fromEncoded(String encoded) {
2001            return from(encoded, NOT_CACHED);
2002        }
2003
2004        /**
2005         * Creates a part from the decoded string.
2006         *
2007         * @param decoded part string
2008         */
2009        static Part fromDecoded(String decoded) {
2010            return from(NOT_CACHED, decoded);
2011        }
2012
2013        /**
2014         * Creates a part from the encoded and decoded strings.
2015         *
2016         * @param encoded part string
2017         * @param decoded part string
2018         */
2019        static Part from(String encoded, String decoded) {
2020            // We have to check both encoded and decoded in case one is
2021            // NOT_CACHED.
2022
2023            if (encoded == null) {
2024                return NULL;
2025            }
2026            if (encoded.length() == 0) {
2027                return EMPTY;
2028            }
2029
2030            if (decoded == null) {
2031                return NULL;
2032            }
2033            if (decoded .length() == 0) {
2034                return EMPTY;
2035            }
2036
2037            return new Part(encoded, decoded);
2038        }
2039
2040        private static class EmptyPart extends Part {
2041            public EmptyPart(String value) {
2042                super(value, value);
2043            }
2044
2045            @Override
2046            boolean isEmpty() {
2047                return true;
2048            }
2049        }
2050    }
2051
2052    /**
2053     * Immutable wrapper of encoded and decoded versions of a path part. Lazily
2054     * creates the encoded or decoded version from the other.
2055     */
2056    static class PathPart extends AbstractPart {
2057
2058        /** A part with null values. */
2059        static final PathPart NULL = new PathPart(null, null);
2060
2061        /** A part with empty strings for values. */
2062        static final PathPart EMPTY = new PathPart("", "");
2063
2064        private PathPart(String encoded, String decoded) {
2065            super(encoded, decoded);
2066        }
2067
2068        String getEncoded() {
2069            @SuppressWarnings("StringEquality")
2070            boolean hasEncoded = encoded != NOT_CACHED;
2071
2072            // Don't encode '/'.
2073            return hasEncoded ? encoded : (encoded = encode(decoded, "/"));
2074        }
2075
2076        /**
2077         * Cached path segments. This doesn't need to be volatile--we don't
2078         * care if other threads see the result.
2079         */
2080        private PathSegments pathSegments;
2081
2082        /**
2083         * Gets the individual path segments. Parses them if necessary.
2084         *
2085         * @return parsed path segments or null if this isn't a hierarchical
2086         *  URI
2087         */
2088        PathSegments getPathSegments() {
2089            if (pathSegments != null) {
2090                return pathSegments;
2091            }
2092
2093            String path = getEncoded();
2094            if (path == null) {
2095                return pathSegments = PathSegments.EMPTY;
2096            }
2097
2098            PathSegmentsBuilder segmentBuilder = new PathSegmentsBuilder();
2099
2100            int previous = 0;
2101            int current;
2102            while ((current = path.indexOf('/', previous)) > -1) {
2103                // This check keeps us from adding a segment if the path starts
2104                // '/' and an empty segment for "//".
2105                if (previous < current) {
2106                    String decodedSegment
2107                            = decode(path.substring(previous, current));
2108                    segmentBuilder.add(decodedSegment);
2109                }
2110                previous = current + 1;
2111            }
2112
2113            // Add in the final path segment.
2114            if (previous < path.length()) {
2115                segmentBuilder.add(decode(path.substring(previous)));
2116            }
2117
2118            return pathSegments = segmentBuilder.build();
2119        }
2120
2121        static PathPart appendEncodedSegment(PathPart oldPart,
2122                String newSegment) {
2123            // If there is no old path, should we make the new path relative
2124            // or absolute? I pick absolute.
2125
2126            if (oldPart == null) {
2127                // No old path.
2128                return fromEncoded("/" + newSegment);
2129            }
2130
2131            String oldPath = oldPart.getEncoded();
2132
2133            if (oldPath == null) {
2134                oldPath = "";
2135            }
2136
2137            int oldPathLength = oldPath.length();
2138            String newPath;
2139            if (oldPathLength == 0) {
2140                // No old path.
