InputDispatcher.h revision cc4f7db698f88b633a286d8ab1105b28a474cd09
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef _UI_INPUT_DISPATCHER_H
18#define _UI_INPUT_DISPATCHER_H
19
20#include <ui/Input.h>
21#include <ui/InputTransport.h>
22#include <utils/KeyedVector.h>
23#include <utils/Vector.h>
24#include <utils/threads.h>
25#include <utils/Timers.h>
26#include <utils/RefBase.h>
27#include <utils/String8.h>
28#include <utils/Looper.h>
29#include <utils/BitSet.h>
30
31#include <stddef.h>
32#include <unistd.h>
33#include <limits.h>
34
35#include "InputWindow.h"
36#include "InputApplication.h"
37#include "InputListener.h"
38
39
40namespace android {
41
42/*
43 * Constants used to report the outcome of input event injection.
44 */
45enum {
46    /* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
47    INPUT_EVENT_INJECTION_PENDING = -1,
48
49    /* Injection succeeded. */
50    INPUT_EVENT_INJECTION_SUCCEEDED = 0,
51
52    /* Injection failed because the injector did not have permission to inject
53     * into the application with input focus. */
54    INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,
55
56    /* Injection failed because there were no available input targets. */
57    INPUT_EVENT_INJECTION_FAILED = 2,
58
59    /* Injection failed due to a timeout. */
60    INPUT_EVENT_INJECTION_TIMED_OUT = 3
61};
62
63/*
64 * Constants used to determine the input event injection synchronization mode.
65 */
66enum {
67    /* Injection is asynchronous and is assumed always to be successful. */
68    INPUT_EVENT_INJECTION_SYNC_NONE = 0,
69
70    /* Waits for previous events to be dispatched so that the input dispatcher can determine
71     * whether input event injection willbe permitted based on the current input focus.
72     * Does not wait for the input event to finish processing. */
73    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,
74
75    /* Waits for the input event to be completely processed. */
76    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
77};
78
79
80/*
81 * An input target specifies how an input event is to be dispatched to a particular window
82 * including the window's input channel, control flags, a timeout, and an X / Y offset to
83 * be added to input event coordinates to compensate for the absolute position of the
84 * window area.
85 */
86struct InputTarget {
87    enum {
88        /* This flag indicates that the event is being delivered to a foreground application. */
89        FLAG_FOREGROUND = 1 << 0,
90
91        /* This flag indicates that the target of a MotionEvent is partly or wholly
92         * obscured by another visible window above it.  The motion event should be
93         * delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
94        FLAG_WINDOW_IS_OBSCURED = 1 << 1,
95
96        /* This flag indicates that a motion event is being split across multiple windows. */
97        FLAG_SPLIT = 1 << 2,
98
99        /* This flag indicates that the pointer coordinates dispatched to the application
100         * will be zeroed out to avoid revealing information to an application. This is
101         * used in conjunction with FLAG_DISPATCH_AS_OUTSIDE to prevent apps not sharing
102         * the same UID from watching all touches. */
103        FLAG_ZERO_COORDS = 1 << 3,
104
105        /* This flag indicates that the event should be sent as is.
106         * Should always be set unless the event is to be transmuted. */
107        FLAG_DISPATCH_AS_IS = 1 << 8,
108
109        /* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
110         * of the area of this target and so should instead be delivered as an
111         * AMOTION_EVENT_ACTION_OUTSIDE to this target. */
112        FLAG_DISPATCH_AS_OUTSIDE = 1 << 9,
113
114        /* This flag indicates that a hover sequence is starting in the given window.
115         * The event is transmuted into ACTION_HOVER_ENTER. */
116        FLAG_DISPATCH_AS_HOVER_ENTER = 1 << 10,
117
118        /* This flag indicates that a hover event happened outside of a window which handled
119         * previous hover events, signifying the end of the current hover sequence for that
120         * window.
121         * The event is transmuted into ACTION_HOVER_ENTER. */
122        FLAG_DISPATCH_AS_HOVER_EXIT = 1 << 11,
123
124        /* This flag indicates that the event should be canceled.
125         * It is used to transmute ACTION_MOVE into ACTION_CANCEL when a touch slips
126         * outside of a window. */
127        FLAG_DISPATCH_AS_SLIPPERY_EXIT = 1 << 12,
128
129        /* This flag indicates that the event should be dispatched as an initial down.
130         * It is used to transmute ACTION_MOVE into ACTION_DOWN when a touch slips
131         * into a new window. */
132        FLAG_DISPATCH_AS_SLIPPERY_ENTER = 1 << 13,
133
134        /* Mask for all dispatch modes. */
135        FLAG_DISPATCH_MASK = FLAG_DISPATCH_AS_IS
136                | FLAG_DISPATCH_AS_OUTSIDE
137                | FLAG_DISPATCH_AS_HOVER_ENTER
138                | FLAG_DISPATCH_AS_HOVER_EXIT
139                | FLAG_DISPATCH_AS_SLIPPERY_EXIT
140                | FLAG_DISPATCH_AS_SLIPPERY_ENTER,
141    };
142
143    // The input channel to be targeted.
144    sp<InputChannel> inputChannel;
145
146    // Flags for the input target.
