Matrix.java revision 9066cfe9886ac131c34d59ed0e2d287b0e3c0087
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.opengl;
18
19/**
20 * Matrix math utilities. These methods operate on OpenGL ES format
21 * matrices and vectors stored in float arrays.
22 *
23 * Matrices are 4 x 4 column-vector matrices stored in column-major
24 * order:
25 * <pre>
26 *  m[offset +  0] m[offset +  4] m[offset +  8] m[offset + 12]
27 *  m[offset +  1] m[offset +  5] m[offset +  9] m[offset + 13]
28 *  m[offset +  2] m[offset +  6] m[offset + 10] m[offset + 14]
29 *  m[offset +  3] m[offset +  7] m[offset + 11] m[offset + 15]
30 * </pre>
31 *
32 * Vectors are 4 row x 1 column column-vectors stored in order:
33 * <pre>
34 * v[offset + 0]
35 * v[offset + 1]
36 * v[offset + 2]
37 * v[offset + 3]
38 * </pre>
39 *
40 */
41public class Matrix {
42    /**
43     * Multiply two 4x4 matrices together and store the result in a third 4x4
44     * matrix. In matrix notation: result = lhs x rhs. Due to the way
45     * matrix multiplication works, the result matrix will have the same
46     * effect as first multiplying by the rhs matrix, then multiplying by
47     * the lhs matrix. This is the opposite of what you might expect.
48     *
49     * The same float array may be passed for result, lhs, and/or rhs. However,
50     * the result element values are undefined if the result elements overlap
51     * either the lhs or rhs elements.
52     *
53     * @param result The float array that holds the result.
54     * @param resultOffset The offset into the result array where the result is
55     *        stored.
56     * @param lhs The float array that holds the left-hand-side matrix.
57     * @param lhsOffset The offset into the lhs array where the lhs is stored
58     * @param rhs The float array that holds the right-hand-side matrix.
59     * @param rhsOffset The offset into the rhs array where the rhs is stored.
60     *
61     * @throws IllegalArgumentException if result, lhs, or rhs are null, or if
62     * resultOffset + 16 > result.length or lhsOffset + 16 > lhs.length or
63     * rhsOffset + 16 > rhs.length.
64     */
65    public static native void multiplyMM(float[] result, int resultOffset,
66            float[] lhs, int lhsOffset, float[] rhs, int rhsOffset);
67
68    /**
69     * Multiply a 4 element vector by a 4x4 matrix and store the result in a 4
70     * element column vector. In matrix notation: result = lhs x rhs
71     *
72     * The same float array may be passed for resultVec, lhsMat, and/or rhsVec.
73     * However, the resultVec element values are undefined if the resultVec
74     * elements overlap either the lhsMat or rhsVec elements.
75     *
76     * @param resultVec The float array that holds the result vector.
77     * @param resultVecOffset The offset into the result array where the result
78     *        vector is stored.
79     * @param lhsMat The float array that holds the left-hand-side matrix.
80     * @param lhsMatOffset The offset into the lhs array where the lhs is stored
81     * @param rhsVec The float array that holds the right-hand-side vector.
82     * @param rhsVecOffset The offset into the rhs vector where the rhs vector
83     *        is stored.
84     *
85     * @throws IllegalArgumentException if resultVec, lhsMat,
86     * or rhsVec are null, or if resultVecOffset + 4 > resultVec.length
87     * or lhsMatOffset + 16 > lhsMat.length or
88     * rhsVecOffset + 4 > rhsVec.length.
89     */
90    public static native void multiplyMV(float[] resultVec,
91            int resultVecOffset, float[] lhsMat, int lhsMatOffset,
92            float[] rhsVec, int rhsVecOffset);
93
94    /**
95     * Transposes a 4 x 4 matrix.
96     *
97     * @param mTrans the array that holds the output inverted matrix
98     * @param mTransOffset an offset into mInv where the inverted matrix is
99     *        stored.
100     * @param m the input array
101     * @param mOffset an offset into m where the matrix is stored.
