EventHub.cpp revision b6110c2de0cd7950360aeb2c248a44e4ea5f33f5
1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17//
18// Handle events, like key input and vsync.
19//
20// The goal is to provide an optimized solution for Linux, not an
21// implementation that works well across all platforms.  We expect
22// events to arrive on file descriptors, so that we can use a select()
23// select() call to sleep.
24//
25// We can't select() on anything but network sockets in Windows, so we
26// provide an alternative implementation of waitEvent for that platform.
27//
28#define LOG_TAG "EventHub"
29
30//#define LOG_NDEBUG 0
31
32#include "EventHub.h"
33
34#include <hardware_legacy/power.h>
35
36#include <cutils/properties.h>
37#include <utils/Log.h>
38#include <utils/Timers.h>
39#include <utils/threads.h>
40#include <utils/Errors.h>
41
42#include <stdlib.h>
43#include <stdio.h>
44#include <unistd.h>
45#include <fcntl.h>
46#include <memory.h>
47#include <errno.h>
48#include <assert.h>
49
50#include <ui/KeyLayoutMap.h>
51#include <ui/KeyCharacterMap.h>
52#include <ui/VirtualKeyMap.h>
53
54#include <string.h>
55#include <stdint.h>
56#include <dirent.h>
57#ifdef HAVE_INOTIFY
58# include <sys/inotify.h>
59#endif
60#ifdef HAVE_ANDROID_OS
61# include <sys/limits.h>        /* not part of Linux */
62#endif
63#include <sys/poll.h>
64#include <sys/ioctl.h>
65
66/* this macro is used to tell if "bit" is set in "array"
67 * it selects a byte from the array, and does a boolean AND
68 * operation with a byte that only has the relevant bit set.
69 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
70 */
71#define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
72
73/* this macro computes the number of bytes needed to represent a bit array of the specified size */
74#define sizeof_bit_array(bits)  ((bits + 7) / 8)
75
76// Fd at index 0 is always reserved for inotify
77#define FIRST_ACTUAL_DEVICE_INDEX 1
78
79#define INDENT "  "
80#define INDENT2 "    "
81#define INDENT3 "      "
82
83namespace android {
84
85static const char *WAKE_LOCK_ID = "KeyEvents";
86static const char *DEVICE_PATH = "/dev/input";
87
88/* return the larger integer */
89static inline int max(int v1, int v2)
90{
91    return (v1 > v2) ? v1 : v2;
92}
93
94static inline const char* toString(bool value) {
95    return value ? "true" : "false";
96}
97
98// --- EventHub::Device ---
99
100EventHub::Device::Device(int fd, int32_t id, const String8& path,
101        const InputDeviceIdentifier& identifier) :
102        next(NULL),
103        fd(fd), id(id), path(path), identifier(identifier),
104        classes(0), keyBitmask(NULL), relBitmask(NULL),
105        configuration(NULL), virtualKeyMap(NULL) {
106}
107
108EventHub::Device::~Device() {
109    close();
110    delete[] keyBitmask;
111    delete[] relBitmask;
112    delete configuration;
113    delete virtualKeyMap;
114}
115
116void EventHub::Device::close() {
117    if (fd >= 0) {
118        ::close(fd);
119        fd = -1;
120    }
121}
122
123
124// --- EventHub ---
125
126EventHub::EventHub(void) :
127        mError(NO_INIT), mBuiltInKeyboardId(-1), mNextDeviceId(1),
128        mOpeningDevices(0), mClosingDevices(0),
129        mOpened(false), mNeedToSendFinishedDeviceScan(false),
130        mInputFdIndex(1) {
131    acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
132
133    memset(mSwitches, 0, sizeof(mSwitches));
134    mNumCpus = sysconf(_SC_NPROCESSORS_ONLN);
135}
136
137EventHub::~EventHub(void) {
138    release_wake_lock(WAKE_LOCK_ID);
139    // we should free stuff here...
