1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "VelocityTracker"
18//#define LOG_NDEBUG 0
19
20// Log debug messages about velocity tracking.
21#define DEBUG_VELOCITY 0
22
23// Log debug messages about the progress of the algorithm itself.
24#define DEBUG_STRATEGY 0
25
26#include <math.h>
27#include <limits.h>
28
29#include <androidfw/VelocityTracker.h>
30#include <utils/BitSet.h>
31#include <utils/String8.h>
32#include <utils/Timers.h>
33
34#include <cutils/properties.h>
35
36namespace android {
37
38// Nanoseconds per milliseconds.
39static const nsecs_t NANOS_PER_MS = 1000000;
40
41// Threshold for determining that a pointer has stopped moving.
42// Some input devices do not send ACTION_MOVE events in the case where a pointer has
43// stopped.  We need to detect this case so that we can accurately predict the
44// velocity after the pointer starts moving again.
45static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
46
47
48static float vectorDot(const float* a, const float* b, uint32_t m) {
49    float r = 0;
50    while (m--) {
51        r += *(a++) * *(b++);
52    }
53    return r;
54}
55
56static float vectorNorm(const float* a, uint32_t m) {
57    float r = 0;
58    while (m--) {
59        float t = *(a++);
60        r += t * t;
61    }
62    return sqrtf(r);
63}
64
65#if DEBUG_STRATEGY || DEBUG_VELOCITY
66static String8 vectorToString(const float* a, uint32_t m) {
67    String8 str;
68    str.append("[");
69    while (m--) {
70        str.appendFormat(" %f", *(a++));
71        if (m) {
72            str.append(",");
73        }
74    }
75    str.append(" ]");
76    return str;
77}
78
79static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
80    String8 str;
81    str.append("[");
82    for (size_t i = 0; i < m; i++) {
83        if (i) {
84            str.append(",");
85        }
86        str.append(" [");
87        for (size_t j = 0; j < n; j++) {
88            if (j) {
89                str.append(",");
90            }
91            str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
92        }
93        str.append(" ]");
94    }
95    str.append(" ]");
96    return str;
97}
98#endif
99
100
101// --- VelocityTracker ---
102
103// The default velocity tracker strategy.
104// Although other strategies are available for testing and comparison purposes,
105// this is the strategy that applications will actually use.  Be very careful
106// when adjusting the default strategy because it can dramatically affect
107// (often in a bad way) the user experience.
108const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
109
110VelocityTracker::VelocityTracker(const char* strategy) :
111        mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
112    char value[PROPERTY_VALUE_MAX];
113
114    // Allow the default strategy to be overridden using a system property for debugging.
115    if (!strategy) {
116        int length = property_get("debug.velocitytracker.strategy", value, NULL);
117        if (length > 0) {
118            strategy = value;
119        } else {
120            strategy = DEFAULT_STRATEGY;
121        }
122    }
123
124    // Configure the strategy.
125    if (!configureStrategy(strategy)) {
126        ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
127        if (!configureStrategy(DEFAULT_STRATEGY)) {
128            LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
129                    strategy);
130        }
131    }
132}
133
134VelocityTracker::~VelocityTracker() {
135    delete mStrategy;
136}
137
138bool VelocityTracker::configureStrategy(const char* strategy) {
139    mStrategy = createStrategy(strategy);
140    return mStrategy != NULL;
141}
142
143VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
144    if (!strcmp("lsq1", strategy)) {
145        // 1st order least squares.  Quality: POOR.
146        // Frequently underfits the touch data especially when the finger accelerates
147        // or changes direction.  Often underestimates velocity.  The direction
148        // is overly influenced by historical touch points.
149        return new LeastSquaresVelocityTrackerStrategy(1);
150    }
151    if (!strcmp("lsq2", strategy)) {
152        // 2nd order least squares.  Quality: VERY GOOD.
153        // Pretty much ideal, but can be confused by certain kinds of touch data,
154        // particularly if the panel has a tendency to generate delayed,
155        // duplicate or jittery touch coordinates when the finger is released.
156        return new LeastSquaresVelocityTrackerStrategy(2);
157    }
158    if (!strcmp("lsq3", strategy)) {
159        // 3rd order least squares.  Quality: UNUSABLE.
