EventHub.cpp revision a75fe05b6e0728ada82cd18dc3ac1ae3a61a10fb
1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "EventHub"
18
19// #define LOG_NDEBUG 0
20
21#include "EventHub.h"
22
23#include <hardware_legacy/power.h>
24
25#include <cutils/properties.h>
26#include <utils/Log.h>
27#include <utils/Timers.h>
28#include <utils/threads.h>
29#include <utils/Errors.h>
30
31#include <stdlib.h>
32#include <stdio.h>
33#include <unistd.h>
34#include <fcntl.h>
35#include <memory.h>
36#include <errno.h>
37#include <assert.h>
38
39#include <androidfw/KeyLayoutMap.h>
40#include <androidfw/KeyCharacterMap.h>
41#include <androidfw/VirtualKeyMap.h>
42
43#include <sha1.h>
44#include <string.h>
45#include <stdint.h>
46#include <dirent.h>
47
48#include <sys/inotify.h>
49#include <sys/epoll.h>
50#include <sys/ioctl.h>
51#include <sys/limits.h>
52
53/* this macro is used to tell if "bit" is set in "array"
54 * it selects a byte from the array, and does a boolean AND
55 * operation with a byte that only has the relevant bit set.
56 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57 */
58#define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
59
60/* this macro computes the number of bytes needed to represent a bit array of the specified size */
61#define sizeof_bit_array(bits)  ((bits + 7) / 8)
62
63#define INDENT "  "
64#define INDENT2 "    "
65#define INDENT3 "      "
66
67namespace android {
68
69static const char *WAKE_LOCK_ID = "KeyEvents";
70static const char *DEVICE_PATH = "/dev/input";
71
72/* return the larger integer */
73static inline int max(int v1, int v2)
74{
75    return (v1 > v2) ? v1 : v2;
76}
77
78static inline const char* toString(bool value) {
79    return value ? "true" : "false";
80}
81
82static String8 sha1(const String8& in) {
83    SHA1_CTX ctx;
84    SHA1Init(&ctx);
85    SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86    u_char digest[SHA1_DIGEST_LENGTH];
87    SHA1Final(digest, &ctx);
88
89    String8 out;
90    for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
91        out.appendFormat("%02x", digest[i]);
92    }
93    return out;
94}
95
96static void setDescriptor(InputDeviceIdentifier& identifier) {
97    // Compute a device descriptor that uniquely identifies the device.
98    // The descriptor is assumed to be a stable identifier.  Its value should not
99    // change between reboots, reconnections, firmware updates or new releases of Android.
100    // Ideally, we also want the descriptor to be short and relatively opaque.
101    String8 rawDescriptor;
102    rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
103    if (!identifier.uniqueId.isEmpty()) {
104        rawDescriptor.append("uniqueId:");
105        rawDescriptor.append(identifier.uniqueId);
106    } if (identifier.vendor == 0 && identifier.product == 0) {
107        // If we don't know the vendor and product id, then the device is probably
108        // built-in so we need to rely on other information to uniquely identify
109        // the input device.  Usually we try to avoid relying on the device name or
110        // location but for built-in input device, they are unlikely to ever change.
111        if (!identifier.name.isEmpty()) {
112            rawDescriptor.append("name:");
113            rawDescriptor.append(identifier.name);
114        } else if (!identifier.location.isEmpty()) {
115            rawDescriptor.append("location:");
116            rawDescriptor.append(identifier.location);
117        }
118    }
119    identifier.descriptor = sha1(rawDescriptor);
120    ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
121            identifier.descriptor.string());
122}
123
124// --- Global Functions ---
125
126uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
127    // Touch devices get dibs on touch-related axes.
128    if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
129        switch (axis) {
130        case ABS_X:
131        case ABS_Y:
132        case ABS_PRESSURE:
133        case ABS_TOOL_WIDTH:
134        case ABS_DISTANCE:
135        case ABS_TILT_X:
136        case ABS_TILT_Y:
137        case ABS_MT_SLOT:
138        case ABS_MT_TOUCH_MAJOR:
139        case ABS_MT_TOUCH_MINOR:
140        case ABS_MT_WIDTH_MAJOR:
141        case ABS_MT_WIDTH_MINOR:
142        case ABS_MT_ORIENTATION:
143        case ABS_MT_POSITION_X:
144        case ABS_MT_POSITION_Y:
145        case ABS_MT_TOOL_TYPE:
146        case ABS_MT_BLOB_ID:
147        case ABS_MT_TRACKING_ID:
148        case ABS_MT_PRESSURE:
149        case ABS_MT_DISTANCE:
150            return INPUT_DEVICE_CLASS_TOUCH;
151        }
152    }
153
154    // Joystick devices get the rest.