140}
141
142status_t EventHub::errorCheck() const {
143    return mError;
144}
145
146String8 EventHub::getDeviceName(int32_t deviceId) const {
147    AutoMutex _l(mLock);
148    Device* device = getDeviceLocked(deviceId);
149    if (device == NULL) return String8();
150    return device->identifier.name;
151}
152
153uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
154    AutoMutex _l(mLock);
155    Device* device = getDeviceLocked(deviceId);
156    if (device == NULL) return 0;
157    return device->classes;
158}
159
160void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
161    AutoMutex _l(mLock);
162    Device* device = getDeviceLocked(deviceId);
163    if (device && device->configuration) {
164        *outConfiguration = *device->configuration;
165    } else {
166        outConfiguration->clear();
167    }
168}
169
170status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
171        RawAbsoluteAxisInfo* outAxisInfo) const {
172    outAxisInfo->clear();
173
174    AutoMutex _l(mLock);
175    Device* device = getDeviceLocked(deviceId);
176    if (device == NULL) return -1;
177
178    struct input_absinfo info;
179
180    if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
181        LOGW("Error reading absolute controller %d for device %s fd %d\n",
182             axis, device->identifier.name.string(), device->fd);
183        return -errno;
184    }
185
186    if (info.minimum != info.maximum) {
187        outAxisInfo->valid = true;
188        outAxisInfo->minValue = info.minimum;
189        outAxisInfo->maxValue = info.maximum;
190        outAxisInfo->flat = info.flat;
191        outAxisInfo->fuzz = info.fuzz;
192    }
193    return OK;
194}
195
196bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
197    if (axis >= 0 && axis <= REL_MAX) {
198        AutoMutex _l(mLock);
199
200        Device* device = getDeviceLocked(deviceId);
201        if (device && device->relBitmask) {
202            return test_bit(axis, device->relBitmask);
203        }
204    }
205    return false;
206}
207
208int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
209    if (scanCode >= 0 && scanCode <= KEY_MAX) {
210        AutoMutex _l(mLock);
211
212        Device* device = getDeviceLocked(deviceId);
213        if (device != NULL) {
214            return getScanCodeStateLocked(device, scanCode);
215        }
216    }
217    return AKEY_STATE_UNKNOWN;
218}
219
220int32_t EventHub::getScanCodeStateLocked(Device* device, int32_t scanCode) const {
221    uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
222    memset(key_bitmask, 0, sizeof(key_bitmask));
223    if (ioctl(device->fd,
224               EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
225        return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
226    }
227    return AKEY_STATE_UNKNOWN;
228}
229
230int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
231    AutoMutex _l(mLock);
232
233    Device* device = getDeviceLocked(deviceId);
234    if (device != NULL) {
235        return getKeyCodeStateLocked(device, keyCode);
236    }
237    return AKEY_STATE_UNKNOWN;
238}
239
240int32_t EventHub::getKeyCodeStateLocked(Device* device, int32_t keyCode) const {
241    if (!device->keyMap.haveKeyLayout()) {
242        return AKEY_STATE_UNKNOWN;
243    }
244
245    Vector<int32_t> scanCodes;
246    device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
247
248    uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
249    memset(key_bitmask, 0, sizeof(key_bitmask));
250    if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
251        #if 0
252        for (size_t i=0; i<=KEY_MAX; i++) {
253            LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask));
254        }
255        #endif
256        const size_t N = scanCodes.size();
257        for (size_t i=0; i<N && i<=KEY_MAX; i++) {
258            int32_t sc = scanCodes.itemAt(i);
259            //LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask));
260            if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) {
261                return AKEY_STATE_DOWN;
262            }
263        }
264        return AKEY_STATE_UP;
265    }
266    return AKEY_STATE_UNKNOWN;
267}
268
269int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
270    if (sw >= 0 && sw <= SW_MAX) {
271        AutoMutex _l(mLock);
272
273        Device* device = getDeviceLocked(deviceId);
274        if (device != NULL) {
275            return getSwitchStateLocked(device, sw);
276        }
277    }
278    return AKEY_STATE_UNKNOWN;
279}
280
281int32_t EventHub::getSwitchStateLocked(Device* device, int32_t sw) const {
282    uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
283    memset(sw_bitmask, 0, sizeof(sw_bitmask));
284    if (ioctl(device->fd,
285               EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) {
286        return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
287    }
288    return AKEY_STATE_UNKNOWN;
289}
290
291bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
292        const int32_t* keyCodes, uint8_t* outFlags) const {
293    AutoMutex _l(mLock);
294
295    Device* device = getDeviceLocked(deviceId);
296    if (device != NULL) {
297        return markSupportedKeyCodesLocked(device, numCodes, keyCodes, outFlags);
298    }
299    return false;
300}
301
302bool EventHub::markSupportedKeyCodesLocked(Device* device, size_t numCodes,
303        const int32_t* keyCodes, uint8_t* outFlags) const {
304    if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
305        return false;
306    }
307
308    Vector<int32_t> scanCodes;
309    for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
310        scanCodes.clear();
311
312        status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
313                keyCodes[codeIndex], &scanCodes);
314        if (! err) {
315            // check the possible scan codes identified by the layout map against the
316            // map of codes actually emitted by the driver
317            for (size_t sc = 0; sc < scanCodes.size(); sc++) {
318                if (test_bit(scanCodes[sc], device->keyBitmask)) {