102     */
103    public static void transposeM(float[] mTrans, int mTransOffset, float[] m,
104            int mOffset) {
105        for (int i = 0; i < 4; i++) {
106            int mBase = i * 4 + mOffset;
107            mTrans[i + mTransOffset] = m[mBase];
108            mTrans[i + 4 + mTransOffset] = m[mBase + 1];
109            mTrans[i + 8 + mTransOffset] = m[mBase + 2];
110            mTrans[i + 12 + mTransOffset] = m[mBase + 3];
111        }
112    }
113
114    /**
115     * Inverts a 4 x 4 matrix.
116     *
117     * @param mInv the array that holds the output inverted matrix
118     * @param mInvOffset an offset into mInv where the inverted matrix is
119     *        stored.
120     * @param m the input array
121     * @param mOffset an offset into m where the matrix is stored.
122     * @return true if the matrix could be inverted, false if it could not.
123     */
124    public static boolean invertM(float[] mInv, int mInvOffset, float[] m,
125            int mOffset) {
126        // Invert a 4 x 4 matrix using Cramer's Rule
127
128        // array of transpose source matrix
129        float[] src = new float[16];
130
131        // transpose matrix
132        transposeM(src, 0, m, mOffset);
133
134        // temp array for pairs
135        float[] tmp = new float[12];
136
137        // calculate pairs for first 8 elements (cofactors)
138        tmp[0] = src[10] * src[15];
139        tmp[1] = src[11] * src[14];
140        tmp[2] = src[9] * src[15];
141        tmp[3] = src[11] * src[13];
142        tmp[4] = src[9] * src[14];
143        tmp[5] = src[10] * src[13];
144        tmp[6] = src[8] * src[15];
145        tmp[7] = src[11] * src[12];
146        tmp[8] = src[8] * src[14];
147        tmp[9] = src[10] * src[12];
148        tmp[10] = src[8] * src[13];
149        tmp[11] = src[9] * src[12];
150
151        // Holds the destination matrix while we're building it up.
152        float[] dst = new float[16];
153
154        // calculate first 8 elements (cofactors)
155        dst[0] = tmp[0] * src[5] + tmp[3] * src[6] + tmp[4] * src[7];
156        dst[0] -= tmp[1] * src[5] + tmp[2] * src[6] + tmp[5] * src[7];
157        dst[1] = tmp[1] * src[4] + tmp[6] * src[6] + tmp[9] * src[7];
158        dst[1] -= tmp[0] * src[4] + tmp[7] * src[6] + tmp[8] * src[7];
159        dst[2] = tmp[2] * src[4] + tmp[7] * src[5] + tmp[10] * src[7];
160        dst[2] -= tmp[3] * src[4] + tmp[6] * src[5] + tmp[11] * src[7];
161        dst[3] = tmp[5] * src[4] + tmp[8] * src[5] + tmp[11] * src[6];
162        dst[3] -= tmp[4] * src[4] + tmp[9] * src[5] + tmp[10] * src[6];
163        dst[4] = tmp[1] * src[1] + tmp[2] * src[2] + tmp[5] * src[3];
164        dst[4] -= tmp[0] * src[1] + tmp[3] * src[2] + tmp[4] * src[3];
165        dst[5] = tmp[0] * src[0] + tmp[7] * src[2] + tmp[8] * src[3];
166        dst[5] -= tmp[1] * src[0] + tmp[6] * src[2] + tmp[9] * src[3];
167        dst[6] = tmp[3] * src[0] + tmp[6] * src[1] + tmp[11] * src[3];
168        dst[6] -= tmp[2] * src[0] + tmp[7] * src[1] + tmp[10] * src[3];
169        dst[7] = tmp[4] * src[0] + tmp[9] * src[1] + tmp[10] * src[2];
170        dst[7] -= tmp[5] * src[0] + tmp[8] * src[1] + tmp[11] * src[2];
171
172        // calculate pairs for second 8 elements (cofactors)
173        tmp[0] = src[2] * src[7];
174        tmp[1] = src[3] * src[6];
175        tmp[2] = src[1] * src[7];
176        tmp[3] = src[3] * src[5];
177        tmp[4] = src[1] * src[6];
178        tmp[5] = src[2] * src[5];
179        tmp[6] = src[0] * src[7];
180        tmp[7] = src[3] * src[4];
181        tmp[8] = src[0] * src[6];
182        tmp[9] = src[2] * src[4];
183        tmp[10] = src[0] * src[5];
184        tmp[11] = src[1] * src[4];
185
186        // calculate second 8 elements (cofactors)
187        dst[8] = tmp[0] * src[13] + tmp[3] * src[14] + tmp[4] * src[15];
188        dst[8] -= tmp[1] * src[13] + tmp[2] * src[14] + tmp[5] * src[15];
189        dst[9] = tmp[1] * src[12] + tmp[6] * src[14] + tmp[9] * src[15];
190        dst[9] -= tmp[0] * src[12] + tmp[7] * src[14] + tmp[8] * src[15];
191        dst[10] = tmp[2] * src[12] + tmp[7] * src[13] + tmp[10] * src[15];
192        dst[10] -= tmp[3] * src[12] + tmp[6] * src[13] + tmp[11] * src[15];