155    return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
156}
157
158// --- EventHub::Device ---
159
160EventHub::Device::Device(int fd, int32_t id, const String8& path,
161        const InputDeviceIdentifier& identifier) :
162        next(NULL),
163        fd(fd), id(id), path(path), identifier(identifier),
164        classes(0), configuration(NULL), virtualKeyMap(NULL),
165        ffEffectPlaying(false), ffEffectId(-1) {
166    memset(keyBitmask, 0, sizeof(keyBitmask));
167    memset(absBitmask, 0, sizeof(absBitmask));
168    memset(relBitmask, 0, sizeof(relBitmask));
169    memset(swBitmask, 0, sizeof(swBitmask));
170    memset(ledBitmask, 0, sizeof(ledBitmask));
171    memset(ffBitmask, 0, sizeof(ffBitmask));
172    memset(propBitmask, 0, sizeof(propBitmask));
173}
174
175EventHub::Device::~Device() {
176    close();
177    delete configuration;
178    delete virtualKeyMap;
179}
180
181void EventHub::Device::close() {
182    if (fd >= 0) {
183        ::close(fd);
184        fd = -1;
185    }
186}
187
188
189// --- EventHub ---
190
191const uint32_t EventHub::EPOLL_ID_INOTIFY;
192const uint32_t EventHub::EPOLL_ID_WAKE;
193const int EventHub::EPOLL_SIZE_HINT;
194const int EventHub::EPOLL_MAX_EVENTS;
195
196EventHub::EventHub(void) :
197        mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1),
198        mOpeningDevices(0), mClosingDevices(0),
199        mNeedToSendFinishedDeviceScan(false),
200        mNeedToReopenDevices(false), mNeedToScanDevices(true),
201        mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
202    acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
203
204    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
205    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
206
207    mINotifyFd = inotify_init();
208    int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
209    LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
210            DEVICE_PATH, errno);
211
212    struct epoll_event eventItem;
213    memset(&eventItem, 0, sizeof(eventItem));
214    eventItem.events = EPOLLIN;
215    eventItem.data.u32 = EPOLL_ID_INOTIFY;
216    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
217    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
218
219    int wakeFds[2];
220    result = pipe(wakeFds);
221    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
222
223    mWakeReadPipeFd = wakeFds[0];
224    mWakeWritePipeFd = wakeFds[1];
225
226    result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
227    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
228            errno);
229
230    result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
231    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
232            errno);
233
234    eventItem.data.u32 = EPOLL_ID_WAKE;
235    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
236    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
237            errno);
238}
239
240EventHub::~EventHub(void) {
241    closeAllDevicesLocked();
242
243    while (mClosingDevices) {
244        Device* device = mClosingDevices;
245        mClosingDevices = device->next;
246        delete device;
247    }
248
249    ::close(mEpollFd);
250    ::close(mINotifyFd);
251    ::close(mWakeReadPipeFd);
252    ::close(mWakeWritePipeFd);
253
254    release_wake_lock(WAKE_LOCK_ID);
255}
256
257InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
258    AutoMutex _l(mLock);
259    Device* device = getDeviceLocked(deviceId);
260    if (device == NULL) return InputDeviceIdentifier();
261    return device->identifier;
262}
263
264uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
265    AutoMutex _l(mLock);
266    Device* device = getDeviceLocked(deviceId);
267    if (device == NULL) return 0;
268    return device->classes;
269}
270
271void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
272    AutoMutex _l(mLock);
273    Device* device = getDeviceLocked(deviceId);
274    if (device && device->configuration) {
275        *outConfiguration = *device->configuration;
276    } else {
277        outConfiguration->clear();
278    }
279}
280
281status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
282        RawAbsoluteAxisInfo* outAxisInfo) const {
283    outAxisInfo->clear();
284
285    if (axis >= 0 && axis <= ABS_MAX) {
286        AutoMutex _l(mLock);
287
288        Device* device = getDeviceLocked(deviceId);
289        if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
290            struct input_absinfo info;
291            if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
292                ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
293                     axis, device->identifier.name.string(), device->fd, errno);
294                return -errno;
295            }
296
297            if (info.minimum != info.maximum) {
298                outAxisInfo->valid = true;
299                outAxisInfo->minValue = info.minimum;
300                outAxisInfo->maxValue = info.maximum;
301                outAxisInfo->flat = info.flat;
302                outAxisInfo->fuzz = info.fuzz;
303                outAxisInfo->resolution = info.resolution;
304            }
305            return OK;
306        }
307    }
308    return -1;
309}
310
311bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
312    if (axis >= 0 && axis <= REL_MAX) {
313        AutoMutex _l(mLock);
314
315        Device* device = getDeviceLocked(deviceId);
316        if (device) {
317            return test_bit(axis, device->relBitmask);
318        }
319    }
320    return false;
321}
322
323bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
324    if (property >= 0 && property <= INPUT_PROP_MAX) {
325        AutoMutex _l(mLock);
326
327        Device* device = getDeviceLocked(deviceId);
328        if (device) {
329            return test_bit(property, device->propBitmask);
330        }
331    }
332    return false;
333}
334
335int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
336    if (scanCode >= 0 && scanCode <= KEY_MAX) {
337        AutoMutex _l(mLock);
338
339        Device* device = getDeviceLocked(deviceId);
340        if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
341            uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
342            memset(keyState, 0, sizeof(keyState));
343            if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
344                return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
345            }
346        }
347    }
348    return AKEY_STATE_UNKNOWN;
349}
350
351int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
352    AutoMutex _l(mLock);
353
354    Device* device = getDeviceLocked(deviceId);
355    if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
356        Vector<int32_t> scanCodes;
357        device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
358        if (scanCodes.size() != 0) {
359            uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