319                    outFlags[codeIndex] = 1;
320                    break;
321                }
322            }
323        }
324    }
325    return true;
326}
327
328status_t EventHub::mapKey(int32_t deviceId, int scancode,
329        int32_t* outKeycode, uint32_t* outFlags) const
330{
331    AutoMutex _l(mLock);
332    Device* device = getDeviceLocked(deviceId);
333
334    if (device && device->keyMap.haveKeyLayout()) {
335        status_t err = device->keyMap.keyLayoutMap->mapKey(scancode, outKeycode, outFlags);
336        if (err == NO_ERROR) {
337            return NO_ERROR;
338        }
339    }
340
341    if (mBuiltInKeyboardId != -1) {
342        device = getDeviceLocked(mBuiltInKeyboardId);
343
344        if (device && device->keyMap.haveKeyLayout()) {
345            status_t err = device->keyMap.keyLayoutMap->mapKey(scancode, outKeycode, outFlags);
346            if (err == NO_ERROR) {
347                return NO_ERROR;
348            }
349        }
350    }
351
352    *outKeycode = 0;
353    *outFlags = 0;
354    return NAME_NOT_FOUND;
355}
356
357status_t EventHub::mapAxis(int32_t deviceId, int scancode, AxisInfo* outAxisInfo) const
358{
359    AutoMutex _l(mLock);
360    Device* device = getDeviceLocked(deviceId);
361
362    if (device && device->keyMap.haveKeyLayout()) {
363        status_t err = device->keyMap.keyLayoutMap->mapAxis(scancode, outAxisInfo);
364        if (err == NO_ERROR) {
365            return NO_ERROR;
366        }
367    }
368
369    if (mBuiltInKeyboardId != -1) {
370        device = getDeviceLocked(mBuiltInKeyboardId);
371
372        if (device && device->keyMap.haveKeyLayout()) {
373            status_t err = device->keyMap.keyLayoutMap->mapAxis(scancode, outAxisInfo);
374            if (err == NO_ERROR) {
375                return NO_ERROR;
376            }
377        }
378    }
379
380    return NAME_NOT_FOUND;
381}
382
383void EventHub::addExcludedDevice(const char* deviceName)
384{
385    AutoMutex _l(mLock);
386
387    String8 name(deviceName);
388    mExcludedDevices.push_back(name);
389}
390
391bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
392    AutoMutex _l(mLock);
393    Device* device = getDeviceLocked(deviceId);
394    if (device) {
395        uint8_t bitmask[sizeof_bit_array(LED_MAX + 1)];
396        memset(bitmask, 0, sizeof(bitmask));
397        if (ioctl(device->fd, EVIOCGBIT(EV_LED, sizeof(bitmask)), bitmask) >= 0) {
398            if (test_bit(led, bitmask)) {
399                return true;
400            }
401        }
402    }
403    return false;
404}
405
406void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
407    AutoMutex _l(mLock);
408    Device* device = getDeviceLocked(deviceId);
409    if (device) {
410        struct input_event ev;
411        ev.time.tv_sec = 0;
412        ev.time.tv_usec = 0;
413        ev.type = EV_LED;
414        ev.code = led;
415        ev.value = on ? 1 : 0;
416
417        ssize_t nWrite;
418        do {
419            nWrite = write(device->fd, &ev, sizeof(struct input_event));
420        } while (nWrite == -1 && errno == EINTR);
421    }
422}
423
424void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
425        Vector<VirtualKeyDefinition>& outVirtualKeys) const {
426    outVirtualKeys.clear();
427
428    AutoMutex _l(mLock);
429    Device* device = getDeviceLocked(deviceId);
430    if (device && device->virtualKeyMap) {
431        outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
432    }
433}
434
435EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
436    if (deviceId == 0) {
437        deviceId = mBuiltInKeyboardId;
438    }
439
440    size_t numDevices = mDevices.size();
441    for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < numDevices; i++) {
442        Device* device = mDevices[i];
443        if (device->id == deviceId) {
444            return device;
445        }
446    }
447    return NULL;
448}
449
450size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
451    // Note that we only allow one caller to getEvents(), so don't need
452    // to do locking here...  only when adding/removing devices.
453    LOG_ASSERT(bufferSize >= 1);
454
455    if (!mOpened) {
456        mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;
457        mOpened = true;
458        mNeedToSendFinishedDeviceScan = true;
459    }
460
461    struct input_event readBuffer[bufferSize];
462
463    RawEvent* event = buffer;
464    size_t capacity = bufferSize;
465    for (;;) {
466        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
467
468        // Report any devices that had last been added/removed.
469        while (mClosingDevices) {
470            Device* device = mClosingDevices;
471            LOGV("Reporting device closed: id=%d, name=%s\n",
472                 device->id, device->path.string());
473            mClosingDevices = device->next;
474            event->when = now;
475            event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
476            event->type = DEVICE_REMOVED;
477            event += 1;
478            delete device;
479            mNeedToSendFinishedDeviceScan = true;
480            if (--capacity == 0) {
481                break;
482            }
483        }
484
485        while (mOpeningDevices != NULL) {
486            Device* device = mOpeningDevices;
487            LOGV("Reporting device opened: id=%d, name=%s\n",
488                 device->id, device->path.string());
489            mOpeningDevices = device->next;
490            event->when = now;
491            event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
492            event->type = DEVICE_ADDED;
493            event += 1;
494            mNeedToSendFinishedDeviceScan = true;
495            if (--capacity == 0) {
496                break;
497            }
498        }
499
500        if (mNeedToSendFinishedDeviceScan) {
501            mNeedToSendFinishedDeviceScan = false;
502            event->when = now;
503            event->type = FINISHED_DEVICE_SCAN;
504            event += 1;
505            if (--capacity == 0) {
506                break;
507            }
508        }
509
510        // Grab the next input event.