147    int32_t flags;
148
149    // The x and y offset to add to a MotionEvent as it is delivered.
150    // (ignored for KeyEvents)
151    float xOffset, yOffset;
152
153    // Scaling factor to apply to MotionEvent as it is delivered.
154    // (ignored for KeyEvents)
155    float scaleFactor;
156
157    // The subset of pointer ids to include in motion events dispatched to this input target
158    // if FLAG_SPLIT is set.
159    BitSet32 pointerIds;
160};
161
162
163/*
164 * Input dispatcher configuration.
165 *
166 * Specifies various options that modify the behavior of the input dispatcher.
167 */
168struct InputDispatcherConfiguration {
169    // The key repeat initial timeout.
170    nsecs_t keyRepeatTimeout;
171
172    // The key repeat inter-key delay.
173    nsecs_t keyRepeatDelay;
174
175    // The maximum suggested event delivery rate per second.
176    // This value is used to throttle motion event movement actions on a per-device
177    // basis.  It is not intended to be a hard limit.
178    int32_t maxEventsPerSecond;
179
180    InputDispatcherConfiguration() :
181            keyRepeatTimeout(500 * 1000000LL),
182            keyRepeatDelay(50 * 1000000LL),
183            maxEventsPerSecond(60) { }
184};
185
186
187/*
188 * Input dispatcher policy interface.
189 *
190 * The input reader policy is used by the input reader to interact with the Window Manager
191 * and other system components.
192 *
193 * The actual implementation is partially supported by callbacks into the DVM
194 * via JNI.  This interface is also mocked in the unit tests.
195 */
196class InputDispatcherPolicyInterface : public virtual RefBase {
197protected:
198    InputDispatcherPolicyInterface() { }
199    virtual ~InputDispatcherPolicyInterface() { }
200
201public:
202    /* Notifies the system that a configuration change has occurred. */
203    virtual void notifyConfigurationChanged(nsecs_t when) = 0;
204
205    /* Notifies the system that an application is not responding.
206     * Returns a new timeout to continue waiting, or 0 to abort dispatch. */
207    virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle,
208            const sp<InputWindowHandle>& inputWindowHandle) = 0;
209
210    /* Notifies the system that an input channel is unrecoverably broken. */
211    virtual void notifyInputChannelBroken(const sp<InputWindowHandle>& inputWindowHandle) = 0;
212
213    /* Gets the input dispatcher configuration. */
214    virtual void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) = 0;
215
216    /* Returns true if automatic key repeating is enabled. */
217    virtual bool isKeyRepeatEnabled() = 0;
218
219    /* Filters an input event.
220     * Return true to dispatch the event unmodified, false to consume the event.
221     * A filter can also transform and inject events later by passing POLICY_FLAG_FILTERED
222     * to injectInputEvent.
223     */
224    virtual bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) = 0;
225
226    /* Intercepts a key event immediately before queueing it.
227     * The policy can use this method as an opportunity to perform power management functions
228     * and early event preprocessing such as updating policy flags.
229     *
230     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
231     * should be dispatched to applications.
232     */
233    virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0;
234
235    /* Intercepts a touch, trackball or other motion event before queueing it.
236     * The policy can use this method as an opportunity to perform power management functions
237     * and early event preprocessing such as updating policy flags.
238     *
239     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
240     * should be dispatched to applications.
241     */
242    virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0;
243
244    /* Allows the policy a chance to intercept a key before dispatching. */
245    virtual bool interceptKeyBeforeDispatching(const sp<InputWindowHandle>& inputWindowHandle,
246            const KeyEvent* keyEvent, uint32_t policyFlags) = 0;
247
248    /* Allows the policy a chance to perform default processing for an unhandled key.
249     * Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */
250    virtual bool dispatchUnhandledKey(const sp<InputWindowHandle>& inputWindowHandle,
251            const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0;
252
253    /* Notifies the policy about switch events.
254     */
255    virtual void notifySwitch(nsecs_t when,
256            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
257
258    /* Poke user activity for an event dispatched to a window. */
259    virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0;
260
261    /* Checks whether a given application pid/uid has permission to inject input events
262     * into other applications.
263     *
264     * This method is special in that its implementation promises to be non-reentrant and
265     * is safe to call while holding other locks.  (Most other methods make no such guarantees!)
266     */
267    virtual bool checkInjectEventsPermissionNonReentrant(
268            int32_t injectorPid, int32_t injectorUid) = 0;
269};
270
271
272/* Notifies the system about input events generated by the input reader.
273 * The dispatcher is expected to be mostly asynchronous. */
274class InputDispatcherInterface : public virtual RefBase, public InputListenerInterface {
275protected:
276    InputDispatcherInterface() { }
277    virtual ~InputDispatcherInterface() { }
278
279public:
280    /* Dumps the state of the input dispatcher.
281     *
282     * This method may be called on any thread (usually by the input manager). */
283    virtual void dump(String8& dump) = 0;
284
285    /* Called by the heatbeat to ensures that the dispatcher has not deadlocked. */
286    virtual void monitor() = 0;
287
288    /* Runs a single iteration of the dispatch loop.
289     * Nominally processes one queued event, a timeout, or a response from an input consumer.