160        // Frequently overfits the touch data yielding wildly divergent estimates
161        // of the velocity when the finger is released.
162        return new LeastSquaresVelocityTrackerStrategy(3);
163    }
164    if (!strcmp("wlsq2-delta", strategy)) {
165        // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
166        return new LeastSquaresVelocityTrackerStrategy(2,
167                LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
168    }
169    if (!strcmp("wlsq2-central", strategy)) {
170        // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
171        return new LeastSquaresVelocityTrackerStrategy(2,
172                LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
173    }
174    if (!strcmp("wlsq2-recent", strategy)) {
175        // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
176        return new LeastSquaresVelocityTrackerStrategy(2,
177                LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
178    }
179    if (!strcmp("int1", strategy)) {
180        // 1st order integrating filter.  Quality: GOOD.
181        // Not as good as 'lsq2' because it cannot estimate acceleration but it is
182        // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
183        // the velocity of a fling but this strategy tends to respond to changes in
184        // direction more quickly and accurately.
185        return new IntegratingVelocityTrackerStrategy(1);
186    }
187    if (!strcmp("int2", strategy)) {
188        // 2nd order integrating filter.  Quality: EXPERIMENTAL.
189        // For comparison purposes only.  Unlike 'int1' this strategy can compensate
190        // for acceleration but it typically overestimates the effect.
191        return new IntegratingVelocityTrackerStrategy(2);
192    }
193    if (!strcmp("legacy", strategy)) {
194        // Legacy velocity tracker algorithm.  Quality: POOR.
195        // For comparison purposes only.  This algorithm is strongly influenced by
196        // old data points, consistently underestimates velocity and takes a very long
197        // time to adjust to changes in direction.
198        return new LegacyVelocityTrackerStrategy();
199    }
200    return NULL;
201}
202
203void VelocityTracker::clear() {
204    mCurrentPointerIdBits.clear();
205    mActivePointerId = -1;
206
207    mStrategy->clear();
208}
209
210void VelocityTracker::clearPointers(BitSet32 idBits) {
211    BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
212    mCurrentPointerIdBits = remainingIdBits;
213
214    if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
215        mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
216    }
217
218    mStrategy->clearPointers(idBits);
219}
220
221void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
222    while (idBits.count() > MAX_POINTERS) {
223        idBits.clearLastMarkedBit();
224    }
225
226    if ((mCurrentPointerIdBits.value & idBits.value)
227            && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
228#if DEBUG_VELOCITY
229        ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
230                (eventTime - mLastEventTime) * 0.000001f);
231#endif
232        // We have not received any movements for too long.  Assume that all pointers
233        // have stopped.
234        mStrategy->clear();
235    }
236    mLastEventTime = eventTime;
237
238    mCurrentPointerIdBits = idBits;
239    if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
240        mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
241    }
242
243    mStrategy->addMovement(eventTime, idBits, positions);
244
245#if DEBUG_VELOCITY
246    ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
247            eventTime, idBits.value, mActivePointerId);
248    for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
249        uint32_t id = iterBits.firstMarkedBit();
250        uint32_t index = idBits.getIndexOfBit(id);
251        iterBits.clearBit(id);
252        Estimator estimator;
253        getEstimator(id, &estimator);
254        ALOGD("  %d: position (%0.3f, %0.3f), "
255                "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
256                id, positions[index].x, positions[index].y,
257                int(estimator.degree),
258                vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
259                vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
260                estimator.confidence);
261    }
262#endif
263}
264
265void VelocityTracker::addMovement(const MotionEvent* event) {
266    int32_t actionMasked = event->getActionMasked();
267
268    switch (actionMasked) {
269    case AMOTION_EVENT_ACTION_DOWN:
270    case AMOTION_EVENT_ACTION_HOVER_ENTER:
271        // Clear all pointers on down before adding the new movement.
272        clear();
273        break;
274    case AMOTION_EVENT_ACTION_POINTER_DOWN: {
275        // Start a new movement trace for a pointer that just went down.
276        // We do this on down instead of on up because the client may want to query the
277        // final velocity for a pointer that just went up.