360            memset(keyState, 0, sizeof(keyState));
361            if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
362                for (size_t i = 0; i < scanCodes.size(); i++) {
363                    int32_t sc = scanCodes.itemAt(i);
364                    if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
365                        return AKEY_STATE_DOWN;
366                    }
367                }
368                return AKEY_STATE_UP;
369            }
370        }
371    }
372    return AKEY_STATE_UNKNOWN;
373}
374
375int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
376    if (sw >= 0 && sw <= SW_MAX) {
377        AutoMutex _l(mLock);
378
379        Device* device = getDeviceLocked(deviceId);
380        if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
381            uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
382            memset(swState, 0, sizeof(swState));
383            if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
384                return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
385            }
386        }
387    }
388    return AKEY_STATE_UNKNOWN;
389}
390
391status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
392    *outValue = 0;
393
394    if (axis >= 0 && axis <= ABS_MAX) {
395        AutoMutex _l(mLock);
396
397        Device* device = getDeviceLocked(deviceId);
398        if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
399            struct input_absinfo info;
400            if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
401                ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
402                     axis, device->identifier.name.string(), device->fd, errno);
403                return -errno;
404            }
405
406            *outValue = info.value;
407            return OK;
408        }
409    }
410    return -1;
411}
412
413bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
414        const int32_t* keyCodes, uint8_t* outFlags) const {
415    AutoMutex _l(mLock);
416
417    Device* device = getDeviceLocked(deviceId);
418    if (device && device->keyMap.haveKeyLayout()) {
419        Vector<int32_t> scanCodes;
420        for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
421            scanCodes.clear();
422
423            status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
424                    keyCodes[codeIndex], &scanCodes);
425            if (! err) {
426                // check the possible scan codes identified by the layout map against the
427                // map of codes actually emitted by the driver
428                for (size_t sc = 0; sc < scanCodes.size(); sc++) {
429                    if (test_bit(scanCodes[sc], device->keyBitmask)) {
430                        outFlags[codeIndex] = 1;
431                        break;
432                    }
433                }
434            }
435        }
436        return true;
437    }
438    return false;
439}
440
441status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
442        int32_t* outKeycode, uint32_t* outFlags) const {
443    AutoMutex _l(mLock);
444    Device* device = getDeviceLocked(deviceId);
445
446    if (device) {
447        // Check the key character map first.
448        sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
449        if (kcm != NULL) {
450            if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
451                *outFlags = 0;
452                return NO_ERROR;
453            }
454        }
455
456        // Check the key layout next.
457        if (device->keyMap.haveKeyLayout()) {
458            if (!device->keyMap.keyLayoutMap->mapKey(
459                    scanCode, usageCode, outKeycode, outFlags)) {
460                return NO_ERROR;
461            }
462        }
463    }
464
465    *outKeycode = 0;
466    *outFlags = 0;
467    return NAME_NOT_FOUND;
468}
469
470status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
471    AutoMutex _l(mLock);
472    Device* device = getDeviceLocked(deviceId);
473
474    if (device && device->keyMap.haveKeyLayout()) {
475        status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
476        if (err == NO_ERROR) {
477            return NO_ERROR;
478        }
479    }
480
481    return NAME_NOT_FOUND;
482}
483
484void EventHub::setExcludedDevices(const Vector<String8>& devices) {
485    AutoMutex _l(mLock);
486
487    mExcludedDevices = devices;
488}
489
490bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
491    AutoMutex _l(mLock);
492    Device* device = getDeviceLocked(deviceId);
493    if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
494        if (test_bit(scanCode, device->keyBitmask)) {
495            return true;
496        }
497    }
498    return false;
499}
500
501bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
502    AutoMutex _l(mLock);
503    Device* device = getDeviceLocked(deviceId);
504    if (device && led >= 0 && led <= LED_MAX) {
505        if (test_bit(led, device->ledBitmask)) {
506            return true;
507        }
508    }
509    return false;
510}
511
512void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
513    AutoMutex _l(mLock);
514    Device* device = getDeviceLocked(deviceId);
515    if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
516        struct input_event ev;
517        ev.time.tv_sec = 0;
518        ev.time.tv_usec = 0;
519        ev.type = EV_LED;
520        ev.code = led;
521        ev.value = on ? 1 : 0;
522
523        ssize_t nWrite;
524        do {
525            nWrite = write(device->fd, &ev, sizeof(struct input_event));
526        } while (nWrite == -1 && errno == EINTR);
527    }
528}
529
530void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
531        Vector<VirtualKeyDefinition>& outVirtualKeys) const {
532    outVirtualKeys.clear();
533
534    AutoMutex _l(mLock);
535    Device* device = getDeviceLocked(deviceId);
536    if (device && device->virtualKeyMap) {
537        outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
538    }
539}
540
541sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
542    AutoMutex _l(mLock);
543    Device* device = getDeviceLocked(deviceId);
544    if (device) {
545        return device->getKeyCharacterMap();
546    }
547    return NULL;
548}
549
550bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
551        const sp<KeyCharacterMap>& map) {
552    AutoMutex _l(mLock);
553    Device* device = getDeviceLocked(deviceId);
554    if (device) {
555        if (map != device->overlayKeyMap) {
556            device->overlayKeyMap = map;
557            device->combinedKeyMap = KeyCharacterMap::combine(
558                    device->keyMap.keyCharacterMap, map);
559            return true;
560        }
561    }
562    return false;
563}
564
565void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
566    AutoMutex _l(mLock);
567    Device* device = getDeviceLocked(deviceId);
568    if (device && !device->isVirtual()) {
