InputDispatcher.h revision 214eaf48878bba00cbd5831871bcbd82632b6e34
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef _UI_INPUT_DISPATCHER_H
18#define _UI_INPUT_DISPATCHER_H
19
20#include <ui/Input.h>
21#include <ui/InputTransport.h>
22#include <utils/KeyedVector.h>
23#include <utils/Vector.h>
24#include <utils/threads.h>
25#include <utils/Timers.h>
26#include <utils/RefBase.h>
27#include <utils/String8.h>
28#include <utils/Looper.h>
29#include <utils/Pool.h>
30#include <utils/BitSet.h>
31
32#include <stddef.h>
33#include <unistd.h>
34#include <limits.h>
35
36#include "InputWindow.h"
37#include "InputApplication.h"
38
39
40namespace android {
41
42/*
43 * Constants used to report the outcome of input event injection.
44 */
45enum {
46    /* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
47    INPUT_EVENT_INJECTION_PENDING = -1,
48
49    /* Injection succeeded. */
50    INPUT_EVENT_INJECTION_SUCCEEDED = 0,
51
52    /* Injection failed because the injector did not have permission to inject
53     * into the application with input focus. */
54    INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,
55
56    /* Injection failed because there were no available input targets. */
57    INPUT_EVENT_INJECTION_FAILED = 2,
58
59    /* Injection failed due to a timeout. */
60    INPUT_EVENT_INJECTION_TIMED_OUT = 3
61};
62
63/*
64 * Constants used to determine the input event injection synchronization mode.
65 */
66enum {
67    /* Injection is asynchronous and is assumed always to be successful. */
68    INPUT_EVENT_INJECTION_SYNC_NONE = 0,
69
70    /* Waits for previous events to be dispatched so that the input dispatcher can determine
71     * whether input event injection willbe permitted based on the current input focus.
72     * Does not wait for the input event to finish processing. */
73    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,
74
75    /* Waits for the input event to be completely processed. */
76    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
77};
78
79
80/*
81 * An input target specifies how an input event is to be dispatched to a particular window
82 * including the window's input channel, control flags, a timeout, and an X / Y offset to
83 * be added to input event coordinates to compensate for the absolute position of the
84 * window area.
85 */
86struct InputTarget {
87    enum {
88        /* This flag indicates that the event is being delivered to a foreground application. */
89        FLAG_FOREGROUND = 0x01,
90
91        /* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
92         * of the area of this target and so should instead be delivered as an
93         * AMOTION_EVENT_ACTION_OUTSIDE to this target. */
94        FLAG_OUTSIDE = 0x02,
95
96        /* This flag indicates that the target of a MotionEvent is partly or wholly
97         * obscured by another visible window above it.  The motion event should be
98         * delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
99        FLAG_WINDOW_IS_OBSCURED = 0x04,
100
101        /* This flag indicates that a motion event is being split across multiple windows. */
102        FLAG_SPLIT = 0x08,
103    };
104
105    // The input channel to be targeted.
106    sp<InputChannel> inputChannel;
107
108    // Flags for the input target.
109    int32_t flags;
110
111    // The x and y offset to add to a MotionEvent as it is delivered.
112    // (ignored for KeyEvents)
113    float xOffset, yOffset;
114
115    // Scaling factor to apply to MotionEvent as it is delivered.
116    // (ignored for KeyEvents)
117    float scaleFactor;
118
119    // The subset of pointer ids to include in motion events dispatched to this input target
120    // if FLAG_SPLIT is set.
121    BitSet32 pointerIds;
122};
123
124
125/*
126 * Input dispatcher configuration.
127 *
128 * Specifies various options that modify the behavior of the input dispatcher.
129 */
130struct InputDispatcherConfiguration {
131    // The key repeat initial timeout.
132    nsecs_t keyRepeatTimeout;
133
134    // The key repeat inter-key delay.
135    nsecs_t keyRepeatDelay;
136
137    // The maximum suggested event delivery rate per second.
138    // This value is used to throttle motion event movement actions on a per-device
139    // basis.  It is not intended to be a hard limit.
140    int32_t maxEventsPerSecond;
141
142    InputDispatcherConfiguration() :
143            keyRepeatTimeout(500 * 1000000LL),
144            keyRepeatDelay(50 * 1000000LL),
145            maxEventsPerSecond(60) { }
146};
147
148
149/*
150 * Input dispatcher policy interface.
151 *
152 * The input reader policy is used by the input reader to interact with the Window Manager
153 * and other system components.
154 *
155 * The actual implementation is partially supported by callbacks into the DVM
156 * via JNI.  This interface is also mocked in the unit tests.