511        // mInputFdIndex is initially 1 because index 0 is used for inotify.
512        bool deviceWasRemoved = false;
513        while (mInputFdIndex < mFds.size()) {
514            const struct pollfd& pfd = mFds[mInputFdIndex];
515            if (pfd.revents & POLLIN) {
516                int32_t readSize = read(pfd.fd, readBuffer, sizeof(struct input_event) * capacity);
517                if (readSize < 0) {
518                    if (errno == ENODEV) {
519                        deviceWasRemoved = true;
520                        break;
521                    }
522                    if (errno != EAGAIN && errno != EINTR) {
523                        LOGW("could not get event (errno=%d)", errno);
524                    }
525                } else if ((readSize % sizeof(struct input_event)) != 0) {
526                    LOGE("could not get event (wrong size: %d)", readSize);
527                } else if (readSize == 0) { // eof
528                    deviceWasRemoved = true;
529                    break;
530                } else {
531                    const Device* device = mDevices[mInputFdIndex];
532                    int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
533
534                    size_t count = size_t(readSize) / sizeof(struct input_event);
535                    for (size_t i = 0; i < count; i++) {
536                        const struct input_event& iev = readBuffer[i];
537                        LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, value=%d",
538                                device->path.string(),
539                                (int) iev.time.tv_sec, (int) iev.time.tv_usec,
540                                iev.type, iev.code, iev.value);
541
542                        event->when = now;
543                        event->deviceId = deviceId;
544                        event->type = iev.type;
545                        event->scanCode = iev.code;
546                        event->value = iev.value;
547                        event->keyCode = AKEYCODE_UNKNOWN;
548                        event->flags = 0;
549                        if (iev.type == EV_KEY && device->keyMap.haveKeyLayout()) {
550                            status_t err = device->keyMap.keyLayoutMap->mapKey(iev.code,
551                                        &event->keyCode, &event->flags);
552                            LOGV("iev.code=%d keyCode=%d flags=0x%08x err=%d\n",
553                                    iev.code, event->keyCode, event->flags, err);
554                        }
555                        event += 1;
556                    }
557                    capacity -= count;
558                    if (capacity == 0) {
559                        break;
560                    }
561                }
562            }
563            mInputFdIndex += 1;
564        }
565
566        // Handle the case where a device has been removed but INotify has not yet noticed.
567        if (deviceWasRemoved) {
568            AutoMutex _l(mLock);
569            closeDeviceAtIndexLocked(mInputFdIndex);
570            continue; // report added or removed devices immediately
571        }
572
573#if HAVE_INOTIFY
574        // readNotify() will modify mFDs and mFDCount, so this must be done after
575        // processing all other events.
576        if(mFds[0].revents & POLLIN) {
577            readNotify(mFds[0].fd);
578            mFds.editItemAt(0).revents = 0;
579            mInputFdIndex = mFds.size();
580            continue; // report added or removed devices immediately
581        }
582#endif
583
584        // Return now if we have collected any events, otherwise poll.
585        if (event != buffer) {
586            break;
587        }
588
589        // Poll for events.  Mind the wake lock dance!
590        // We hold a wake lock at all times except during poll().  This works due to some
591        // subtle choreography.  When a device driver has pending (unread) events, it acquires
592        // a kernel wake lock.  However, once the last pending event has been read, the device
593        // driver will release the kernel wake lock.  To prevent the system from going to sleep
594        // when this happens, the EventHub holds onto its own user wake lock while the client
595        // is processing events.  Thus the system can only sleep if there are no events
596        // pending or currently being processed.
597        //
598        // The timeout is advisory only.  If the device is asleep, it will not wake just to
599        // service the timeout.
600        release_wake_lock(WAKE_LOCK_ID);
601
602        int pollResult = poll(mFds.editArray(), mFds.size(), timeoutMillis);
603
604        acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
605
606        if (pollResult == 0) {
607            break; // timed out
608        }
609        if (pollResult < 0) {
610            // Sleep after errors to avoid locking up the system.
611            // Hopefully the error is transient.
612            if (errno != EINTR) {
613                LOGW("poll failed (errno=%d)\n", errno);
614                usleep(100000);
615            }
616        } else {
617            // On an SMP system, it is possible for the framework to read input events
618            // faster than the kernel input device driver can produce a complete packet.