569        ff_effect effect;
570        memset(&effect, 0, sizeof(effect));
571        effect.type = FF_RUMBLE;
572        effect.id = device->ffEffectId;
573        effect.u.rumble.strong_magnitude = 0xc000;
574        effect.u.rumble.weak_magnitude = 0xc000;
575        effect.replay.length = (duration + 999999LL) / 1000000LL;
576        effect.replay.delay = 0;
577        if (ioctl(device->fd, EVIOCSFF, &effect)) {
578            ALOGW("Could not upload force feedback effect to device %s due to error %d.",
579                    device->identifier.name.string(), errno);
580            return;
581        }
582        device->ffEffectId = effect.id;
583
584        struct input_event ev;
585        ev.time.tv_sec = 0;
586        ev.time.tv_usec = 0;
587        ev.type = EV_FF;
588        ev.code = device->ffEffectId;
589        ev.value = 1;
590        if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
591            ALOGW("Could not start force feedback effect on device %s due to error %d.",
592                    device->identifier.name.string(), errno);
593            return;
594        }
595        device->ffEffectPlaying = true;
596    }
597}
598
599void EventHub::cancelVibrate(int32_t deviceId) {
600    AutoMutex _l(mLock);
601    Device* device = getDeviceLocked(deviceId);
602    if (device && !device->isVirtual()) {
603        if (device->ffEffectPlaying) {
604            device->ffEffectPlaying = false;
605
606            struct input_event ev;
607            ev.time.tv_sec = 0;
608            ev.time.tv_usec = 0;
609            ev.type = EV_FF;
610            ev.code = device->ffEffectId;
611            ev.value = 0;
612            if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
613                ALOGW("Could not stop force feedback effect on device %s due to error %d.",
614                        device->identifier.name.string(), errno);
615                return;
616            }
617        }
618    }
619}
620
621EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
622    if (deviceId == BUILT_IN_KEYBOARD_ID) {
623        deviceId = mBuiltInKeyboardId;
624    }
625    ssize_t index = mDevices.indexOfKey(deviceId);
626    return index >= 0 ? mDevices.valueAt(index) : NULL;
627}
628
629EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
630    for (size_t i = 0; i < mDevices.size(); i++) {
631        Device* device = mDevices.valueAt(i);
632        if (device->path == devicePath) {
633            return device;
634        }
635    }
636    return NULL;
637}
638
639size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
640    ALOG_ASSERT(bufferSize >= 1);
641
642    AutoMutex _l(mLock);
643
644    struct input_event readBuffer[bufferSize];
645
646    RawEvent* event = buffer;
647    size_t capacity = bufferSize;
648    bool awoken = false;
649    for (;;) {
650        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
651
652        // Reopen input devices if needed.
653        if (mNeedToReopenDevices) {
654            mNeedToReopenDevices = false;
655
656            ALOGI("Reopening all input devices due to a configuration change.");
657
658            closeAllDevicesLocked();
659            mNeedToScanDevices = true;
660            break; // return to the caller before we actually rescan
661        }
662
663        // Report any devices that had last been added/removed.
664        while (mClosingDevices) {
665            Device* device = mClosingDevices;
666            ALOGV("Reporting device closed: id=%d, name=%s\n",
667                 device->id, device->path.string());
668            mClosingDevices = device->next;
669            event->when = now;
670            event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
671            event->type = DEVICE_REMOVED;
672            event += 1;
673            delete device;
674            mNeedToSendFinishedDeviceScan = true;
675            if (--capacity == 0) {
676                break;
677            }
678        }
679
680        if (mNeedToScanDevices) {
681            mNeedToScanDevices = false;
682            scanDevicesLocked();
683            mNeedToSendFinishedDeviceScan = true;
684        }
685
686        while (mOpeningDevices != NULL) {
687            Device* device = mOpeningDevices;
688            ALOGV("Reporting device opened: id=%d, name=%s\n",
689                 device->id, device->path.string());
690            mOpeningDevices = device->next;
691            event->when = now;
692            event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
693            event->type = DEVICE_ADDED;
694            event += 1;
695            mNeedToSendFinishedDeviceScan = true;
696            if (--capacity == 0) {
697                break;
698            }
699        }
700
701        if (mNeedToSendFinishedDeviceScan) {
702            mNeedToSendFinishedDeviceScan = false;
703            event->when = now;
704            event->type = FINISHED_DEVICE_SCAN;
705            event += 1;
706            if (--capacity == 0) {
707                break;
708            }
709        }
710
711        // Grab the next input event.
712        bool deviceChanged = false;
713        while (mPendingEventIndex < mPendingEventCount) {
714            const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
715            if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
716                if (eventItem.events & EPOLLIN) {
717                    mPendingINotify = true;
718                } else {
719                    ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
720                }
721                continue;
722            }
723
724            if (eventItem.data.u32 == EPOLL_ID_WAKE) {
725                if (eventItem.events & EPOLLIN) {
726                    ALOGV("awoken after wake()");
727                    awoken = true;
728                    char buffer[16];
729                    ssize_t nRead;
730                    do {
731                        nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
732                    } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
733                } else {
734                    ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
735                            eventItem.events);
736                }
737                continue;
738            }
739
740            ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
741            if (deviceIndex < 0) {
742                ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
743                        eventItem.events, eventItem.data.u32);
744                continue;
745            }
746
747            Device* device = mDevices.valueAt(deviceIndex);
748            if (eventItem.events & EPOLLIN) {
749                int32_t readSize = read(device->fd, readBuffer,
750                        sizeof(struct input_event) * capacity);
751                if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
752                    // Device was removed before INotify noticed.