157 */
158class InputDispatcherPolicyInterface : public virtual RefBase {
159protected:
160    InputDispatcherPolicyInterface() { }
161    virtual ~InputDispatcherPolicyInterface() { }
162
163public:
164    /* Notifies the system that a configuration change has occurred. */
165    virtual void notifyConfigurationChanged(nsecs_t when) = 0;
166
167    /* Notifies the system that an application is not responding.
168     * Returns a new timeout to continue waiting, or 0 to abort dispatch. */
169    virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle,
170            const sp<InputWindowHandle>& inputWindowHandle) = 0;
171
172    /* Notifies the system that an input channel is unrecoverably broken. */
173    virtual void notifyInputChannelBroken(const sp<InputWindowHandle>& inputWindowHandle) = 0;
174
175    /* Gets the input dispatcher configuration. */
176    virtual void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) = 0;
177
178    /* Returns true if automatic key repeating is enabled. */
179    virtual bool isKeyRepeatEnabled() = 0;
180
181    /* Intercepts a key event immediately before queueing it.
182     * The policy can use this method as an opportunity to perform power management functions
183     * and early event preprocessing such as updating policy flags.
184     *
185     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
186     * should be dispatched to applications.
187     */
188    virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0;
189
190    /* Intercepts a touch, trackball or other motion event before queueing it.
191     * The policy can use this method as an opportunity to perform power management functions
192     * and early event preprocessing such as updating policy flags.
193     *
194     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
195     * should be dispatched to applications.
196     */
197    virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0;
198
199    /* Allows the policy a chance to intercept a key before dispatching. */
200    virtual bool interceptKeyBeforeDispatching(const sp<InputWindowHandle>& inputWindowHandle,
201            const KeyEvent* keyEvent, uint32_t policyFlags) = 0;
202
203    /* Allows the policy a chance to perform default processing for an unhandled key.
204     * Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */
205    virtual bool dispatchUnhandledKey(const sp<InputWindowHandle>& inputWindowHandle,
206            const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0;
207
208    /* Notifies the policy about switch events.
209     */
210    virtual void notifySwitch(nsecs_t when,
211            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
212
213    /* Poke user activity for an event dispatched to a window. */
214    virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0;
215
216    /* Checks whether a given application pid/uid has permission to inject input events
217     * into other applications.
218     *
219     * This method is special in that its implementation promises to be non-reentrant and
220     * is safe to call while holding other locks.  (Most other methods make no such guarantees!)
221     */
222    virtual bool checkInjectEventsPermissionNonReentrant(
223            int32_t injectorPid, int32_t injectorUid) = 0;
224};
225
226
227/* Notifies the system about input events generated by the input reader.
228 * The dispatcher is expected to be mostly asynchronous. */
229class InputDispatcherInterface : public virtual RefBase {
230protected:
231    InputDispatcherInterface() { }
232    virtual ~InputDispatcherInterface() { }
233
234public:
235    /* Dumps the state of the input dispatcher.
236     *
237     * This method may be called on any thread (usually by the input manager). */
238    virtual void dump(String8& dump) = 0;
239
240    /* Runs a single iteration of the dispatch loop.
241     * Nominally processes one queued event, a timeout, or a response from an input consumer.
242     *
243     * This method should only be called on the input dispatcher thread.
244     */
245    virtual void dispatchOnce() = 0;
246
247    /* Notifies the dispatcher about new events.
248     *
249     * These methods should only be called on the input reader thread.
250     */
251    virtual void notifyConfigurationChanged(nsecs_t eventTime) = 0;
252    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
253            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
254            int32_t scanCode, int32_t metaState, nsecs_t downTime) = 0;
255    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
256            uint32_t policyFlags, int32_t action, int32_t flags,
257            int32_t metaState, int32_t edgeFlags,
258            uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
259            float xPrecision, float yPrecision, nsecs_t downTime) = 0;
260    virtual void notifySwitch(nsecs_t when,
261            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
262
263    /* Injects an input event and optionally waits for sync.
264     * The synchronization mode determines whether the method blocks while waiting for
265     * input injection to proceed.
266     * Returns one of the INPUT_EVENT_INJECTION_XXX constants.
267     *
268     * This method may be called on any thread (usually by the input manager).
269     */
270    virtual int32_t injectInputEvent(const InputEvent* event,
271            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) = 0;
272
273    /* Sets the list of input windows.
274     *
275     * This method may be called on any thread (usually by the input manager).
276     */
277    virtual void setInputWindows(const Vector<InputWindow>& inputWindows) = 0;
278
279    /* Sets the focused application.