619            // Because poll() wakes up as soon as the first input event becomes available,
620            // the framework will often end up reading one event at a time until the
621            // packet is complete.  Instead of one call to read() returning 71 events,
622            // it could take 71 calls to read() each returning 1 event.
623            //
624            // Sleep for a short period of time after waking up from the poll() to give
625            // the kernel time to finish writing the entire packet of input events.
626            if (mNumCpus > 1) {
627                usleep(250);
628            }
629        }
630
631        // Prepare to process all of the FDs we just polled.
632        mInputFdIndex = 1;
633    }
634
635    // All done, return the number of events we read.
636    return event - buffer;
637}
638
639/*
640 * Open the platform-specific input device.
641 */
642bool EventHub::openPlatformInput(void) {
643    /*
644     * Open platform-specific input device(s).
645     */
646    int res, fd;
647
648#ifdef HAVE_INOTIFY
649    fd = inotify_init();
650    res = inotify_add_watch(fd, DEVICE_PATH, IN_DELETE | IN_CREATE);
651    if(res < 0) {
652        LOGE("could not add watch for %s, %s\n", DEVICE_PATH, strerror(errno));
653    }
654#else
655    /*
656     * The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd.
657     * We allocate space for it and set it to something invalid.
658     */
659    fd = -1;
660#endif
661
662    // Reserve fd index 0 for inotify.
663    struct pollfd pollfd;
664    pollfd.fd = fd;
665    pollfd.events = POLLIN;
666    pollfd.revents = 0;
667    mFds.push(pollfd);
668    mDevices.push(NULL);
669
670    res = scanDir(DEVICE_PATH);
671    if(res < 0) {
672        LOGE("scan dir failed for %s\n", DEVICE_PATH);
673    }
674
675    return true;
676}
677
678// ----------------------------------------------------------------------------
679
680static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
681    const uint8_t* end = array + endIndex;
682    array += startIndex;
683    while (array != end) {
684        if (*(array++) != 0) {
685            return true;
686        }
687    }
688    return false;
689}
690
691static const int32_t GAMEPAD_KEYCODES[] = {
692        AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
693        AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
694        AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
695        AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
696        AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
697        AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
698        AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
699        AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
700        AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
701        AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
702};
703
704int EventHub::openDevice(const char *devicePath) {
705    char buffer[80];
706
707    LOGV("Opening device: %s", devicePath);
708
709    AutoMutex _l(mLock);
710
711    int fd = open(devicePath, O_RDWR);
712    if(fd < 0) {
713        LOGE("could not open %s, %s\n", devicePath, strerror(errno));
714        return -1;
715    }
716
717    InputDeviceIdentifier identifier;
718
719    // Get device name.
720    if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
721        //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
722    } else {
723        buffer[sizeof(buffer) - 1] = '\0';
724        identifier.name.setTo(buffer);
725    }
726
727    // Check to see if the device is on our excluded list
728    List<String8>::iterator iter = mExcludedDevices.begin();
729    List<String8>::iterator end = mExcludedDevices.end();
730    for ( ; iter != end; iter++) {
731        const char* test = *iter;
732        if (identifier.name == test) {
733            LOGI("ignoring event id %s driver %s\n", devicePath, test);
734            close(fd);
735            return -1;
736        }
737    }
738
739    // Get device driver version.
740    int driverVersion;
741    if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
742        LOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
743        close(fd);
744        return -1;
745    }
746
747    // Get device identifier.
748    struct input_id inputId;
749    if(ioctl(fd, EVIOCGID, &inputId)) {
750        LOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
751        close(fd);
752        return -1;
753    }
754    identifier.bus = inputId.bustype;
755    identifier.product = inputId.product;
756    identifier.vendor = inputId.vendor;
757    identifier.version = inputId.version;
758
759    // Get device physical location.
760    if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
761        //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
762    } else {
763        buffer[sizeof(buffer) - 1] = '\0';
764        identifier.location.setTo(buffer);
765    }
766
767    // Get device unique id.
768    if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
769        //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
770    } else {
771        buffer[sizeof(buffer) - 1] = '\0';
772        identifier.uniqueId.setTo(buffer);
773    }
774
775    // Make file descriptor non-blocking for use with poll().
776    if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
777        LOGE("Error %d making device file descriptor non-blocking.", errno);
778        close(fd);
779        return -1;
780    }
781
782    // Allocate device.  (The device object takes ownership of the fd at this point.)
783    int32_t deviceId = mNextDeviceId++;
784    Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
785
786#if 0
787    LOGI("add device %d: %s\n", deviceId, devicePath);
788    LOGI("  bus:       %04x\n"
789         "  vendor     %04x\n"
790         "  product    %04x\n"
791         "  version    %04x\n",
792        identifier.bus, identifier.vendor, identifier.product, identifier.version);
793    LOGI("  name:      \"%s\"\n", identifier.name.string());
794    LOGI("  location:  \"%s\"\n", identifier.location.string());
795    LOGI("  unique id: \"%s\"\n", identifier.uniqueId.string());
796    LOGI("  driver:    v%d.%d.%d\n",
797        driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
798#endif
799
800    // Load the configuration file for the device.