753                    ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
754                            "capacity: %d errno: %d)\n",
755                            device->fd, readSize, bufferSize, capacity, errno);
756                    deviceChanged = true;
757                    closeDeviceLocked(device);
758                } else if (readSize < 0) {
759                    if (errno != EAGAIN && errno != EINTR) {
760                        ALOGW("could not get event (errno=%d)", errno);
761                    }
762                } else if ((readSize % sizeof(struct input_event)) != 0) {
763                    ALOGE("could not get event (wrong size: %d)", readSize);
764                } else {
765                    int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
766
767                    size_t count = size_t(readSize) / sizeof(struct input_event);
768                    for (size_t i = 0; i < count; i++) {
769                        const struct input_event& iev = readBuffer[i];
770                        ALOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, value=%d",
771                                device->path.string(),
772                                (int) iev.time.tv_sec, (int) iev.time.tv_usec,
773                                iev.type, iev.code, iev.value);
774
775#ifdef HAVE_POSIX_CLOCKS
776                        // Use the time specified in the event instead of the current time
777                        // so that downstream code can get more accurate estimates of
778                        // event dispatch latency from the time the event is enqueued onto
779                        // the evdev client buffer.
780                        //
781                        // The event's timestamp fortuitously uses the same monotonic clock
782                        // time base as the rest of Android.  The kernel event device driver
783                        // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
784                        // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
785                        // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
786                        // system call that also queries ktime_get_ts().
787                        event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
788                                + nsecs_t(iev.time.tv_usec) * 1000LL;
789                        ALOGV("event time %lld, now %lld", event->when, now);
790#else
791                        event->when = now;
792#endif
793                        event->deviceId = deviceId;
794                        event->type = iev.type;
795                        event->code = iev.code;
796                        event->value = iev.value;
797                        event += 1;
798                    }
799                    capacity -= count;
800                    if (capacity == 0) {
801                        // The result buffer is full.  Reset the pending event index
802                        // so we will try to read the device again on the next iteration.
803                        mPendingEventIndex -= 1;
804                        break;
805                    }
806                }
807            } else if (eventItem.events & EPOLLHUP) {
808                ALOGI("Removing device %s due to epoll hang-up event.",
809                        device->identifier.name.string());
810                deviceChanged = true;
811                closeDeviceLocked(device);
812            } else {
813                ALOGW("Received unexpected epoll event 0x%08x for device %s.",
814                        eventItem.events, device->identifier.name.string());
815            }
816        }
817
818        // readNotify() will modify the list of devices so this must be done after
819        // processing all other events to ensure that we read all remaining events
820        // before closing the devices.
821        if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
822            mPendingINotify = false;
823            readNotifyLocked();
824            deviceChanged = true;
825        }
826
827        // Report added or removed devices immediately.
828        if (deviceChanged) {
829            continue;
830        }
831
832        // Return now if we have collected any events or if we were explicitly awoken.
833        if (event != buffer || awoken) {
834            break;
835        }
836
837        // Poll for events.  Mind the wake lock dance!
838        // We hold a wake lock at all times except during epoll_wait().  This works due to some
839        // subtle choreography.  When a device driver has pending (unread) events, it acquires
840        // a kernel wake lock.  However, once the last pending event has been read, the device
841        // driver will release the kernel wake lock.  To prevent the system from going to sleep
842        // when this happens, the EventHub holds onto its own user wake lock while the client
843        // is processing events.  Thus the system can only sleep if there are no events
844        // pending or currently being processed.
845        //
846        // The timeout is advisory only.  If the device is asleep, it will not wake just to
847        // service the timeout.
848        mPendingEventIndex = 0;
849
850        mLock.unlock(); // release lock before poll, must be before release_wake_lock
851        release_wake_lock(WAKE_LOCK_ID);
852
853        int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
854
855        acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
856        mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
857
858        if (pollResult == 0) {
859            // Timed out.
860            mPendingEventCount = 0;
861            break;
862        }
863
864        if (pollResult < 0) {
865            // An error occurred.
866            mPendingEventCount = 0;
867
868            // Sleep after errors to avoid locking up the system.
869            // Hopefully the error is transient.
870            if (errno != EINTR) {
871                ALOGW("poll failed (errno=%d)\n", errno);
872                usleep(100000);
873            }
874        } else {
875            // Some events occurred.
876            mPendingEventCount = size_t(pollResult);
877        }
878    }
879
880    // All done, return the number of events we read.
881    return event - buffer;
882}
883
884void EventHub::wake() {
885    ALOGV("wake() called");
886
887    ssize_t nWrite;
888    do {
889        nWrite = write(mWakeWritePipeFd, "W", 1);
890    } while (nWrite == -1 && errno == EINTR);
891
892    if (nWrite != 1 && errno != EAGAIN) {
893        ALOGW("Could not write wake signal, errno=%d", errno);
894    }
895}
896
897void EventHub::scanDevicesLocked() {
898    status_t res = scanDirLocked(DEVICE_PATH);
899    if(res < 0) {
900        ALOGE("scan dir failed for %s\n", DEVICE_PATH);
901    }
902    if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
903        createVirtualKeyboardLocked();
904    }
905}
906
907// ----------------------------------------------------------------------------
908
909static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
910    const uint8_t* end = array + endIndex;
911    array += startIndex;
912    while (array != end) {
913        if (*(array++) != 0) {
914            return true;
915        }
916    }
917    return false;
918}
919
920static const int32_t GAMEPAD_KEYCODES[] = {
921        AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
922        AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
923        AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
924        AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
925        AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
926        AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
927        AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
928        AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
929        AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
930        AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
931};
932
933status_t EventHub::openDeviceLocked(const char *devicePath) {
934    char buffer[80];
935
936    ALOGV("Opening device: %s", devicePath);
937
938    int fd = open(devicePath, O_RDWR | O_CLOEXEC);
939    if(fd < 0) {
940        ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
941        return -1;
942    }
943
944    InputDeviceIdentifier identifier;
945
946    // Get device name.