290     *
291     * This method should only be called on the input dispatcher thread.
292     */
293    virtual void dispatchOnce() = 0;
294
295    /* Injects an input event and optionally waits for sync.
296     * The synchronization mode determines whether the method blocks while waiting for
297     * input injection to proceed.
298     * Returns one of the INPUT_EVENT_INJECTION_XXX constants.
299     *
300     * This method may be called on any thread (usually by the input manager).
301     */
302    virtual int32_t injectInputEvent(const InputEvent* event,
303            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
304            uint32_t policyFlags) = 0;
305
306    /* Sets the list of input windows.
307     *
308     * This method may be called on any thread (usually by the input manager).
309     */
310    virtual void setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles) = 0;
311
312    /* Sets the focused application.
313     *
314     * This method may be called on any thread (usually by the input manager).
315     */
316    virtual void setFocusedApplication(
317            const sp<InputApplicationHandle>& inputApplicationHandle) = 0;
318
319    /* Sets the input dispatching mode.
320     *
321     * This method may be called on any thread (usually by the input manager).
322     */
323    virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;
324
325    /* Sets whether input event filtering is enabled.
326     * When enabled, incoming input events are sent to the policy's filterInputEvent
327     * method instead of being dispatched.  The filter is expected to use
328     * injectInputEvent to inject the events it would like to have dispatched.
329     * It should include POLICY_FLAG_FILTERED in the policy flags during injection.
330     */
331    virtual void setInputFilterEnabled(bool enabled) = 0;
332
333    /* Transfers touch focus from the window associated with one channel to the
334     * window associated with the other channel.
335     *
336     * Returns true on success.  False if the window did not actually have touch focus.
337     */
338    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
339            const sp<InputChannel>& toChannel) = 0;
340
341    /* Registers or unregister input channels that may be used as targets for input events.
342     * If monitor is true, the channel will receive a copy of all input events.
343     *
344     * These methods may be called on any thread (usually by the input manager).
345     */
346    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
347            const sp<InputWindowHandle>& inputWindowHandle, bool monitor) = 0;
348    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
349};
350
351/* Dispatches events to input targets.  Some functions of the input dispatcher, such as
352 * identifying input targets, are controlled by a separate policy object.
353 *
354 * IMPORTANT INVARIANT:
355 *     Because the policy can potentially block or cause re-entrance into the input dispatcher,
356 *     the input dispatcher never calls into the policy while holding its internal locks.
357 *     The implementation is also carefully designed to recover from scenarios such as an
358 *     input channel becoming unregistered while identifying input targets or processing timeouts.
359 *
360 *     Methods marked 'Locked' must be called with the lock acquired.
361 *
362 *     Methods marked 'LockedInterruptible' must be called with the lock acquired but
363 *     may during the course of their execution release the lock, call into the policy, and
364 *     then reacquire the lock.  The caller is responsible for recovering gracefully.
365 *
366 *     A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
367 */
368class InputDispatcher : public InputDispatcherInterface {
369protected:
370    virtual ~InputDispatcher();
371
372public:
373    explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);
374
375    virtual void dump(String8& dump);
376    virtual void monitor();
377
378    virtual void dispatchOnce();
379
380    virtual void notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args);
381    virtual void notifyKey(const NotifyKeyArgs* args);
382    virtual void notifyMotion(const NotifyMotionArgs* args);
383    virtual void notifySwitch(const NotifySwitchArgs* args);
384    virtual void notifyDeviceReset(const NotifyDeviceResetArgs* args);
385
386    virtual int32_t injectInputEvent(const InputEvent* event,
387            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
388            uint32_t policyFlags);
389
390    virtual void setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles);
391    virtual void setFocusedApplication(const sp<InputApplicationHandle>& inputApplicationHandle);
392    virtual void setInputDispatchMode(bool enabled, bool frozen);
393    virtual void setInputFilterEnabled(bool enabled);
394
395    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
396            const sp<InputChannel>& toChannel);
397
398    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
399            const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
400    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);
401
402private:
403    template <typename T>
404    struct Link {
405        T* next;
406        T* prev;
407    };
408
409    struct InjectionState {
410        mutable int32_t refCount;
411
412        int32_t injectorPid;
413        int32_t injectorUid;
414        int32_t injectionResult;  // initially INPUT_EVENT_INJECTION_PENDING
415        bool injectionIsAsync; // set to true if injection is not waiting for the result
416        int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress
417
418        InjectionState(int32_t injectorPid, int32_t injectorUid);
419        void release();
420
421    private:
422        ~InjectionState();
423    };
424
425    struct EventEntry : Link<EventEntry> {
426        enum {
427            TYPE_CONFIGURATION_CHANGED,
428            TYPE_DEVICE_RESET,
429            TYPE_KEY,
430            TYPE_MOTION
431        };