278        BitSet32 downIdBits;
279        downIdBits.markBit(event->getPointerId(event->getActionIndex()));
280        clearPointers(downIdBits);
281        break;
282    }
283    case AMOTION_EVENT_ACTION_MOVE:
284    case AMOTION_EVENT_ACTION_HOVER_MOVE:
285        break;
286    default:
287        // Ignore all other actions because they do not convey any new information about
288        // pointer movement.  We also want to preserve the last known velocity of the pointers.
289        // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
290        // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
291        // pointers that remained down but we will also receive an ACTION_MOVE with this
292        // information if any of them actually moved.  Since we don't know how many pointers
293        // will be going up at once it makes sense to just wait for the following ACTION_MOVE
294        // before adding the movement.
295        return;
296    }
297
298    size_t pointerCount = event->getPointerCount();
299    if (pointerCount > MAX_POINTERS) {
300        pointerCount = MAX_POINTERS;
301    }
302
303    BitSet32 idBits;
304    for (size_t i = 0; i < pointerCount; i++) {
305        idBits.markBit(event->getPointerId(i));
306    }
307
308    uint32_t pointerIndex[MAX_POINTERS];
309    for (size_t i = 0; i < pointerCount; i++) {
310        pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
311    }
312
313    nsecs_t eventTime;
314    Position positions[pointerCount];
315
316    size_t historySize = event->getHistorySize();
317    for (size_t h = 0; h < historySize; h++) {
318        eventTime = event->getHistoricalEventTime(h);
319        for (size_t i = 0; i < pointerCount; i++) {
320            uint32_t index = pointerIndex[i];
321            positions[index].x = event->getHistoricalX(i, h);
322            positions[index].y = event->getHistoricalY(i, h);
323        }
324        addMovement(eventTime, idBits, positions);
325    }
326
327    eventTime = event->getEventTime();
328    for (size_t i = 0; i < pointerCount; i++) {
329        uint32_t index = pointerIndex[i];
330        positions[index].x = event->getX(i);
331        positions[index].y = event->getY(i);
332    }
333    addMovement(eventTime, idBits, positions);
334}
335
336bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
337    Estimator estimator;
338    if (getEstimator(id, &estimator) && estimator.degree >= 1) {
339        *outVx = estimator.xCoeff[1];
340        *outVy = estimator.yCoeff[1];
341        return true;
342    }
343    *outVx = 0;
344    *outVy = 0;
345    return false;
346}
347
348bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
349    return mStrategy->getEstimator(id, outEstimator);
350}
351
352
353// --- LeastSquaresVelocityTrackerStrategy ---
354
355const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
356const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
357
358LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
359        uint32_t degree, Weighting weighting) :
360        mDegree(degree), mWeighting(weighting) {
361    clear();
362}
363
364LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
365}
366
367void LeastSquaresVelocityTrackerStrategy::clear() {
368    mIndex = 0;
369    mMovements[0].idBits.clear();
370}
371
372void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
373    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
374    mMovements[mIndex].idBits = remainingIdBits;
375}
376
377void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
378        const VelocityTracker::Position* positions) {
379    if (++mIndex == HISTORY_SIZE) {
380        mIndex = 0;
381    }
382
383    Movement& movement = mMovements[mIndex];
384    movement.eventTime = eventTime;
385    movement.idBits = idBits;
386    uint32_t count = idBits.count();
387    for (uint32_t i = 0; i < count; i++) {
388        movement.positions[i] = positions[i];
389    }
390}
391
392/**
393 * Solves a linear least squares problem to obtain a N degree polynomial that fits
394 * the specified input data as nearly as possible.
395 *
396 * Returns true if a solution is found, false otherwise.
397 *
398 * The input consists of two vectors of data points X and Y with indices 0..m-1
399 * along with a weight vector W of the same size.
400 *
401 * The output is a vector B with indices 0..n that describes a polynomial
402 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
403 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
404 *
405 * Accordingly, the weight vector W should be initialized by the caller with the
406 * reciprocal square root of the variance of the error in each input data point.
407 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
408 * The weights express the relative importance of each data point.  If the weights are
409 * all 1, then the data points are considered to be of equal importance when fitting
410 * the polynomial.  It is a good idea to choose weights that diminish the importance
411 * of data points that may have higher than usual error margins.