801    loadConfiguration(device);
802
803    // Figure out the kinds of events the device reports.
804    uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
805    memset(key_bitmask, 0, sizeof(key_bitmask));
806    ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask);
807
808    uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)];
809    memset(abs_bitmask, 0, sizeof(abs_bitmask));
810    ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask);
811
812    uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)];
813    memset(rel_bitmask, 0, sizeof(rel_bitmask));
814    ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask);
815
816    uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
817    memset(sw_bitmask, 0, sizeof(sw_bitmask));
818    ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask);
819
820    device->keyBitmask = new uint8_t[sizeof(key_bitmask)];
821    if (device->keyBitmask != NULL) {
822        memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask));
823    } else {
824        delete device;
825        LOGE("out of memory allocating key bitmask");
826        return -1;
827    }
828
829    device->relBitmask = new uint8_t[sizeof(rel_bitmask)];
830    if (device->relBitmask != NULL) {
831        memcpy(device->relBitmask, rel_bitmask, sizeof(rel_bitmask));
832    } else {
833        delete device;
834        LOGE("out of memory allocating rel bitmask");
835        return -1;
836    }
837
838    // See if this is a keyboard.  Ignore everything in the button range except for
839    // joystick and gamepad buttons which are handled like keyboards for the most part.
840    bool haveKeyboardKeys = containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC))
841            || containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK),
842                    sizeof_bit_array(KEY_MAX + 1));
843    bool haveGamepadButtons = containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_MISC),
844                    sizeof_bit_array(BTN_MOUSE))
845            || containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_JOYSTICK),
846                    sizeof_bit_array(BTN_DIGI));
847    if (haveKeyboardKeys || haveGamepadButtons) {
848        device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
849    }
850
851    // See if this is a cursor device such as a trackball or mouse.
852    if (test_bit(BTN_MOUSE, key_bitmask)
853            && test_bit(REL_X, rel_bitmask)
854            && test_bit(REL_Y, rel_bitmask)) {
855        device->classes |= INPUT_DEVICE_CLASS_CURSOR;
856    }
857
858    // See if this is a touch pad.
859    // Is this a new modern multi-touch driver?
860    if (test_bit(ABS_MT_POSITION_X, abs_bitmask)
861            && test_bit(ABS_MT_POSITION_Y, abs_bitmask)) {
862        // Some joysticks such as the PS3 controller report axes that conflict
863        // with the ABS_MT range.  Try to confirm that the device really is
864        // a touch screen.
865        if (test_bit(BTN_TOUCH, key_bitmask) || !haveGamepadButtons) {
866            device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
867        }
868    // Is this an old style single-touch driver?
869    } else if (test_bit(BTN_TOUCH, key_bitmask)
870            && test_bit(ABS_X, abs_bitmask)
871            && test_bit(ABS_Y, abs_bitmask)) {
872        device->classes |= INPUT_DEVICE_CLASS_TOUCH;
873    }
874
875    // See if this device is a joystick.
876    // Ignore touchscreens because they use the same absolute axes for other purposes.
877    // Assumes that joysticks always have gamepad buttons in order to distinguish them
878    // from other devices such as accelerometers that also have absolute axes.
879    if (haveGamepadButtons
880            && !(device->classes & INPUT_DEVICE_CLASS_TOUCH)
881            && containsNonZeroByte(abs_bitmask, 0, sizeof_bit_array(ABS_MAX + 1))) {
882        device->classes |= INPUT_DEVICE_CLASS_JOYSTICK;
883    }
884
885    // figure out the switches this device reports
886    bool haveSwitches = false;
887    for (int i=0; i<EV_SW; i++) {
888        //LOGI("Device %d sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask));
889        if (test_bit(i, sw_bitmask)) {
890            haveSwitches = true;
891            if (mSwitches[i] == 0) {
892                mSwitches[i] = device->id;
893            }
894        }
895    }
896    if (haveSwitches) {
897        device->classes |= INPUT_DEVICE_CLASS_SWITCH;
898    }
899
900    if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
901        // Load the virtual keys for the touch screen, if any.
902        // We do this now so that we can make sure to load the keymap if necessary.
903        status_t status = loadVirtualKeyMap(device);
904        if (!status) {
905            device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
906        }
907    }
908
909    // Load the key map.
910    // We need to do this for joysticks too because the key layout may specify axes.
911    status_t keyMapStatus = NAME_NOT_FOUND;
912    if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
913        // Load the keymap for the device.
914        keyMapStatus = loadKeyMap(device);
915    }
916
917    // Configure the keyboard, gamepad or virtual keyboard.