432
433        mutable int32_t refCount;
434        int32_t type;
435        nsecs_t eventTime;
436        uint32_t policyFlags;
437        InjectionState* injectionState;
438
439        bool dispatchInProgress; // initially false, set to true while dispatching
440
441        inline bool isInjected() const { return injectionState != NULL; }
442
443        void release();
444
445    protected:
446        EventEntry(int32_t type, nsecs_t eventTime, uint32_t policyFlags);
447        virtual ~EventEntry();
448        void releaseInjectionState();
449    };
450
451    struct ConfigurationChangedEntry : EventEntry {
452        ConfigurationChangedEntry(nsecs_t eventTime);
453
454    protected:
455        virtual ~ConfigurationChangedEntry();
456    };
457
458    struct DeviceResetEntry : EventEntry {
459        int32_t deviceId;
460
461        DeviceResetEntry(nsecs_t eventTime, int32_t deviceId);
462
463    protected:
464        virtual ~DeviceResetEntry();
465    };
466
467    struct KeyEntry : EventEntry {
468        int32_t deviceId;
469        uint32_t source;
470        int32_t action;
471        int32_t flags;
472        int32_t keyCode;
473        int32_t scanCode;
474        int32_t metaState;
475        int32_t repeatCount;
476        nsecs_t downTime;
477
478        bool syntheticRepeat; // set to true for synthetic key repeats
479
480        enum InterceptKeyResult {
481            INTERCEPT_KEY_RESULT_UNKNOWN,
482            INTERCEPT_KEY_RESULT_SKIP,
483            INTERCEPT_KEY_RESULT_CONTINUE,
484        };
485        InterceptKeyResult interceptKeyResult; // set based on the interception result
486
487        KeyEntry(nsecs_t eventTime,
488                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
489                int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
490                int32_t repeatCount, nsecs_t downTime);
491        void recycle();
492
493    protected:
494        virtual ~KeyEntry();
495    };
496
497    struct MotionSample {
498        MotionSample* next;
499
500        nsecs_t eventTime; // may be updated during coalescing
501        nsecs_t eventTimeBeforeCoalescing; // not updated during coalescing
502        PointerCoords pointerCoords[MAX_POINTERS];
503
504        MotionSample(nsecs_t eventTime, const PointerCoords* pointerCoords,
505                uint32_t pointerCount);
506    };
507
508    struct MotionEntry : EventEntry {
509        int32_t deviceId;
510        uint32_t source;
511        int32_t action;
512        int32_t flags;
513        int32_t metaState;
514        int32_t buttonState;
515        int32_t edgeFlags;
516        float xPrecision;
517        float yPrecision;
518        nsecs_t downTime;
519        uint32_t pointerCount;
520        PointerProperties pointerProperties[MAX_POINTERS];
521
522        // Linked list of motion samples associated with this motion event.
523        MotionSample firstSample;
524        MotionSample* lastSample;
525
526        MotionEntry(nsecs_t eventTime,
527                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
528                int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags,
529                float xPrecision, float yPrecision,
530                nsecs_t downTime, uint32_t pointerCount,
531                const PointerProperties* pointerProperties, const PointerCoords* pointerCoords);
532
533        uint32_t countSamples() const;
534
535        // Checks whether we can append samples, assuming the device id and source are the same.
536        bool canAppendSamples(int32_t action, uint32_t pointerCount,
537                const PointerProperties* pointerProperties) const;
538
539        void appendSample(nsecs_t eventTime, const PointerCoords* pointerCoords);
540
541    protected:
542        virtual ~MotionEntry();
543    };
544
545    // Tracks the progress of dispatching a particular event to a particular connection.
546    struct DispatchEntry : Link<DispatchEntry> {
547        EventEntry* eventEntry; // the event to dispatch
548        int32_t targetFlags;
549        float xOffset;
550        float yOffset;
551        float scaleFactor;
552
553        // True if dispatch has started.
554        bool inProgress;
555
556        // Set to the resolved action and flags when the event is enqueued.
557        int32_t resolvedAction;
558        int32_t resolvedFlags;
559
560        // For motion events:
561        //   Pointer to the first motion sample to dispatch in this cycle.
562        //   Usually NULL to indicate that the list of motion samples begins at
563        //   MotionEntry::firstSample.  Otherwise, some samples were dispatched in a previous
564        //   cycle and this pointer indicates the location of the first remainining sample
565        //   to dispatch during the current cycle.
566        MotionSample* headMotionSample;
567        //   Pointer to a motion sample to dispatch in the next cycle if the dispatcher was
568        //   unable to send all motion samples during this cycle.  On the next cycle,
569        //   headMotionSample will be initialized to tailMotionSample and tailMotionSample
570        //   will be set to NULL.
571        MotionSample* tailMotionSample;
572
573        DispatchEntry(EventEntry* eventEntry,
574                int32_t targetFlags, float xOffset, float yOffset, float scaleFactor);
575        ~DispatchEntry();
576
577        inline bool hasForegroundTarget() const {
578            return targetFlags & InputTarget::FLAG_FOREGROUND;
579        }
580
581        inline bool isSplit() const {
582            return targetFlags & InputTarget::FLAG_SPLIT;
583        }
584    };
585
586    // A command entry captures state and behavior for an action to be performed in the
587    // dispatch loop after the initial processing has taken place.  It is essentially
588    // a kind of continuation used to postpone sensitive policy interactions to a point
589    // in the dispatch loop where it is safe to release the lock (generally after finishing
590    // the critical parts of the dispatch cycle).