280     *
281     * This method may be called on any thread (usually by the input manager).
282     */
283    virtual void setFocusedApplication(const InputApplication* inputApplication) = 0;
284
285    /* Sets the input dispatching mode.
286     *
287     * This method may be called on any thread (usually by the input manager).
288     */
289    virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;
290
291    /* Transfers touch focus from the window associated with one channel to the
292     * window associated with the other channel.
293     *
294     * Returns true on success.  False if the window did not actually have touch focus.
295     */
296    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
297            const sp<InputChannel>& toChannel) = 0;
298
299    /* Registers or unregister input channels that may be used as targets for input events.
300     * If monitor is true, the channel will receive a copy of all input events.
301     *
302     * These methods may be called on any thread (usually by the input manager).
303     */
304    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
305            const sp<InputWindowHandle>& inputWindowHandle, bool monitor) = 0;
306    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
307};
308
309/* Dispatches events to input targets.  Some functions of the input dispatcher, such as
310 * identifying input targets, are controlled by a separate policy object.
311 *
312 * IMPORTANT INVARIANT:
313 *     Because the policy can potentially block or cause re-entrance into the input dispatcher,
314 *     the input dispatcher never calls into the policy while holding its internal locks.
315 *     The implementation is also carefully designed to recover from scenarios such as an
316 *     input channel becoming unregistered while identifying input targets or processing timeouts.
317 *
318 *     Methods marked 'Locked' must be called with the lock acquired.
319 *
320 *     Methods marked 'LockedInterruptible' must be called with the lock acquired but
321 *     may during the course of their execution release the lock, call into the policy, and
322 *     then reacquire the lock.  The caller is responsible for recovering gracefully.
323 *
324 *     A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
325 */
326class InputDispatcher : public InputDispatcherInterface {
327protected:
328    virtual ~InputDispatcher();
329
330public:
331    explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);
332
333    virtual void dump(String8& dump);
334
335    virtual void dispatchOnce();
336
337    virtual void notifyConfigurationChanged(nsecs_t eventTime);
338    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
339            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
340            int32_t scanCode, int32_t metaState, nsecs_t downTime);
341    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
342            uint32_t policyFlags, int32_t action, int32_t flags,
343            int32_t metaState, int32_t edgeFlags,
344            uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
345            float xPrecision, float yPrecision, nsecs_t downTime);
346    virtual void notifySwitch(nsecs_t when,
347            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) ;
348
349    virtual int32_t injectInputEvent(const InputEvent* event,
350            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis);
351
352    virtual void setInputWindows(const Vector<InputWindow>& inputWindows);
353    virtual void setFocusedApplication(const InputApplication* inputApplication);
354    virtual void setInputDispatchMode(bool enabled, bool frozen);
355
356    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
357            const sp<InputChannel>& toChannel);
358
359    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
360            const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
361    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);
362
363private:
364    template <typename T>
365    struct Link {
366        T* next;
367        T* prev;
368    };
369
370    struct InjectionState {
371        mutable int32_t refCount;
372
373        int32_t injectorPid;
374        int32_t injectorUid;
375        int32_t injectionResult;  // initially INPUT_EVENT_INJECTION_PENDING
376        bool injectionIsAsync; // set to true if injection is not waiting for the result
377        int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress
378    };
379
380    struct EventEntry : Link<EventEntry> {
381        enum {
382            TYPE_SENTINEL,
383            TYPE_CONFIGURATION_CHANGED,
384            TYPE_KEY,
385            TYPE_MOTION
386        };
387
388        mutable int32_t refCount;
389        int32_t type;
390        nsecs_t eventTime;
391        uint32_t policyFlags;
392        InjectionState* injectionState;
393
394        bool dispatchInProgress; // initially false, set to true while dispatching
395
396        inline bool isInjected() const { return injectionState != NULL; }
397    };
398
399    struct ConfigurationChangedEntry : EventEntry {
400    };
401
402    struct KeyEntry : EventEntry {
403        int32_t deviceId;
404        uint32_t source;
405        int32_t action;
406        int32_t flags;
407        int32_t keyCode;
408        int32_t scanCode;
409        int32_t metaState;
410        int32_t repeatCount;
411        nsecs_t downTime;
412
413        bool syntheticRepeat; // set to true for synthetic key repeats
414
415        enum InterceptKeyResult {
416            INTERCEPT_KEY_RESULT_UNKNOWN,
417            INTERCEPT_KEY_RESULT_SKIP,
418            INTERCEPT_KEY_RESULT_CONTINUE,
419        };
420        InterceptKeyResult interceptKeyResult; // set based on the interception result
421    };
422
423    struct MotionSample {
424        MotionSample* next;
425
426        nsecs_t eventTime; // may be updated during coalescing
427        nsecs_t eventTimeBeforeCoalescing; // not updated during coalescing
428        PointerCoords pointerCoords[MAX_POINTERS];
429    };
430
431    struct MotionEntry : EventEntry {
432        int32_t deviceId;
433        uint32_t source;
434        int32_t action;
435        int32_t flags;
436        int32_t metaState;
437        int32_t edgeFlags;
438        float xPrecision;
439        float yPrecision;
440        nsecs_t downTime;
441        uint32_t pointerCount;
442        int32_t pointerIds[MAX_POINTERS];
443
444        // Linked list of motion samples associated with this motion event.