412 *
413 * Errors among data points are assumed to be independent.  W is represented here
414 * as a vector although in the literature it is typically taken to be a diagonal matrix.
415 *
416 * That is to say, the function that generated the input data can be approximated
417 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
418 *
419 * The coefficient of determination (R^2) is also returned to describe the goodness
420 * of fit of the model for the given data.  It is a value between 0 and 1, where 1
421 * indicates perfect correspondence.
422 *
423 * This function first expands the X vector to a m by n matrix A such that
424 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
425 * multiplies it by w[i]./
426 *
427 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
428 * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
429 * part is all zeroes), we can simplify the decomposition into an m by n matrix
430 * Q1 and a n by n matrix R1 such that A = Q1 R1.
431 *
432 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
433 * to find B.
434 *
435 * For efficiency, we lay out A and Q column-wise in memory because we frequently
436 * operate on the column vectors.  Conversely, we lay out R row-wise.
437 *
438 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
439 * http://en.wikipedia.org/wiki/Gram-Schmidt
440 */
441static bool solveLeastSquares(const float* x, const float* y,
442        const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
443#if DEBUG_STRATEGY
444    ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
445            vectorToString(x, m).string(), vectorToString(y, m).string(),
446            vectorToString(w, m).string());
447#endif
448
449    // Expand the X vector to a matrix A, pre-multiplied by the weights.
450    float a[n][m]; // column-major order
451    for (uint32_t h = 0; h < m; h++) {
452        a[0][h] = w[h];
453        for (uint32_t i = 1; i < n; i++) {
454            a[i][h] = a[i - 1][h] * x[h];
455        }
456    }
457#if DEBUG_STRATEGY
458    ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
459#endif
460
461    // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
462    float q[n][m]; // orthonormal basis, column-major order
463    float r[n][n]; // upper triangular matrix, row-major order
464    for (uint32_t j = 0; j < n; j++) {
465        for (uint32_t h = 0; h < m; h++) {
466            q[j][h] = a[j][h];
467        }
468        for (uint32_t i = 0; i < j; i++) {
469            float dot = vectorDot(&q[j][0], &q[i][0], m);
470            for (uint32_t h = 0; h < m; h++) {
471                q[j][h] -= dot * q[i][h];
472            }
473        }
474
475        float norm = vectorNorm(&q[j][0], m);
476        if (norm < 0.000001f) {
477            // vectors are linearly dependent or zero so no solution
478#if DEBUG_STRATEGY
479            ALOGD("  - no solution, norm=%f", norm);
480#endif
481            return false;
482        }
483
484        float invNorm = 1.0f / norm;
485        for (uint32_t h = 0; h < m; h++) {
486            q[j][h] *= invNorm;
487        }
488        for (uint32_t i = 0; i < n; i++) {
489            r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
490        }
491    }
492#if DEBUG_STRATEGY
493    ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
494    ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
495
496    // calculate QR, if we factored A correctly then QR should equal A
497    float qr[n][m];
498    for (uint32_t h = 0; h < m; h++) {
499        for (uint32_t i = 0; i < n; i++) {
500            qr[i][h] = 0;
501            for (uint32_t j = 0; j < n; j++) {
502                qr[i][h] += q[j][h] * r[j][i];
503            }
504        }
505    }
506    ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
507#endif
508
509    // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
510    // We just work from bottom-right to top-left calculating B's coefficients.
511    float wy[m];
512    for (uint32_t h = 0; h < m; h++) {
513        wy[h] = y[h] * w[h];
514    }
515    for (uint32_t i = n; i-- != 0; ) {
516        outB[i] = vectorDot(&q[i][0], wy, m);
517        for (uint32_t j = n - 1; j > i; j--) {
518            outB[i] -= r[i][j] * outB[j];
519        }
520        outB[i] /= r[i][i];
521    }
522#if DEBUG_STRATEGY
523    ALOGD("  - b=%s", vectorToString(outB, n).string());
524#endif
525
526    // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
527    // SSerr is the residual sum of squares (variance of the error),
528    // and SStot is the total sum of squares (variance of the data) where each
529    // has been weighted.