591    //
592    // The special thing about commands is that they can voluntarily release and reacquire
593    // the dispatcher lock at will.  Initially when the command starts running, the
594    // dispatcher lock is held.  However, if the command needs to call into the policy to
595    // do some work, it can release the lock, do the work, then reacquire the lock again
596    // before returning.
597    //
598    // This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
599    // never calls into the policy while holding its lock.
600    //
601    // Commands are implicitly 'LockedInterruptible'.
602    struct CommandEntry;
603    typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);
604
605    class Connection;
606    struct CommandEntry : Link<CommandEntry> {
607        CommandEntry(Command command);
608        ~CommandEntry();
609
610        Command command;
611
612        // parameters for the command (usage varies by command)
613        sp<Connection> connection;
614        nsecs_t eventTime;
615        KeyEntry* keyEntry;
616        sp<InputApplicationHandle> inputApplicationHandle;
617        sp<InputWindowHandle> inputWindowHandle;
618        int32_t userActivityEventType;
619        bool handled;
620    };
621
622    // Generic queue implementation.
623    template <typename T>
624    struct Queue {
625        T* head;
626        T* tail;
627
628        inline Queue() : head(NULL), tail(NULL) {
629        }
630
631        inline bool isEmpty() const {
632            return !head;
633        }
634
635        inline void enqueueAtTail(T* entry) {
636            entry->prev = tail;
637            if (tail) {
638                tail->next = entry;
639            } else {
640                head = entry;
641            }
642            entry->next = NULL;
643            tail = entry;
644        }
645
646        inline void enqueueAtHead(T* entry) {
647            entry->next = head;
648            if (head) {
649                head->prev = entry;
650            } else {
651                tail = entry;
652            }
653            entry->prev = NULL;
654            head = entry;
655        }
656
657        inline void dequeue(T* entry) {
658            if (entry->prev) {
659                entry->prev->next = entry->next;
660            } else {
661                head = entry->next;
662            }
663            if (entry->next) {
664                entry->next->prev = entry->prev;
665            } else {
666                tail = entry->prev;
667            }
668        }
669
670        inline T* dequeueAtHead() {
671            T* entry = head;
672            head = entry->next;
673            if (head) {
674                head->prev = NULL;
675            } else {
676                tail = NULL;
677            }
678            return entry;
679        }
680
681        uint32_t count() const;
682    };
683
684    /* Specifies which events are to be canceled and why. */
685    struct CancelationOptions {
686        enum Mode {
687            CANCEL_ALL_EVENTS = 0,
688            CANCEL_POINTER_EVENTS = 1,
689            CANCEL_NON_POINTER_EVENTS = 2,
690            CANCEL_FALLBACK_EVENTS = 3,
691        };
692
693        // The criterion to use to determine which events should be canceled.
694        Mode mode;
695
696        // Descriptive reason for the cancelation.
697        const char* reason;
698
699        // The specific keycode of the key event to cancel, or -1 to cancel any key event.
700        int32_t keyCode;
701
702        // The specific device id of events to cancel, or -1 to cancel events from any device.
703        int32_t deviceId;
704
705        CancelationOptions(Mode mode, const char* reason) :
706                mode(mode), reason(reason), keyCode(-1), deviceId(-1) { }
707    };
708
709    /* Tracks dispatched key and motion event state so that cancelation events can be
710     * synthesized when events are dropped. */
711    class InputState {
712    public:
713        InputState();
714        ~InputState();
715
716        // Returns true if there is no state to be canceled.
717        bool isNeutral() const;
718
719        // Returns true if the specified source is known to have received a hover enter
720        // motion event.
721        bool isHovering(int32_t deviceId, uint32_t source) const;
722
723        // Records tracking information for a key event that has just been published.
724        // Returns true if the event should be delivered, false if it is inconsistent
725        // and should be skipped.
726        bool trackKey(const KeyEntry* entry, int32_t action, int32_t flags);
727
728        // Records tracking information for a motion event that has just been published.
729        // Returns true if the event should be delivered, false if it is inconsistent
730        // and should be skipped.
731        bool trackMotion(const MotionEntry* entry, int32_t action, int32_t flags);
732
733        // Synthesizes cancelation events for the current state and resets the tracked state.
734        void synthesizeCancelationEvents(nsecs_t currentTime,
735                Vector<EventEntry*>& outEvents, const CancelationOptions& options);
736
737        // Clears the current state.
738        void clear();
739
740        // Copies pointer-related parts of the input state to another instance.
741        void copyPointerStateTo(InputState& other) const;
742
743        // Gets the fallback key associated with a keycode.
744        // Returns -1 if none.
745        // Returns AKEYCODE_UNKNOWN if we are only dispatching the unhandled key to the policy.
746        int32_t getFallbackKey(int32_t originalKeyCode);
747
748        // Sets the fallback key for a particular keycode.
749        void setFallbackKey(int32_t originalKeyCode, int32_t fallbackKeyCode);
750
751        // Removes the fallback key for a particular keycode.