445        MotionSample firstSample;
446        MotionSample* lastSample;
447
448        uint32_t countSamples() const;
449
450        // Checks whether we can append samples, assuming the device id and source are the same.
451        bool canAppendSamples(int32_t action, uint32_t pointerCount,
452                const int32_t* pointerIds) const;
453    };
454
455    // Tracks the progress of dispatching a particular event to a particular connection.
456    struct DispatchEntry : Link<DispatchEntry> {
457        EventEntry* eventEntry; // the event to dispatch
458        int32_t targetFlags;
459        float xOffset;
460        float yOffset;
461        float scaleFactor;
462
463        // True if dispatch has started.
464        bool inProgress;
465
466        // For motion events:
467        //   Pointer to the first motion sample to dispatch in this cycle.
468        //   Usually NULL to indicate that the list of motion samples begins at
469        //   MotionEntry::firstSample.  Otherwise, some samples were dispatched in a previous
470        //   cycle and this pointer indicates the location of the first remainining sample
471        //   to dispatch during the current cycle.
472        MotionSample* headMotionSample;
473        //   Pointer to a motion sample to dispatch in the next cycle if the dispatcher was
474        //   unable to send all motion samples during this cycle.  On the next cycle,
475        //   headMotionSample will be initialized to tailMotionSample and tailMotionSample
476        //   will be set to NULL.
477        MotionSample* tailMotionSample;
478
479        inline bool hasForegroundTarget() const {
480            return targetFlags & InputTarget::FLAG_FOREGROUND;
481        }
482
483        inline bool isSplit() const {
484            return targetFlags & InputTarget::FLAG_SPLIT;
485        }
486    };
487
488    // A command entry captures state and behavior for an action to be performed in the
489    // dispatch loop after the initial processing has taken place.  It is essentially
490    // a kind of continuation used to postpone sensitive policy interactions to a point
491    // in the dispatch loop where it is safe to release the lock (generally after finishing
492    // the critical parts of the dispatch cycle).
493    //
494    // The special thing about commands is that they can voluntarily release and reacquire
495    // the dispatcher lock at will.  Initially when the command starts running, the
496    // dispatcher lock is held.  However, if the command needs to call into the policy to
497    // do some work, it can release the lock, do the work, then reacquire the lock again
498    // before returning.
499    //
500    // This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
501    // never calls into the policy while holding its lock.
502    //
503    // Commands are implicitly 'LockedInterruptible'.
504    struct CommandEntry;
505    typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);
506
507    class Connection;
508    struct CommandEntry : Link<CommandEntry> {
509        CommandEntry();
510        ~CommandEntry();
511
512        Command command;
513
514        // parameters for the command (usage varies by command)
515        sp<Connection> connection;
516        nsecs_t eventTime;
517        KeyEntry* keyEntry;
518        sp<InputChannel> inputChannel;
519        sp<InputApplicationHandle> inputApplicationHandle;
520        sp<InputWindowHandle> inputWindowHandle;
521        int32_t userActivityEventType;
522        bool handled;
523    };
524
525    // Generic queue implementation.