918    if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
919        // Set system properties for the keyboard.
920        setKeyboardProperties(device, false);
921
922        // Register the keyboard as a built-in keyboard if it is eligible.
923        if (!keyMapStatus
924                && mBuiltInKeyboardId == -1
925                && isEligibleBuiltInKeyboard(device->identifier,
926                        device->configuration, &device->keyMap)) {
927            mBuiltInKeyboardId = device->id;
928            setKeyboardProperties(device, true);
929        }
930
931        // 'Q' key support = cheap test of whether this is an alpha-capable kbd
932        if (hasKeycodeLocked(device, AKEYCODE_Q)) {
933            device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
934        }
935
936        // See if this device has a DPAD.
937        if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
938                hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
939                hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
940                hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
941                hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
942            device->classes |= INPUT_DEVICE_CLASS_DPAD;
943        }
944
945        // See if this device has a gamepad.
946        for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
947            if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
948                device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
949                break;
950            }
951        }
952    }
953
954    // If the device isn't recognized as something we handle, don't monitor it.
955    if (device->classes == 0) {
956        LOGV("Dropping device: id=%d, path='%s', name='%s'",
957                deviceId, devicePath, device->identifier.name.string());
958        delete device;
959        return -1;
960    }
961
962    // Determine whether the device is external or internal.
963    if (isExternalDevice(device)) {
964        device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
965    }
966
967    LOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
968            "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s",
969         deviceId, fd, devicePath, device->identifier.name.string(),
970         device->classes,
971         device->configurationFile.string(),
972         device->keyMap.keyLayoutFile.string(),
973         device->keyMap.keyCharacterMapFile.string(),
974         toString(mBuiltInKeyboardId == deviceId));
975
976    struct pollfd pollfd;
977    pollfd.fd = fd;
978    pollfd.events = POLLIN;
979    pollfd.revents = 0;
980    mFds.push(pollfd);
981    mDevices.push(device);
982
983    device->next = mOpeningDevices;
984    mOpeningDevices = device;
985    return 0;
986}
987
988void EventHub::loadConfiguration(Device* device) {
989    device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
990            device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
991    if (device->configurationFile.isEmpty()) {
992        LOGD("No input device configuration file found for device '%s'.",
993                device->identifier.name.string());
994    } else {
995        status_t status = PropertyMap::load(device->configurationFile,
996                &device->configuration);
997        if (status) {
998            LOGE("Error loading input device configuration file for device '%s'.  "
999                    "Using default configuration.",
1000                    device->identifier.name.string());
1001        }
1002    }
1003}
1004
1005status_t EventHub::loadVirtualKeyMap(Device* device) {
1006    // The virtual key map is supplied by the kernel as a system board property file.
1007    String8 path;
1008    path.append("/sys/board_properties/virtualkeys.");
1009    path.append(device->identifier.name);
1010    if (access(path.string(), R_OK)) {
1011        return NAME_NOT_FOUND;
1012    }
1013    return VirtualKeyMap::load(path, &device->virtualKeyMap);
1014}
1015
1016status_t EventHub::loadKeyMap(Device* device) {
1017    return device->keyMap.load(device->identifier, device->configuration);
1018}
1019
1020void EventHub::setKeyboardProperties(Device* device, bool builtInKeyboard) {
1021    int32_t id = builtInKeyboard ? 0 : device->id;
1022    android::setKeyboardProperties(id, device->identifier,
1023            device->keyMap.keyLayoutFile, device->keyMap.keyCharacterMapFile);
1024}
1025
1026void EventHub::clearKeyboardProperties(Device* device, bool builtInKeyboard) {
1027    int32_t id = builtInKeyboard ? 0 : device->id;
1028    android::clearKeyboardProperties(id);
1029}
1030
1031bool EventHub::isExternalDevice(Device* device) {
1032    if (device->configuration) {
1033        bool value;
1034        if (device->configuration->tryGetProperty(String8("device.internal"), value)
1035                && value) {
1036            return false;
1037        }
1038    }
1039    return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1040}
1041
1042bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1043    if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
1044        return false;
1045    }
1046
1047    Vector<int32_t> scanCodes;
1048    device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1049    const size_t N = scanCodes.size();
1050    for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1051        int32_t sc = scanCodes.itemAt(i);
1052        if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1053            return true;
1054        }
1055    }
1056
1057    return false;
1058}
1059
1060int EventHub::closeDevice(const char *devicePath) {
1061    AutoMutex _l(mLock);
1062
1063    for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < mDevices.size(); i++) {
1064        Device* device = mDevices[i];
1065        if (device->path == devicePath) {
1066            return closeDeviceAtIndexLocked(i);
1067        }
1068    }
1069    LOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1070    return -1;
1071}
1072
1073int EventHub::closeDeviceAtIndexLocked(int index) {
1074    Device* device = mDevices[index];
1075    LOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1076         device->path.string(), device->identifier.name.string(), device->id,
1077         device->fd, device->classes);
1078
1079    for (int j=0; j<EV_SW; j++) {
1080        if (mSwitches[j] == device->id) {
1081            mSwitches[j] = 0;
1082        }
1083    }
1084
1085    if (device->id == mBuiltInKeyboardId) {
1086        LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1087                device->path.string(), mBuiltInKeyboardId);
1088        mBuiltInKeyboardId = -1;
1089        clearKeyboardProperties(device, true);
1090    }
1091    clearKeyboardProperties(device, false);
1092
1093    mFds.removeAt(index);
1094    mDevices.removeAt(index);
1095    device->close();
1096
1097    // Unlink for opening devices list if it is present.