947    if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
948        //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
949    } else {
950        buffer[sizeof(buffer) - 1] = '\0';
951        identifier.name.setTo(buffer);
952    }
953
954    // Check to see if the device is on our excluded list
955    for (size_t i = 0; i < mExcludedDevices.size(); i++) {
956        const String8& item = mExcludedDevices.itemAt(i);
957        if (identifier.name == item) {
958            ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
959            close(fd);
960            return -1;
961        }
962    }
963
964    // Get device driver version.
965    int driverVersion;
966    if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
967        ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
968        close(fd);
969        return -1;
970    }
971
972    // Get device identifier.
973    struct input_id inputId;
974    if(ioctl(fd, EVIOCGID, &inputId)) {
975        ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
976        close(fd);
977        return -1;
978    }
979    identifier.bus = inputId.bustype;
980    identifier.product = inputId.product;
981    identifier.vendor = inputId.vendor;
982    identifier.version = inputId.version;
983
984    // Get device physical location.
985    if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
986        //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
987    } else {
988        buffer[sizeof(buffer) - 1] = '\0';
989        identifier.location.setTo(buffer);
990    }
991
992    // Get device unique id.
993    if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
994        //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
995    } else {
996        buffer[sizeof(buffer) - 1] = '\0';
997        identifier.uniqueId.setTo(buffer);
998    }
999
1000    // Fill in the descriptor.
1001    setDescriptor(identifier);
1002
1003    // Make file descriptor non-blocking for use with poll().
1004    if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1005        ALOGE("Error %d making device file descriptor non-blocking.", errno);
1006        close(fd);
1007        return -1;
1008    }
1009
1010    // Allocate device.  (The device object takes ownership of the fd at this point.)
1011    int32_t deviceId = mNextDeviceId++;
1012    Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1013
1014    ALOGV("add device %d: %s\n", deviceId, devicePath);
1015    ALOGV("  bus:        %04x\n"
1016         "  vendor      %04x\n"
1017         "  product     %04x\n"
1018         "  version     %04x\n",
1019        identifier.bus, identifier.vendor, identifier.product, identifier.version);
1020    ALOGV("  name:       \"%s\"\n", identifier.name.string());
1021    ALOGV("  location:   \"%s\"\n", identifier.location.string());
1022    ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
1023    ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
1024    ALOGV("  driver:     v%d.%d.%d\n",
1025        driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1026
1027    // Load the configuration file for the device.
1028    loadConfigurationLocked(device);
1029
1030    // Figure out the kinds of events the device reports.
1031    ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1032    ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1033    ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1034    ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1035    ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1036    ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1037    ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1038
1039    // See if this is a keyboard.  Ignore everything in the button range except for
1040    // joystick and gamepad buttons which are handled like keyboards for the most part.
1041    bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1042            || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1043                    sizeof_bit_array(KEY_MAX + 1));
1044    bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1045                    sizeof_bit_array(BTN_MOUSE))
1046            || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1047                    sizeof_bit_array(BTN_DIGI));
1048    if (haveKeyboardKeys || haveGamepadButtons) {
1049        device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1050    }
1051
1052    // See if this is a cursor device such as a trackball or mouse.
1053    if (test_bit(BTN_MOUSE, device->keyBitmask)
1054            && test_bit(REL_X, device->relBitmask)
1055            && test_bit(REL_Y, device->relBitmask)) {
1056        device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1057    }
1058
1059    // See if this is a touch pad.
1060    // Is this a new modern multi-touch driver?
1061    if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1062            && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1063        // Some joysticks such as the PS3 controller report axes that conflict
1064        // with the ABS_MT range.  Try to confirm that the device really is
1065        // a touch screen.
1066        if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1067            device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1068        }
1069    // Is this an old style single-touch driver?
1070    } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1071            && test_bit(ABS_X, device->absBitmask)
1072            && test_bit(ABS_Y, device->absBitmask)) {
1073        device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1074    }
1075
1076    // See if this device is a joystick.
1077    // Assumes that joysticks always have gamepad buttons in order to distinguish them
1078    // from other devices such as accelerometers that also have absolute axes.
1079    if (haveGamepadButtons) {
1080        uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1081        for (int i = 0; i <= ABS_MAX; i++) {
1082            if (test_bit(i, device->absBitmask)
1083                    && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1084                device->classes = assumedClasses;
1085                break;
1086            }
1087        }
1088    }
1089
1090    // Check whether this device has switches.
1091    for (int i = 0; i <= SW_MAX; i++) {
1092        if (test_bit(i, device->swBitmask)) {
1093            device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1094            break;
1095        }
1096    }
1097
1098    // Check whether this device supports the vibrator.
1099    if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1100        device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1101    }
1102
1103    // Configure virtual keys.
1104    if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1105        // Load the virtual keys for the touch screen, if any.
1106        // We do this now so that we can make sure to load the keymap if necessary.
1107        status_t status = loadVirtualKeyMapLocked(device);
1108        if (!status) {
1109            device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1110        }
1111    }
1112
1113    // Load the key map.
1114    // We need to do this for joysticks too because the key layout may specify axes.
