InputDispatcher.cpp revision e2515eebf42c763c0a2d9f873a153711778cfc17
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "InputDispatcher"
18
19//#define LOG_NDEBUG 0
20
21// Log detailed debug messages about each inbound event notification to the dispatcher.
22#define DEBUG_INBOUND_EVENT_DETAILS 0
23
24// Log detailed debug messages about each outbound event processed by the dispatcher.
25#define DEBUG_OUTBOUND_EVENT_DETAILS 0
26
27// Log debug messages about batching.
28#define DEBUG_BATCHING 0
29
30// Log debug messages about the dispatch cycle.
31#define DEBUG_DISPATCH_CYCLE 0
32
33// Log debug messages about registrations.
34#define DEBUG_REGISTRATION 0
35
36// Log debug messages about performance statistics.
37#define DEBUG_PERFORMANCE_STATISTICS 0
38
39// Log debug messages about input event injection.
40#define DEBUG_INJECTION 0
41
42// Log debug messages about input event throttling.
43#define DEBUG_THROTTLING 0
44
45// Log debug messages about input focus tracking.
46#define DEBUG_FOCUS 0
47
48// Log debug messages about the app switch latency optimization.
49#define DEBUG_APP_SWITCH 0
50
51#include "InputDispatcher.h"
52
53#include <cutils/log.h>
54#include <ui/PowerManager.h>
55
56#include <stddef.h>
57#include <unistd.h>
58#include <errno.h>
59#include <limits.h>
60
61#define INDENT "  "
62#define INDENT2 "    "
63
64namespace android {
65
66// Default input dispatching timeout if there is no focused application or paused window
67// from which to determine an appropriate dispatching timeout.
68const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec
69
70// Amount of time to allow for all pending events to be processed when an app switch
71// key is on the way.  This is used to preempt input dispatch and drop input events
72// when an application takes too long to respond and the user has pressed an app switch key.
73const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
74
75// Amount of time to allow for an event to be dispatched (measured since its eventTime)
76// before considering it stale and dropping it.
77const nsecs_t STALE_EVENT_TIMEOUT = 10000 * 1000000LL; // 10sec
78
79
80static inline nsecs_t now() {
81    return systemTime(SYSTEM_TIME_MONOTONIC);
82}
83
84static inline const char* toString(bool value) {
85    return value ? "true" : "false";
86}
87
88static inline int32_t getMotionEventActionPointerIndex(int32_t action) {
89    return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
90            >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
91}
92
93static bool isValidKeyAction(int32_t action) {
94    switch (action) {
95    case AKEY_EVENT_ACTION_DOWN:
96    case AKEY_EVENT_ACTION_UP:
97        return true;
98    default:
99        return false;
100    }
101}
102
103static bool validateKeyEvent(int32_t action) {
104    if (! isValidKeyAction(action)) {
105        LOGE("Key event has invalid action code 0x%x", action);
106        return false;
107    }
108    return true;
109}
110
111static bool isValidMotionAction(int32_t action, size_t pointerCount) {
112    switch (action & AMOTION_EVENT_ACTION_MASK) {
113    case AMOTION_EVENT_ACTION_DOWN:
114    case AMOTION_EVENT_ACTION_UP:
115    case AMOTION_EVENT_ACTION_CANCEL:
116    case AMOTION_EVENT_ACTION_MOVE:
117    case AMOTION_EVENT_ACTION_OUTSIDE:
118    case AMOTION_EVENT_ACTION_HOVER_MOVE:
119    case AMOTION_EVENT_ACTION_SCROLL:
120        return true;
121    case AMOTION_EVENT_ACTION_POINTER_DOWN:
122    case AMOTION_EVENT_ACTION_POINTER_UP: {
123        int32_t index = getMotionEventActionPointerIndex(action);
124        return index >= 0 && size_t(index) < pointerCount;
125    }
126    default:
127        return false;
128    }
129}
130
131static bool validateMotionEvent(int32_t action, size_t pointerCount,
132        const int32_t* pointerIds) {
133    if (! isValidMotionAction(action, pointerCount)) {
134        LOGE("Motion event has invalid action code 0x%x", action);
135        return false;
136    }
137    if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
138        LOGE("Motion event has invalid pointer count %d; value must be between 1 and %d.",
139                pointerCount, MAX_POINTERS);
140        return false;
141    }
142    BitSet32 pointerIdBits;
143    for (size_t i = 0; i < pointerCount; i++) {
144        int32_t id = pointerIds[i];
145        if (id < 0 || id > MAX_POINTER_ID) {
146            LOGE("Motion event has invalid pointer id %d; value must be between 0 and %d",
147                    id, MAX_POINTER_ID);
148            return false;
149        }
150        if (pointerIdBits.hasBit(id)) {
151            LOGE("Motion event has duplicate pointer id %d", id);
152            return false;
153        }
154        pointerIdBits.markBit(id);
155    }
156    return true;
157}
158
159static void scalePointerCoords(const PointerCoords* inCoords, size_t count, float scaleFactor,
160        PointerCoords* outCoords) {
161   for (size_t i = 0; i < count; i++) {
162       outCoords[i] = inCoords[i];
163       outCoords[i].scale(scaleFactor);
164   }
165}
166
167static void dumpRegion(String8& dump, const SkRegion& region) {
168    if (region.isEmpty()) {
169        dump.append("<empty>");
170        return;
171    }
172
173    bool first = true;
174    for (SkRegion::Iterator it(region); !it.done(); it.next()) {
175        if (first) {
176            first = false;
177        } else {
178            dump.append("|");
179        }
180        const SkIRect& rect = it.rect();
181        dump.appendFormat("[%d,%d][%d,%d]", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom);
182    }
183}
184
185
186// --- InputDispatcher ---
187
188InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) :
189    mPolicy(policy),
190    mPendingEvent(NULL), mAppSwitchSawKeyDown(false), mAppSwitchDueTime(LONG_LONG_MAX),
191    mNextUnblockedEvent(NULL),
192    mDispatchEnabled(true), mDispatchFrozen(false),
193    mFocusedWindow(NULL),
194    mFocusedApplication(NULL),
195    mCurrentInputTargetsValid(false),
196    mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) {
197    mLooper = new Looper(false);
198
199    mInboundQueue.headSentinel.refCount = -1;
200    mInboundQueue.headSentinel.type = EventEntry::TYPE_SENTINEL;
201    mInboundQueue.headSentinel.eventTime = LONG_LONG_MIN;
202
203    mInboundQueue.tailSentinel.refCount = -1;
204    mInboundQueue.tailSentinel.type = EventEntry::TYPE_SENTINEL;
205    mInboundQueue.tailSentinel.eventTime = LONG_LONG_MAX;
206
207    mKeyRepeatState.lastKeyEntry = NULL;
208
209    int32_t maxEventsPerSecond = policy->getMaxEventsPerSecond();
210    mThrottleState.minTimeBetweenEvents = 1000000000LL / maxEventsPerSecond;
211    mThrottleState.lastDeviceId = -1;
212
213#if DEBUG_THROTTLING
214    mThrottleState.originalSampleCount = 0;
215    LOGD("Throttling - Max events per second = %d", maxEventsPerSecond);
216#endif
217}
218
219InputDispatcher::~InputDispatcher() {
220    { // acquire lock
221        AutoMutex _l(mLock);
222
223        resetKeyRepeatLocked();
224        releasePendingEventLocked();
225        drainInboundQueueLocked();
226    }
227
228    while (mConnectionsByReceiveFd.size() != 0) {
229        unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel);
230    }
231}
232
233void InputDispatcher::dispatchOnce() {
234    nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout();
235    nsecs_t keyRepeatDelay = mPolicy->getKeyRepeatDelay();
236
237    nsecs_t nextWakeupTime = LONG_LONG_MAX;
238    { // acquire lock
239        AutoMutex _l(mLock);
240        dispatchOnceInnerLocked(keyRepeatTimeout, keyRepeatDelay, & nextWakeupTime);
241
242        if (runCommandsLockedInterruptible()) {
243            nextWakeupTime = LONG_LONG_MIN;  // force next poll to wake up immediately
244        }
245    } // release lock
246
247    // Wait for callback or timeout or wake.  (make sure we round up, not down)
248    nsecs_t currentTime = now();
249    int32_t timeoutMillis;
250    if (nextWakeupTime > currentTime) {
251        uint64_t timeout = uint64_t(nextWakeupTime - currentTime);
252        timeout = (timeout + 999999LL) / 1000000LL;
253        timeoutMillis = timeout > INT_MAX ? -1 : int32_t(timeout);
254    } else {
255        timeoutMillis = 0;
256    }
257
258    mLooper->pollOnce(timeoutMillis);
259}
260
261void InputDispatcher::dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout,
262        nsecs_t keyRepeatDelay, nsecs_t* nextWakeupTime) {
263    nsecs_t currentTime = now();
264
265    // Reset the key repeat timer whenever we disallow key events, even if the next event
266    // is not a key.  This is to ensure that we abort a key repeat if the device is just coming
267    // out of sleep.
268    if (keyRepeatTimeout < 0) {
269        resetKeyRepeatLocked();
270    }
271
272    // If dispatching is frozen, do not process timeouts or try to deliver any new events.
273    if (mDispatchFrozen) {
274#if DEBUG_FOCUS
275        LOGD("Dispatch frozen.  Waiting some more.");
276#endif
277        return;
278    }
279
280    // Optimize latency of app switches.
281    // Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
282    // been pressed.  When it expires, we preempt dispatch and drop all other pending events.
283    bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
284    if (mAppSwitchDueTime < *nextWakeupTime) {
285        *nextWakeupTime = mAppSwitchDueTime;
286    }
287
288    // Ready to start a new event.
289    // If we don't already have a pending event, go grab one.
290    if (! mPendingEvent) {
291        if (mInboundQueue.isEmpty()) {
292            if (isAppSwitchDue) {
293                // The inbound queue is empty so the app switch key we were waiting
294                // for will never arrive.  Stop waiting for it.
295                resetPendingAppSwitchLocked(false);
296                isAppSwitchDue = false;
297            }
298
299            // Synthesize a key repeat if appropriate.
300            if (mKeyRepeatState.lastKeyEntry) {
301                if (currentTime >= mKeyRepeatState.nextRepeatTime) {
302                    mPendingEvent = synthesizeKeyRepeatLocked(currentTime, keyRepeatDelay);
303                } else {
304                    if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
305                        *nextWakeupTime = mKeyRepeatState.nextRepeatTime;
306                    }
307                }
308            }
309            if (! mPendingEvent) {
310                return;
311            }
312        } else {
313            // Inbound queue has at least one entry.
314            EventEntry* entry = mInboundQueue.headSentinel.next;
315
316            // Throttle the entry if it is a move event and there are no
317            // other events behind it in the queue.  Due to movement batching, additional
318            // samples may be appended to this event by the time the throttling timeout
319            // expires.
320            // TODO Make this smarter and consider throttling per device independently.
321            if (entry->type == EventEntry::TYPE_MOTION
322                    && !isAppSwitchDue
323                    && mDispatchEnabled
324                    && (entry->policyFlags & POLICY_FLAG_PASS_TO_USER)
325                    && !entry->isInjected()) {
326                MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
327                int32_t deviceId = motionEntry->deviceId;
328                uint32_t source = motionEntry->source;
329                if (! isAppSwitchDue
330                        && motionEntry->next == & mInboundQueue.tailSentinel // exactly one event
331                        && (motionEntry->action == AMOTION_EVENT_ACTION_MOVE
332                                || motionEntry->action == AMOTION_EVENT_ACTION_HOVER_MOVE)
333                        && deviceId == mThrottleState.lastDeviceId
334                        && source == mThrottleState.lastSource) {
335                    nsecs_t nextTime = mThrottleState.lastEventTime
336                            + mThrottleState.minTimeBetweenEvents;
337                    if (currentTime < nextTime) {
338                        // Throttle it!
339#if DEBUG_THROTTLING
340                        LOGD("Throttling - Delaying motion event for "
341                                "device %d, source 0x%08x by up to %0.3fms.",
342                                deviceId, source, (nextTime - currentTime) * 0.000001);
343#endif
344                        if (nextTime < *nextWakeupTime) {
345                            *nextWakeupTime = nextTime;
346                        }
347                        if (mThrottleState.originalSampleCount == 0) {
348                            mThrottleState.originalSampleCount =
349                                    motionEntry->countSamples();
350                        }
351                        return;
352                    }
353                }
354
355#if DEBUG_THROTTLING
356                if (mThrottleState.originalSampleCount != 0) {
357                    uint32_t count = motionEntry->countSamples();
358                    LOGD("Throttling - Motion event sample count grew by %d from %d to %d.",
359                            count - mThrottleState.originalSampleCount,
360                            mThrottleState.originalSampleCount, count);
361                    mThrottleState.originalSampleCount = 0;
362                }
363#endif
364
365                mThrottleState.lastEventTime = currentTime;
366                mThrottleState.lastDeviceId = deviceId;
367                mThrottleState.lastSource = source;
368            }
369
370            mInboundQueue.dequeue(entry);
371            mPendingEvent = entry;
372        }
373
374        // Poke user activity for this event.
375        if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
376            pokeUserActivityLocked(mPendingEvent);
377        }
378    }
379
380    // Now we have an event to dispatch.
381    // All events are eventually dequeued and processed this way, even if we intend to drop them.
382    assert(mPendingEvent != NULL);
383    bool done = false;
384    DropReason dropReason = DROP_REASON_NOT_DROPPED;
385    if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) {
386        dropReason = DROP_REASON_POLICY;
387    } else if (!mDispatchEnabled) {
388        dropReason = DROP_REASON_DISABLED;
389    }
390
391    if (mNextUnblockedEvent == mPendingEvent) {
392        mNextUnblockedEvent = NULL;
393    }
394
395    switch (mPendingEvent->type) {
396    case EventEntry::TYPE_CONFIGURATION_CHANGED: {
397        ConfigurationChangedEntry* typedEntry =
398                static_cast<ConfigurationChangedEntry*>(mPendingEvent);
399        done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
400        dropReason = DROP_REASON_NOT_DROPPED; // configuration changes are never dropped
401        break;
402    }
403
404    case EventEntry::TYPE_KEY: {
405        KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent);
406        if (isAppSwitchDue) {
407            if (isAppSwitchKeyEventLocked(typedEntry)) {
408                resetPendingAppSwitchLocked(true);
409                isAppSwitchDue = false;
410            } else if (dropReason == DROP_REASON_NOT_DROPPED) {
411                dropReason = DROP_REASON_APP_SWITCH;
412            }
413        }
414        if (dropReason == DROP_REASON_NOT_DROPPED
415                && isStaleEventLocked(currentTime, typedEntry)) {
416            dropReason = DROP_REASON_STALE;
417        }
418        if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
419            dropReason = DROP_REASON_BLOCKED;
420        }
421        done = dispatchKeyLocked(currentTime, typedEntry, keyRepeatTimeout,
422                &dropReason, nextWakeupTime);
423        break;
424    }
425
426    case EventEntry::TYPE_MOTION: {
427        MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);
428        if (dropReason == DROP_REASON_NOT_DROPPED && isAppSwitchDue) {
429            dropReason = DROP_REASON_APP_SWITCH;
430        }
431        if (dropReason == DROP_REASON_NOT_DROPPED
432                && isStaleEventLocked(currentTime, typedEntry)) {
433            dropReason = DROP_REASON_STALE;
434        }
435        if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) {
436            dropReason = DROP_REASON_BLOCKED;
437        }
438        done = dispatchMotionLocked(currentTime, typedEntry,
439                &dropReason, nextWakeupTime);
440        break;
441    }
442
443    default:
444        assert(false);
445        break;
446    }
447
448    if (done) {
449        if (dropReason != DROP_REASON_NOT_DROPPED) {
450            dropInboundEventLocked(mPendingEvent, dropReason);
451        }
452
453        releasePendingEventLocked();
454        *nextWakeupTime = LONG_LONG_MIN;  // force next poll to wake up immediately
455    }
456}
457
458bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
459    bool needWake = mInboundQueue.isEmpty();
460    mInboundQueue.enqueueAtTail(entry);
461
462    switch (entry->type) {
463    case EventEntry::TYPE_KEY: {
464        // Optimize app switch latency.
465        // If the application takes too long to catch up then we drop all events preceding
466        // the app switch key.
467        KeyEntry* keyEntry = static_cast<KeyEntry*>(entry);
468        if (isAppSwitchKeyEventLocked(keyEntry)) {
469            if (keyEntry->action == AKEY_EVENT_ACTION_DOWN) {
470                mAppSwitchSawKeyDown = true;
471            } else if (keyEntry->action == AKEY_EVENT_ACTION_UP) {
472                if (mAppSwitchSawKeyDown) {
473#if DEBUG_APP_SWITCH
474                    LOGD("App switch is pending!");
475#endif
476                    mAppSwitchDueTime = keyEntry->eventTime + APP_SWITCH_TIMEOUT;
477                    mAppSwitchSawKeyDown = false;
478                    needWake = true;
479                }
480            }
481        }
482        break;
483    }
484
485    case EventEntry::TYPE_MOTION: {
486        // Optimize case where the current application is unresponsive and the user
487        // decides to touch a window in a different application.
488        // If the application takes too long to catch up then we drop all events preceding
489        // the touch into the other window.
490        MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
491        if (motionEntry->action == AMOTION_EVENT_ACTION_DOWN
492                && (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER)
493                && mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY
494                && mInputTargetWaitApplication != NULL) {
495            int32_t x = int32_t(motionEntry->firstSample.pointerCoords[0].
496                    getAxisValue(AMOTION_EVENT_AXIS_X));
497            int32_t y = int32_t(motionEntry->firstSample.pointerCoords[0].
498                    getAxisValue(AMOTION_EVENT_AXIS_Y));
499            const InputWindow* touchedWindow = findTouchedWindowAtLocked(x, y);
500            if (touchedWindow
501                    && touchedWindow->inputWindowHandle != NULL
502                    && touchedWindow->inputWindowHandle->getInputApplicationHandle()
503                            != mInputTargetWaitApplication) {
504                // User touched a different application than the one we are waiting on.
505                // Flag the event, and start pruning the input queue.
506                mNextUnblockedEvent = motionEntry;
507                needWake = true;
508            }
509        }
510        break;
511    }
512    }
513
514    return needWake;
515}
516
517const InputWindow* InputDispatcher::findTouchedWindowAtLocked(int32_t x, int32_t y) {
518    // Traverse windows from front to back to find touched window.