530    float ymean = 0;
531    for (uint32_t h = 0; h < m; h++) {
532        ymean += y[h];
533    }
534    ymean /= m;
535
536    float sserr = 0;
537    float sstot = 0;
538    for (uint32_t h = 0; h < m; h++) {
539        float err = y[h] - outB[0];
540        float term = 1;
541        for (uint32_t i = 1; i < n; i++) {
542            term *= x[h];
543            err -= term * outB[i];
544        }
545        sserr += w[h] * w[h] * err * err;
546        float var = y[h] - ymean;
547        sstot += w[h] * w[h] * var * var;
548    }
549    *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
550#if DEBUG_STRATEGY
551    ALOGD("  - sserr=%f", sserr);
552    ALOGD("  - sstot=%f", sstot);
553    ALOGD("  - det=%f", *outDet);
554#endif
555    return true;
556}
557
558bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
559        VelocityTracker::Estimator* outEstimator) const {
560    outEstimator->clear();
561
562    // Iterate over movement samples in reverse time order and collect samples.
563    float x[HISTORY_SIZE];
564    float y[HISTORY_SIZE];
565    float w[HISTORY_SIZE];
566    float time[HISTORY_SIZE];
567    uint32_t m = 0;
568    uint32_t index = mIndex;
569    const Movement& newestMovement = mMovements[mIndex];
570    do {
571        const Movement& movement = mMovements[index];
572        if (!movement.idBits.hasBit(id)) {
573            break;
574        }
575
576        nsecs_t age = newestMovement.eventTime - movement.eventTime;
577        if (age > HORIZON) {
578            break;
579        }
580
581        const VelocityTracker::Position& position = movement.getPosition(id);
582        x[m] = position.x;
583        y[m] = position.y;
584        w[m] = chooseWeight(index);
585        time[m] = -age * 0.000000001f;
586        index = (index == 0 ? HISTORY_SIZE : index) - 1;
587    } while (++m < HISTORY_SIZE);
588
589    if (m == 0) {
590        return false; // no data
591    }
592
593    // Calculate a least squares polynomial fit.
594    uint32_t degree = mDegree;
595    if (degree > m - 1) {
596        degree = m - 1;
597    }
598    if (degree >= 1) {
599        float xdet, ydet;
600        uint32_t n = degree + 1;
601        if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
602                && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
603            outEstimator->time = newestMovement.eventTime;
604            outEstimator->degree = degree;
605            outEstimator->confidence = xdet * ydet;
606#if DEBUG_STRATEGY
607            ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
608                    int(outEstimator->degree),
609                    vectorToString(outEstimator->xCoeff, n).string(),
610                    vectorToString(outEstimator->yCoeff, n).string(),
611                    outEstimator->confidence);
612#endif
613            return true;
614        }
615    }
616
617    // No velocity data available for this pointer, but we do have its current position.
618    outEstimator->xCoeff[0] = x[0];
619    outEstimator->yCoeff[0] = y[0];
620    outEstimator->time = newestMovement.eventTime;
621    outEstimator->degree = 0;
622    outEstimator->confidence = 1;
623    return true;
624}
625
626float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
627    switch (mWeighting) {
628    case WEIGHTING_DELTA: {
629        // Weight points based on how much time elapsed between them and the next
630        // point so that points that "cover" a shorter time span are weighed less.
631        //   delta  0ms: 0.5
632        //   delta 10ms: 1.0
633        if (index == mIndex) {
634            return 1.0f;
635        }
636        uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
637        float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
638                * 0.000001f;
639        if (deltaMillis < 0) {
640            return 0.5f;
641        }
642        if (deltaMillis < 10) {
643            return 0.5f + deltaMillis * 0.05;
644        }
645        return 1.0f;
646    }
647
648    case WEIGHTING_CENTRAL: {
649        // Weight points based on their age, weighing very recent and very old points less.
650        //   age  0ms: 0.5
651        //   age 10ms: 1.0
652        //   age 50ms: 1.0
653        //   age 60ms: 0.5
654        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
655                * 0.000001f;
656        if (ageMillis < 0) {
657            return 0.5f;
658        }
659        if (ageMillis < 10) {
660            return 0.5f + ageMillis * 0.05;
661        }
662        if (ageMillis < 50) {
663            return 1.0f;
664        }
665        if (ageMillis < 60) {
666            return 0.5f + (60 - ageMillis) * 0.05;
667        }
668        return 0.5f;
669    }
670
671    case WEIGHTING_RECENT: {
672        // Weight points based on their age, weighing older points less.