1115    status_t keyMapStatus = NAME_NOT_FOUND;
1116    if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1117        // Load the keymap for the device.
1118        keyMapStatus = loadKeyMapLocked(device);
1119    }
1120
1121    // Configure the keyboard, gamepad or virtual keyboard.
1122    if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1123        // Register the keyboard as a built-in keyboard if it is eligible.
1124        if (!keyMapStatus
1125                && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1126                && isEligibleBuiltInKeyboard(device->identifier,
1127                        device->configuration, &device->keyMap)) {
1128            mBuiltInKeyboardId = device->id;
1129        }
1130
1131        // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1132        if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1133            device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1134        }
1135
1136        // See if this device has a DPAD.
1137        if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1138                hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1139                hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1140                hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1141                hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1142            device->classes |= INPUT_DEVICE_CLASS_DPAD;
1143        }
1144
1145        // See if this device has a gamepad.
1146        for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1147            if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1148                device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1149                break;
1150            }
1151        }
1152    }
1153
1154    // If the device isn't recognized as something we handle, don't monitor it.
1155    if (device->classes == 0) {
1156        ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1157                deviceId, devicePath, device->identifier.name.string());
1158        delete device;
1159        return -1;
1160    }
1161
1162    // Determine whether the device is external or internal.
1163    if (isExternalDeviceLocked(device)) {
1164        device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1165    }
1166
1167    // Register with epoll.
1168    struct epoll_event eventItem;
1169    memset(&eventItem, 0, sizeof(eventItem));
1170    eventItem.events = EPOLLIN;
1171    eventItem.data.u32 = deviceId;
1172    if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1173        ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
1174        delete device;
1175        return -1;
1176    }
1177
1178    // Enable wake-lock behavior on kernels that support it.
1179    // TODO: Only need this for devices that can really wake the system.
1180    bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
1181
1182    // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1183    // associated with input events.  This is important because the input system
1184    // uses the timestamps extensively and assumes they were recorded using the monotonic
1185    // clock.
1186    //
1187    // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1188    // clock to use to input event timestamps.  The standard kernel behavior was to
1189    // record a real time timestamp, which isn't what we want.  Android kernels therefore
1190    // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1191    // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1192    // clock to be used instead of the real time clock.
1193    //
1194    // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1195    // Therefore, we no longer require the Android-specific kernel patch described above
1196    // as long as we make sure to set select the monotonic clock.  We do that here.
1197    int clockId = CLOCK_MONOTONIC;
1198    bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1199
1200    ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1201            "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1202            "usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
1203         deviceId, fd, devicePath, device->identifier.name.string(),
1204         device->classes,
1205         device->configurationFile.string(),
1206         device->keyMap.keyLayoutFile.string(),
1207         device->keyMap.keyCharacterMapFile.string(),
1208         toString(mBuiltInKeyboardId == deviceId),
1209         toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
1210
1211    addDeviceLocked(device);
1212    return 0;
1213}
1214
1215void EventHub::createVirtualKeyboardLocked() {
1216    InputDeviceIdentifier identifier;
1217    identifier.name = "Virtual";
1218    identifier.uniqueId = "<virtual>";
1219    setDescriptor(identifier);
1220
1221    Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1222    device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1223            | INPUT_DEVICE_CLASS_ALPHAKEY
1224            | INPUT_DEVICE_CLASS_DPAD
1225            | INPUT_DEVICE_CLASS_VIRTUAL;
1226    loadKeyMapLocked(device);
1227    addDeviceLocked(device);
1228}
1229
1230void EventHub::addDeviceLocked(Device* device) {
1231    mDevices.add(device->id, device);
1232    device->next = mOpeningDevices;
1233    mOpeningDevices = device;
1234}
1235
1236void EventHub::loadConfigurationLocked(Device* device) {
1237    device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1238            device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1239    if (device->configurationFile.isEmpty()) {
1240        ALOGD("No input device configuration file found for device '%s'.",
1241                device->identifier.name.string());
1242    } else {
1243        status_t status = PropertyMap::load(device->configurationFile,
1244                &device->configuration);
1245        if (status) {
1246            ALOGE("Error loading input device configuration file for device '%s'.  "
1247                    "Using default configuration.",
1248                    device->identifier.name.string());
1249        }
1250    }
1251}
1252
1253status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1254    // The virtual key map is supplied by the kernel as a system board property file.
1255    String8 path;
1256    path.append("/sys/board_properties/virtualkeys.");
1257    path.append(device->identifier.name);
1258    if (access(path.string(), R_OK)) {
1259        return NAME_NOT_FOUND;
1260    }
1261    return VirtualKeyMap::load(path, &device->virtualKeyMap);
1262}
1263
1264status_t EventHub::loadKeyMapLocked(Device* device) {
1265    return device->keyMap.load(device->identifier, device->configuration);
1266}
1267
1268bool EventHub::isExternalDeviceLocked(Device* device) {
1269    if (device->configuration) {
1270        bool value;
1271        if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1272            return !value;
1273        }
1274    }
1275    return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1276}
1277
1278bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1279    if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
1280        return false;
1281    }
1282
1283    Vector<int32_t> scanCodes;
1284    device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1285    const size_t N = scanCodes.size();
1286    for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1287        int32_t sc = scanCodes.itemAt(i);
1288        if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1289            return true;
1290        }
1291    }
1292
1293    return false;
1294}
1295
1296status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1297    Device* device = getDeviceByPathLocked(devicePath);
1298    if (device) {
1299        closeDeviceLocked(device);
1300        return 0;
1301    }
1302    ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1303    return -1;
1304}
1305
1306void EventHub::closeAllDevicesLocked() {
1307    while (mDevices.size() > 0) {
1308        closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1309    }
1310}
1311
1312void EventHub::closeDeviceLocked(Device* device) {
1313    ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1314         device->path.string(), device->identifier.name.string(), device->id,
1315         device->fd, device->classes);
1316
1317    if (device->id == mBuiltInKeyboardId) {
1318        ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1319                device->path.string(), mBuiltInKeyboardId);
1320        mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1321    }
1322
1323    if (!device->isVirtual()) {
1324        if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1325            ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
1326        }
1327    }
1328
1329    mDevices.removeItem(device->id);
1330    device->close();
1331
1332    // Unlink for opening devices list if it is present.