519    size_t numWindows = mWindows.size();
520    for (size_t i = 0; i < numWindows; i++) {
521        const InputWindow* window = & mWindows.editItemAt(i);
522        int32_t flags = window->layoutParamsFlags;
523
524        if (window->visible) {
525            if (!(flags & InputWindow::FLAG_NOT_TOUCHABLE)) {
526                bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE
527                        | InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0;
528                if (isTouchModal || window->touchableRegionContainsPoint(x, y)) {
529                    // Found window.
530                    return window;
531                }
532            }
533        }
534
535        if (flags & InputWindow::FLAG_SYSTEM_ERROR) {
536            // Error window is on top but not visible, so touch is dropped.
537            return NULL;
538        }
539    }
540    return NULL;
541}
542
543void InputDispatcher::dropInboundEventLocked(EventEntry* entry, DropReason dropReason) {
544    const char* reason;
545    switch (dropReason) {
546    case DROP_REASON_POLICY:
547#if DEBUG_INBOUND_EVENT_DETAILS
548        LOGD("Dropped event because policy consumed it.");
549#endif
550        reason = "inbound event was dropped because the policy consumed it";
551        break;
552    case DROP_REASON_DISABLED:
553        LOGI("Dropped event because input dispatch is disabled.");
554        reason = "inbound event was dropped because input dispatch is disabled";
555        break;
556    case DROP_REASON_APP_SWITCH:
557        LOGI("Dropped event because of pending overdue app switch.");
558        reason = "inbound event was dropped because of pending overdue app switch";
559        break;
560    case DROP_REASON_BLOCKED:
561        LOGI("Dropped event because the current application is not responding and the user "
562                "has started interating with a different application.");
563        reason = "inbound event was dropped because the current application is not responding "
564                "and the user has started interating with a different application";
565        break;
566    case DROP_REASON_STALE:
567        LOGI("Dropped event because it is stale.");
568        reason = "inbound event was dropped because it is stale";
569        break;
570    default:
571        assert(false);
572        return;
573    }
574
575    switch (entry->type) {
576    case EventEntry::TYPE_KEY:
577        synthesizeCancelationEventsForAllConnectionsLocked(
578                InputState::CANCEL_NON_POINTER_EVENTS, reason);
579        break;
580    case EventEntry::TYPE_MOTION: {
581        MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
582        if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) {
583            synthesizeCancelationEventsForAllConnectionsLocked(
584                    InputState::CANCEL_POINTER_EVENTS, reason);
585        } else {
586            synthesizeCancelationEventsForAllConnectionsLocked(
587                    InputState::CANCEL_NON_POINTER_EVENTS, reason);
588        }
589        break;
590    }
591    }
592}
593
594bool InputDispatcher::isAppSwitchKeyCode(int32_t keyCode) {
595    return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL;
596}
597
598bool InputDispatcher::isAppSwitchKeyEventLocked(KeyEntry* keyEntry) {
599    return ! (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED)
600            && isAppSwitchKeyCode(keyEntry->keyCode)
601            && (keyEntry->policyFlags & POLICY_FLAG_TRUSTED)
602            && (keyEntry->policyFlags & POLICY_FLAG_PASS_TO_USER);
603}
604
605bool InputDispatcher::isAppSwitchPendingLocked() {
606    return mAppSwitchDueTime != LONG_LONG_MAX;
607}
608
609void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
610    mAppSwitchDueTime = LONG_LONG_MAX;
611
612#if DEBUG_APP_SWITCH
613    if (handled) {
614        LOGD("App switch has arrived.");
615    } else {
616        LOGD("App switch was abandoned.");
617    }
618#endif
619}
620
621bool InputDispatcher::isStaleEventLocked(nsecs_t currentTime, EventEntry* entry) {
622    return currentTime - entry->eventTime >= STALE_EVENT_TIMEOUT;
623}
624
625bool InputDispatcher::runCommandsLockedInterruptible() {
626    if (mCommandQueue.isEmpty()) {
627        return false;
628    }
629
630    do {
631        CommandEntry* commandEntry = mCommandQueue.dequeueAtHead();
632
633        Command command = commandEntry->command;
634        (this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible'
635
636        commandEntry->connection.clear();
637        mAllocator.releaseCommandEntry(commandEntry);
638    } while (! mCommandQueue.isEmpty());
639    return true;
640}
641
642InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) {
643    CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command);
644    mCommandQueue.enqueueAtTail(commandEntry);
645    return commandEntry;
646}
647
648void InputDispatcher::drainInboundQueueLocked() {
649    while (! mInboundQueue.isEmpty()) {
650        EventEntry* entry = mInboundQueue.dequeueAtHead();
651        releaseInboundEventLocked(entry);
652    }
653}
654
655void InputDispatcher::releasePendingEventLocked() {
656    if (mPendingEvent) {
657        releaseInboundEventLocked(mPendingEvent);
658        mPendingEvent = NULL;
659    }
660}
661
662void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) {
663    InjectionState* injectionState = entry->injectionState;
664    if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) {
665#if DEBUG_DISPATCH_CYCLE
666        LOGD("Injected inbound event was dropped.");
667#endif
668        setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
669    }
670    mAllocator.releaseEventEntry(entry);
671}
672
673void InputDispatcher::resetKeyRepeatLocked() {
674    if (mKeyRepeatState.lastKeyEntry) {
675        mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry);
676        mKeyRepeatState.lastKeyEntry = NULL;
677    }
678}
679
680InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked(
681        nsecs_t currentTime, nsecs_t keyRepeatDelay) {
682    KeyEntry* entry = mKeyRepeatState.lastKeyEntry;
683
684    // Reuse the repeated key entry if it is otherwise unreferenced.
685    uint32_t policyFlags = (entry->policyFlags & POLICY_FLAG_RAW_MASK)
686            | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED;
687    if (entry->refCount == 1) {
688        mAllocator.recycleKeyEntry(entry);
689        entry->eventTime = currentTime;
690        entry->policyFlags = policyFlags;
691        entry->repeatCount += 1;
692    } else {
693        KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime,
694                entry->deviceId, entry->source, policyFlags,
695                entry->action, entry->flags, entry->keyCode, entry->scanCode,
696                entry->metaState, entry->repeatCount + 1, entry->downTime);
697
698        mKeyRepeatState.lastKeyEntry = newEntry;
699        mAllocator.releaseKeyEntry(entry);
700
701        entry = newEntry;
702    }
703    entry->syntheticRepeat = true;
704
705    // Increment reference count since we keep a reference to the event in
706    // mKeyRepeatState.lastKeyEntry in addition to the one we return.
707    entry->refCount += 1;
708
709    mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatDelay;
710    return entry;
711}
712
713bool InputDispatcher::dispatchConfigurationChangedLocked(
714        nsecs_t currentTime, ConfigurationChangedEntry* entry) {
715#if DEBUG_OUTBOUND_EVENT_DETAILS
716    LOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime);
717#endif
718
719    // Reset key repeating in case a keyboard device was added or removed or something.
720    resetKeyRepeatLocked();
721
722    // Enqueue a command to run outside the lock to tell the policy that the configuration changed.
723    CommandEntry* commandEntry = postCommandLocked(
724            & InputDispatcher::doNotifyConfigurationChangedInterruptible);
725    commandEntry->eventTime = entry->eventTime;
726    return true;
727}
728
729bool InputDispatcher::dispatchKeyLocked(
730        nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
731        DropReason* dropReason, nsecs_t* nextWakeupTime) {
732    // Preprocessing.
733    if (! entry->dispatchInProgress) {
734        if (entry->repeatCount == 0
735                && entry->action == AKEY_EVENT_ACTION_DOWN
736                && (entry->policyFlags & POLICY_FLAG_TRUSTED)
737                && !entry->isInjected()) {
738            if (mKeyRepeatState.lastKeyEntry
739                    && mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
740                // We have seen two identical key downs in a row which indicates that the device
741                // driver is automatically generating key repeats itself.  We take note of the
742                // repeat here, but we disable our own next key repeat timer since it is clear that
743                // we will not need to synthesize key repeats ourselves.
744                entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
745                resetKeyRepeatLocked();
746                mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
747            } else {
748                // Not a repeat.  Save key down state in case we do see a repeat later.
749                resetKeyRepeatLocked();
750                mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout;
751            }
752            mKeyRepeatState.lastKeyEntry = entry;
753            entry->refCount += 1;
754        } else if (! entry->syntheticRepeat) {
755            resetKeyRepeatLocked();
756        }
757
758        if (entry->repeatCount == 1) {
759            entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
760        } else {
761            entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS;
762        }
763
764        entry->dispatchInProgress = true;
765        resetTargetsLocked();
766
767        logOutboundKeyDetailsLocked("dispatchKey - ", entry);
768    }
769
770    // Give the policy a chance to intercept the key.
771    if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
772        if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
773            CommandEntry* commandEntry = postCommandLocked(
774                    & InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
775            if (mFocusedWindow) {
776                commandEntry->inputWindowHandle = mFocusedWindow->inputWindowHandle;
777            }
778            commandEntry->keyEntry = entry;
779            entry->refCount += 1;
780            return false; // wait for the command to run
781        } else {
782            entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
783        }
784    } else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
785        if (*dropReason == DROP_REASON_NOT_DROPPED) {
786            *dropReason = DROP_REASON_POLICY;
787        }
788    }
789
790    // Clean up if dropping the event.
791    if (*dropReason != DROP_REASON_NOT_DROPPED) {
792        resetTargetsLocked();
793        setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY
794                ? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED);
795        return true;
796    }
797
798    // Identify targets.
799    if (! mCurrentInputTargetsValid) {
800        int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime,
801                entry, nextWakeupTime);
802        if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
803            return false;
804        }
805
806        setInjectionResultLocked(entry, injectionResult);
807        if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
808            return true;
809        }
810
811        addMonitoringTargetsLocked();
812        commitTargetsLocked();
813    }
814
815    // Dispatch the key.
816    dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false);
817    return true;
818}
819
820void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) {
821#if DEBUG_OUTBOUND_EVENT_DETAILS
822    LOGD("%seventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, "
823            "action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, "
824            "repeatCount=%d, downTime=%lld",
825            prefix,
826            entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
827            entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState,
828            entry->repeatCount, entry->downTime);
829#endif
830}
831
832bool InputDispatcher::dispatchMotionLocked(
833        nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime) {
834    // Preprocessing.
835    if (! entry->dispatchInProgress) {
836        entry->dispatchInProgress = true;
837        resetTargetsLocked();
838
839        logOutboundMotionDetailsLocked("dispatchMotion - ", entry);
840    }
841
842    // Clean up if dropping the event.
843    if (*dropReason != DROP_REASON_NOT_DROPPED) {
844        resetTargetsLocked();
845        setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY
846                ? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED);
847        return true;
848    }
849
850    bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;
851
852    // Identify targets.
853    bool conflictingPointerActions = false;
854    if (! mCurrentInputTargetsValid) {
855        int32_t injectionResult;
856        if (isPointerEvent) {
857            // Pointer event.  (eg. touchscreen)
858            injectionResult = findTouchedWindowTargetsLocked(currentTime,
859                    entry, nextWakeupTime, &conflictingPointerActions);
860        } else {
861            // Non touch event.  (eg. trackball)
862            injectionResult = findFocusedWindowTargetsLocked(currentTime,
863                    entry, nextWakeupTime);
864        }
865        if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
866            return false;
867        }
868
869        setInjectionResultLocked(entry, injectionResult);
870        if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
871            return true;
872        }
873
874        addMonitoringTargetsLocked();
875        commitTargetsLocked();
876    }
877
878    // Dispatch the motion.
879    if (conflictingPointerActions) {
880        synthesizeCancelationEventsForAllConnectionsLocked(
881                InputState::CANCEL_POINTER_EVENTS, "Conflicting pointer actions.");
882    }
883    dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false);
884    return true;
885}
886
887
888void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) {
889#if DEBUG_OUTBOUND_EVENT_DETAILS
890    LOGD("%seventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, "
891            "action=0x%x, flags=0x%x, "
892            "metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld",
893            prefix,
894            entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
895            entry->action, entry->flags,
896            entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision,
897            entry->downTime);
898
899    // Print the most recent sample that we have available, this may change due to batching.
900    size_t sampleCount = 1;
901    const MotionSample* sample = & entry->firstSample;
902    for (; sample->next != NULL; sample = sample->next) {
903        sampleCount += 1;
904    }
905    for (uint32_t i = 0; i < entry->pointerCount; i++) {
906        LOGD("  Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, "
907                "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
908                "orientation=%f",
909                i, entry->pointerIds[i],
910                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
911                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
912                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
913                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
914                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
915                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
916                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
917                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
918                sample->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
919    }
920
921    // Keep in mind that due to batching, it is possible for the number of samples actually
922    // dispatched to change before the application finally consumed them.
923    if (entry->action == AMOTION_EVENT_ACTION_MOVE) {
924        LOGD("  ... Total movement samples currently batched %d ...", sampleCount);
925    }
926#endif
927}
928
929void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime,
930        EventEntry* eventEntry, bool resumeWithAppendedMotionSample) {
931#if DEBUG_DISPATCH_CYCLE
932    LOGD("dispatchEventToCurrentInputTargets - "
933            "resumeWithAppendedMotionSample=%s",
934            toString(resumeWithAppendedMotionSample));
935#endif
936
937    assert(eventEntry->dispatchInProgress); // should already have been set to true
938
939    pokeUserActivityLocked(eventEntry);
940
941    for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
942        const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i);
943
944        ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
945        if (connectionIndex >= 0) {
946            sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
947            prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget,
948                    resumeWithAppendedMotionSample);
949        } else {
950#if DEBUG_FOCUS
951            LOGD("Dropping event delivery to target with channel '%s' because it "
952                    "is no longer registered with the input dispatcher.",
953                    inputTarget.inputChannel->getName().string());
954#endif
955        }
956    }
957}
958
959void InputDispatcher::resetTargetsLocked() {
960    mCurrentInputTargetsValid = false;
961    mCurrentInputTargets.clear();
962    mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
963    mInputTargetWaitApplication.clear();
964}
965
966void InputDispatcher::commitTargetsLocked() {
967    mCurrentInputTargetsValid = true;
968}
969
970int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime,
971        const EventEntry* entry, const InputApplication* application, const InputWindow* window,
972        nsecs_t* nextWakeupTime) {
973    if (application == NULL && window == NULL) {
974        if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) {
975#if DEBUG_FOCUS
976            LOGD("Waiting for system to become ready for input.");
977#endif
978            mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY;
979            mInputTargetWaitStartTime = currentTime;
980            mInputTargetWaitTimeoutTime = LONG_LONG_MAX;
981            mInputTargetWaitTimeoutExpired = false;
982            mInputTargetWaitApplication.clear();
983        }
984    } else {
985        if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
986#if DEBUG_FOCUS
987            LOGD("Waiting for application to become ready for input: %s",
988                    getApplicationWindowLabelLocked(application, window).string());
989#endif
990            nsecs_t timeout = window ? window->dispatchingTimeout :
991                application ? application->dispatchingTimeout : DEFAULT_INPUT_DISPATCHING_TIMEOUT;
992
993            mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY;
994            mInputTargetWaitStartTime = currentTime;
995            mInputTargetWaitTimeoutTime = currentTime + timeout;
996            mInputTargetWaitTimeoutExpired = false;
997            mInputTargetWaitApplication.clear();
998
999            if (window && window->inputWindowHandle != NULL) {
1000                mInputTargetWaitApplication =
1001                        window->inputWindowHandle->getInputApplicationHandle();
1002            }
1003            if (mInputTargetWaitApplication == NULL && application) {
1004                mInputTargetWaitApplication = application->inputApplicationHandle;
1005            }
1006        }
1007    }
1008
1009    if (mInputTargetWaitTimeoutExpired) {
1010        return INPUT_EVENT_INJECTION_TIMED_OUT;
1011    }
1012
1013    if (currentTime >= mInputTargetWaitTimeoutTime) {
1014        onANRLocked(currentTime, application, window, entry->eventTime, mInputTargetWaitStartTime);
1015
1016        // Force poll loop to wake up immediately on next iteration once we get the
1017        // ANR response back from the policy.
1018        *nextWakeupTime = LONG_LONG_MIN;
1019        return INPUT_EVENT_INJECTION_PENDING;
1020    } else {
1021        // Force poll loop to wake up when timeout is due.
1022        if (mInputTargetWaitTimeoutTime < *nextWakeupTime) {
1023            *nextWakeupTime = mInputTargetWaitTimeoutTime;
1024        }
1025        return INPUT_EVENT_INJECTION_PENDING;
1026    }
1027}
1028
1029void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
1030        const sp<InputChannel>& inputChannel) {
1031    if (newTimeout > 0) {
1032        // Extend the timeout.
1033        mInputTargetWaitTimeoutTime = now() + newTimeout;
1034    } else {
1035        // Give up.
1036        mInputTargetWaitTimeoutExpired = true;
1037
1038        // Release the touch targets.
1039        mTouchState.reset();
1040
1041        // Input state will not be realistic.  Mark it out of sync.
1042        if (inputChannel.get()) {
1043            ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
1044            if (connectionIndex >= 0) {
1045                sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
1046                if (connection->status == Connection::STATUS_NORMAL) {
1047                    synthesizeCancelationEventsForConnectionLocked(
1048                            connection, InputState::CANCEL_ALL_EVENTS,
1049                            "application not responding");
1050                }
1051            }
1052        }
1053    }
1054}
1055
1056nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationLocked(
1057        nsecs_t currentTime) {
1058    if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
1059        return currentTime - mInputTargetWaitStartTime;
1060    }
1061    return 0;
1062}
1063
1064void InputDispatcher::resetANRTimeoutsLocked() {
1065#if DEBUG_FOCUS
1066        LOGD("Resetting ANR timeouts.");
1067#endif
1068
1069    // Reset input target wait timeout.
1070    mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
1071}
1072
1073int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime,
1074        const EventEntry* entry, nsecs_t* nextWakeupTime) {
1075    mCurrentInputTargets.clear();
1076
1077    int32_t injectionResult;
1078
1079    // If there is no currently focused window and no focused application
1080    // then drop the event.