193        dst[11] = tmp[5] * src[12] + tmp[8] * src[13] + tmp[11] * src[14];
194        dst[11] -= tmp[4] * src[12] + tmp[9] * src[13] + tmp[10] * src[14];
195        dst[12] = tmp[2] * src[10] + tmp[5] * src[11] + tmp[1] * src[9];
196        dst[12] -= tmp[4] * src[11] + tmp[0] * src[9] + tmp[3] * src[10];
197        dst[13] = tmp[8] * src[11] + tmp[0] * src[8] + tmp[7] * src[10];
198        dst[13] -= tmp[6] * src[10] + tmp[9] * src[11] + tmp[1] * src[8];
199        dst[14] = tmp[6] * src[9] + tmp[11] * src[11] + tmp[3] * src[8];
200        dst[14] -= tmp[10] * src[11] + tmp[2] * src[8] + tmp[7] * src[9];
201        dst[15] = tmp[10] * src[10] + tmp[4] * src[8] + tmp[9] * src[9];
202        dst[15] -= tmp[8] * src[9] + tmp[11] * src[10] + tmp[5] * src[8];
203
204        // calculate determinant
205        float det =
206                src[0] * dst[0] + src[1] * dst[1] + src[2] * dst[2] + src[3]
207                        * dst[3];
208
209        if (det == 0.0f) {
210
211        }
212
213        // calculate matrix inverse
214        det = 1 / det;
215        for (int j = 0; j < 16; j++)
216            mInv[j + mInvOffset] = dst[j] * det;
217
218        return true;
219    }
220
221    /**
222     * Computes an orthographic projection matrix.
223     *
224     * @param m returns the result
225     * @param mOffset
226     * @param left
227     * @param right
228     * @param bottom
229     * @param top
230     * @param near
231     * @param far
232     */
233    public static void orthoM(float[] m, int mOffset,
234        float left, float right, float bottom, float top,
235        float near, float far) {
236        if (left == right) {
237            throw new IllegalArgumentException("left == right");
238        }
239        if (bottom == top) {
240            throw new IllegalArgumentException("bottom == top");
241        }
242        if (near == far) {
243            throw new IllegalArgumentException("near == far");
244        }
245
246        final float r_width  = 1.0f / (right - left);
247        final float r_height = 1.0f / (top - bottom);
248        final float r_depth  = 1.0f / (far - near);
249        final float x =  2.0f * (r_width);
250        final float y =  2.0f * (r_height);
251        final float z = -2.0f * (r_depth);
252        final float tx = -(right + left) * r_width;
253        final float ty = -(top + bottom) * r_height;
254        final float tz = -(far + near) * r_depth;
255        m[mOffset + 0] = x;
256        m[mOffset + 5] = y;
257        m[mOffset +10] = z;
258        m[mOffset +12] = tx;
259        m[mOffset +13] = ty;
260        m[mOffset +14] = tz;
261        m[mOffset +15] = 1.0f;
262        m[mOffset + 1] = 0.0f;
263        m[mOffset + 2] = 0.0f;
264        m[mOffset + 3] = 0.0f;
265        m[mOffset + 4] = 0.0f;
266        m[mOffset + 6] = 0.0f;
267        m[mOffset + 7] = 0.0f;
268        m[mOffset + 8] = 0.0f;
269        m[mOffset + 9] = 0.0f;
270        m[mOffset + 11] = 0.0f;
271    }
272
273
274    /**
275     * Define a projection matrix in terms of six clip planes
276     * @param m the float array that holds the perspective matrix
277     * @param offset the offset into float array m where the perspective
278     * matrix data is written
279     * @param left
280     * @param right
281     * @param bottom
282     * @param top
283     * @param near
284     * @param far
285     */
286
287    public static void frustumM(float[] m, int offset,
288            float left, float right, float bottom, float top,
289            float near, float far) {
290        if (left == right) {
291            throw new IllegalArgumentException("left == right");
292        }
293        if (top == bottom) {
294            throw new IllegalArgumentException("top == bottom");
295        }
296        if (near == far) {
297            throw new IllegalArgumentException("near == far");
298        }
299        if (near <= 0.0f) {
300            throw new IllegalArgumentException("near <= 0.0f");
301        }
302        if (far <= 0.0f) {
303            throw new IllegalArgumentException("far <= 0.0f");
304        }
305        final float r_width  = 1.0f / (right - left);