526    template <typename T>
527    struct Queue {
528        T headSentinel;
529        T tailSentinel;
530
531        inline Queue() {
532            headSentinel.prev = NULL;
533            headSentinel.next = & tailSentinel;
534            tailSentinel.prev = & headSentinel;
535            tailSentinel.next = NULL;
536        }
537
538        inline bool isEmpty() const {
539            return headSentinel.next == & tailSentinel;
540        }
541
542        inline void enqueueAtTail(T* entry) {
543            T* last = tailSentinel.prev;
544            last->next = entry;
545            entry->prev = last;
546            entry->next = & tailSentinel;
547            tailSentinel.prev = entry;
548        }
549
550        inline void enqueueAtHead(T* entry) {
551            T* first = headSentinel.next;
552            headSentinel.next = entry;
553            entry->prev = & headSentinel;
554            entry->next = first;
555            first->prev = entry;
556        }
557
558        inline void dequeue(T* entry) {
559            entry->prev->next = entry->next;
560            entry->next->prev = entry->prev;
561        }
562
563        inline T* dequeueAtHead() {
564            T* first = headSentinel.next;
565            dequeue(first);
566            return first;
567        }
568
569        uint32_t count() const;
570    };
571
572    /* Allocates queue entries and performs reference counting as needed. */
573    class Allocator {
574    public:
575        Allocator();
576
577        InjectionState* obtainInjectionState(int32_t injectorPid, int32_t injectorUid);
578        ConfigurationChangedEntry* obtainConfigurationChangedEntry(nsecs_t eventTime);
579        KeyEntry* obtainKeyEntry(nsecs_t eventTime,
580                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
581                int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
582                int32_t repeatCount, nsecs_t downTime);
583        MotionEntry* obtainMotionEntry(nsecs_t eventTime,
584                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
585                int32_t flags, int32_t metaState, int32_t edgeFlags,
586                float xPrecision, float yPrecision,
587                nsecs_t downTime, uint32_t pointerCount,
588                const int32_t* pointerIds, const PointerCoords* pointerCoords);
589        DispatchEntry* obtainDispatchEntry(EventEntry* eventEntry,
590                int32_t targetFlags, float xOffset, float yOffset, float scaleFactor);
591        CommandEntry* obtainCommandEntry(Command command);
592
593        void releaseInjectionState(InjectionState* injectionState);
594        void releaseEventEntry(EventEntry* entry);
595        void releaseConfigurationChangedEntry(ConfigurationChangedEntry* entry);
596        void releaseKeyEntry(KeyEntry* entry);
597        void releaseMotionEntry(MotionEntry* entry);
598        void releaseDispatchEntry(DispatchEntry* entry);
599        void releaseCommandEntry(CommandEntry* entry);
600
601        void recycleKeyEntry(KeyEntry* entry);
602
603        void appendMotionSample(MotionEntry* motionEntry,
604                nsecs_t eventTime, const PointerCoords* pointerCoords);
605
606    private:
607        Pool<InjectionState> mInjectionStatePool;
608        Pool<ConfigurationChangedEntry> mConfigurationChangeEntryPool;
609        Pool<KeyEntry> mKeyEntryPool;
610        Pool<MotionEntry> mMotionEntryPool;
611        Pool<MotionSample> mMotionSamplePool;
612        Pool<DispatchEntry> mDispatchEntryPool;
613        Pool<CommandEntry> mCommandEntryPool;
614
615        void initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime,
616                uint32_t policyFlags);
617        void releaseEventEntryInjectionState(EventEntry* entry);
618    };
619
620    /* Specifies which events are to be canceled and why. */
621    struct CancelationOptions {
622        enum Mode {
623            CANCEL_ALL_EVENTS = 0,
624            CANCEL_POINTER_EVENTS = 1,
625            CANCEL_NON_POINTER_EVENTS = 2,
626            CANCEL_FALLBACK_EVENTS = 3,
627        };
628
629        // The criterion to use to determine which events should be canceled.
630        Mode mode;
631
632        // Descriptive reason for the cancelation.
633        const char* reason;
634
635        // The specific keycode of the key event to cancel, or -1 to cancel any key event.
636        int32_t keyCode;
637
638        CancelationOptions(Mode mode, const char* reason) :
639                mode(mode), reason(reason), keyCode(-1) { }
640    };
641
642    /* Tracks dispatched key and motion event state so that cancelation events can be
643     * synthesized when events are dropped. */
644    class InputState {
645    public:
646        InputState();
647        ~InputState();
648
649        // Returns true if there is no state to be canceled.
650        bool isNeutral() const;
651
652        // Records tracking information for an event that has just been published.
653        void trackEvent(const EventEntry* entry);
654
655        // Records tracking information for a key event that has just been published.
656        void trackKey(const KeyEntry* entry);
657
658        // Records tracking information for a motion event that has just been published.
659        void trackMotion(const MotionEntry* entry);
660
661        // Synthesizes cancelation events for the current state and resets the tracked state.
662        void synthesizeCancelationEvents(nsecs_t currentTime, Allocator* allocator,
663                Vector<EventEntry*>& outEvents, const CancelationOptions& options);
664
665        // Clears the current state.
666        void clear();
667
668        // Copies pointer-related parts of the input state to another instance.
669        void copyPointerStateTo(InputState& other) const;
670
671        // Gets the fallback key associated with a keycode.
672        // Returns -1 if none.
673        // Returns AKEYCODE_UNKNOWN if we are only dispatching the unhandled key to the policy.