1081    if (! mFocusedWindow) {
1082        if (mFocusedApplication) {
1083#if DEBUG_FOCUS
1084            LOGD("Waiting because there is no focused window but there is a "
1085                    "focused application that may eventually add a window: %s.",
1086                    getApplicationWindowLabelLocked(mFocusedApplication, NULL).string());
1087#endif
1088            injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
1089                    mFocusedApplication, NULL, nextWakeupTime);
1090            goto Unresponsive;
1091        }
1092
1093        LOGI("Dropping event because there is no focused window or focused application.");
1094        injectionResult = INPUT_EVENT_INJECTION_FAILED;
1095        goto Failed;
1096    }
1097
1098    // Check permissions.
1099    if (! checkInjectionPermission(mFocusedWindow, entry->injectionState)) {
1100        injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
1101        goto Failed;
1102    }
1103
1104    // If the currently focused window is paused then keep waiting.
1105    if (mFocusedWindow->paused) {
1106#if DEBUG_FOCUS
1107        LOGD("Waiting because focused window is paused.");
1108#endif
1109        injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
1110                mFocusedApplication, mFocusedWindow, nextWakeupTime);
1111        goto Unresponsive;
1112    }
1113
1114    // If the currently focused window is still working on previous events then keep waiting.
1115    if (! isWindowFinishedWithPreviousInputLocked(mFocusedWindow)) {
1116#if DEBUG_FOCUS
1117        LOGD("Waiting because focused window still processing previous input.");
1118#endif
1119        injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
1120                mFocusedApplication, mFocusedWindow, nextWakeupTime);
1121        goto Unresponsive;
1122    }
1123
1124    // Success!  Output targets.
1125    injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
1126    addWindowTargetLocked(mFocusedWindow, InputTarget::FLAG_FOREGROUND, BitSet32(0));
1127
1128    // Done.
1129Failed:
1130Unresponsive:
1131    nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
1132    updateDispatchStatisticsLocked(currentTime, entry,
1133            injectionResult, timeSpentWaitingForApplication);
1134#if DEBUG_FOCUS
1135    LOGD("findFocusedWindow finished: injectionResult=%d, "
1136            "timeSpendWaitingForApplication=%0.1fms",
1137            injectionResult, timeSpentWaitingForApplication / 1000000.0);
1138#endif
1139    return injectionResult;
1140}
1141
1142int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime,
1143        const MotionEntry* entry, nsecs_t* nextWakeupTime, bool* outConflictingPointerActions) {
1144    enum InjectionPermission {
1145        INJECTION_PERMISSION_UNKNOWN,
1146        INJECTION_PERMISSION_GRANTED,
1147        INJECTION_PERMISSION_DENIED
1148    };
1149
1150    mCurrentInputTargets.clear();
1151
1152    nsecs_t startTime = now();
1153
1154    // For security reasons, we defer updating the touch state until we are sure that
1155    // event injection will be allowed.
1156    //
1157    // FIXME In the original code, screenWasOff could never be set to true.
1158    //       The reason is that the POLICY_FLAG_WOKE_HERE
1159    //       and POLICY_FLAG_BRIGHT_HERE flags were set only when preprocessing raw
1160    //       EV_KEY, EV_REL and EV_ABS events.  As it happens, the touch event was
1161    //       actually enqueued using the policyFlags that appeared in the final EV_SYN
1162    //       events upon which no preprocessing took place.  So policyFlags was always 0.
1163    //       In the new native input dispatcher we're a bit more careful about event
1164    //       preprocessing so the touches we receive can actually have non-zero policyFlags.
1165    //       Unfortunately we obtain undesirable behavior.
1166    //
1167    //       Here's what happens:
1168    //
1169    //       When the device dims in anticipation of going to sleep, touches
1170    //       in windows which have FLAG_TOUCHABLE_WHEN_WAKING cause
1171    //       the device to brighten and reset the user activity timer.
1172    //       Touches on other windows (such as the launcher window)
1173    //       are dropped.  Then after a moment, the device goes to sleep.  Oops.
1174    //
1175    //       Also notice how screenWasOff was being initialized using POLICY_FLAG_BRIGHT_HERE
1176    //       instead of POLICY_FLAG_WOKE_HERE...
1177    //
1178    bool screenWasOff = false; // original policy: policyFlags & POLICY_FLAG_BRIGHT_HERE;
1179
1180    int32_t action = entry->action;
1181    int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
1182
1183    // Update the touch state as needed based on the properties of the touch event.
1184    int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING;
1185    InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN;
1186
1187    bool isSplit = mTouchState.split;
1188    bool wrongDevice = mTouchState.down
1189            && (mTouchState.deviceId != entry->deviceId
1190                    || mTouchState.source != entry->source);
1191    if (maskedAction == AMOTION_EVENT_ACTION_DOWN
1192            || maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE
1193            || maskedAction == AMOTION_EVENT_ACTION_SCROLL) {
1194        bool down = maskedAction == AMOTION_EVENT_ACTION_DOWN;
1195        if (wrongDevice && !down) {
1196            mTempTouchState.copyFrom(mTouchState);
1197        } else {
1198            mTempTouchState.reset();
1199            mTempTouchState.down = down;
1200            mTempTouchState.deviceId = entry->deviceId;
1201            mTempTouchState.source = entry->source;
1202            isSplit = false;
1203            wrongDevice = false;
1204        }
1205    } else {
1206        mTempTouchState.copyFrom(mTouchState);
1207    }
1208    if (wrongDevice) {
1209#if DEBUG_INPUT_DISPATCHER_POLICY
1210        LOGD("Dropping event because a pointer for a different device is already down.");
1211#endif
1212        injectionResult = INPUT_EVENT_INJECTION_FAILED;
1213        goto Failed;
1214    }
1215
1216    if (maskedAction == AMOTION_EVENT_ACTION_DOWN
1217            || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)
1218            || maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE
1219            || maskedAction == AMOTION_EVENT_ACTION_SCROLL) {
1220        /* Case 1: New splittable pointer going down, or need target for hover or scroll. */
1221
1222        int32_t pointerIndex = getMotionEventActionPointerIndex(action);
1223        int32_t x = int32_t(entry->firstSample.pointerCoords[pointerIndex].
1224                getAxisValue(AMOTION_EVENT_AXIS_X));
1225        int32_t y = int32_t(entry->firstSample.pointerCoords[pointerIndex].
1226                getAxisValue(AMOTION_EVENT_AXIS_Y));
1227        const InputWindow* newTouchedWindow = NULL;
1228        const InputWindow* topErrorWindow = NULL;
1229
1230        // Traverse windows from front to back to find touched window and outside targets.
1231        size_t numWindows = mWindows.size();
1232        for (size_t i = 0; i < numWindows; i++) {
1233            const InputWindow* window = & mWindows.editItemAt(i);
1234            int32_t flags = window->layoutParamsFlags;
1235
1236            if (flags & InputWindow::FLAG_SYSTEM_ERROR) {
1237                if (! topErrorWindow) {
1238                    topErrorWindow = window;
1239                }
1240            }
1241
1242            if (window->visible) {
1243                if (! (flags & InputWindow::FLAG_NOT_TOUCHABLE)) {
1244                    bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE
1245                            | InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0;
1246                    if (isTouchModal || window->touchableRegionContainsPoint(x, y)) {
1247                        if (! screenWasOff || flags & InputWindow::FLAG_TOUCHABLE_WHEN_WAKING) {
1248                            newTouchedWindow = window;
1249                        }
1250                        break; // found touched window, exit window loop
1251                    }
1252                }
1253
1254                if (maskedAction == AMOTION_EVENT_ACTION_DOWN
1255                        && (flags & InputWindow::FLAG_WATCH_OUTSIDE_TOUCH)) {
1256                    int32_t outsideTargetFlags = InputTarget::FLAG_OUTSIDE;
1257                    if (isWindowObscuredAtPointLocked(window, x, y)) {
1258                        outsideTargetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
1259                    }
1260
1261                    mTempTouchState.addOrUpdateWindow(window, outsideTargetFlags, BitSet32(0));
1262                }
1263            }
1264        }
1265
1266        // If there is an error window but it is not taking focus (typically because
1267        // it is invisible) then wait for it.  Any other focused window may in
1268        // fact be in ANR state.
1269        if (topErrorWindow && newTouchedWindow != topErrorWindow) {
1270#if DEBUG_FOCUS
1271            LOGD("Waiting because system error window is pending.");
1272#endif
1273            injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
1274                    NULL, NULL, nextWakeupTime);
1275            injectionPermission = INJECTION_PERMISSION_UNKNOWN;
1276            goto Unresponsive;
1277        }
1278
1279        // Figure out whether splitting will be allowed for this window.
1280        if (newTouchedWindow && newTouchedWindow->supportsSplitTouch()) {
1281            // New window supports splitting.
1282            isSplit = true;
1283        } else if (isSplit) {
1284            // New window does not support splitting but we have already split events.
1285            // Assign the pointer to the first foreground window we find.
1286            // (May be NULL which is why we put this code block before the next check.)
1287            newTouchedWindow = mTempTouchState.getFirstForegroundWindow();
1288        }
1289
1290        // If we did not find a touched window then fail.
1291        if (! newTouchedWindow) {
1292            if (mFocusedApplication) {
1293#if DEBUG_FOCUS
1294                LOGD("Waiting because there is no touched window but there is a "
1295                        "focused application that may eventually add a new window: %s.",
1296                        getApplicationWindowLabelLocked(mFocusedApplication, NULL).string());
1297#endif
1298                injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
1299                        mFocusedApplication, NULL, nextWakeupTime);
1300                goto Unresponsive;
1301            }
1302
1303            LOGI("Dropping event because there is no touched window or focused application.");
1304            injectionResult = INPUT_EVENT_INJECTION_FAILED;
1305            goto Failed;
1306        }
1307
1308        // Set target flags.
1309        int32_t targetFlags = InputTarget::FLAG_FOREGROUND;
1310        if (isSplit) {
1311            targetFlags |= InputTarget::FLAG_SPLIT;
1312        }
1313        if (isWindowObscuredAtPointLocked(newTouchedWindow, x, y)) {
1314            targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
1315        }
1316
1317        // Update the temporary touch state.
1318        BitSet32 pointerIds;
1319        if (isSplit) {
1320            uint32_t pointerId = entry->pointerIds[pointerIndex];
1321            pointerIds.markBit(pointerId);
1322        }
1323        mTempTouchState.addOrUpdateWindow(newTouchedWindow, targetFlags, pointerIds);
1324    } else {
1325        /* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
1326
1327        // If the pointer is not currently down, then ignore the event.
1328        if (! mTempTouchState.down) {
1329#if DEBUG_INPUT_DISPATCHER_POLICY
1330            LOGD("Dropping event because the pointer is not down or we previously "
1331                    "dropped the pointer down event.");
1332#endif
1333            injectionResult = INPUT_EVENT_INJECTION_FAILED;
1334            goto Failed;
1335        }
1336    }
1337
1338    // Check permission to inject into all touched foreground windows and ensure there
1339    // is at least one touched foreground window.
1340    {
1341        bool haveForegroundWindow = false;
1342        for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
1343            const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
1344            if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
1345                haveForegroundWindow = true;
1346                if (! checkInjectionPermission(touchedWindow.window, entry->injectionState)) {
1347                    injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
1348                    injectionPermission = INJECTION_PERMISSION_DENIED;
1349                    goto Failed;
1350                }
1351            }
1352        }
1353        if (! haveForegroundWindow) {
1354#if DEBUG_INPUT_DISPATCHER_POLICY
1355            LOGD("Dropping event because there is no touched foreground window to receive it.");
1356#endif
1357            injectionResult = INPUT_EVENT_INJECTION_FAILED;
1358            goto Failed;
1359        }
1360
1361        // Permission granted to injection into all touched foreground windows.
1362        injectionPermission = INJECTION_PERMISSION_GRANTED;
1363    }
1364
1365    // Ensure all touched foreground windows are ready for new input.
1366    for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
1367        const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
1368        if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
1369            // If the touched window is paused then keep waiting.
1370            if (touchedWindow.window->paused) {
1371#if DEBUG_INPUT_DISPATCHER_POLICY
1372                LOGD("Waiting because touched window is paused.");
1373#endif
1374                injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
1375                        NULL, touchedWindow.window, nextWakeupTime);
1376                goto Unresponsive;
1377            }
1378
1379            // If the touched window is still working on previous events then keep waiting.
1380            if (! isWindowFinishedWithPreviousInputLocked(touchedWindow.window)) {
1381#if DEBUG_FOCUS
1382                LOGD("Waiting because touched window still processing previous input.");
1383#endif
1384                injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
1385                        NULL, touchedWindow.window, nextWakeupTime);
1386                goto Unresponsive;
1387            }
1388        }
1389    }
1390
1391    // If this is the first pointer going down and the touched window has a wallpaper
1392    // then also add the touched wallpaper windows so they are locked in for the duration
1393    // of the touch gesture.
1394    // We do not collect wallpapers during HOVER_MOVE or SCROLL because the wallpaper
1395    // engine only supports touch events.  We would need to add a mechanism similar
1396    // to View.onGenericMotionEvent to enable wallpapers to handle these events.
1397    if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
1398        const InputWindow* foregroundWindow = mTempTouchState.getFirstForegroundWindow();
1399        if (foregroundWindow->hasWallpaper) {
1400            for (size_t i = 0; i < mWindows.size(); i++) {
1401                const InputWindow* window = & mWindows[i];
1402                if (window->layoutParamsType == InputWindow::TYPE_WALLPAPER) {
1403                    mTempTouchState.addOrUpdateWindow(window,
1404                            InputTarget::FLAG_WINDOW_IS_OBSCURED, BitSet32(0));
1405                }
1406            }
1407        }
1408    }
1409
1410    // Success!  Output targets.
1411    injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
1412
1413    for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
1414        const TouchedWindow& touchedWindow = mTempTouchState.windows.itemAt(i);
1415        addWindowTargetLocked(touchedWindow.window, touchedWindow.targetFlags,
1416                touchedWindow.pointerIds);
1417    }
1418
1419    // Drop the outside touch window since we will not care about them in the next iteration.
1420    mTempTouchState.removeOutsideTouchWindows();
1421
1422Failed:
1423    // Check injection permission once and for all.
1424    if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) {
1425        if (checkInjectionPermission(NULL, entry->injectionState)) {
1426            injectionPermission = INJECTION_PERMISSION_GRANTED;
1427        } else {
1428            injectionPermission = INJECTION_PERMISSION_DENIED;
1429        }
1430    }
1431
1432    // Update final pieces of touch state if the injector had permission.
1433    if (injectionPermission == INJECTION_PERMISSION_GRANTED) {
1434        if (!wrongDevice) {
1435            if (maskedAction == AMOTION_EVENT_ACTION_UP
1436                    || maskedAction == AMOTION_EVENT_ACTION_CANCEL
1437                    || maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE) {
1438                // All pointers up or canceled.
1439                mTouchState.reset();
1440            } else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
1441                // First pointer went down.
1442                if (mTouchState.down) {
1443                    *outConflictingPointerActions = true;
1444#if DEBUG_FOCUS
1445                    LOGD("Pointer down received while already down.");
1446#endif
1447                }
1448                mTouchState.copyFrom(mTempTouchState);
1449            } else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
1450                // One pointer went up.
1451                if (isSplit) {
1452                    int32_t pointerIndex = getMotionEventActionPointerIndex(action);
1453                    uint32_t pointerId = entry->pointerIds[pointerIndex];
1454
1455                    for (size_t i = 0; i < mTempTouchState.windows.size(); ) {
1456                        TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i);
1457                        if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) {
1458                            touchedWindow.pointerIds.clearBit(pointerId);
1459                            if (touchedWindow.pointerIds.isEmpty()) {
1460                                mTempTouchState.windows.removeAt(i);
1461                                continue;
1462                            }
1463                        }
1464                        i += 1;
1465                    }
1466                }
1467                mTouchState.copyFrom(mTempTouchState);
1468            } else if (maskedAction == AMOTION_EVENT_ACTION_SCROLL) {
1469                // Discard temporary touch state since it was only valid for this action.
1470            } else {
1471                // Save changes to touch state as-is for all other actions.
1472                mTouchState.copyFrom(mTempTouchState);
1473            }
1474        }
1475    } else {
1476#if DEBUG_FOCUS
1477        LOGD("Not updating touch focus because injection was denied.");
1478#endif
1479    }
1480
1481Unresponsive:
1482    // Reset temporary touch state to ensure we release unnecessary references to input channels.