306        final float r_height = 1.0f / (top - bottom);
307        final float r_depth  = 1.0f / (near - far);
308        final float x = 2.0f * (near * r_width);
309        final float y = 2.0f * (near * r_height);
310        final float A = 2.0f * ((right + left) * r_width);
311        final float B = (top + bottom) * r_height;
312        final float C = (far + near) * r_depth;
313        final float D = 2.0f * (far * near * r_depth);
314        m[offset + 0] = x;
315        m[offset + 5] = y;
316        m[offset + 8] = A;
317        m[offset +  9] = B;
318        m[offset + 10] = C;
319        m[offset + 14] = D;
320        m[offset + 11] = -1.0f;
321        m[offset +  1] = 0.0f;
322        m[offset +  2] = 0.0f;
323        m[offset +  3] = 0.0f;
324        m[offset +  4] = 0.0f;
325        m[offset +  6] = 0.0f;
326        m[offset +  7] = 0.0f;
327        m[offset + 12] = 0.0f;
328        m[offset + 13] = 0.0f;
329        m[offset + 15] = 0.0f;
330    }
331
332    /**
333     * Computes the length of a vector
334     *
335     * @param x x coordinate of a vector
336     * @param y y coordinate of a vector
337     * @param z z coordinate of a vector
338     * @return the length of a vector
339     */
340    public static float length(float x, float y, float z) {
341        return (float) Math.sqrt(x * x + y * y + z * z);
342    }
343
344    /**
345     * Sets matrix m to the identity matrix.
346     * @param sm returns the result
347     * @param smOffset index into sm where the result matrix starts
348     */
349    public static void setIdentityM(float[] sm, int smOffset) {
350        for (int i=0 ; i<16 ; i++) {
351            sm[smOffset + i] = 0;
352        }
353        for(int i = 0; i < 16; i += 5) {
354            sm[smOffset + i] = 1.0f;
355        }
356    }
357
358    /**
359     * Scales matrix  m by x, y, and z, putting the result in sm
360     * @param sm returns the result
361     * @param smOffset index into sm where the result matrix starts
362     * @param m source matrix
363     * @param mOffset index into m where the source matrix starts
364     * @param x scale factor x
365     * @param y scale factor y
366     * @param z scale factor z
367     */
368    public static void scaleM(float[] sm, int smOffset,
369            float[] m, int mOffset,
370            float x, float y, float z) {
371        for (int i=0 ; i<4 ; i++) {
372            int smi = smOffset + i;
373            int mi = mOffset + i;
374            sm[     smi] = m[     mi] * x;
375            sm[ 4 + smi] = m[ 4 + mi] * y;
376            sm[ 8 + smi] = m[ 8 + mi] * z;
377            sm[12 + smi] = m[12 + mi];
378        }
379    }
380
381    /**
382     * Scales matrix m in place by sx, sy, and sz
383     * @param m matrix to scale
384     * @param mOffset index into m where the matrix starts
385     * @param x scale factor x
386     * @param y scale factor y
387     * @param z scale factor z
388     */
389    public static void scaleM(float[] m, int mOffset,
390            float x, float y, float z) {
391        for (int i=0 ; i<4 ; i++) {
392            int mi = mOffset + i;
393            m[     mi] *= x;
394            m[ 4 + mi] *= y;
395            m[ 8 + mi] *= z;
396        }
397    }
398
399    /**
400     * Translates matrix m by x, y, and z, putting the result in tm
401     * @param tm returns the result
402     * @param tmOffset index into sm where the result matrix starts
403     * @param m source matrix
404     * @param mOffset index into m where the source matrix starts
405     * @param x translation factor x
406     * @param y translation factor y
407     * @param z translation factor z
408     */
409    public static void translateM(float[] tm, int tmOffset,
410            float[] m, int mOffset,
411            float x, float y, float z) {
412        for (int i=0 ; i<12 ; i++) {
413            tm[tmOffset + i] = m[mOffset + i];
414        }
415        for (int i=0 ; i<4 ; i++) {
416            int tmi = tmOffset + i;
417            int mi = mOffset + i;
418            tm[12 + tmi] = m[mi] * x + m[4 + mi] * y + m[8 + mi] * z +
419                m[12 + mi];
420        }
421    }
422
423    /**
424     * Translates matrix m by x, y, and z in place.