674        int32_t getFallbackKey(int32_t originalKeyCode);
675
676        // Sets the fallback key for a particular keycode.
677        void setFallbackKey(int32_t originalKeyCode, int32_t fallbackKeyCode);
678
679        // Removes the fallback key for a particular keycode.
680        void removeFallbackKey(int32_t originalKeyCode);
681
682        inline const KeyedVector<int32_t, int32_t>& getFallbackKeys() const {
683            return mFallbackKeys;
684        }
685
686    private:
687        struct KeyMemento {
688            int32_t deviceId;
689            uint32_t source;
690            int32_t keyCode;
691            int32_t scanCode;
692            int32_t flags;
693            nsecs_t downTime;
694        };
695
696        struct MotionMemento {
697            int32_t deviceId;
698            uint32_t source;
699            float xPrecision;
700            float yPrecision;
701            nsecs_t downTime;
702            uint32_t pointerCount;
703            int32_t pointerIds[MAX_POINTERS];
704            PointerCoords pointerCoords[MAX_POINTERS];
705
706            void setPointers(const MotionEntry* entry);
707        };
708
709        Vector<KeyMemento> mKeyMementos;
710        Vector<MotionMemento> mMotionMementos;
711        KeyedVector<int32_t, int32_t> mFallbackKeys;
712
713        static bool shouldCancelKey(const KeyMemento& memento,
714                const CancelationOptions& options);
715        static bool shouldCancelMotion(const MotionMemento& memento,
716                const CancelationOptions& options);
717    };
718
719    /* Manages the dispatch state associated with a single input channel. */
720    class Connection : public RefBase {
721    protected:
722        virtual ~Connection();
723
724    public:
725        enum Status {
726            // Everything is peachy.
727            STATUS_NORMAL,
728            // An unrecoverable communication error has occurred.
729            STATUS_BROKEN,
730            // The input channel has been unregistered.
731            STATUS_ZOMBIE
732        };
733
734        Status status;
735        sp<InputChannel> inputChannel; // never null
736        sp<InputWindowHandle> inputWindowHandle; // may be null
737        InputPublisher inputPublisher;
738        InputState inputState;
739        Queue<DispatchEntry> outboundQueue;
740
741        nsecs_t lastEventTime; // the time when the event was originally captured
742        nsecs_t lastDispatchTime; // the time when the last event was dispatched
743
744        explicit Connection(const sp<InputChannel>& inputChannel,
745                const sp<InputWindowHandle>& inputWindowHandle);
746
747        inline const char* getInputChannelName() const { return inputChannel->getName().string(); }
748
749        const char* getStatusLabel() const;
750
751        // Finds a DispatchEntry in the outbound queue associated with the specified event.
752        // Returns NULL if not found.
753        DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const;
754
755        // Gets the time since the current event was originally obtained from the input driver.
756        inline double getEventLatencyMillis(nsecs_t currentTime) const {
757            return (currentTime - lastEventTime) / 1000000.0;
758        }
759
760        // Gets the time since the current event entered the outbound dispatch queue.
761        inline double getDispatchLatencyMillis(nsecs_t currentTime) const {
762            return (currentTime - lastDispatchTime) / 1000000.0;
763        }
764
765        status_t initialize();
766    };
767
768    enum DropReason {
769        DROP_REASON_NOT_DROPPED = 0,
770        DROP_REASON_POLICY = 1,
771        DROP_REASON_APP_SWITCH = 2,
772        DROP_REASON_DISABLED = 3,
773        DROP_REASON_BLOCKED = 4,
774        DROP_REASON_STALE = 5,
775    };
776
777    sp<InputDispatcherPolicyInterface> mPolicy;
778    InputDispatcherConfiguration mConfig;
779
780    Mutex mLock;
781
782    Allocator mAllocator;
783    sp<Looper> mLooper;
784
785    EventEntry* mPendingEvent;
786    Queue<EventEntry> mInboundQueue;
787    Queue<CommandEntry> mCommandQueue;
788
789    Vector<EventEntry*> mTempCancelationEvents;
790
791    void dispatchOnceInnerLocked(nsecs_t* nextWakeupTime);
792
793    // Batches a new sample onto a motion entry.
794    // Assumes that the we have already checked that we can append samples.
795    void batchMotionLocked(MotionEntry* entry, nsecs_t eventTime, int32_t metaState,
796            const PointerCoords* pointerCoords, const char* eventDescription);
797
798    // Enqueues an inbound event.  Returns true if mLooper->wake() should be called.
799    bool enqueueInboundEventLocked(EventEntry* entry);
800
801    // Cleans up input state when dropping an inbound event.