1483    mTempTouchState.reset();
1484
1485    nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
1486    updateDispatchStatisticsLocked(currentTime, entry,
1487            injectionResult, timeSpentWaitingForApplication);
1488#if DEBUG_FOCUS
1489    LOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d, "
1490            "timeSpentWaitingForApplication=%0.1fms",
1491            injectionResult, injectionPermission, timeSpentWaitingForApplication / 1000000.0);
1492#endif
1493    return injectionResult;
1494}
1495
1496void InputDispatcher::addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
1497        BitSet32 pointerIds) {
1498    mCurrentInputTargets.push();
1499
1500    InputTarget& target = mCurrentInputTargets.editTop();
1501    target.inputChannel = window->inputChannel;
1502    target.flags = targetFlags;
1503    target.xOffset = - window->frameLeft;
1504    target.yOffset = - window->frameTop;
1505    target.scaleFactor = window->scaleFactor;
1506    target.pointerIds = pointerIds;
1507}
1508
1509void InputDispatcher::addMonitoringTargetsLocked() {
1510    for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
1511        mCurrentInputTargets.push();
1512
1513        InputTarget& target = mCurrentInputTargets.editTop();
1514        target.inputChannel = mMonitoringChannels[i];
1515        target.flags = 0;
1516        target.xOffset = 0;
1517        target.yOffset = 0;
1518        target.scaleFactor = 1.0f;
1519    }
1520}
1521
1522bool InputDispatcher::checkInjectionPermission(const InputWindow* window,
1523        const InjectionState* injectionState) {
1524    if (injectionState
1525            && (window == NULL || window->ownerUid != injectionState->injectorUid)
1526            && !hasInjectionPermission(injectionState->injectorPid, injectionState->injectorUid)) {
1527        if (window) {
1528            LOGW("Permission denied: injecting event from pid %d uid %d to window "
1529                    "with input channel %s owned by uid %d",
1530                    injectionState->injectorPid, injectionState->injectorUid,
1531                    window->inputChannel->getName().string(),
1532                    window->ownerUid);
1533        } else {
1534            LOGW("Permission denied: injecting event from pid %d uid %d",
1535                    injectionState->injectorPid, injectionState->injectorUid);
1536        }
1537        return false;
1538    }
1539    return true;
1540}
1541
1542bool InputDispatcher::isWindowObscuredAtPointLocked(
1543        const InputWindow* window, int32_t x, int32_t y) const {
1544    size_t numWindows = mWindows.size();
1545    for (size_t i = 0; i < numWindows; i++) {
1546        const InputWindow* other = & mWindows.itemAt(i);
1547        if (other == window) {
1548            break;
1549        }
1550        if (other->visible && ! other->isTrustedOverlay() && other->frameContainsPoint(x, y)) {
1551            return true;
1552        }
1553    }
1554    return false;
1555}
1556
1557bool InputDispatcher::isWindowFinishedWithPreviousInputLocked(const InputWindow* window) {
1558    ssize_t connectionIndex = getConnectionIndexLocked(window->inputChannel);
1559    if (connectionIndex >= 0) {
1560        sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
1561        return connection->outboundQueue.isEmpty();
1562    } else {
1563        return true;
1564    }
1565}
1566
1567String8 InputDispatcher::getApplicationWindowLabelLocked(const InputApplication* application,
1568        const InputWindow* window) {
1569    if (application) {
1570        if (window) {
1571            String8 label(application->name);
1572            label.append(" - ");
1573            label.append(window->name);
1574            return label;
1575        } else {
1576            return application->name;
1577        }
1578    } else if (window) {
1579        return window->name;
1580    } else {
1581        return String8("<unknown application or window>");
1582    }
1583}
1584
1585void InputDispatcher::pokeUserActivityLocked(const EventEntry* eventEntry) {
1586    int32_t eventType = POWER_MANAGER_OTHER_EVENT;
1587    switch (eventEntry->type) {
1588    case EventEntry::TYPE_MOTION: {
1589        const MotionEntry* motionEntry = static_cast<const MotionEntry*>(eventEntry);
1590        if (motionEntry->action == AMOTION_EVENT_ACTION_CANCEL) {
1591            return;
1592        }
1593
1594        if (MotionEvent::isTouchEvent(motionEntry->source, motionEntry->action)) {
1595            eventType = POWER_MANAGER_TOUCH_EVENT;
1596        }
1597        break;
1598    }
1599    case EventEntry::TYPE_KEY: {
1600        const KeyEntry* keyEntry = static_cast<const KeyEntry*>(eventEntry);
1601        if (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED) {
1602            return;
1603        }
1604        eventType = POWER_MANAGER_BUTTON_EVENT;
1605        break;
1606    }
1607    }
1608
1609    CommandEntry* commandEntry = postCommandLocked(
1610            & InputDispatcher::doPokeUserActivityLockedInterruptible);
1611    commandEntry->eventTime = eventEntry->eventTime;
1612    commandEntry->userActivityEventType = eventType;
1613}
1614
1615void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
1616        const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget,
1617        bool resumeWithAppendedMotionSample) {
1618#if DEBUG_DISPATCH_CYCLE
1619    LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, "
1620            "xOffset=%f, yOffset=%f, scaleFactor=%f"
1621            "pointerIds=0x%x, "
1622            "resumeWithAppendedMotionSample=%s",
1623            connection->getInputChannelName(), inputTarget->flags,
1624            inputTarget->xOffset, inputTarget->yOffset,
1625            inputTarget->scaleFactor, inputTarget->pointerIds.value,
1626            toString(resumeWithAppendedMotionSample));
1627#endif
1628
1629    // Make sure we are never called for streaming when splitting across multiple windows.
1630    bool isSplit = inputTarget->flags & InputTarget::FLAG_SPLIT;
1631    assert(! (resumeWithAppendedMotionSample && isSplit));
1632
1633    // Skip this event if the connection status is not normal.
1634    // We don't want to enqueue additional outbound events if the connection is broken.
1635    if (connection->status != Connection::STATUS_NORMAL) {
1636#if DEBUG_DISPATCH_CYCLE
1637        LOGD("channel '%s' ~ Dropping event because the channel status is %s",
1638                connection->getInputChannelName(), connection->getStatusLabel());
1639#endif
1640        return;
1641    }
1642
1643    // Split a motion event if needed.
1644    if (isSplit) {
1645        assert(eventEntry->type == EventEntry::TYPE_MOTION);
1646
1647        MotionEntry* originalMotionEntry = static_cast<MotionEntry*>(eventEntry);
1648        if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) {
1649            MotionEntry* splitMotionEntry = splitMotionEvent(
1650                    originalMotionEntry, inputTarget->pointerIds);
1651            if (!splitMotionEntry) {
1652                return; // split event was dropped
1653            }
1654#if DEBUG_FOCUS
1655            LOGD("channel '%s' ~ Split motion event.",
1656                    connection->getInputChannelName());
1657            logOutboundMotionDetailsLocked("  ", splitMotionEntry);
1658#endif
1659            eventEntry = splitMotionEntry;
1660        }
1661    }
1662
1663    // Resume the dispatch cycle with a freshly appended motion sample.
1664    // First we check that the last dispatch entry in the outbound queue is for the same
1665    // motion event to which we appended the motion sample.  If we find such a dispatch
1666    // entry, and if it is currently in progress then we try to stream the new sample.
1667    bool wasEmpty = connection->outboundQueue.isEmpty();
1668
1669    if (! wasEmpty && resumeWithAppendedMotionSample) {
1670        DispatchEntry* motionEventDispatchEntry =
1671                connection->findQueuedDispatchEntryForEvent(eventEntry);
1672        if (motionEventDispatchEntry) {
1673            // If the dispatch entry is not in progress, then we must be busy dispatching an
1674            // earlier event.  Not a problem, the motion event is on the outbound queue and will
1675            // be dispatched later.
1676            if (! motionEventDispatchEntry->inProgress) {
1677#if DEBUG_BATCHING
1678                LOGD("channel '%s' ~ Not streaming because the motion event has "
1679                        "not yet been dispatched.  "
1680                        "(Waiting for earlier events to be consumed.)",
1681                        connection->getInputChannelName());
1682#endif
1683                return;
1684            }
1685
1686            // If the dispatch entry is in progress but it already has a tail of pending
1687            // motion samples, then it must mean that the shared memory buffer filled up.
1688            // Not a problem, when this dispatch cycle is finished, we will eventually start
1689            // a new dispatch cycle to process the tail and that tail includes the newly
1690            // appended motion sample.
1691            if (motionEventDispatchEntry->tailMotionSample) {
1692#if DEBUG_BATCHING
1693                LOGD("channel '%s' ~ Not streaming because no new samples can "
1694                        "be appended to the motion event in this dispatch cycle.  "
1695                        "(Waiting for next dispatch cycle to start.)",
1696                        connection->getInputChannelName());
1697#endif
1698                return;
1699            }
1700
1701            // The dispatch entry is in progress and is still potentially open for streaming.
1702            // Try to stream the new motion sample.  This might fail if the consumer has already
1703            // consumed the motion event (or if the channel is broken).
1704            MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
1705            MotionSample* appendedMotionSample = motionEntry->lastSample;
1706            status_t status;
1707            if (motionEventDispatchEntry->scaleFactor == 1.0f) {
1708                status = connection->inputPublisher.appendMotionSample(
1709                        appendedMotionSample->eventTime, appendedMotionSample->pointerCoords);
1710            } else {
1711                PointerCoords scaledCoords[MAX_POINTERS];
1712                for (size_t i = 0; i < motionEntry->pointerCount; i++) {
1713                    scaledCoords[i] = appendedMotionSample->pointerCoords[i];
1714                    scaledCoords[i].scale(motionEventDispatchEntry->scaleFactor);
1715                }
1716                status = connection->inputPublisher.appendMotionSample(
1717                        appendedMotionSample->eventTime, scaledCoords);
1718            }
1719            if (status == OK) {
1720#if DEBUG_BATCHING
1721                LOGD("channel '%s' ~ Successfully streamed new motion sample.",
1722                        connection->getInputChannelName());
1723#endif
1724                return;
1725            }
1726
1727#if DEBUG_BATCHING
1728            if (status == NO_MEMORY) {
1729                LOGD("channel '%s' ~ Could not append motion sample to currently "
1730                        "dispatched move event because the shared memory buffer is full.  "
1731                        "(Waiting for next dispatch cycle to start.)",
1732                        connection->getInputChannelName());
1733            } else if (status == status_t(FAILED_TRANSACTION)) {
1734                LOGD("channel '%s' ~ Could not append motion sample to currently "
1735                        "dispatched move event because the event has already been consumed.  "
1736                        "(Waiting for next dispatch cycle to start.)",
1737                        connection->getInputChannelName());
1738            } else {
1739                LOGD("channel '%s' ~ Could not append motion sample to currently "
1740                        "dispatched move event due to an error, status=%d.  "
1741                        "(Waiting for next dispatch cycle to start.)",
1742                        connection->getInputChannelName(), status);
1743            }
1744#endif
1745            // Failed to stream.  Start a new tail of pending motion samples to dispatch
1746            // in the next cycle.
1747            motionEventDispatchEntry->tailMotionSample = appendedMotionSample;
1748            return;
1749        }
1750    }
1751
1752    // This is a new event.
1753    // Enqueue a new dispatch entry onto the outbound queue for this connection.
1754    DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry, // increments ref
1755            inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset,
1756            inputTarget->scaleFactor);
1757    if (dispatchEntry->hasForegroundTarget()) {
1758        incrementPendingForegroundDispatchesLocked(eventEntry);
1759    }
1760
1761    // Handle the case where we could not stream a new motion sample because the consumer has
1762    // already consumed the motion event (otherwise the corresponding dispatch entry would
1763    // still be in the outbound queue for this connection).  We set the head motion sample
1764    // to the list starting with the newly appended motion sample.
1765    if (resumeWithAppendedMotionSample) {
1766#if DEBUG_BATCHING
1767        LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples "
1768                "that cannot be streamed because the motion event has already been consumed.",
1769                connection->getInputChannelName());
1770#endif
1771        MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample;
1772        dispatchEntry->headMotionSample = appendedMotionSample;
1773    }
1774
1775    // Enqueue the dispatch entry.
1776    connection->outboundQueue.enqueueAtTail(dispatchEntry);
1777
1778    // If the outbound queue was previously empty, start the dispatch cycle going.
1779    if (wasEmpty) {
1780        activateConnectionLocked(connection.get());
1781        startDispatchCycleLocked(currentTime, connection);
1782    }
1783}
1784
1785void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
1786        const sp<Connection>& connection) {
1787#if DEBUG_DISPATCH_CYCLE
1788    LOGD("channel '%s' ~ startDispatchCycle",
1789            connection->getInputChannelName());
1790#endif
1791
1792    assert(connection->status == Connection::STATUS_NORMAL);
1793    assert(! connection->outboundQueue.isEmpty());
1794
1795    DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
1796    assert(! dispatchEntry->inProgress);
1797
1798    // Mark the dispatch entry as in progress.
1799    dispatchEntry->inProgress = true;
1800
1801    // Update the connection's input state.
1802    EventEntry* eventEntry = dispatchEntry->eventEntry;
1803    connection->inputState.trackEvent(eventEntry);
1804
1805    // Publish the event.
1806    status_t status;
1807    switch (eventEntry->type) {
1808    case EventEntry::TYPE_KEY: {
1809        KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
1810
1811        // Apply target flags.
1812        int32_t action = keyEntry->action;
1813        int32_t flags = keyEntry->flags;
1814
1815        // Publish the key event.
1816        status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source,
1817                action, flags, keyEntry->keyCode, keyEntry->scanCode,
1818                keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
1819                keyEntry->eventTime);
1820
1821        if (status) {
1822            LOGE("channel '%s' ~ Could not publish key event, "
1823                    "status=%d", connection->getInputChannelName(), status);
1824            abortBrokenDispatchCycleLocked(currentTime, connection);
1825            return;
1826        }
1827        break;
1828    }
1829
1830    case EventEntry::TYPE_MOTION: {
1831        MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
1832
1833        // Apply target flags.
1834        int32_t action = motionEntry->action;
1835        int32_t flags = motionEntry->flags;
1836        if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) {
1837            action = AMOTION_EVENT_ACTION_OUTSIDE;
1838        }
1839        if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
1840            flags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
1841        }
1842
1843        // If headMotionSample is non-NULL, then it points to the first new sample that we
1844        // were unable to dispatch during the previous cycle so we resume dispatching from
1845        // that point in the list of motion samples.
1846        // Otherwise, we just start from the first sample of the motion event.
1847        MotionSample* firstMotionSample = dispatchEntry->headMotionSample;
1848        if (! firstMotionSample) {
1849            firstMotionSample = & motionEntry->firstSample;
1850        }
1851
1852        PointerCoords scaledCoords[MAX_POINTERS];
1853        const PointerCoords* usingCoords = firstMotionSample->pointerCoords;
1854
1855        // Set the X and Y offset depending on the input source.
1856        float xOffset, yOffset, scaleFactor;
1857        if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) {
1858            scaleFactor = dispatchEntry->scaleFactor;
1859            xOffset = dispatchEntry->xOffset * scaleFactor;
1860            yOffset = dispatchEntry->yOffset * scaleFactor;
1861            if (scaleFactor != 1.0f) {
1862                for (size_t i = 0; i < motionEntry->pointerCount; i++) {
1863                    scaledCoords[i] = firstMotionSample->pointerCoords[i];
1864                    scaledCoords[i].scale(scaleFactor);
1865                }
1866                usingCoords = scaledCoords;
1867            }
1868        } else {
1869            xOffset = 0.0f;
1870            yOffset = 0.0f;
1871            scaleFactor = 1.0f;
1872        }
1873
1874        // Publish the motion event and the first motion sample.
1875        status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId,
1876                motionEntry->source, action, flags, motionEntry->edgeFlags, motionEntry->metaState,
1877                xOffset, yOffset, motionEntry->xPrecision, motionEntry->yPrecision,
1878                motionEntry->downTime, firstMotionSample->eventTime,
1879                motionEntry->pointerCount, motionEntry->pointerIds, usingCoords);
1880
1881        if (status) {
1882            LOGE("channel '%s' ~ Could not publish motion event, "
1883                    "status=%d", connection->getInputChannelName(), status);
1884            abortBrokenDispatchCycleLocked(currentTime, connection);
1885            return;
1886        }
1887
1888        // Append additional motion samples.
1889        MotionSample* nextMotionSample = firstMotionSample->next;
1890        for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) {
1891            status = connection->inputPublisher.appendMotionSample(
1892                    nextMotionSample->eventTime, usingCoords);
1893            if (status == NO_MEMORY) {
1894#if DEBUG_DISPATCH_CYCLE
1895                    LOGD("channel '%s' ~ Shared memory buffer full.  Some motion samples will "
1896                            "be sent in the next dispatch cycle.",
1897                            connection->getInputChannelName());
1898#endif
1899                break;
1900            }
1901            if (status != OK) {
1902                LOGE("channel '%s' ~ Could not append motion sample "
1903                        "for a reason other than out of memory, status=%d",
1904                        connection->getInputChannelName(), status);
1905                abortBrokenDispatchCycleLocked(currentTime, connection);
1906                return;
1907            }
1908        }
1909
1910        // Remember the next motion sample that we could not dispatch, in case we ran out
1911        // of space in the shared memory buffer.
1912        dispatchEntry->tailMotionSample = nextMotionSample;
1913        break;
1914    }
1915
1916    default: {
1917        assert(false);
1918    }
1919    }
1920
1921    // Send the dispatch signal.
1922    status = connection->inputPublisher.sendDispatchSignal();
1923    if (status) {
1924        LOGE("channel '%s' ~ Could not send dispatch signal, status=%d",
1925                connection->getInputChannelName(), status);
1926        abortBrokenDispatchCycleLocked(currentTime, connection);
1927        return;
1928    }
1929
1930    // Record information about the newly started dispatch cycle.
1931    connection->lastEventTime = eventEntry->eventTime;
1932    connection->lastDispatchTime = currentTime;
1933
1934    // Notify other system components.
1935    onDispatchCycleStartedLocked(currentTime, connection);
1936}
1937
1938void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
1939        const sp<Connection>& connection, bool handled) {
1940#if DEBUG_DISPATCH_CYCLE
1941    LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, "
1942            "%01.1fms since dispatch, handled=%s",
1943            connection->getInputChannelName(),
1944            connection->getEventLatencyMillis(currentTime),
1945            connection->getDispatchLatencyMillis(currentTime),
1946            toString(handled));
1947#endif
1948
1949    if (connection->status == Connection::STATUS_BROKEN
1950            || connection->status == Connection::STATUS_ZOMBIE) {
1951        return;
1952    }
1953
1954    // Reset the publisher since the event has been consumed.
1955    // We do this now so that the publisher can release some of its internal resources
1956    // while waiting for the next dispatch cycle to begin.
1957    status_t status = connection->inputPublisher.reset();
1958    if (status) {
1959        LOGE("channel '%s' ~ Could not reset publisher, status=%d",
1960                connection->getInputChannelName(), status);
1961        abortBrokenDispatchCycleLocked(currentTime, connection);
1962        return;
1963    }
1964
1965    // Notify other system components and prepare to start the next dispatch cycle.
1966    onDispatchCycleFinishedLocked(currentTime, connection, handled);
1967}
1968
1969void InputDispatcher::startNextDispatchCycleLocked(nsecs_t currentTime,
1970        const sp<Connection>& connection) {
1971    // Start the next dispatch cycle for this connection.
1972    while (! connection->outboundQueue.isEmpty()) {
1973        DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
1974        if (dispatchEntry->inProgress) {
1975             // Finish or resume current event in progress.
1976            if (dispatchEntry->tailMotionSample) {
1977                // We have a tail of undispatched motion samples.
1978                // Reuse the same DispatchEntry and start a new cycle.
1979                dispatchEntry->inProgress = false;
1980                dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample;
1981                dispatchEntry->tailMotionSample = NULL;
1982                startDispatchCycleLocked(currentTime, connection);
1983                return;
1984            }
1985            // Finished.
1986            connection->outboundQueue.dequeueAtHead();
1987            if (dispatchEntry->hasForegroundTarget()) {
1988                decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry);
1989            }
1990            mAllocator.releaseDispatchEntry(dispatchEntry);
1991        } else {
1992            // If the head is not in progress, then we must have already dequeued the in
1993            // progress event, which means we actually aborted it.
1994            // So just start the next event for this connection.