752        void removeFallbackKey(int32_t originalKeyCode);
753
754        inline const KeyedVector<int32_t, int32_t>& getFallbackKeys() const {
755            return mFallbackKeys;
756        }
757
758    private:
759        struct KeyMemento {
760            int32_t deviceId;
761            uint32_t source;
762            int32_t keyCode;
763            int32_t scanCode;
764            int32_t flags;
765            nsecs_t downTime;
766        };
767
768        struct MotionMemento {
769            int32_t deviceId;
770            uint32_t source;
771            int32_t flags;
772            float xPrecision;
773            float yPrecision;
774            nsecs_t downTime;
775            uint32_t pointerCount;
776            PointerProperties pointerProperties[MAX_POINTERS];
777            PointerCoords pointerCoords[MAX_POINTERS];
778            bool hovering;
779
780            void setPointers(const MotionEntry* entry);
781        };
782
783        Vector<KeyMemento> mKeyMementos;
784        Vector<MotionMemento> mMotionMementos;
785        KeyedVector<int32_t, int32_t> mFallbackKeys;
786
787        ssize_t findKeyMemento(const KeyEntry* entry) const;
788        ssize_t findMotionMemento(const MotionEntry* entry, bool hovering) const;
789
790        void addKeyMemento(const KeyEntry* entry, int32_t flags);
791        void addMotionMemento(const MotionEntry* entry, int32_t flags, bool hovering);
792
793        static bool shouldCancelKey(const KeyMemento& memento,
794                const CancelationOptions& options);
795        static bool shouldCancelMotion(const MotionMemento& memento,
796                const CancelationOptions& options);
797    };
798
799    /* Manages the dispatch state associated with a single input channel. */
800    class Connection : public RefBase {
801    protected:
802        virtual ~Connection();
803
804    public:
805        enum Status {
806            // Everything is peachy.
807            STATUS_NORMAL,
808            // An unrecoverable communication error has occurred.
809            STATUS_BROKEN,
810            // The input channel has been unregistered.
811            STATUS_ZOMBIE
812        };
813
814        Status status;
815        sp<InputChannel> inputChannel; // never null
816        sp<InputWindowHandle> inputWindowHandle; // may be null
817        bool monitor;
818        InputPublisher inputPublisher;
819        InputState inputState;
820        Queue<DispatchEntry> outboundQueue;
821
822        nsecs_t lastEventTime; // the time when the event was originally captured
823        nsecs_t lastDispatchTime; // the time when the last event was dispatched
824
825        explicit Connection(const sp<InputChannel>& inputChannel,
826                const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
827
828        inline const char* getInputChannelName() const { return inputChannel->getName().string(); }
829
830        const char* getStatusLabel() const;
831
832        // Finds a DispatchEntry in the outbound queue associated with the specified event.
833        // Returns NULL if not found.
834        DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const;
835
836        // Gets the time since the current event was originally obtained from the input driver.
837        inline double getEventLatencyMillis(nsecs_t currentTime) const {
838            return (currentTime - lastEventTime) / 1000000.0;
839        }
840
841        // Gets the time since the current event entered the outbound dispatch queue.
842        inline double getDispatchLatencyMillis(nsecs_t currentTime) const {
843            return (currentTime - lastDispatchTime) / 1000000.0;
844        }
845
846        status_t initialize();
847    };
848
849    enum DropReason {
850        DROP_REASON_NOT_DROPPED = 0,
851        DROP_REASON_POLICY = 1,
852        DROP_REASON_APP_SWITCH = 2,
853        DROP_REASON_DISABLED = 3,
854        DROP_REASON_BLOCKED = 4,
855        DROP_REASON_STALE = 5,
856    };
857
858    sp<InputDispatcherPolicyInterface> mPolicy;
859    InputDispatcherConfiguration mConfig;
860
861    Mutex mLock;
862
863    sp<Looper> mLooper;
864
865    EventEntry* mPendingEvent;
866    Queue<EventEntry> mInboundQueue;
867    Queue<CommandEntry> mCommandQueue;
868
869    Vector<EventEntry*> mTempCancelationEvents;
870
871    void dispatchOnceInnerLocked(nsecs_t* nextWakeupTime);
872    void dispatchIdleLocked();
873
874    // Batches a new sample onto a motion entry.
875    // Assumes that the we have already checked that we can append samples.
876    void batchMotionLocked(MotionEntry* entry, nsecs_t eventTime, int32_t metaState,
877            const PointerCoords* pointerCoords, const char* eventDescription);
878
879    // Enqueues an inbound event.  Returns true if mLooper->wake() should be called.
880    bool enqueueInboundEventLocked(EventEntry* entry);
881
882    // Cleans up input state when dropping an inbound event.
883    void dropInboundEventLocked(EventEntry* entry, DropReason dropReason);
884
885    // App switch latency optimization.
886    bool mAppSwitchSawKeyDown;
887    nsecs_t mAppSwitchDueTime;
888
889    static bool isAppSwitchKeyCode(int32_t keyCode);
890    bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry);
891    bool isAppSwitchPendingLocked();
892    void resetPendingAppSwitchLocked(bool handled);
893
894    // Stale event latency optimization.
895    static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry);
896
897    // Blocked event latency optimization.  Drops old events when the user intends
898    // to transfer focus to a new application.
899    EventEntry* mNextUnblockedEvent;
900
901    sp<InputWindowHandle> findTouchedWindowAtLocked(int32_t x, int32_t y);
902
903    // All registered connections mapped by receive pipe file descriptor.