802    void dropInboundEventLocked(EventEntry* entry, DropReason dropReason);
803
804    // App switch latency optimization.
805    bool mAppSwitchSawKeyDown;
806    nsecs_t mAppSwitchDueTime;
807
808    static bool isAppSwitchKeyCode(int32_t keyCode);
809    bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry);
810    bool isAppSwitchPendingLocked();
811    void resetPendingAppSwitchLocked(bool handled);
812
813    // Stale event latency optimization.
814    static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry);
815
816    // Blocked event latency optimization.  Drops old events when the user intends
817    // to transfer focus to a new application.
818    EventEntry* mNextUnblockedEvent;
819
820    const InputWindow* findTouchedWindowAtLocked(int32_t x, int32_t y);
821
822    // All registered connections mapped by receive pipe file descriptor.
823    KeyedVector<int, sp<Connection> > mConnectionsByReceiveFd;
824
825    ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel);
826
827    // Active connections are connections that have a non-empty outbound queue.
828    // We don't use a ref-counted pointer here because we explicitly abort connections
829    // during unregistration which causes the connection's outbound queue to be cleared
830    // and the connection itself to be deactivated.
831    Vector<Connection*> mActiveConnections;
832
833    // Input channels that will receive a copy of all input events.
834    Vector<sp<InputChannel> > mMonitoringChannels;
835
836    // Event injection and synchronization.
837    Condition mInjectionResultAvailableCondition;
838    bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid);
839    void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);
840
841    Condition mInjectionSyncFinishedCondition;
842    void incrementPendingForegroundDispatchesLocked(EventEntry* entry);
843    void decrementPendingForegroundDispatchesLocked(EventEntry* entry);
844
845    // Throttling state.
846    struct ThrottleState {
847        nsecs_t minTimeBetweenEvents;
848
849        nsecs_t lastEventTime;
850        int32_t lastDeviceId;
851        uint32_t lastSource;
852
853        uint32_t originalSampleCount; // only collected during debugging
854    } mThrottleState;
855
856    // Key repeat tracking.
857    struct KeyRepeatState {
858        KeyEntry* lastKeyEntry; // or null if no repeat
859        nsecs_t nextRepeatTime;
860    } mKeyRepeatState;
861
862    void resetKeyRepeatLocked();
863    KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime);
864
865    // Deferred command processing.
866    bool runCommandsLockedInterruptible();
867    CommandEntry* postCommandLocked(Command command);
868
869    // Inbound event processing.
870    void drainInboundQueueLocked();
871    void releasePendingEventLocked();
872    void releaseInboundEventLocked(EventEntry* entry);
873
874    // Dispatch state.
875    bool mDispatchEnabled;
876    bool mDispatchFrozen;
877
878    Vector<InputWindow> mWindows;
879
880    const InputWindow* getWindowLocked(const sp<InputChannel>& inputChannel);
881
882    // Focus tracking for keys, trackball, etc.
883    const InputWindow* mFocusedWindow;
884
885    // Focus tracking for touch.
886    struct TouchedWindow {
887        const InputWindow* window;
888        int32_t targetFlags;
889        BitSet32 pointerIds;        // zero unless target flag FLAG_SPLIT is set
890        sp<InputChannel> channel;
891    };
892    struct TouchState {
893        bool down;
894        bool split;
895        int32_t deviceId; // id of the device that is currently down, others are rejected
896        uint32_t source;  // source of the device that is current down, others are rejected
897        Vector<TouchedWindow> windows;
898
899        TouchState();
900        ~TouchState();
901        void reset();
902        void copyFrom(const TouchState& other);
903        void addOrUpdateWindow(const InputWindow* window, int32_t targetFlags, BitSet32 pointerIds);
904        void removeOutsideTouchWindows();
905        const InputWindow* getFirstForegroundWindow();
906    };
907
908    TouchState mTouchState;
909    TouchState mTempTouchState;
910
911    // Focused application.
912    InputApplication* mFocusedApplication;
913    InputApplication mFocusedApplicationStorage; // preallocated storage for mFocusedApplication
914    void releaseFocusedApplicationLocked();
915
916    // Dispatch inbound events.
917    bool dispatchConfigurationChangedLocked(
918            nsecs_t currentTime, ConfigurationChangedEntry* entry);
919    bool dispatchKeyLocked(
920            nsecs_t currentTime, KeyEntry* entry,
921            DropReason* dropReason, nsecs_t* nextWakeupTime);
922    bool dispatchMotionLocked(
923            nsecs_t currentTime, MotionEntry* entry,
924            DropReason* dropReason, nsecs_t* nextWakeupTime);
925    void dispatchEventToCurrentInputTargetsLocked(
926            nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample);
927
928    void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
929    void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);
930
931    // The input targets that were most recently identified for dispatch.