1995            startDispatchCycleLocked(currentTime, connection);
1996            return;
1997        }
1998    }
1999
2000    // Outbound queue is empty, deactivate the connection.
2001    deactivateConnectionLocked(connection.get());
2002}
2003
2004void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime,
2005        const sp<Connection>& connection) {
2006#if DEBUG_DISPATCH_CYCLE
2007    LOGD("channel '%s' ~ abortBrokenDispatchCycle",
2008            connection->getInputChannelName());
2009#endif
2010
2011    // Clear the outbound queue.
2012    drainOutboundQueueLocked(connection.get());
2013
2014    // The connection appears to be unrecoverably broken.
2015    // Ignore already broken or zombie connections.
2016    if (connection->status == Connection::STATUS_NORMAL) {
2017        connection->status = Connection::STATUS_BROKEN;
2018
2019        // Notify other system components.
2020        onDispatchCycleBrokenLocked(currentTime, connection);
2021    }
2022}
2023
2024void InputDispatcher::drainOutboundQueueLocked(Connection* connection) {
2025    while (! connection->outboundQueue.isEmpty()) {
2026        DispatchEntry* dispatchEntry = connection->outboundQueue.dequeueAtHead();
2027        if (dispatchEntry->hasForegroundTarget()) {
2028            decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry);
2029        }
2030        mAllocator.releaseDispatchEntry(dispatchEntry);
2031    }
2032
2033    deactivateConnectionLocked(connection);
2034}
2035
2036int InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) {
2037    InputDispatcher* d = static_cast<InputDispatcher*>(data);
2038
2039    { // acquire lock
2040        AutoMutex _l(d->mLock);
2041
2042        ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd);
2043        if (connectionIndex < 0) {
2044            LOGE("Received spurious receive callback for unknown input channel.  "
2045                    "fd=%d, events=0x%x", receiveFd, events);
2046            return 0; // remove the callback
2047        }
2048
2049        nsecs_t currentTime = now();
2050
2051        sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex);
2052        if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) {
2053            LOGE("channel '%s' ~ Consumer closed input channel or an error occurred.  "
2054                    "events=0x%x", connection->getInputChannelName(), events);
2055            d->abortBrokenDispatchCycleLocked(currentTime, connection);
2056            d->runCommandsLockedInterruptible();
2057            return 0; // remove the callback
2058        }
2059
2060        if (! (events & ALOOPER_EVENT_INPUT)) {
2061            LOGW("channel '%s' ~ Received spurious callback for unhandled poll event.  "
2062                    "events=0x%x", connection->getInputChannelName(), events);
2063            return 1;
2064        }
2065
2066        bool handled = false;
2067        status_t status = connection->inputPublisher.receiveFinishedSignal(&handled);
2068        if (status) {
2069            LOGE("channel '%s' ~ Failed to receive finished signal.  status=%d",
2070                    connection->getInputChannelName(), status);
2071            d->abortBrokenDispatchCycleLocked(currentTime, connection);
2072            d->runCommandsLockedInterruptible();
2073            return 0; // remove the callback
2074        }
2075
2076        d->finishDispatchCycleLocked(currentTime, connection, handled);
2077        d->runCommandsLockedInterruptible();
2078        return 1;
2079    } // release lock
2080}
2081
2082void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked(
2083        InputState::CancelationOptions options, const char* reason) {
2084    for (size_t i = 0; i < mConnectionsByReceiveFd.size(); i++) {
2085        synthesizeCancelationEventsForConnectionLocked(
2086                mConnectionsByReceiveFd.valueAt(i), options, reason);
2087    }
2088}
2089
2090void InputDispatcher::synthesizeCancelationEventsForInputChannelLocked(
2091        const sp<InputChannel>& channel, InputState::CancelationOptions options,
2092        const char* reason) {
2093    ssize_t index = getConnectionIndexLocked(channel);
2094    if (index >= 0) {
2095        synthesizeCancelationEventsForConnectionLocked(
2096                mConnectionsByReceiveFd.valueAt(index), options, reason);
2097    }
2098}
2099
2100void InputDispatcher::synthesizeCancelationEventsForConnectionLocked(
2101        const sp<Connection>& connection, InputState::CancelationOptions options,
2102        const char* reason) {
2103    nsecs_t currentTime = now();
2104
2105    mTempCancelationEvents.clear();
2106    connection->inputState.synthesizeCancelationEvents(currentTime, & mAllocator,
2107            mTempCancelationEvents, options);
2108
2109    if (! mTempCancelationEvents.isEmpty()
2110            && connection->status != Connection::STATUS_BROKEN) {
2111#if DEBUG_OUTBOUND_EVENT_DETAILS
2112        LOGD("channel '%s' ~ Synthesized %d cancelation events to bring channel back in sync "
2113                "with reality: %s, options=%d.",
2114                connection->getInputChannelName(), mTempCancelationEvents.size(), reason, options);
2115#endif
2116        for (size_t i = 0; i < mTempCancelationEvents.size(); i++) {
2117            EventEntry* cancelationEventEntry = mTempCancelationEvents.itemAt(i);
2118            switch (cancelationEventEntry->type) {
2119            case EventEntry::TYPE_KEY:
2120                logOutboundKeyDetailsLocked("cancel - ",
2121                        static_cast<KeyEntry*>(cancelationEventEntry));
2122                break;
2123            case EventEntry::TYPE_MOTION:
2124                logOutboundMotionDetailsLocked("cancel - ",
2125                        static_cast<MotionEntry*>(cancelationEventEntry));
2126                break;
2127            }
2128
2129            int32_t xOffset, yOffset;
2130            float scaleFactor;
2131            const InputWindow* window = getWindowLocked(connection->inputChannel);
2132            if (window) {
2133                xOffset = -window->frameLeft;
2134                yOffset = -window->frameTop;
2135                scaleFactor = window->scaleFactor;
2136            } else {
2137                xOffset = 0;
2138                yOffset = 0;
2139                scaleFactor = 1.0f;
2140            }
2141
2142            DispatchEntry* cancelationDispatchEntry =
2143                    mAllocator.obtainDispatchEntry(cancelationEventEntry, // increments ref
2144                    0, xOffset, yOffset, scaleFactor);
2145            connection->outboundQueue.enqueueAtTail(cancelationDispatchEntry);
2146
2147            mAllocator.releaseEventEntry(cancelationEventEntry);
2148        }
2149
2150        if (!connection->outboundQueue.headSentinel.next->inProgress) {
2151            startDispatchCycleLocked(currentTime, connection);
2152        }
2153    }
2154}
2155
2156InputDispatcher::MotionEntry*
2157InputDispatcher::splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds) {
2158    assert(pointerIds.value != 0);
2159
2160    uint32_t splitPointerIndexMap[MAX_POINTERS];
2161    int32_t splitPointerIds[MAX_POINTERS];
2162    PointerCoords splitPointerCoords[MAX_POINTERS];
2163
2164    uint32_t originalPointerCount = originalMotionEntry->pointerCount;
2165    uint32_t splitPointerCount = 0;
2166
2167    for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount;
2168            originalPointerIndex++) {
2169        int32_t pointerId = uint32_t(originalMotionEntry->pointerIds[originalPointerIndex]);
2170        if (pointerIds.hasBit(pointerId)) {
2171            splitPointerIndexMap[splitPointerCount] = originalPointerIndex;
2172            splitPointerIds[splitPointerCount] = pointerId;
2173            splitPointerCoords[splitPointerCount] =
2174                    originalMotionEntry->firstSample.pointerCoords[originalPointerIndex];
2175            splitPointerCount += 1;
2176        }
2177    }
2178
2179    if (splitPointerCount != pointerIds.count()) {
2180        // This is bad.  We are missing some of the pointers that we expected to deliver.
2181        // Most likely this indicates that we received an ACTION_MOVE events that has
2182        // different pointer ids than we expected based on the previous ACTION_DOWN
2183        // or ACTION_POINTER_DOWN events that caused us to decide to split the pointers
2184        // in this way.
2185        LOGW("Dropping split motion event because the pointer count is %d but "
2186                "we expected there to be %d pointers.  This probably means we received "
2187                "a broken sequence of pointer ids from the input device.",
2188                splitPointerCount, pointerIds.count());
2189        return NULL;
2190    }
2191
2192    int32_t action = originalMotionEntry->action;
2193    int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
2194    if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
2195            || maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
2196        int32_t originalPointerIndex = getMotionEventActionPointerIndex(action);
2197        int32_t pointerId = originalMotionEntry->pointerIds[originalPointerIndex];
2198        if (pointerIds.hasBit(pointerId)) {
2199            if (pointerIds.count() == 1) {
2200                // The first/last pointer went down/up.
2201                action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
2202                        ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
2203            } else {
2204                // A secondary pointer went down/up.
2205                uint32_t splitPointerIndex = 0;
2206                while (pointerId != splitPointerIds[splitPointerIndex]) {
2207                    splitPointerIndex += 1;
2208                }
2209                action = maskedAction | (splitPointerIndex
2210                        << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
2211            }
2212        } else {
2213            // An unrelated pointer changed.
2214            action = AMOTION_EVENT_ACTION_MOVE;
2215        }
2216    }
2217
2218    MotionEntry* splitMotionEntry = mAllocator.obtainMotionEntry(
2219            originalMotionEntry->eventTime,
2220            originalMotionEntry->deviceId,
2221            originalMotionEntry->source,
2222            originalMotionEntry->policyFlags,
2223            action,
2224            originalMotionEntry->flags,
2225            originalMotionEntry->metaState,
2226            originalMotionEntry->edgeFlags,
2227            originalMotionEntry->xPrecision,
2228            originalMotionEntry->yPrecision,
2229            originalMotionEntry->downTime,
2230            splitPointerCount, splitPointerIds, splitPointerCoords);
2231
2232    for (MotionSample* originalMotionSample = originalMotionEntry->firstSample.next;
2233            originalMotionSample != NULL; originalMotionSample = originalMotionSample->next) {
2234        for (uint32_t splitPointerIndex = 0; splitPointerIndex < splitPointerCount;
2235                splitPointerIndex++) {
2236            uint32_t originalPointerIndex = splitPointerIndexMap[splitPointerIndex];
2237            splitPointerCoords[splitPointerIndex] =
2238                    originalMotionSample->pointerCoords[originalPointerIndex];
2239        }
2240
2241        mAllocator.appendMotionSample(splitMotionEntry, originalMotionSample->eventTime,
2242                splitPointerCoords);
2243    }
2244
2245    return splitMotionEntry;
2246}
2247
2248void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) {
2249#if DEBUG_INBOUND_EVENT_DETAILS
2250    LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime);
2251#endif
2252
2253    bool needWake;
2254    { // acquire lock
2255        AutoMutex _l(mLock);
2256
2257        ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime);
2258        needWake = enqueueInboundEventLocked(newEntry);
2259    } // release lock
2260
2261    if (needWake) {
2262        mLooper->wake();
2263    }
2264}
2265
2266void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
2267        uint32_t policyFlags, int32_t action, int32_t flags,
2268        int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) {
2269#if DEBUG_INBOUND_EVENT_DETAILS
2270    LOGD("notifyKey - eventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, action=0x%x, "
2271            "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld",
2272            eventTime, deviceId, source, policyFlags, action, flags,
2273            keyCode, scanCode, metaState, downTime);
2274#endif
2275    if (! validateKeyEvent(action)) {
2276        return;
2277    }
2278
2279    if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) {
2280        policyFlags |= POLICY_FLAG_VIRTUAL;
2281        flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2282    }
2283    if (policyFlags & POLICY_FLAG_ALT) {
2284        metaState |= AMETA_ALT_ON | AMETA_ALT_LEFT_ON;
2285    }
2286    if (policyFlags & POLICY_FLAG_ALT_GR) {
2287        metaState |= AMETA_ALT_ON | AMETA_ALT_RIGHT_ON;
2288    }
2289    if (policyFlags & POLICY_FLAG_SHIFT) {
2290        metaState |= AMETA_SHIFT_ON | AMETA_SHIFT_LEFT_ON;
2291    }
2292    if (policyFlags & POLICY_FLAG_CAPS_LOCK) {
2293        metaState |= AMETA_CAPS_LOCK_ON;
2294    }
2295    if (policyFlags & POLICY_FLAG_FUNCTION) {
2296        metaState |= AMETA_FUNCTION_ON;
2297    }
2298
2299    policyFlags |= POLICY_FLAG_TRUSTED;
2300
2301    KeyEvent event;
2302    event.initialize(deviceId, source, action, flags, keyCode, scanCode,
2303            metaState, 0, downTime, eventTime);
2304
2305    mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags);
2306
2307    if (policyFlags & POLICY_FLAG_WOKE_HERE) {
2308        flags |= AKEY_EVENT_FLAG_WOKE_HERE;
2309    }
2310
2311    bool needWake;
2312    { // acquire lock
2313        AutoMutex _l(mLock);
2314
2315        int32_t repeatCount = 0;
2316        KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime,
2317                deviceId, source, policyFlags, action, flags, keyCode, scanCode,
2318                metaState, repeatCount, downTime);
2319
2320        needWake = enqueueInboundEventLocked(newEntry);
2321    } // release lock
2322
2323    if (needWake) {
2324        mLooper->wake();
2325    }
2326}
2327
2328void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
2329        uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags,
2330        uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
2331        float xPrecision, float yPrecision, nsecs_t downTime) {
2332#if DEBUG_INBOUND_EVENT_DETAILS
2333    LOGD("notifyMotion - eventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, "
2334            "action=0x%x, flags=0x%x, metaState=0x%x, edgeFlags=0x%x, "
2335            "xPrecision=%f, yPrecision=%f, downTime=%lld",
2336            eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags,
2337            xPrecision, yPrecision, downTime);
2338    for (uint32_t i = 0; i < pointerCount; i++) {
2339        LOGD("  Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, "
2340                "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
2341                "orientation=%f",
2342                i, pointerIds[i],
2343                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
2344                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
2345                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
2346                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
2347                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
2348                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
2349                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
2350                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
2351                pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
2352    }
2353#endif
2354    if (! validateMotionEvent(action, pointerCount, pointerIds)) {
2355        return;
2356    }
2357
2358    policyFlags |= POLICY_FLAG_TRUSTED;
2359    mPolicy->interceptMotionBeforeQueueing(eventTime, /*byref*/ policyFlags);
2360
2361    bool needWake;
2362    { // acquire lock
2363        AutoMutex _l(mLock);
2364
2365        // Attempt batching and streaming of move events.
2366        if (action == AMOTION_EVENT_ACTION_MOVE
2367                || action == AMOTION_EVENT_ACTION_HOVER_MOVE) {
2368            // BATCHING CASE
2369            //
2370            // Try to append a move sample to the tail of the inbound queue for this device.
2371            // Give up if we encounter a non-move motion event for this device since that
2372            // means we cannot append any new samples until a new motion event has started.
2373            for (EventEntry* entry = mInboundQueue.tailSentinel.prev;
2374                    entry != & mInboundQueue.headSentinel; entry = entry->prev) {
2375                if (entry->type != EventEntry::TYPE_MOTION) {
2376                    // Keep looking for motion events.
2377                    continue;
2378                }
2379
2380                MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
2381                if (motionEntry->deviceId != deviceId
2382                        || motionEntry->source != source) {
2383                    // Keep looking for this device and source.
2384                    continue;
2385                }
2386
2387                if (motionEntry->action != action
2388                        || motionEntry->pointerCount != pointerCount
2389                        || motionEntry->isInjected()) {
2390                    // Last motion event in the queue for this device and source is
2391                    // not compatible for appending new samples.  Stop here.
2392                    goto NoBatchingOrStreaming;
2393                }
2394
2395                // The last motion event is a move and is compatible for appending.
2396                // Do the batching magic.
2397                mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords);
2398#if DEBUG_BATCHING
2399                LOGD("Appended motion sample onto batch for most recent "
2400                        "motion event for this device in the inbound queue.");
2401#endif
2402                return; // done!
2403            }
2404
2405            // STREAMING CASE
2406            //
2407            // There is no pending motion event (of any kind) for this device in the inbound queue.
2408            // Search the outbound queue for the current foreground targets to find a dispatched
2409            // motion event that is still in progress.  If found, then, appen the new sample to
2410            // that event and push it out to all current targets.  The logic in
2411            // prepareDispatchCycleLocked takes care of the case where some targets may
2412            // already have consumed the motion event by starting a new dispatch cycle if needed.
2413            if (mCurrentInputTargetsValid) {
2414                for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
2415                    const InputTarget& inputTarget = mCurrentInputTargets[i];
2416                    if ((inputTarget.flags & InputTarget::FLAG_FOREGROUND) == 0) {
2417                        // Skip non-foreground targets.  We only want to stream if there is at
2418                        // least one foreground target whose dispatch is still in progress.
2419                        continue;
2420                    }
2421
2422                    ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
2423                    if (connectionIndex < 0) {
2424                        // Connection must no longer be valid.
2425                        continue;
2426                    }
2427
2428                    sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
2429                    if (connection->outboundQueue.isEmpty()) {
2430                        // This foreground target has an empty outbound queue.
2431                        continue;
2432                    }
2433
2434                    DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
2435                    if (! dispatchEntry->inProgress
2436                            || dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION
2437                            || dispatchEntry->isSplit()) {
2438                        // No motion event is being dispatched, or it is being split across
2439                        // windows in which case we cannot stream.
2440                        continue;
2441                    }
2442
2443                    MotionEntry* motionEntry = static_cast<MotionEntry*>(
2444                            dispatchEntry->eventEntry);
2445                    if (motionEntry->action != action
2446                            || motionEntry->deviceId != deviceId
2447                            || motionEntry->source != source
2448                            || motionEntry->pointerCount != pointerCount
2449                            || motionEntry->isInjected()) {
2450                        // The motion event is not compatible with this move.
2451                        continue;
2452                    }
2453
2454                    // Hurray!  This foreground target is currently dispatching a move event
2455                    // that we can stream onto.  Append the motion sample and resume dispatch.
2456                    mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords);
2457#if DEBUG_BATCHING
2458                    LOGD("Appended motion sample onto batch for most recently dispatched "
2459                            "motion event for this device in the outbound queues.  "
2460                            "Attempting to stream the motion sample.");
2461#endif
2462                    nsecs_t currentTime = now();
2463                    dispatchEventToCurrentInputTargetsLocked(currentTime, motionEntry,
2464                            true /*resumeWithAppendedMotionSample*/);
2465
2466                    runCommandsLockedInterruptible();
2467                    return; // done!