1098    Device* pred = NULL;
1099    bool found = false;
1100    for (Device* entry = mOpeningDevices; entry != NULL; ) {
1101        if (entry == device) {
1102            found = true;
1103            break;
1104        }
1105        pred = entry;
1106        entry = entry->next;
1107    }
1108    if (found) {
1109        // Unlink the device from the opening devices list then delete it.
1110        // We don't need to tell the client that the device was closed because
1111        // it does not even know it was opened in the first place.
1112        LOGI("Device %s was immediately closed after opening.", device->path.string());
1113        if (pred) {
1114            pred->next = device->next;
1115        } else {
1116            mOpeningDevices = device->next;
1117        }
1118        delete device;
1119    } else {
1120        // Link into closing devices list.
1121        // The device will be deleted later after we have informed the client.
1122        device->next = mClosingDevices;
1123        mClosingDevices = device;
1124    }
1125    return 0;
1126}
1127
1128int EventHub::readNotify(int nfd) {
1129#ifdef HAVE_INOTIFY
1130    int res;
1131    char devname[PATH_MAX];
1132    char *filename;
1133    char event_buf[512];
1134    int event_size;
1135    int event_pos = 0;
1136    struct inotify_event *event;
1137
1138    LOGV("EventHub::readNotify nfd: %d\n", nfd);
1139    res = read(nfd, event_buf, sizeof(event_buf));
1140    if(res < (int)sizeof(*event)) {
1141        if(errno == EINTR)
1142            return 0;
1143        LOGW("could not get event, %s\n", strerror(errno));
1144        return 1;
1145    }
1146    //printf("got %d bytes of event information\n", res);
1147
1148    strcpy(devname, DEVICE_PATH);
1149    filename = devname + strlen(devname);
1150    *filename++ = '/';
1151
1152    while(res >= (int)sizeof(*event)) {
1153        event = (struct inotify_event *)(event_buf + event_pos);
1154        //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1155        if(event->len) {
1156            strcpy(filename, event->name);
1157            if(event->mask & IN_CREATE) {
1158                openDevice(devname);
1159            }
1160            else {
1161                closeDevice(devname);
1162            }
1163        }
1164        event_size = sizeof(*event) + event->len;
1165        res -= event_size;
1166        event_pos += event_size;
1167    }
1168#endif
1169    return 0;
1170}
1171
1172int EventHub::scanDir(const char *dirname)
1173{
1174    char devname[PATH_MAX];
1175    char *filename;
1176    DIR *dir;
1177    struct dirent *de;
1178    dir = opendir(dirname);
1179    if(dir == NULL)
1180        return -1;
1181    strcpy(devname, dirname);
1182    filename = devname + strlen(devname);
1183    *filename++ = '/';
1184    while((de = readdir(dir))) {
1185        if(de->d_name[0] == '.' &&
1186           (de->d_name[1] == '\0' ||
1187            (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1188            continue;
1189        strcpy(filename, de->d_name);
1190        openDevice(devname);
1191    }
1192    closedir(dir);
1193    return 0;
1194}
1195
1196void EventHub::dump(String8& dump) {
1197    dump.append("Event Hub State:\n");
1198
1199    { // acquire lock
1200        AutoMutex _l(mLock);
1201
1202        dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1203
1204        dump.append(INDENT "Devices:\n");
1205
1206        for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < mDevices.size(); i++) {
1207            const Device* device = mDevices[i];
1208            if (device) {
1209                if (mBuiltInKeyboardId == device->id) {
1210                    dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1211                            device->id, device->identifier.name.string());
1212                } else {
1213                    dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1214                            device->identifier.name.string());
1215                }
1216                dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1217                dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1218                dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1219                dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1220                dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1221                        "product=0x%04x, version=0x%04x\n",
1222                        device->identifier.bus, device->identifier.vendor,
1223                        device->identifier.product, device->identifier.version);
1224                dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1225                        device->keyMap.keyLayoutFile.string());
1226                dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1227                        device->keyMap.keyCharacterMapFile.string());
1228                dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1229                        device->configurationFile.string());
1230            }
1231        }
1232    } // release lock
1233}
1234
1235}; // namespace android
1236