932    bool mCurrentInputTargetsValid; // false while targets are being recomputed
933    Vector<InputTarget> mCurrentInputTargets;
934
935    enum InputTargetWaitCause {
936        INPUT_TARGET_WAIT_CAUSE_NONE,
937        INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
938        INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
939    };
940
941    InputTargetWaitCause mInputTargetWaitCause;
942    nsecs_t mInputTargetWaitStartTime;
943    nsecs_t mInputTargetWaitTimeoutTime;
944    bool mInputTargetWaitTimeoutExpired;
945    sp<InputApplicationHandle> mInputTargetWaitApplication;
946
947    // Finding targets for input events.
948    void resetTargetsLocked();
949    void commitTargetsLocked();
950    int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
951            const InputApplication* application, const InputWindow* window,
952            nsecs_t* nextWakeupTime);
953    void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
954            const sp<InputChannel>& inputChannel);
955    nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime);
956    void resetANRTimeoutsLocked();
957
958    int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry,
959            nsecs_t* nextWakeupTime);
960    int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry,
961            nsecs_t* nextWakeupTime, bool* outConflictingPointerActions);
962
963    void addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
964            BitSet32 pointerIds);
965    void addMonitoringTargetsLocked();
966    void pokeUserActivityLocked(const EventEntry* eventEntry);
967    bool checkInjectionPermission(const InputWindow* window, const InjectionState* injectionState);
968    bool isWindowObscuredAtPointLocked(const InputWindow* window, int32_t x, int32_t y) const;
969    bool isWindowFinishedWithPreviousInputLocked(const InputWindow* window);
970    String8 getApplicationWindowLabelLocked(const InputApplication* application,
971            const InputWindow* window);
972
973    // Manage the dispatch cycle for a single connection.
974    // These methods are deliberately not Interruptible because doing all of the work
975    // with the mutex held makes it easier to ensure that connection invariants are maintained.
976    // If needed, the methods post commands to run later once the critical bits are done.
977    void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
978            EventEntry* eventEntry, const InputTarget* inputTarget,
979            bool resumeWithAppendedMotionSample);
980    void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
981    void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
982            bool handled);
983    void startNextDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
984    void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
985    void drainOutboundQueueLocked(Connection* connection);
986    static int handleReceiveCallback(int receiveFd, int events, void* data);
987
988    void synthesizeCancelationEventsForAllConnectionsLocked(
989            const CancelationOptions& options);
990    void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel,
991            const CancelationOptions& options);
992    void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection,
993            const CancelationOptions& options);
994
995    // Splitting motion events across windows.
996    MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds);
997
998    // Reset and drop everything the dispatcher is doing.
999    void resetAndDropEverythingLocked(const char* reason);
1000
1001    // Dump state.
1002    void dumpDispatchStateLocked(String8& dump);
1003    void logDispatchStateLocked();
1004
1005    // Add or remove a connection to the mActiveConnections vector.
1006    void activateConnectionLocked(Connection* connection);
1007    void deactivateConnectionLocked(Connection* connection);
1008
1009    // Interesting events that we might like to log or tell the framework about.
1010    void onDispatchCycleStartedLocked(
1011            nsecs_t currentTime, const sp<Connection>& connection);
1012    void onDispatchCycleFinishedLocked(
1013            nsecs_t currentTime, const sp<Connection>& connection, bool handled);
1014    void onDispatchCycleBrokenLocked(
1015            nsecs_t currentTime, const sp<Connection>& connection);
1016    void onANRLocked(
1017            nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
1018            nsecs_t eventTime, nsecs_t waitStartTime);
1019
1020    // Outbound policy interactions.
1021    void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
1022    void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
1023    void doNotifyANRLockedInterruptible(CommandEntry* commandEntry);
1024    void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
1025    void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry);
1026    void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
1027    void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry);
1028
1029    // Statistics gathering.
1030    void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
1031            int32_t injectionResult, nsecs_t timeSpentWaitingForApplication);
1032};
1033
1034/* Enqueues and dispatches input events, endlessly. */
1035class InputDispatcherThread : public Thread {
1036public:
1037    explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
1038    ~InputDispatcherThread();
1039
1040private:
1041    virtual bool threadLoop();
1042
1043    sp<InputDispatcherInterface> mDispatcher;
1044};
1045
1046} // namespace android
1047
1048#endif // _UI_INPUT_DISPATCHER_H
1049