2468                }
2469            }
2470
2471NoBatchingOrStreaming:;
2472        }
2473
2474        // Just enqueue a new motion event.
2475        MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime,
2476                deviceId, source, policyFlags, action, flags, metaState, edgeFlags,
2477                xPrecision, yPrecision, downTime,
2478                pointerCount, pointerIds, pointerCoords);
2479
2480        needWake = enqueueInboundEventLocked(newEntry);
2481    } // release lock
2482
2483    if (needWake) {
2484        mLooper->wake();
2485    }
2486}
2487
2488void InputDispatcher::notifySwitch(nsecs_t when, int32_t switchCode, int32_t switchValue,
2489        uint32_t policyFlags) {
2490#if DEBUG_INBOUND_EVENT_DETAILS
2491    LOGD("notifySwitch - switchCode=%d, switchValue=%d, policyFlags=0x%x",
2492            switchCode, switchValue, policyFlags);
2493#endif
2494
2495    policyFlags |= POLICY_FLAG_TRUSTED;
2496    mPolicy->notifySwitch(when, switchCode, switchValue, policyFlags);
2497}
2498
2499int32_t InputDispatcher::injectInputEvent(const InputEvent* event,
2500        int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) {
2501#if DEBUG_INBOUND_EVENT_DETAILS
2502    LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, "
2503            "syncMode=%d, timeoutMillis=%d",
2504            event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis);
2505#endif
2506
2507    nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis);
2508
2509    uint32_t policyFlags = POLICY_FLAG_INJECTED;
2510    if (hasInjectionPermission(injectorPid, injectorUid)) {
2511        policyFlags |= POLICY_FLAG_TRUSTED;
2512    }
2513
2514    EventEntry* injectedEntry;
2515    switch (event->getType()) {
2516    case AINPUT_EVENT_TYPE_KEY: {
2517        const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event);
2518        int32_t action = keyEvent->getAction();
2519        if (! validateKeyEvent(action)) {
2520            return INPUT_EVENT_INJECTION_FAILED;
2521        }
2522
2523        int32_t flags = keyEvent->getFlags();
2524        if (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY) {
2525            policyFlags |= POLICY_FLAG_VIRTUAL;
2526        }
2527
2528        mPolicy->interceptKeyBeforeQueueing(keyEvent, /*byref*/ policyFlags);
2529
2530        if (policyFlags & POLICY_FLAG_WOKE_HERE) {
2531            flags |= AKEY_EVENT_FLAG_WOKE_HERE;
2532        }
2533
2534        mLock.lock();
2535        injectedEntry = mAllocator.obtainKeyEntry(keyEvent->getEventTime(),
2536                keyEvent->getDeviceId(), keyEvent->getSource(),
2537                policyFlags, action, flags,
2538                keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(),
2539                keyEvent->getRepeatCount(), keyEvent->getDownTime());
2540        break;
2541    }
2542
2543    case AINPUT_EVENT_TYPE_MOTION: {
2544        const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event);
2545        int32_t action = motionEvent->getAction();
2546        size_t pointerCount = motionEvent->getPointerCount();
2547        const int32_t* pointerIds = motionEvent->getPointerIds();
2548        if (! validateMotionEvent(action, pointerCount, pointerIds)) {
2549            return INPUT_EVENT_INJECTION_FAILED;
2550        }
2551
2552        nsecs_t eventTime = motionEvent->getEventTime();
2553        mPolicy->interceptMotionBeforeQueueing(eventTime, /*byref*/ policyFlags);
2554
2555        mLock.lock();
2556        const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes();
2557        const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords();
2558        MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes,
2559                motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags,
2560                action, motionEvent->getFlags(),
2561                motionEvent->getMetaState(), motionEvent->getEdgeFlags(),
2562                motionEvent->getXPrecision(), motionEvent->getYPrecision(),
2563                motionEvent->getDownTime(), uint32_t(pointerCount),
2564                pointerIds, samplePointerCoords);
2565        for (size_t i = motionEvent->getHistorySize(); i > 0; i--) {
2566            sampleEventTimes += 1;
2567            samplePointerCoords += pointerCount;
2568            mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords);
2569        }
2570        injectedEntry = motionEntry;
2571        break;
2572    }
2573
2574    default:
2575        LOGW("Cannot inject event of type %d", event->getType());
2576        return INPUT_EVENT_INJECTION_FAILED;
2577    }
2578
2579    InjectionState* injectionState = mAllocator.obtainInjectionState(injectorPid, injectorUid);
2580    if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
2581        injectionState->injectionIsAsync = true;
2582    }
2583
2584    injectionState->refCount += 1;
2585    injectedEntry->injectionState = injectionState;
2586
2587    bool needWake = enqueueInboundEventLocked(injectedEntry);
2588    mLock.unlock();
2589
2590    if (needWake) {
2591        mLooper->wake();
2592    }
2593
2594    int32_t injectionResult;
2595    { // acquire lock
2596        AutoMutex _l(mLock);
2597
2598        if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
2599            injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
2600        } else {
2601            for (;;) {
2602                injectionResult = injectionState->injectionResult;
2603                if (injectionResult != INPUT_EVENT_INJECTION_PENDING) {
2604                    break;
2605                }
2606
2607                nsecs_t remainingTimeout = endTime - now();
2608                if (remainingTimeout <= 0) {
2609#if DEBUG_INJECTION
2610                    LOGD("injectInputEvent - Timed out waiting for injection result "
2611                            "to become available.");
2612#endif
2613                    injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
2614                    break;
2615                }
2616
2617                mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout);
2618            }
2619
2620            if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED
2621                    && syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) {
2622                while (injectionState->pendingForegroundDispatches != 0) {
2623#if DEBUG_INJECTION
2624                    LOGD("injectInputEvent - Waiting for %d pending foreground dispatches.",
2625                            injectionState->pendingForegroundDispatches);
2626#endif
2627                    nsecs_t remainingTimeout = endTime - now();
2628                    if (remainingTimeout <= 0) {
2629#if DEBUG_INJECTION
2630                    LOGD("injectInputEvent - Timed out waiting for pending foreground "
2631                            "dispatches to finish.");
2632#endif
2633                        injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
2634                        break;
2635                    }
2636
2637                    mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout);
2638                }
2639            }
2640        }
2641
2642        mAllocator.releaseInjectionState(injectionState);
2643    } // release lock
2644
2645#if DEBUG_INJECTION
2646    LOGD("injectInputEvent - Finished with result %d.  "
2647            "injectorPid=%d, injectorUid=%d",
2648            injectionResult, injectorPid, injectorUid);
2649#endif
2650
2651    return injectionResult;
2652}
2653
2654bool InputDispatcher::hasInjectionPermission(int32_t injectorPid, int32_t injectorUid) {
2655    return injectorUid == 0
2656            || mPolicy->checkInjectEventsPermissionNonReentrant(injectorPid, injectorUid);
2657}
2658
2659void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) {
2660    InjectionState* injectionState = entry->injectionState;
2661    if (injectionState) {
2662#if DEBUG_INJECTION
2663        LOGD("Setting input event injection result to %d.  "
2664                "injectorPid=%d, injectorUid=%d",
2665                 injectionResult, injectionState->injectorPid, injectionState->injectorUid);
2666#endif
2667
2668        if (injectionState->injectionIsAsync) {
2669            // Log the outcome since the injector did not wait for the injection result.
2670            switch (injectionResult) {
2671            case INPUT_EVENT_INJECTION_SUCCEEDED:
2672                LOGV("Asynchronous input event injection succeeded.");
2673                break;
2674            case INPUT_EVENT_INJECTION_FAILED:
2675                LOGW("Asynchronous input event injection failed.");
2676                break;
2677            case INPUT_EVENT_INJECTION_PERMISSION_DENIED:
2678                LOGW("Asynchronous input event injection permission denied.");
2679                break;
2680            case INPUT_EVENT_INJECTION_TIMED_OUT:
2681                LOGW("Asynchronous input event injection timed out.");
2682                break;
2683            }
2684        }
2685
2686        injectionState->injectionResult = injectionResult;
2687        mInjectionResultAvailableCondition.broadcast();
2688    }
2689}
2690
2691void InputDispatcher::incrementPendingForegroundDispatchesLocked(EventEntry* entry) {
2692    InjectionState* injectionState = entry->injectionState;
2693    if (injectionState) {
2694        injectionState->pendingForegroundDispatches += 1;
2695    }
2696}
2697
2698void InputDispatcher::decrementPendingForegroundDispatchesLocked(EventEntry* entry) {
2699    InjectionState* injectionState = entry->injectionState;
2700    if (injectionState) {
2701        injectionState->pendingForegroundDispatches -= 1;
2702
2703        if (injectionState->pendingForegroundDispatches == 0) {
2704            mInjectionSyncFinishedCondition.broadcast();
2705        }
2706    }
2707}
2708
2709const InputWindow* InputDispatcher::getWindowLocked(const sp<InputChannel>& inputChannel) {
2710    for (size_t i = 0; i < mWindows.size(); i++) {
2711        const InputWindow* window = & mWindows[i];
2712        if (window->inputChannel == inputChannel) {
2713            return window;
2714        }
2715    }
2716    return NULL;
2717}
2718
2719void InputDispatcher::setInputWindows(const Vector<InputWindow>& inputWindows) {
2720#if DEBUG_FOCUS
2721    LOGD("setInputWindows");
2722#endif
2723    { // acquire lock
2724        AutoMutex _l(mLock);
2725
2726        // Clear old window pointers.
2727        sp<InputChannel> oldFocusedWindowChannel;
2728        if (mFocusedWindow) {
2729            oldFocusedWindowChannel = mFocusedWindow->inputChannel;
2730            mFocusedWindow = NULL;
2731        }
2732
2733        mWindows.clear();
2734
2735        // Loop over new windows and rebuild the necessary window pointers for
2736        // tracking focus and touch.
2737        mWindows.appendVector(inputWindows);
2738
2739        size_t numWindows = mWindows.size();
2740        for (size_t i = 0; i < numWindows; i++) {
2741            const InputWindow* window = & mWindows.itemAt(i);
2742            if (window->hasFocus) {
2743                mFocusedWindow = window;
2744                break;
2745            }
2746        }
2747
2748        if (oldFocusedWindowChannel != NULL) {
2749            if (!mFocusedWindow || oldFocusedWindowChannel != mFocusedWindow->inputChannel) {
2750#if DEBUG_FOCUS
2751                LOGD("Focus left window: %s",
2752                        oldFocusedWindowChannel->getName().string());
2753#endif
2754                synthesizeCancelationEventsForInputChannelLocked(oldFocusedWindowChannel,
2755                        InputState::CANCEL_NON_POINTER_EVENTS, "focus left window");
2756                oldFocusedWindowChannel.clear();
2757            }
2758        }
2759        if (mFocusedWindow && oldFocusedWindowChannel == NULL) {
2760#if DEBUG_FOCUS
2761            LOGD("Focus entered window: %s",
2762                    mFocusedWindow->inputChannel->getName().string());
2763#endif
2764        }
2765
2766        for (size_t i = 0; i < mTouchState.windows.size(); ) {
2767            TouchedWindow& touchedWindow = mTouchState.windows.editItemAt(i);
2768            const InputWindow* window = getWindowLocked(touchedWindow.channel);
2769            if (window) {
2770                touchedWindow.window = window;
2771                i += 1;
2772            } else {
2773#if DEBUG_FOCUS
2774                LOGD("Touched window was removed: %s", touchedWindow.channel->getName().string());
2775#endif
2776                synthesizeCancelationEventsForInputChannelLocked(touchedWindow.channel,
2777                        InputState::CANCEL_POINTER_EVENTS, "touched window was removed");
2778                mTouchState.windows.removeAt(i);
2779            }
2780        }
2781
2782#if DEBUG_FOCUS
2783        //logDispatchStateLocked();
2784#endif
2785    } // release lock
2786
2787    // Wake up poll loop since it may need to make new input dispatching choices.
2788    mLooper->wake();
2789}
2790
2791void InputDispatcher::setFocusedApplication(const InputApplication* inputApplication) {
2792#if DEBUG_FOCUS
2793    LOGD("setFocusedApplication");
2794#endif
2795    { // acquire lock
2796        AutoMutex _l(mLock);
2797
2798        releaseFocusedApplicationLocked();
2799
2800        if (inputApplication) {
2801            mFocusedApplicationStorage = *inputApplication;
2802            mFocusedApplication = & mFocusedApplicationStorage;
2803        }
2804
2805#if DEBUG_FOCUS
2806        //logDispatchStateLocked();
2807#endif
2808    } // release lock
2809
2810    // Wake up poll loop since it may need to make new input dispatching choices.
2811    mLooper->wake();
2812}
2813
2814void InputDispatcher::releaseFocusedApplicationLocked() {
2815    if (mFocusedApplication) {
2816        mFocusedApplication = NULL;
2817        mFocusedApplicationStorage.inputApplicationHandle.clear();
2818    }
2819}
2820
2821void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) {
2822#if DEBUG_FOCUS
2823    LOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen);
2824#endif
2825
2826    bool changed;
2827    { // acquire lock
2828        AutoMutex _l(mLock);
2829
2830        if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) {
2831            if (mDispatchFrozen && !frozen) {
2832                resetANRTimeoutsLocked();
2833            }
2834
2835            if (mDispatchEnabled && !enabled) {
2836                resetAndDropEverythingLocked("dispatcher is being disabled");
2837            }
2838
2839            mDispatchEnabled = enabled;
2840            mDispatchFrozen = frozen;
2841            changed = true;
2842        } else {
2843            changed = false;
2844        }
2845
2846#if DEBUG_FOCUS
2847        //logDispatchStateLocked();
2848#endif
2849    } // release lock
2850
2851    if (changed) {
2852        // Wake up poll loop since it may need to make new input dispatching choices.
2853        mLooper->wake();
2854    }
2855}
2856
2857bool InputDispatcher::transferTouchFocus(const sp<InputChannel>& fromChannel,
2858        const sp<InputChannel>& toChannel) {
2859#if DEBUG_FOCUS
2860    LOGD("transferTouchFocus: fromChannel=%s, toChannel=%s",
2861            fromChannel->getName().string(), toChannel->getName().string());
2862#endif
2863    { // acquire lock
2864        AutoMutex _l(mLock);
2865
2866        const InputWindow* fromWindow = getWindowLocked(fromChannel);
2867        const InputWindow* toWindow = getWindowLocked(toChannel);
2868        if (! fromWindow || ! toWindow) {
2869#if DEBUG_FOCUS
2870            LOGD("Cannot transfer focus because from or to window not found.");
2871#endif
2872            return false;
2873        }
2874        if (fromWindow == toWindow) {
2875#if DEBUG_FOCUS
2876            LOGD("Trivial transfer to same window.");
2877#endif
2878            return true;
2879        }
2880
2881        bool found = false;
2882        for (size_t i = 0; i < mTouchState.windows.size(); i++) {
2883            const TouchedWindow& touchedWindow = mTouchState.windows[i];
2884            if (touchedWindow.window == fromWindow) {
2885                int32_t oldTargetFlags = touchedWindow.targetFlags;
2886                BitSet32 pointerIds = touchedWindow.pointerIds;
2887
2888                mTouchState.windows.removeAt(i);
2889
2890                int32_t newTargetFlags = oldTargetFlags
2891                        & (InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_SPLIT);
2892                mTouchState.addOrUpdateWindow(toWindow, newTargetFlags, pointerIds);
2893
2894                found = true;
2895                break;
2896            }
2897        }
2898
2899        if (! found) {
2900#if DEBUG_FOCUS
2901            LOGD("Focus transfer failed because from window did not have focus.");
2902#endif
2903            return false;
2904        }
2905
2906        ssize_t fromConnectionIndex = getConnectionIndexLocked(fromChannel);
2907        ssize_t toConnectionIndex = getConnectionIndexLocked(toChannel);
2908        if (fromConnectionIndex >= 0 && toConnectionIndex >= 0) {
2909            sp<Connection> fromConnection = mConnectionsByReceiveFd.valueAt(fromConnectionIndex);
2910            sp<Connection> toConnection = mConnectionsByReceiveFd.valueAt(toConnectionIndex);
2911
2912            fromConnection->inputState.copyPointerStateTo(toConnection->inputState);
2913            synthesizeCancelationEventsForConnectionLocked(fromConnection,
2914                    InputState::CANCEL_POINTER_EVENTS,
2915                    "transferring touch focus from this window to another window");
2916        }
2917
2918#if DEBUG_FOCUS
2919        logDispatchStateLocked();
2920#endif
2921    } // release lock
2922
2923    // Wake up poll loop since it may need to make new input dispatching choices.