2141                newPath = "/" + newSegment;
2142            } else if (oldPath.charAt(oldPathLength - 1) == '/') {
2143                newPath = oldPath + newSegment;
2144            } else {
2145                newPath = oldPath + "/" + newSegment;
2146            }
2147
2148            return fromEncoded(newPath);
2149        }
2150
2151        static PathPart appendDecodedSegment(PathPart oldPart, String decoded) {
2152            String encoded = encode(decoded);
2153
2154            // TODO: Should we reuse old PathSegments? Probably not.
2155            return appendEncodedSegment(oldPart, encoded);
2156        }
2157
2158        static PathPart readFrom(Parcel parcel) {
2159            int representation = parcel.readInt();
2160            switch (representation) {
2161                case Representation.BOTH:
2162                    return from(parcel.readString(), parcel.readString());
2163                case Representation.ENCODED:
2164                    return fromEncoded(parcel.readString());
2165                case Representation.DECODED:
2166                    return fromDecoded(parcel.readString());
2167                default:
2168                    throw new AssertionError();
2169            }
2170        }
2171
2172        /**
2173         * Creates a path from the encoded string.
2174         *
2175         * @param encoded part string
2176         */
2177        static PathPart fromEncoded(String encoded) {
2178            return from(encoded, NOT_CACHED);
2179        }
2180
2181        /**
2182         * Creates a path from the decoded string.
2183         *
2184         * @param decoded part string
2185         */
2186        static PathPart fromDecoded(String decoded) {
2187            return from(NOT_CACHED, decoded);
2188        }
2189
2190        /**
2191         * Creates a path from the encoded and decoded strings.
2192         *
2193         * @param encoded part string
2194         * @param decoded part string
2195         */
2196        static PathPart from(String encoded, String decoded) {
2197            if (encoded == null) {
2198                return NULL;
2199            }
2200
2201            if (encoded.length() == 0) {
2202                return EMPTY;
2203            }
2204
2205            return new PathPart(encoded, decoded);
2206        }
2207
2208        /**
2209         * Prepends path values with "/" if they're present, not empty, and
2210         * they don't already start with "/".
2211         */
2212        static PathPart makeAbsolute(PathPart oldPart) {
2213            @SuppressWarnings("StringEquality")
2214            boolean encodedCached = oldPart.encoded != NOT_CACHED;
2215
2216            // We don't care which version we use, and we don't want to force
2217            // unneccessary encoding/decoding.
2218            String oldPath = encodedCached ? oldPart.encoded : oldPart.decoded;
2219
2220            if (oldPath == null || oldPath.length() == 0
2221                    || oldPath.startsWith("/")) {
2222                return oldPart;
2223            }
2224
2225            // Prepend encoded string if present.
2226            String newEncoded = encodedCached
2227                    ? "/" + oldPart.encoded : NOT_CACHED;
2228
2229            // Prepend decoded string if present.
2230            @SuppressWarnings("StringEquality")
2231            boolean decodedCached = oldPart.decoded != NOT_CACHED;
2232            String newDecoded = decodedCached
2233                    ? "/" + oldPart.decoded
2234                    : NOT_CACHED;
2235
2236            return new PathPart(newEncoded, newDecoded);
2237        }
2238    }
2239
2240    /**
2241     * Creates a new Uri by appending an already-encoded path segment to a
2242     * base Uri.
2243     *
2244     * @param baseUri Uri to append path segment to
2245     * @param pathSegment encoded path segment to append
2246     * @return a new Uri based on baseUri with the given segment appended to
2247     *  the path
2248     * @throws NullPointerException if baseUri is null
2249     */
2250    public static Uri withAppendedPath(Uri baseUri, String pathSegment) {
2251        Builder builder = baseUri.buildUpon();
2252        builder = builder.appendEncodedPath(pathSegment);
2253        return builder.build();
2254    }
2255}
2256