904    KeyedVector<int, sp<Connection> > mConnectionsByReceiveFd;
905
906    ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel);
907
908    // Active connections are connections that have a non-empty outbound queue.
909    // We don't use a ref-counted pointer here because we explicitly abort connections
910    // during unregistration which causes the connection's outbound queue to be cleared
911    // and the connection itself to be deactivated.
912    Vector<Connection*> mActiveConnections;
913
914    // Input channels that will receive a copy of all input events.
915    Vector<sp<InputChannel> > mMonitoringChannels;
916
917    // Event injection and synchronization.
918    Condition mInjectionResultAvailableCondition;
919    bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid);
920    void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);
921
922    Condition mInjectionSyncFinishedCondition;
923    void incrementPendingForegroundDispatchesLocked(EventEntry* entry);
924    void decrementPendingForegroundDispatchesLocked(EventEntry* entry);
925
926    // Throttling state.
927    struct ThrottleState {
928        nsecs_t minTimeBetweenEvents;
929
930        nsecs_t lastEventTime;
931        int32_t lastDeviceId;
932        uint32_t lastSource;
933
934        uint32_t originalSampleCount; // only collected during debugging
935    } mThrottleState;
936
937    // Key repeat tracking.
938    struct KeyRepeatState {
939        KeyEntry* lastKeyEntry; // or null if no repeat
940        nsecs_t nextRepeatTime;
941    } mKeyRepeatState;
942
943    void resetKeyRepeatLocked();
944    KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime);
945
946    // Deferred command processing.
947    bool runCommandsLockedInterruptible();
948    CommandEntry* postCommandLocked(Command command);
949
950    // Inbound event processing.
951    void drainInboundQueueLocked();
952    void releasePendingEventLocked();
953    void releaseInboundEventLocked(EventEntry* entry);
954
955    // Dispatch state.
956    bool mDispatchEnabled;
957    bool mDispatchFrozen;
958    bool mInputFilterEnabled;
959
960    Vector<sp<InputWindowHandle> > mWindowHandles;
961
962    sp<InputWindowHandle> getWindowHandleLocked(const sp<InputChannel>& inputChannel) const;
963    bool hasWindowHandleLocked(const sp<InputWindowHandle>& windowHandle) const;
964
965    // Focus tracking for keys, trackball, etc.
966    sp<InputWindowHandle> mFocusedWindowHandle;
967
968    // Focus tracking for touch.
969    struct TouchedWindow {
970        sp<InputWindowHandle> windowHandle;
971        int32_t targetFlags;
972        BitSet32 pointerIds;        // zero unless target flag FLAG_SPLIT is set
973    };
974    struct TouchState {
975        bool down;
976        bool split;
977        int32_t deviceId; // id of the device that is currently down, others are rejected
978        uint32_t source;  // source of the device that is current down, others are rejected
979        Vector<TouchedWindow> windows;
980
981        TouchState();
982        ~TouchState();
983        void reset();
984        void copyFrom(const TouchState& other);
985        void addOrUpdateWindow(const sp<InputWindowHandle>& windowHandle,
986                int32_t targetFlags, BitSet32 pointerIds);
987        void filterNonAsIsTouchWindows();
988        sp<InputWindowHandle> getFirstForegroundWindowHandle() const;
989        bool isSlippery() const;
990    };
991
992    TouchState mTouchState;
993    TouchState mTempTouchState;
994
995    // Focused application.
996    sp<InputApplicationHandle> mFocusedApplicationHandle;
997
998    // Dispatch inbound events.
999    bool dispatchConfigurationChangedLocked(
1000            nsecs_t currentTime, ConfigurationChangedEntry* entry);
1001    bool dispatchDeviceResetLocked(
1002            nsecs_t currentTime, DeviceResetEntry* entry);
1003    bool dispatchKeyLocked(
1004            nsecs_t currentTime, KeyEntry* entry,
1005            DropReason* dropReason, nsecs_t* nextWakeupTime);
1006    bool dispatchMotionLocked(
1007            nsecs_t currentTime, MotionEntry* entry,
1008            DropReason* dropReason, nsecs_t* nextWakeupTime);
1009    void dispatchEventToCurrentInputTargetsLocked(
1010            nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample);
1011
1012    void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
1013    void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);
1014
1015    // The input targets that were most recently identified for dispatch.
1016    bool mCurrentInputTargetsValid; // false while targets are being recomputed
1017    Vector<InputTarget> mCurrentInputTargets;
1018
1019    enum InputTargetWaitCause {
1020        INPUT_TARGET_WAIT_CAUSE_NONE,
1021        INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
1022        INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
1023    };
1024
1025    InputTargetWaitCause mInputTargetWaitCause;
1026    nsecs_t mInputTargetWaitStartTime;
1027    nsecs_t mInputTargetWaitTimeoutTime;
1028    bool mInputTargetWaitTimeoutExpired;
1029    sp<InputApplicationHandle> mInputTargetWaitApplicationHandle;
1030
1031    // Contains the last window which received a hover event.
1032    sp<InputWindowHandle> mLastHoverWindowHandle;
1033
1034    // Finding targets for input events.