2924    mLooper->wake();
2925    return true;
2926}
2927
2928void InputDispatcher::resetAndDropEverythingLocked(const char* reason) {
2929#if DEBUG_FOCUS
2930    LOGD("Resetting and dropping all events (%s).", reason);
2931#endif
2932
2933    synthesizeCancelationEventsForAllConnectionsLocked(InputState::CANCEL_ALL_EVENTS, reason);
2934
2935    resetKeyRepeatLocked();
2936    releasePendingEventLocked();
2937    drainInboundQueueLocked();
2938    resetTargetsLocked();
2939
2940    mTouchState.reset();
2941}
2942
2943void InputDispatcher::logDispatchStateLocked() {
2944    String8 dump;
2945    dumpDispatchStateLocked(dump);
2946
2947    char* text = dump.lockBuffer(dump.size());
2948    char* start = text;
2949    while (*start != '\0') {
2950        char* end = strchr(start, '\n');
2951        if (*end == '\n') {
2952            *(end++) = '\0';
2953        }
2954        LOGD("%s", start);
2955        start = end;
2956    }
2957}
2958
2959void InputDispatcher::dumpDispatchStateLocked(String8& dump) {
2960    dump.appendFormat(INDENT "DispatchEnabled: %d\n", mDispatchEnabled);
2961    dump.appendFormat(INDENT "DispatchFrozen: %d\n", mDispatchFrozen);
2962
2963    if (mFocusedApplication) {
2964        dump.appendFormat(INDENT "FocusedApplication: name='%s', dispatchingTimeout=%0.3fms\n",
2965                mFocusedApplication->name.string(),
2966                mFocusedApplication->dispatchingTimeout / 1000000.0);
2967    } else {
2968        dump.append(INDENT "FocusedApplication: <null>\n");
2969    }
2970    dump.appendFormat(INDENT "FocusedWindow: name='%s'\n",
2971            mFocusedWindow != NULL ? mFocusedWindow->name.string() : "<null>");
2972
2973    dump.appendFormat(INDENT "TouchDown: %s\n", toString(mTouchState.down));
2974    dump.appendFormat(INDENT "TouchSplit: %s\n", toString(mTouchState.split));
2975    dump.appendFormat(INDENT "TouchDeviceId: %d\n", mTouchState.deviceId);
2976    dump.appendFormat(INDENT "TouchSource: 0x%08x\n", mTouchState.source);
2977    if (!mTouchState.windows.isEmpty()) {
2978        dump.append(INDENT "TouchedWindows:\n");
2979        for (size_t i = 0; i < mTouchState.windows.size(); i++) {
2980            const TouchedWindow& touchedWindow = mTouchState.windows[i];
2981            dump.appendFormat(INDENT2 "%d: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n",
2982                    i, touchedWindow.window->name.string(), touchedWindow.pointerIds.value,
2983                    touchedWindow.targetFlags);
2984        }
2985    } else {
2986        dump.append(INDENT "TouchedWindows: <none>\n");
2987    }
2988
2989    if (!mWindows.isEmpty()) {
2990        dump.append(INDENT "Windows:\n");
2991        for (size_t i = 0; i < mWindows.size(); i++) {
2992            const InputWindow& window = mWindows[i];
2993            dump.appendFormat(INDENT2 "%d: name='%s', paused=%s, hasFocus=%s, hasWallpaper=%s, "
2994                    "visible=%s, canReceiveKeys=%s, flags=0x%08x, type=0x%08x, layer=%d, "
2995                    "frame=[%d,%d][%d,%d], scale=%f, "
2996                    "touchableRegion=",
2997                    i, window.name.string(),
2998                    toString(window.paused),
2999                    toString(window.hasFocus),
3000                    toString(window.hasWallpaper),
3001                    toString(window.visible),
3002                    toString(window.canReceiveKeys),
3003                    window.layoutParamsFlags, window.layoutParamsType,
3004                    window.layer,
3005                    window.frameLeft, window.frameTop,
3006                    window.frameRight, window.frameBottom,
3007                    window.scaleFactor);
3008            dumpRegion(dump, window.touchableRegion);
3009            dump.appendFormat(", ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n",
3010                    window.ownerPid, window.ownerUid,
3011                    window.dispatchingTimeout / 1000000.0);
3012        }
3013    } else {
3014        dump.append(INDENT "Windows: <none>\n");
3015    }
3016
3017    if (!mMonitoringChannels.isEmpty()) {
3018        dump.append(INDENT "MonitoringChannels:\n");
3019        for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
3020            const sp<InputChannel>& channel = mMonitoringChannels[i];
3021            dump.appendFormat(INDENT2 "%d: '%s'\n", i, channel->getName().string());
3022        }
3023    } else {
3024        dump.append(INDENT "MonitoringChannels: <none>\n");
3025    }
3026
3027    dump.appendFormat(INDENT "InboundQueue: length=%u\n", mInboundQueue.count());
3028
3029    if (!mActiveConnections.isEmpty()) {
3030        dump.append(INDENT "ActiveConnections:\n");
3031        for (size_t i = 0; i < mActiveConnections.size(); i++) {
3032            const Connection* connection = mActiveConnections[i];
3033            dump.appendFormat(INDENT2 "%d: '%s', status=%s, outboundQueueLength=%u, "
3034                    "inputState.isNeutral=%s\n",
3035                    i, connection->getInputChannelName(), connection->getStatusLabel(),
3036                    connection->outboundQueue.count(),
3037                    toString(connection->inputState.isNeutral()));
3038        }
3039    } else {
3040        dump.append(INDENT "ActiveConnections: <none>\n");
3041    }
3042
3043    if (isAppSwitchPendingLocked()) {
3044        dump.appendFormat(INDENT "AppSwitch: pending, due in %01.1fms\n",
3045                (mAppSwitchDueTime - now()) / 1000000.0);
3046    } else {
3047        dump.append(INDENT "AppSwitch: not pending\n");
3048    }
3049}
3050
3051status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel,
3052        const sp<InputWindowHandle>& inputWindowHandle, bool monitor) {
3053#if DEBUG_REGISTRATION
3054    LOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(),
3055            toString(monitor));
3056#endif
3057
3058    { // acquire lock
3059        AutoMutex _l(mLock);
3060
3061        if (getConnectionIndexLocked(inputChannel) >= 0) {
3062            LOGW("Attempted to register already registered input channel '%s'",
3063                    inputChannel->getName().string());
3064            return BAD_VALUE;
3065        }
3066
3067        sp<Connection> connection = new Connection(inputChannel, inputWindowHandle);
3068        status_t status = connection->initialize();
3069        if (status) {
3070            LOGE("Failed to initialize input publisher for input channel '%s', status=%d",
3071                    inputChannel->getName().string(), status);
3072            return status;
3073        }
3074
3075        int32_t receiveFd = inputChannel->getReceivePipeFd();
3076        mConnectionsByReceiveFd.add(receiveFd, connection);
3077
3078        if (monitor) {
3079            mMonitoringChannels.push(inputChannel);
3080        }
3081
3082        mLooper->addFd(receiveFd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this);
3083
3084        runCommandsLockedInterruptible();
3085    } // release lock
3086    return OK;
3087}
3088
3089status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) {
3090#if DEBUG_REGISTRATION
3091    LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string());
3092#endif
3093
3094    { // acquire lock
3095        AutoMutex _l(mLock);
3096
3097        ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
3098        if (connectionIndex < 0) {
3099            LOGW("Attempted to unregister already unregistered input channel '%s'",
3100                    inputChannel->getName().string());
3101            return BAD_VALUE;
3102        }
3103
3104        sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
3105        mConnectionsByReceiveFd.removeItemsAt(connectionIndex);
3106
3107        connection->status = Connection::STATUS_ZOMBIE;
3108
3109        for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
3110            if (mMonitoringChannels[i] == inputChannel) {
3111                mMonitoringChannels.removeAt(i);
3112                break;
3113            }
3114        }
3115
3116        mLooper->removeFd(inputChannel->getReceivePipeFd());
3117
3118        nsecs_t currentTime = now();
3119        abortBrokenDispatchCycleLocked(currentTime, connection);
3120
3121        runCommandsLockedInterruptible();
3122    } // release lock
3123
3124    // Wake the poll loop because removing the connection may have changed the current
3125    // synchronization state.
3126    mLooper->wake();
3127    return OK;
3128}
3129
3130ssize_t InputDispatcher::getConnectionIndexLocked(const sp<InputChannel>& inputChannel) {
3131    ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(inputChannel->getReceivePipeFd());
3132    if (connectionIndex >= 0) {
3133        sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
3134        if (connection->inputChannel.get() == inputChannel.get()) {
3135            return connectionIndex;
3136        }
3137    }
3138
3139    return -1;
3140}
3141
3142void InputDispatcher::activateConnectionLocked(Connection* connection) {
3143    for (size_t i = 0; i < mActiveConnections.size(); i++) {
3144        if (mActiveConnections.itemAt(i) == connection) {
3145            return;
3146        }
3147    }
3148    mActiveConnections.add(connection);
3149}
3150
3151void InputDispatcher::deactivateConnectionLocked(Connection* connection) {
3152    for (size_t i = 0; i < mActiveConnections.size(); i++) {
3153        if (mActiveConnections.itemAt(i) == connection) {
3154            mActiveConnections.removeAt(i);
3155            return;
3156        }
3157    }
3158}
3159
3160void InputDispatcher::onDispatchCycleStartedLocked(
3161        nsecs_t currentTime, const sp<Connection>& connection) {
3162}
3163
3164void InputDispatcher::onDispatchCycleFinishedLocked(
3165        nsecs_t currentTime, const sp<Connection>& connection, bool handled) {
3166    CommandEntry* commandEntry = postCommandLocked(
3167            & InputDispatcher::doDispatchCycleFinishedLockedInterruptible);
3168    commandEntry->connection = connection;
3169    commandEntry->handled = handled;
3170}
3171
3172void InputDispatcher::onDispatchCycleBrokenLocked(
3173        nsecs_t currentTime, const sp<Connection>& connection) {
3174    LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!",
3175            connection->getInputChannelName());
3176
3177    CommandEntry* commandEntry = postCommandLocked(
3178            & InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible);
3179    commandEntry->connection = connection;
3180}
3181
3182void InputDispatcher::onANRLocked(
3183        nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
3184        nsecs_t eventTime, nsecs_t waitStartTime) {
3185    LOGI("Application is not responding: %s.  "
3186            "%01.1fms since event, %01.1fms since wait started",
3187            getApplicationWindowLabelLocked(application, window).string(),
3188            (currentTime - eventTime) / 1000000.0,
3189            (currentTime - waitStartTime) / 1000000.0);
3190
3191    CommandEntry* commandEntry = postCommandLocked(
3192            & InputDispatcher::doNotifyANRLockedInterruptible);
3193    if (application) {
3194        commandEntry->inputApplicationHandle = application->inputApplicationHandle;
3195    }
3196    if (window) {
3197        commandEntry->inputWindowHandle = window->inputWindowHandle;
3198        commandEntry->inputChannel = window->inputChannel;
3199    }
3200}
3201
3202void InputDispatcher::doNotifyConfigurationChangedInterruptible(
3203        CommandEntry* commandEntry) {
3204    mLock.unlock();
3205
3206    mPolicy->notifyConfigurationChanged(commandEntry->eventTime);
3207
3208    mLock.lock();
3209}
3210
3211void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible(
3212        CommandEntry* commandEntry) {
3213    sp<Connection> connection = commandEntry->connection;
3214
3215    if (connection->status != Connection::STATUS_ZOMBIE) {
3216        mLock.unlock();
3217
3218        mPolicy->notifyInputChannelBroken(connection->inputWindowHandle);
3219
3220        mLock.lock();
3221    }
3222}
3223
3224void InputDispatcher::doNotifyANRLockedInterruptible(
3225        CommandEntry* commandEntry) {
3226    mLock.unlock();
3227
3228    nsecs_t newTimeout = mPolicy->notifyANR(
3229            commandEntry->inputApplicationHandle, commandEntry->inputWindowHandle);
3230
3231    mLock.lock();
3232
3233    resumeAfterTargetsNotReadyTimeoutLocked(newTimeout, commandEntry->inputChannel);
3234}
3235
3236void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible(
3237        CommandEntry* commandEntry) {
3238    KeyEntry* entry = commandEntry->keyEntry;
3239
3240    KeyEvent event;
3241    initializeKeyEvent(&event, entry);
3242
3243    mLock.unlock();
3244
3245    bool consumed = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputWindowHandle,
3246            &event, entry->policyFlags);
3247
3248    mLock.lock();
3249
3250    entry->interceptKeyResult = consumed
3251            ? KeyEntry::INTERCEPT_KEY_RESULT_SKIP
3252            : KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
3253    mAllocator.releaseKeyEntry(entry);
3254}
3255
3256void InputDispatcher::doDispatchCycleFinishedLockedInterruptible(
3257        CommandEntry* commandEntry) {
3258    sp<Connection> connection = commandEntry->connection;
3259    bool handled = commandEntry->handled;
3260
3261    if (!connection->outboundQueue.isEmpty()) {
3262        DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
3263        if (dispatchEntry->inProgress
3264                && dispatchEntry->hasForegroundTarget()
3265                && dispatchEntry->eventEntry->type == EventEntry::TYPE_KEY) {
3266            KeyEntry* keyEntry = static_cast<KeyEntry*>(dispatchEntry->eventEntry);
3267            if (!(keyEntry->flags & AKEY_EVENT_FLAG_FALLBACK)) {
3268                if (handled) {
3269                    // If the application handled a non-fallback key, then immediately
3270                    // cancel all fallback keys previously dispatched to the application.
3271                    // This behavior will prevent chording with fallback keys (so they cannot
3272                    // be used as modifiers) but it will ensure that fallback keys do not
3273                    // get stuck.  This takes care of the case where the application does not handle
3274                    // the original DOWN so we generate a fallback DOWN but it does handle
3275                    // the original UP in which case we want to send a fallback CANCEL.
3276                    synthesizeCancelationEventsForConnectionLocked(connection,
3277                            InputState::CANCEL_FALLBACK_EVENTS,
3278                            "application handled a non-fallback event, "
3279                            "canceling all fallback events");
3280                    connection->originalKeyCodeForFallback = -1;
3281                } else {
3282                    // If the application did not handle a non-fallback key, first check
3283                    // that we are in a good state to handle the fallback key.  Then ask
3284                    // the policy what to do with it.
3285                    if (connection->originalKeyCodeForFallback < 0) {
3286                        if (keyEntry->action != AKEY_EVENT_ACTION_DOWN
3287                                || keyEntry->repeatCount != 0) {
3288#if DEBUG_OUTBOUND_EVENT_DETAILS
3289                            LOGD("Unhandled key event: Skipping fallback since this "
3290                                    "is not an initial down.  "
3291                                    "keyCode=%d, action=%d, repeatCount=%d",
3292                                    keyEntry->keyCode, keyEntry->action, keyEntry->repeatCount);
3293#endif
3294                            goto SkipFallback;
3295                        }
3296
3297                        // Start handling the fallback key on DOWN.
3298                        connection->originalKeyCodeForFallback = keyEntry->keyCode;
3299                    } else {
3300                        if (keyEntry->keyCode != connection->originalKeyCodeForFallback) {
3301#if DEBUG_OUTBOUND_EVENT_DETAILS
3302                            LOGD("Unhandled key event: Skipping fallback since there is "
3303                                    "already a different fallback in progress.  "
3304                                    "keyCode=%d, originalKeyCodeForFallback=%d",
3305                                    keyEntry->keyCode, connection->originalKeyCodeForFallback);
3306#endif
3307                            goto SkipFallback;
3308                        }
3309
3310                        // Finish handling the fallback key on UP.
3311                        if (keyEntry->action == AKEY_EVENT_ACTION_UP) {
3312                            connection->originalKeyCodeForFallback = -1;
3313                        }
3314                    }
3315
3316#if DEBUG_OUTBOUND_EVENT_DETAILS
3317                    LOGD("Unhandled key event: Asking policy to perform fallback action.  "
3318                            "keyCode=%d, action=%d, repeatCount=%d",
3319                            keyEntry->keyCode, keyEntry->action, keyEntry->repeatCount);
3320#endif
3321                    KeyEvent event;
3322                    initializeKeyEvent(&event, keyEntry);
3323
3324                    mLock.unlock();
3325
3326                    bool fallback = mPolicy->dispatchUnhandledKey(connection->inputWindowHandle,
3327                            &event, keyEntry->policyFlags, &event);
3328
3329                    mLock.lock();
3330
3331                    if (connection->status != Connection::STATUS_NORMAL) {
3332                        return;
3333                    }
3334
3335                    assert(connection->outboundQueue.headSentinel.next == dispatchEntry);
3336
3337                    if (fallback) {
3338                        // Restart the dispatch cycle using the fallback key.
3339                        keyEntry->eventTime = event.getEventTime();
3340                        keyEntry->deviceId = event.getDeviceId();
3341                        keyEntry->source = event.getSource();
3342                        keyEntry->flags = event.getFlags() | AKEY_EVENT_FLAG_FALLBACK;
3343                        keyEntry->keyCode = event.getKeyCode();
3344                        keyEntry->scanCode = event.getScanCode();
3345                        keyEntry->metaState = event.getMetaState();
3346                        keyEntry->repeatCount = event.getRepeatCount();
3347                        keyEntry->downTime = event.getDownTime();
3348                        keyEntry->syntheticRepeat = false;
3349
3350#if DEBUG_OUTBOUND_EVENT_DETAILS
3351                        LOGD("Unhandled key event: Dispatching fallback key.  "
3352                                "fallbackKeyCode=%d, fallbackMetaState=%08x",
3353                                keyEntry->keyCode, keyEntry->metaState);
3354#endif
3355
3356                        dispatchEntry->inProgress = false;
3357                        startDispatchCycleLocked(now(), connection);
3358                        return;
3359                    }
3360                }
3361            }
3362        }
3363    }
3364
3365SkipFallback:
3366    startNextDispatchCycleLocked(now(), connection);
3367}
3368
3369void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) {
3370    mLock.unlock();
3371
3372    mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->userActivityEventType);
3373
3374    mLock.lock();
3375}
3376
3377void InputDispatcher::initializeKeyEvent(KeyEvent* event, const KeyEntry* entry) {
3378    event->initialize(entry->deviceId, entry->source, entry->action, entry->flags,
3379            entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount,
3380            entry->downTime, entry->eventTime);
3381}
3382
3383void InputDispatcher::updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
3384        int32_t injectionResult, nsecs_t timeSpentWaitingForApplication) {
3385    // TODO Write some statistics about how long we spend waiting.