673        //   age   0ms: 1.0
674        //   age  50ms: 1.0
675        //   age 100ms: 0.5
676        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
677                * 0.000001f;
678        if (ageMillis < 50) {
679            return 1.0f;
680        }
681        if (ageMillis < 100) {
682            return 0.5f + (100 - ageMillis) * 0.01f;
683        }
684        return 0.5f;
685    }
686
687    case WEIGHTING_NONE:
688    default:
689        return 1.0f;
690    }
691}
692
693
694// --- IntegratingVelocityTrackerStrategy ---
695
696IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
697        mDegree(degree) {
698}
699
700IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
701}
702
703void IntegratingVelocityTrackerStrategy::clear() {
704    mPointerIdBits.clear();
705}
706
707void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
708    mPointerIdBits.value &= ~idBits.value;
709}
710
711void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
712        const VelocityTracker::Position* positions) {
713    uint32_t index = 0;
714    for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
715        uint32_t id = iterIdBits.clearFirstMarkedBit();
716        State& state = mPointerState[id];
717        const VelocityTracker::Position& position = positions[index++];
718        if (mPointerIdBits.hasBit(id)) {
719            updateState(state, eventTime, position.x, position.y);
720        } else {
721            initState(state, eventTime, position.x, position.y);
722        }
723    }
724
725    mPointerIdBits = idBits;
726}
727
728bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
729        VelocityTracker::Estimator* outEstimator) const {
730    outEstimator->clear();
731
732    if (mPointerIdBits.hasBit(id)) {
733        const State& state = mPointerState[id];
734        populateEstimator(state, outEstimator);
735        return true;
736    }
737
738    return false;
739}
740
741void IntegratingVelocityTrackerStrategy::initState(State& state,
742        nsecs_t eventTime, float xpos, float ypos) const {
743    state.updateTime = eventTime;
744    state.degree = 0;
745
746    state.xpos = xpos;
747    state.xvel = 0;
748    state.xaccel = 0;
749    state.ypos = ypos;
750    state.yvel = 0;
751    state.yaccel = 0;
752}
753
754void IntegratingVelocityTrackerStrategy::updateState(State& state,
755        nsecs_t eventTime, float xpos, float ypos) const {
756    const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
757    const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
758
759    if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
760        return;
761    }
762
763    float dt = (eventTime - state.updateTime) * 0.000000001f;
764    state.updateTime = eventTime;
765
766    float xvel = (xpos - state.xpos) / dt;
767    float yvel = (ypos - state.ypos) / dt;
768    if (state.degree == 0) {
769        state.xvel = xvel;
770        state.yvel = yvel;
771        state.degree = 1;
772    } else {
773        float alpha = dt / (FILTER_TIME_CONSTANT + dt);
774        if (mDegree == 1) {
775            state.xvel += (xvel - state.xvel) * alpha;
776            state.yvel += (yvel - state.yvel) * alpha;
777        } else {
778            float xaccel = (xvel - state.xvel) / dt;
779            float yaccel = (yvel - state.yvel) / dt;
780            if (state.degree == 1) {
781                state.xaccel = xaccel;
782                state.yaccel = yaccel;
783                state.degree = 2;
784            } else {
785                state.xaccel += (xaccel - state.xaccel) * alpha;
786                state.yaccel += (yaccel - state.yaccel) * alpha;
787            }
788            state.xvel += (state.xaccel * dt) * alpha;
789            state.yvel += (state.yaccel * dt) * alpha;
790        }
791    }
792    state.xpos = xpos;
793    state.ypos = ypos;
794}
795
796void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
797        VelocityTracker::Estimator* outEstimator) const {
798    outEstimator->time = state.updateTime;
799    outEstimator->confidence = 1.0f;
800    outEstimator->degree = state.degree;
801    outEstimator->xCoeff[0] = state.xpos;
802    outEstimator->xCoeff[1] = state.xvel;
803    outEstimator->xCoeff[2] = state.xaccel / 2;
804    outEstimator->yCoeff[0] = state.ypos;
805    outEstimator->yCoeff[1] = state.yvel;
806    outEstimator->yCoeff[2] = state.yaccel / 2;
807}
808
809
810// --- LegacyVelocityTrackerStrategy ---
811
812const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
813const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