1035    void resetTargetsLocked();
1036    void commitTargetsLocked();
1037    int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
1038            const sp<InputApplicationHandle>& applicationHandle,
1039            const sp<InputWindowHandle>& windowHandle,
1040            nsecs_t* nextWakeupTime);
1041    void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
1042            const sp<InputChannel>& inputChannel);
1043    nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime);
1044    void resetANRTimeoutsLocked();
1045
1046    int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry,
1047            nsecs_t* nextWakeupTime);
1048    int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry,
1049            nsecs_t* nextWakeupTime, bool* outConflictingPointerActions,
1050            const MotionSample** outSplitBatchAfterSample);
1051
1052    void addWindowTargetLocked(const sp<InputWindowHandle>& windowHandle,
1053            int32_t targetFlags, BitSet32 pointerIds);
1054    void addMonitoringTargetsLocked();
1055    void pokeUserActivityLocked(const EventEntry* eventEntry);
1056    bool checkInjectionPermission(const sp<InputWindowHandle>& windowHandle,
1057            const InjectionState* injectionState);
1058    bool isWindowObscuredAtPointLocked(const sp<InputWindowHandle>& windowHandle,
1059            int32_t x, int32_t y) const;
1060    bool isWindowFinishedWithPreviousInputLocked(const sp<InputWindowHandle>& windowHandle);
1061    String8 getApplicationWindowLabelLocked(const sp<InputApplicationHandle>& applicationHandle,
1062            const sp<InputWindowHandle>& windowHandle);
1063
1064    // Manage the dispatch cycle for a single connection.
1065    // These methods are deliberately not Interruptible because doing all of the work
1066    // with the mutex held makes it easier to ensure that connection invariants are maintained.
1067    // If needed, the methods post commands to run later once the critical bits are done.
1068    void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
1069            EventEntry* eventEntry, const InputTarget* inputTarget,
1070            bool resumeWithAppendedMotionSample);
1071    void enqueueDispatchEntryLocked(const sp<Connection>& connection,
1072            EventEntry* eventEntry, const InputTarget* inputTarget,
1073            bool resumeWithAppendedMotionSample, int32_t dispatchMode);
1074    void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1075    void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
1076            bool handled);
1077    void startNextDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1078    void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
1079            bool notify);
1080    void drainOutboundQueueLocked(Connection* connection);
1081    static int handleReceiveCallback(int receiveFd, int events, void* data);
1082
1083    void synthesizeCancelationEventsForAllConnectionsLocked(
1084            const CancelationOptions& options);
1085    void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel,
1086            const CancelationOptions& options);
1087    void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection,
1088            const CancelationOptions& options);
1089
1090    // Splitting motion events across windows.
1091    MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds);
1092
1093    // Reset and drop everything the dispatcher is doing.
1094    void resetAndDropEverythingLocked(const char* reason);
1095
1096    // Dump state.
1097    void dumpDispatchStateLocked(String8& dump);
1098    void logDispatchStateLocked();
1099
1100    // Registration.
1101    void removeMonitorChannelLocked(const sp<InputChannel>& inputChannel);
1102    status_t unregisterInputChannelLocked(const sp<InputChannel>& inputChannel, bool notify);
1103
1104    // Add or remove a connection to the mActiveConnections vector.
1105    void activateConnectionLocked(Connection* connection);
1106    void deactivateConnectionLocked(Connection* connection);
1107
1108    // Interesting events that we might like to log or tell the framework about.
1109    void onDispatchCycleStartedLocked(
1110            nsecs_t currentTime, const sp<Connection>& connection);
1111    void onDispatchCycleFinishedLocked(
1112            nsecs_t currentTime, const sp<Connection>& connection, bool handled);
1113    void onDispatchCycleBrokenLocked(
1114            nsecs_t currentTime, const sp<Connection>& connection);
1115    void onANRLocked(
1116            nsecs_t currentTime, const sp<InputApplicationHandle>& applicationHandle,
1117            const sp<InputWindowHandle>& windowHandle,
1118            nsecs_t eventTime, nsecs_t waitStartTime);
1119
1120    // Outbound policy interactions.
1121    void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
1122    void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
1123    void doNotifyANRLockedInterruptible(CommandEntry* commandEntry);
1124    void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
1125    void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry);
1126    bool afterKeyEventLockedInterruptible(const sp<Connection>& connection,
1127            DispatchEntry* dispatchEntry, KeyEntry* keyEntry, bool handled);
1128    bool afterMotionEventLockedInterruptible(const sp<Connection>& connection,
1129            DispatchEntry* dispatchEntry, MotionEntry* motionEntry, bool handled);
1130    void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
1131    void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry);
1132
1133    // Statistics gathering.
1134    void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
1135            int32_t injectionResult, nsecs_t timeSpentWaitingForApplication);
1136};
1137
1138/* Enqueues and dispatches input events, endlessly. */
1139class InputDispatcherThread : public Thread {
1140public:
1141    explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
1142    ~InputDispatcherThread();
1143
1144private:
1145    virtual bool threadLoop();
1146
1147    sp<InputDispatcherInterface> mDispatcher;
1148};
1149
1150} // namespace android
1151
1152#endif // _UI_INPUT_DISPATCHER_H
1153