3386}
3387
3388void InputDispatcher::dump(String8& dump) {
3389    dump.append("Input Dispatcher State:\n");
3390    dumpDispatchStateLocked(dump);
3391}
3392
3393
3394// --- InputDispatcher::Queue ---
3395
3396template <typename T>
3397uint32_t InputDispatcher::Queue<T>::count() const {
3398    uint32_t result = 0;
3399    for (const T* entry = headSentinel.next; entry != & tailSentinel; entry = entry->next) {
3400        result += 1;
3401    }
3402    return result;
3403}
3404
3405
3406// --- InputDispatcher::Allocator ---
3407
3408InputDispatcher::Allocator::Allocator() {
3409}
3410
3411InputDispatcher::InjectionState*
3412InputDispatcher::Allocator::obtainInjectionState(int32_t injectorPid, int32_t injectorUid) {
3413    InjectionState* injectionState = mInjectionStatePool.alloc();
3414    injectionState->refCount = 1;
3415    injectionState->injectorPid = injectorPid;
3416    injectionState->injectorUid = injectorUid;
3417    injectionState->injectionIsAsync = false;
3418    injectionState->injectionResult = INPUT_EVENT_INJECTION_PENDING;
3419    injectionState->pendingForegroundDispatches = 0;
3420    return injectionState;
3421}
3422
3423void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type,
3424        nsecs_t eventTime, uint32_t policyFlags) {
3425    entry->type = type;
3426    entry->refCount = 1;
3427    entry->dispatchInProgress = false;
3428    entry->eventTime = eventTime;
3429    entry->policyFlags = policyFlags;
3430    entry->injectionState = NULL;
3431}
3432
3433void InputDispatcher::Allocator::releaseEventEntryInjectionState(EventEntry* entry) {
3434    if (entry->injectionState) {
3435        releaseInjectionState(entry->injectionState);
3436        entry->injectionState = NULL;
3437    }
3438}
3439
3440InputDispatcher::ConfigurationChangedEntry*
3441InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) {
3442    ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc();
3443    initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime, 0);
3444    return entry;
3445}
3446
3447InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime,
3448        int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
3449        int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
3450        int32_t repeatCount, nsecs_t downTime) {
3451    KeyEntry* entry = mKeyEntryPool.alloc();
3452    initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime, policyFlags);
3453
3454    entry->deviceId = deviceId;
3455    entry->source = source;
3456    entry->action = action;
3457    entry->flags = flags;
3458    entry->keyCode = keyCode;
3459    entry->scanCode = scanCode;
3460    entry->metaState = metaState;
3461    entry->repeatCount = repeatCount;
3462    entry->downTime = downTime;
3463    entry->syntheticRepeat = false;
3464    entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
3465    return entry;
3466}
3467
3468InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime,
3469        int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags,
3470        int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision,
3471        nsecs_t downTime, uint32_t pointerCount,
3472        const int32_t* pointerIds, const PointerCoords* pointerCoords) {
3473    MotionEntry* entry = mMotionEntryPool.alloc();
3474    initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime, policyFlags);
3475
3476    entry->eventTime = eventTime;
3477    entry->deviceId = deviceId;
3478    entry->source = source;
3479    entry->action = action;
3480    entry->flags = flags;
3481    entry->metaState = metaState;
3482    entry->edgeFlags = edgeFlags;
3483    entry->xPrecision = xPrecision;
3484    entry->yPrecision = yPrecision;
3485    entry->downTime = downTime;
3486    entry->pointerCount = pointerCount;
3487    entry->firstSample.eventTime = eventTime;
3488    entry->firstSample.next = NULL;
3489    entry->lastSample = & entry->firstSample;
3490    for (uint32_t i = 0; i < pointerCount; i++) {
3491        entry->pointerIds[i] = pointerIds[i];
3492        entry->firstSample.pointerCoords[i] = pointerCoords[i];
3493    }
3494    return entry;
3495}
3496
3497InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry(
3498        EventEntry* eventEntry,
3499        int32_t targetFlags, float xOffset, float yOffset, float scaleFactor) {
3500    DispatchEntry* entry = mDispatchEntryPool.alloc();
3501    entry->eventEntry = eventEntry;
3502    eventEntry->refCount += 1;
3503    entry->targetFlags = targetFlags;
3504    entry->xOffset = xOffset;
3505    entry->yOffset = yOffset;
3506    entry->scaleFactor = scaleFactor;
3507    entry->inProgress = false;
3508    entry->headMotionSample = NULL;
3509    entry->tailMotionSample = NULL;
3510    return entry;
3511}
3512
3513InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) {
3514    CommandEntry* entry = mCommandEntryPool.alloc();
3515    entry->command = command;
3516    return entry;
3517}
3518
3519void InputDispatcher::Allocator::releaseInjectionState(InjectionState* injectionState) {
3520    injectionState->refCount -= 1;
3521    if (injectionState->refCount == 0) {
3522        mInjectionStatePool.free(injectionState);
3523    } else {
3524        assert(injectionState->refCount > 0);
3525    }
3526}
3527
3528void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) {
3529    switch (entry->type) {
3530    case EventEntry::TYPE_CONFIGURATION_CHANGED:
3531        releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry));
3532        break;
3533    case EventEntry::TYPE_KEY:
3534        releaseKeyEntry(static_cast<KeyEntry*>(entry));
3535        break;
3536    case EventEntry::TYPE_MOTION:
3537        releaseMotionEntry(static_cast<MotionEntry*>(entry));
3538        break;
3539    default:
3540        assert(false);
3541        break;
3542    }
3543}
3544
3545void InputDispatcher::Allocator::releaseConfigurationChangedEntry(
3546        ConfigurationChangedEntry* entry) {
3547    entry->refCount -= 1;
3548    if (entry->refCount == 0) {
3549        releaseEventEntryInjectionState(entry);
3550        mConfigurationChangeEntryPool.free(entry);
3551    } else {
3552        assert(entry->refCount > 0);
3553    }
3554}
3555
3556void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) {
3557    entry->refCount -= 1;
3558    if (entry->refCount == 0) {
3559        releaseEventEntryInjectionState(entry);
3560        mKeyEntryPool.free(entry);
3561    } else {
3562        assert(entry->refCount > 0);
3563    }
3564}
3565
3566void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) {
3567    entry->refCount -= 1;
3568    if (entry->refCount == 0) {
3569        releaseEventEntryInjectionState(entry);
3570        for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) {
3571            MotionSample* next = sample->next;
3572            mMotionSamplePool.free(sample);
3573            sample = next;
3574        }
3575        mMotionEntryPool.free(entry);
3576    } else {
3577        assert(entry->refCount > 0);
3578    }
3579}
3580
3581void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) {
3582    releaseEventEntry(entry->eventEntry);
3583    mDispatchEntryPool.free(entry);
3584}
3585
3586void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) {
3587    mCommandEntryPool.free(entry);
3588}
3589
3590void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry,
3591        nsecs_t eventTime, const PointerCoords* pointerCoords) {
3592    MotionSample* sample = mMotionSamplePool.alloc();
3593    sample->eventTime = eventTime;
3594    uint32_t pointerCount = motionEntry->pointerCount;
3595    for (uint32_t i = 0; i < pointerCount; i++) {
3596        sample->pointerCoords[i] = pointerCoords[i];
3597    }
3598
3599    sample->next = NULL;
3600    motionEntry->lastSample->next = sample;
3601    motionEntry->lastSample = sample;
3602}
3603
3604void InputDispatcher::Allocator::recycleKeyEntry(KeyEntry* keyEntry) {
3605    releaseEventEntryInjectionState(keyEntry);
3606
3607    keyEntry->dispatchInProgress = false;
3608    keyEntry->syntheticRepeat = false;
3609    keyEntry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
3610}
3611
3612
3613// --- InputDispatcher::MotionEntry ---
3614
3615uint32_t InputDispatcher::MotionEntry::countSamples() const {
3616    uint32_t count = 1;
3617    for (MotionSample* sample = firstSample.next; sample != NULL; sample = sample->next) {
3618        count += 1;
3619    }
3620    return count;
3621}
3622
3623
3624// --- InputDispatcher::InputState ---
3625
3626InputDispatcher::InputState::InputState() {
3627}
3628
3629InputDispatcher::InputState::~InputState() {
3630}
3631
3632bool InputDispatcher::InputState::isNeutral() const {
3633    return mKeyMementos.isEmpty() && mMotionMementos.isEmpty();
3634}
3635
3636void InputDispatcher::InputState::trackEvent(
3637        const EventEntry* entry) {
3638    switch (entry->type) {
3639    case EventEntry::TYPE_KEY:
3640        trackKey(static_cast<const KeyEntry*>(entry));
3641        break;
3642
3643    case EventEntry::TYPE_MOTION:
3644        trackMotion(static_cast<const MotionEntry*>(entry));
3645        break;
3646    }
3647}
3648
3649void InputDispatcher::InputState::trackKey(
3650        const KeyEntry* entry) {
3651    int32_t action = entry->action;
3652    for (size_t i = 0; i < mKeyMementos.size(); i++) {
3653        KeyMemento& memento = mKeyMementos.editItemAt(i);
3654        if (memento.deviceId == entry->deviceId
3655                && memento.source == entry->source
3656                && memento.keyCode == entry->keyCode
3657                && memento.scanCode == entry->scanCode) {
3658            switch (action) {
3659            case AKEY_EVENT_ACTION_UP:
3660                mKeyMementos.removeAt(i);
3661                return;
3662
3663            case AKEY_EVENT_ACTION_DOWN:
3664                mKeyMementos.removeAt(i);
3665                goto Found;
3666
3667            default:
3668                return;
3669            }
3670        }
3671    }
3672
3673Found:
3674    if (action == AKEY_EVENT_ACTION_DOWN) {
3675        mKeyMementos.push();
3676        KeyMemento& memento = mKeyMementos.editTop();
3677        memento.deviceId = entry->deviceId;
3678        memento.source = entry->source;
3679        memento.keyCode = entry->keyCode;
3680        memento.scanCode = entry->scanCode;
3681        memento.flags = entry->flags;
3682        memento.downTime = entry->downTime;
3683    }
3684}
3685
3686void InputDispatcher::InputState::trackMotion(
3687        const MotionEntry* entry) {
3688    int32_t action = entry->action & AMOTION_EVENT_ACTION_MASK;
3689    for (size_t i = 0; i < mMotionMementos.size(); i++) {
3690        MotionMemento& memento = mMotionMementos.editItemAt(i);
3691        if (memento.deviceId == entry->deviceId
3692                && memento.source == entry->source) {
3693            switch (action) {
3694            case AMOTION_EVENT_ACTION_UP:
3695            case AMOTION_EVENT_ACTION_CANCEL:
3696            case AMOTION_EVENT_ACTION_HOVER_MOVE:
3697                mMotionMementos.removeAt(i);
3698                return;
3699
3700            case AMOTION_EVENT_ACTION_DOWN:
3701                mMotionMementos.removeAt(i);
3702                goto Found;
3703
3704            case AMOTION_EVENT_ACTION_POINTER_UP:
3705            case AMOTION_EVENT_ACTION_POINTER_DOWN:
3706            case AMOTION_EVENT_ACTION_MOVE:
3707                memento.setPointers(entry);
3708                return;
3709
3710            default:
3711                return;
3712            }
3713        }
3714    }
3715
3716Found:
3717    if (action == AMOTION_EVENT_ACTION_DOWN) {
3718        mMotionMementos.push();
3719        MotionMemento& memento = mMotionMementos.editTop();
3720        memento.deviceId = entry->deviceId;
3721        memento.source = entry->source;
3722        memento.xPrecision = entry->xPrecision;
3723        memento.yPrecision = entry->yPrecision;
3724        memento.downTime = entry->downTime;
3725        memento.setPointers(entry);
3726    }
3727}
3728
3729void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) {
3730    pointerCount = entry->pointerCount;
3731    for (uint32_t i = 0; i < entry->pointerCount; i++) {
3732        pointerIds[i] = entry->pointerIds[i];
3733        pointerCoords[i] = entry->lastSample->pointerCoords[i];
3734    }
3735}
3736
3737void InputDispatcher::InputState::synthesizeCancelationEvents(nsecs_t currentTime,
3738        Allocator* allocator, Vector<EventEntry*>& outEvents,
3739        CancelationOptions options) {
3740    for (size_t i = 0; i < mKeyMementos.size(); ) {
3741        const KeyMemento& memento = mKeyMementos.itemAt(i);
3742        if (shouldCancelKey(memento, options)) {
3743            outEvents.push(allocator->obtainKeyEntry(currentTime,
3744                    memento.deviceId, memento.source, 0,
3745                    AKEY_EVENT_ACTION_UP, memento.flags | AKEY_EVENT_FLAG_CANCELED,
3746                    memento.keyCode, memento.scanCode, 0, 0, memento.downTime));
3747            mKeyMementos.removeAt(i);
3748        } else {
3749            i += 1;
3750        }
3751    }
3752
3753    for (size_t i = 0; i < mMotionMementos.size(); ) {
3754        const MotionMemento& memento = mMotionMementos.itemAt(i);
3755        if (shouldCancelMotion(memento, options)) {
3756            outEvents.push(allocator->obtainMotionEntry(currentTime,
3757                    memento.deviceId, memento.source, 0,
3758                    AMOTION_EVENT_ACTION_CANCEL, 0, 0, 0,
3759                    memento.xPrecision, memento.yPrecision, memento.downTime,
3760                    memento.pointerCount, memento.pointerIds, memento.pointerCoords));
3761            mMotionMementos.removeAt(i);
3762        } else {
3763            i += 1;
3764        }
3765    }
3766}
3767
3768void InputDispatcher::InputState::clear() {
3769    mKeyMementos.clear();
3770    mMotionMementos.clear();
3771}
3772
3773void InputDispatcher::InputState::copyPointerStateTo(InputState& other) const {
3774    for (size_t i = 0; i < mMotionMementos.size(); i++) {
3775        const MotionMemento& memento = mMotionMementos.itemAt(i);
3776        if (memento.source & AINPUT_SOURCE_CLASS_POINTER) {
3777            for (size_t j = 0; j < other.mMotionMementos.size(); ) {
3778                const MotionMemento& otherMemento = other.mMotionMementos.itemAt(j);
3779                if (memento.deviceId == otherMemento.deviceId
3780                        && memento.source == otherMemento.source) {
3781                    other.mMotionMementos.removeAt(j);
3782                } else {
3783                    j += 1;
3784                }
3785            }
3786            other.mMotionMementos.push(memento);
3787        }
3788    }
3789}
3790
3791bool InputDispatcher::InputState::shouldCancelKey(const KeyMemento& memento,
3792        CancelationOptions options) {
3793    switch (options) {
3794    case CANCEL_ALL_EVENTS:
3795    case CANCEL_NON_POINTER_EVENTS:
3796        return true;
3797    case CANCEL_FALLBACK_EVENTS:
3798        return memento.flags & AKEY_EVENT_FLAG_FALLBACK;
3799    default:
3800        return false;
3801    }
3802}
3803
3804bool InputDispatcher::InputState::shouldCancelMotion(const MotionMemento& memento,
3805        CancelationOptions options) {
3806    switch (options) {
3807    case CANCEL_ALL_EVENTS:
3808        return true;
3809    case CANCEL_POINTER_EVENTS:
3810        return memento.source & AINPUT_SOURCE_CLASS_POINTER;
3811    case CANCEL_NON_POINTER_EVENTS:
3812        return !(memento.source & AINPUT_SOURCE_CLASS_POINTER);
3813    default:
3814        return false;
3815    }
3816}
3817
3818
3819// --- InputDispatcher::Connection ---
3820
3821InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel,
3822        const sp<InputWindowHandle>& inputWindowHandle) :
3823        status(STATUS_NORMAL), inputChannel(inputChannel), inputWindowHandle(inputWindowHandle),
3824        inputPublisher(inputChannel),
3825        lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX),
3826        originalKeyCodeForFallback(-1) {
3827}
3828
3829InputDispatcher::Connection::~Connection() {
3830}
3831
3832status_t InputDispatcher::Connection::initialize() {
3833    return inputPublisher.initialize();
3834}
3835
3836const char* InputDispatcher::Connection::getStatusLabel() const {
3837    switch (status) {
3838    case STATUS_NORMAL:
3839        return "NORMAL";
3840
3841    case STATUS_BROKEN:
3842        return "BROKEN";
3843
3844    case STATUS_ZOMBIE:
3845        return "ZOMBIE";
3846
3847    default:
3848        return "UNKNOWN";
3849    }
3850}
3851
3852InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent(
3853        const EventEntry* eventEntry) const {
3854    for (DispatchEntry* dispatchEntry = outboundQueue.tailSentinel.prev;
3855            dispatchEntry != & outboundQueue.headSentinel; dispatchEntry = dispatchEntry->prev) {
3856        if (dispatchEntry->eventEntry == eventEntry) {
3857            return dispatchEntry;
3858        }
3859    }
3860    return NULL;
3861}
3862
3863
3864// --- InputDispatcher::CommandEntry ---
3865
3866InputDispatcher::CommandEntry::CommandEntry() :
3867    keyEntry(NULL) {
3868}
3869
3870InputDispatcher::CommandEntry::~CommandEntry() {
3871}
3872
3873
3874// --- InputDispatcher::TouchState ---
3875
3876InputDispatcher::TouchState::TouchState() :
3877    down(false), split(false), deviceId(-1), source(0) {
3878}
3879
3880InputDispatcher::TouchState::~TouchState() {
3881}
3882
3883void InputDispatcher::TouchState::reset() {
3884    down = false;
3885    split = false;
3886    deviceId = -1;
3887    source = 0;
3888    windows.clear();
3889}
3890
3891void InputDispatcher::TouchState::copyFrom(const TouchState& other) {
3892    down = other.down;
3893    split = other.split;
3894    deviceId = other.deviceId;
3895    source = other.source;
3896    windows.clear();
3897    windows.appendVector(other.windows);
3898}
3899
3900void InputDispatcher::TouchState::addOrUpdateWindow(const InputWindow* window,
3901        int32_t targetFlags, BitSet32 pointerIds) {
3902    if (targetFlags & InputTarget::FLAG_SPLIT) {
3903        split = true;
3904    }
3905
3906    for (size_t i = 0; i < windows.size(); i++) {
3907        TouchedWindow& touchedWindow = windows.editItemAt(i);
3908        if (touchedWindow.window == window) {
3909            touchedWindow.targetFlags |= targetFlags;
3910            touchedWindow.pointerIds.value |= pointerIds.value;
3911            return;
3912        }
3913    }
3914
3915    windows.push();
3916
3917    TouchedWindow& touchedWindow = windows.editTop();
3918    touchedWindow.window = window;
3919    touchedWindow.targetFlags = targetFlags;
3920    touchedWindow.pointerIds = pointerIds;
3921    touchedWindow.channel = window->inputChannel;
3922}
3923
3924void InputDispatcher::TouchState::removeOutsideTouchWindows() {
3925    for (size_t i = 0 ; i < windows.size(); ) {
3926        if (windows[i].targetFlags & InputTarget::FLAG_OUTSIDE) {
3927            windows.removeAt(i);
3928        } else {
3929            i += 1;
3930        }
3931    }
3932}
3933
3934const InputWindow* InputDispatcher::TouchState::getFirstForegroundWindow() {
3935    for (size_t i = 0; i < windows.size(); i++) {
3936        if (windows[i].targetFlags & InputTarget::FLAG_FOREGROUND) {
3937            return windows[i].window;
3938        }
3939    }
3940    return NULL;
3941}
3942
3943
3944// --- InputDispatcherThread ---
3945
3946InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) :
3947        Thread(/*canCallJava*/ true), mDispatcher(dispatcher) {
3948}
3949
3950InputDispatcherThread::~InputDispatcherThread() {
3951}
3952
3953bool InputDispatcherThread::threadLoop() {
3954    mDispatcher->dispatchOnce();
3955    return true;
3956}
3957
3958} // namespace android
3959