814const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
815
816LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
817    clear();
818}
819
820LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
821}
822
823void LegacyVelocityTrackerStrategy::clear() {
824    mIndex = 0;
825    mMovements[0].idBits.clear();
826}
827
828void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
829    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
830    mMovements[mIndex].idBits = remainingIdBits;
831}
832
833void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
834        const VelocityTracker::Position* positions) {
835    if (++mIndex == HISTORY_SIZE) {
836        mIndex = 0;
837    }
838
839    Movement& movement = mMovements[mIndex];
840    movement.eventTime = eventTime;
841    movement.idBits = idBits;
842    uint32_t count = idBits.count();
843    for (uint32_t i = 0; i < count; i++) {
844        movement.positions[i] = positions[i];
845    }
846}
847
848bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
849        VelocityTracker::Estimator* outEstimator) const {
850    outEstimator->clear();
851
852    const Movement& newestMovement = mMovements[mIndex];
853    if (!newestMovement.idBits.hasBit(id)) {
854        return false; // no data
855    }
856
857    // Find the oldest sample that contains the pointer and that is not older than HORIZON.
858    nsecs_t minTime = newestMovement.eventTime - HORIZON;
859    uint32_t oldestIndex = mIndex;
860    uint32_t numTouches = 1;
861    do {
862        uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
863        const Movement& nextOldestMovement = mMovements[nextOldestIndex];
864        if (!nextOldestMovement.idBits.hasBit(id)
865                || nextOldestMovement.eventTime < minTime) {
866            break;
867        }
868        oldestIndex = nextOldestIndex;
869    } while (++numTouches < HISTORY_SIZE);
870
871    // Calculate an exponentially weighted moving average of the velocity estimate
872    // at different points in time measured relative to the oldest sample.
873    // This is essentially an IIR filter.  Newer samples are weighted more heavily
874    // than older samples.  Samples at equal time points are weighted more or less
875    // equally.
876    //
877    // One tricky problem is that the sample data may be poorly conditioned.
878    // Sometimes samples arrive very close together in time which can cause us to
879    // overestimate the velocity at that time point.  Most samples might be measured
880    // 16ms apart but some consecutive samples could be only 0.5sm apart because
881    // the hardware or driver reports them irregularly or in bursts.
882    float accumVx = 0;
883    float accumVy = 0;
884    uint32_t index = oldestIndex;
885    uint32_t samplesUsed = 0;
886    const Movement& oldestMovement = mMovements[oldestIndex];
887    const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
888    nsecs_t lastDuration = 0;
889
890    while (numTouches-- > 1) {
891        if (++index == HISTORY_SIZE) {
892            index = 0;
893        }
894        const Movement& movement = mMovements[index];
895        nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
896
897        // If the duration between samples is small, we may significantly overestimate
898        // the velocity.  Consequently, we impose a minimum duration constraint on the
899        // samples that we include in the calculation.
900        if (duration >= MIN_DURATION) {
901            const VelocityTracker::Position& position = movement.getPosition(id);
902            float scale = 1000000000.0f / duration; // one over time delta in seconds
903            float vx = (position.x - oldestPosition.x) * scale;
904            float vy = (position.y - oldestPosition.y) * scale;
905            accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
906            accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
907            lastDuration = duration;
908            samplesUsed += 1;
909        }
910    }
911
912    // Report velocity.
913    const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
914    outEstimator->time = newestMovement.eventTime;
915    outEstimator->confidence = 1;
916    outEstimator->xCoeff[0] = newestPosition.x;
917    outEstimator->yCoeff[0] = newestPosition.y;
918    if (samplesUsed) {
919        outEstimator->xCoeff[1] = accumVx;
920        outEstimator->yCoeff[1] = accumVy;
921        outEstimator->degree = 1;
922    } else {
923        outEstimator->degree = 0;
924    }
925    return true;
926}
927
928} // namespace android
929