425     * @param m matrix
426     * @param mOffset index into m where the matrix starts
427     * @param x translation factor x
428     * @param y translation factor y
429     * @param z translation factor z
430     */
431    public static void translateM(
432            float[] m, int mOffset,
433            float x, float y, float z) {
434        for (int i=0 ; i<4 ; i++) {
435            int mi = mOffset + i;
436            m[12 + mi] += m[mi] * x + m[4 + mi] * y + m[8 + mi] * z;
437        }
438    }
439
440    /**
441     * Rotates matrix m by angle a (in degrees) around the axis (x, y, z)
442     * @param rm returns the result
443     * @param rmOffset index into rm where the result matrix starts
444     * @param m source matrix
445     * @param mOffset index into m where the source matrix starts
446     * @param a angle to rotate in degrees
447     * @param x scale factor x
448     * @param y scale factor y
449     * @param z scale factor z
450     */
451    public static void rotateM(float[] rm, int rmOffset,
452            float[] m, int mOffset,
453            float a, float x, float y, float z) {
454        float[] r = new float[16];
455        setRotateM(r, 0, a, x, y, z);
456        multiplyMM(rm, rmOffset, m, mOffset, r, 0);
457    }
458
459    /**
460     * Rotates matrix m in place by angle a (in degrees)
461     * around the axis (x, y, z)
462     * @param m source matrix
463     * @param mOffset index into m where the matrix starts
464     * @param a angle to rotate in degrees
465     * @param x scale factor x
466     * @param y scale factor y
467     * @param z scale factor z
468     */
469    public static void rotateM(float[] m, int mOffset,
470            float a, float x, float y, float z) {
471        float[] temp = new float[32];
472        setRotateM(temp, 0, a, x, y, z);
473        multiplyMM(temp, 16, m, mOffset, temp, 0);
474        System.arraycopy(temp, 16, m, mOffset, 16);
475    }
476
477    /**
478     * Rotates matrix m by angle a (in degrees) around the axis (x, y, z)
479     * @param rm returns the result
480     * @param rmOffset index into rm where the result matrix starts
481     * @param a angle to rotate in degrees
482     * @param x scale factor x
483     * @param y scale factor y
484     * @param z scale factor z
485     */
486    public static void setRotateM(float[] rm, int rmOffset,
487            float a, float x, float y, float z) {
488        rm[rmOffset + 3] = 0;
489        rm[rmOffset + 7] = 0;
490        rm[rmOffset + 11]= 0;
491        rm[rmOffset + 12]= 0;
492        rm[rmOffset + 13]= 0;
493        rm[rmOffset + 14]= 0;
494        rm[rmOffset + 15]= 1;
495        a *= (float) (Math.PI / 180.0f);
496        float s = (float) Math.sin(a);
497        float c = (float) Math.cos(a);
498        if (1.0f == x && 0.0f == y && 0.0f == z) {
499            rm[rmOffset + 5] = c;   rm[rmOffset + 10]= c;
500            rm[rmOffset + 6] = s;   rm[rmOffset + 9] = -s;
501            rm[rmOffset + 1] = 0;   rm[rmOffset + 2] = 0;
502            rm[rmOffset + 4] = 0;   rm[rmOffset + 8] = 0;
503            rm[rmOffset + 0] = 1;
504        } else if (0.0f == x && 1.0f == y && 0.0f == z) {