1333    Device* pred = NULL;
1334    bool found = false;
1335    for (Device* entry = mOpeningDevices; entry != NULL; ) {
1336        if (entry == device) {
1337            found = true;
1338            break;
1339        }
1340        pred = entry;
1341        entry = entry->next;
1342    }
1343    if (found) {
1344        // Unlink the device from the opening devices list then delete it.
1345        // We don't need to tell the client that the device was closed because
1346        // it does not even know it was opened in the first place.
1347        ALOGI("Device %s was immediately closed after opening.", device->path.string());
1348        if (pred) {
1349            pred->next = device->next;
1350        } else {
1351            mOpeningDevices = device->next;
1352        }
1353        delete device;
1354    } else {
1355        // Link into closing devices list.
1356        // The device will be deleted later after we have informed the client.
1357        device->next = mClosingDevices;
1358        mClosingDevices = device;
1359    }
1360}
1361
1362status_t EventHub::readNotifyLocked() {
1363    int res;
1364    char devname[PATH_MAX];
1365    char *filename;
1366    char event_buf[512];
1367    int event_size;
1368    int event_pos = 0;
1369    struct inotify_event *event;
1370
1371    ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1372    res = read(mINotifyFd, event_buf, sizeof(event_buf));
1373    if(res < (int)sizeof(*event)) {
1374        if(errno == EINTR)
1375            return 0;
1376        ALOGW("could not get event, %s\n", strerror(errno));
1377        return -1;
1378    }
1379    //printf("got %d bytes of event information\n", res);
1380
1381    strcpy(devname, DEVICE_PATH);
1382    filename = devname + strlen(devname);
1383    *filename++ = '/';
1384
1385    while(res >= (int)sizeof(*event)) {
1386        event = (struct inotify_event *)(event_buf + event_pos);
1387        //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1388        if(event->len) {
1389            strcpy(filename, event->name);
1390            if(event->mask & IN_CREATE) {
1391                openDeviceLocked(devname);
1392            } else {
1393                ALOGI("Removing device '%s' due to inotify event\n", devname);
1394                closeDeviceByPathLocked(devname);
1395            }
1396        }
1397        event_size = sizeof(*event) + event->len;
1398        res -= event_size;
1399        event_pos += event_size;
1400    }
1401    return 0;
1402}
1403
1404status_t EventHub::scanDirLocked(const char *dirname)
1405{
1406    char devname[PATH_MAX];
1407    char *filename;
1408    DIR *dir;
1409    struct dirent *de;
1410    dir = opendir(dirname);
1411    if(dir == NULL)
1412        return -1;
1413    strcpy(devname, dirname);
1414    filename = devname + strlen(devname);
1415    *filename++ = '/';
1416    while((de = readdir(dir))) {
1417        if(de->d_name[0] == '.' &&
1418           (de->d_name[1] == '\0' ||
1419            (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1420            continue;
1421        strcpy(filename, de->d_name);
1422        openDeviceLocked(devname);
1423    }
1424    closedir(dir);
1425    return 0;
1426}
1427
1428void EventHub::requestReopenDevices() {
1429    ALOGV("requestReopenDevices() called");
1430
1431    AutoMutex _l(mLock);
1432    mNeedToReopenDevices = true;
1433}
1434
1435void EventHub::dump(String8& dump) {
1436    dump.append("Event Hub State:\n");
1437
1438    { // acquire lock
1439        AutoMutex _l(mLock);
1440
1441        dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1442
1443        dump.append(INDENT "Devices:\n");
1444
1445        for (size_t i = 0; i < mDevices.size(); i++) {
1446            const Device* device = mDevices.valueAt(i);
1447            if (mBuiltInKeyboardId == device->id) {
1448                dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1449                        device->id, device->identifier.name.string());
1450            } else {
1451                dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1452                        device->identifier.name.string());
1453            }
1454            dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1455            dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1456            dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1457            dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1458            dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1459            dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1460                    "product=0x%04x, version=0x%04x\n",
1461                    device->identifier.bus, device->identifier.vendor,
1462                    device->identifier.product, device->identifier.version);
1463            dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1464                    device->keyMap.keyLayoutFile.string());
1465            dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1466                    device->keyMap.keyCharacterMapFile.string());
1467            dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1468                    device->configurationFile.string());
1469            dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1470                    toString(device->overlayKeyMap != NULL));
1471        }
1472    } // release lock
1473}
1474
1475void EventHub::monitor() {
1476    // Acquire and release the lock to ensure that the event hub has not deadlocked.
1477    mLock.lock();
1478    mLock.unlock();
1479}
1480
1481
1482}; // namespace android
1483