505            rm[rmOffset + 0] = c;   rm[rmOffset + 10]= c;
506            rm[rmOffset + 8] = s;   rm[rmOffset + 2] = -s;
507            rm[rmOffset + 1] = 0;   rm[rmOffset + 4] = 0;
508            rm[rmOffset + 6] = 0;   rm[rmOffset + 9] = 0;
509            rm[rmOffset + 5] = 1;
510        } else if (0.0f == x && 0.0f == y && 1.0f == z) {
511            rm[rmOffset + 0] = c;   rm[rmOffset + 5] = c;
512            rm[rmOffset + 1] = s;   rm[rmOffset + 4] = -s;
513            rm[rmOffset + 2] = 0;   rm[rmOffset + 6] = 0;
514            rm[rmOffset + 8] = 0;   rm[rmOffset + 9] = 0;
515            rm[rmOffset + 10]= 1;
516        } else {
517            float len = length(x, y, z);
518            if (1.0f != len) {
519                float recipLen = 1.0f / len;
520                x *= recipLen;
521                y *= recipLen;
522                z *= recipLen;
523            }
524            float nc = 1.0f - c;
525            float xy = x * y;
526            float yz = y * z;
527            float zx = z * x;
528            float xs = x * s;
529            float ys = y * s;
530            float zs = z * s;
531            rm[rmOffset +  0] = x*x*nc +  c;
532            rm[rmOffset +  4] =  xy*nc - zs;
533            rm[rmOffset +  8] =  zx*nc + ys;
534            rm[rmOffset +  1] =  xy*nc + zs;
535            rm[rmOffset +  5] = y*y*nc +  c;
536            rm[rmOffset +  9] =  yz*nc - xs;
537            rm[rmOffset +  2] =  zx*nc - ys;
538            rm[rmOffset +  6] =  yz*nc + xs;
539            rm[rmOffset + 10] = z*z*nc +  c;
540        }
541    }
542
543    /**
544     * Converts Euler angles to a rotation matrix
545     * @param rm returns the result
546     * @param rmOffset index into rm where the result matrix starts
547     * @param x angle of rotation, in degrees
548     * @param y angle of rotation, in degrees
549     * @param z angle of rotation, in degrees
550     */
551    public static void setRotateEulerM(float[] rm, int rmOffset,
552            float x, float y, float z) {
553        x *= (float) (Math.PI / 180.0f);
554        y *= (float) (Math.PI / 180.0f);
555        z *= (float) (Math.PI / 180.0f);
556        float cx = (float) Math.cos(x);
557        float sx = (float) Math.sin(x);
558        float cy = (float) Math.cos(y);
559        float sy = (float) Math.sin(y);
560        float cz = (float) Math.cos(z);
561        float sz = (float) Math.sin(z);
562        float cxsy = cx * sy;
563        float sxsy = sx * sy;
564
565        rm[rmOffset + 0]  =   cy * cz;
566        rm[rmOffset + 1]  =  -cy * sz;
567        rm[rmOffset + 2]  =   sy;
568        rm[rmOffset + 3]  =  0.0f;
569
570        rm[rmOffset + 4]  =  cxsy * cz + cx * sz;
571        rm[rmOffset + 5]  = -cxsy * sz + cx * cz;
572        rm[rmOffset + 6]  =  -sx * cy;
573        rm[rmOffset + 7]  =  0.0f;
574
575        rm[rmOffset + 8]  = -sxsy * cz + sx * sz;
576        rm[rmOffset + 9]  =  sxsy * sz + sx * cz;
577        rm[rmOffset + 10] =  cx * cy;
578        rm[rmOffset + 11] =  0.0f;
579
580        rm[rmOffset + 12] =  0.0f;
581        rm[rmOffset + 13] =  0.0f;
582        rm[rmOffset + 14] =  0.0f;
583        rm[rmOffset + 15] =  1.0f;
584    }
585}
586