InputReader.cpp revision 1c9d06e0470c41e2720c65be076b6080bf8595c0
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "InputReader"
18
19//#define LOG_NDEBUG 0
20
21// Log debug messages for each raw event received from the EventHub.
22#define DEBUG_RAW_EVENTS 0
23
24// Log debug messages about touch screen filtering hacks.
25#define DEBUG_HACKS 0
26
27// Log debug messages about virtual key processing.
28#define DEBUG_VIRTUAL_KEYS 0
29
30// Log debug messages about pointers.
31#define DEBUG_POINTERS 0
32
33// Log debug messages about pointer assignment calculations.
34#define DEBUG_POINTER_ASSIGNMENT 0
35
36#include "InputReader.h"
37
38#include <cutils/log.h>
39#include <ui/Keyboard.h>
40#include <ui/VirtualKeyMap.h>
41
42#include <stddef.h>
43#include <stdlib.h>
44#include <unistd.h>
45#include <errno.h>
46#include <limits.h>
47#include <math.h>
48
49#define INDENT "  "
50#define INDENT2 "    "
51#define INDENT3 "      "
52#define INDENT4 "        "
53
54namespace android {
55
56// --- Static Functions ---
57
58template<typename T>
59inline static T abs(const T& value) {
60    return value < 0 ? - value : value;
61}
62
63template<typename T>
64inline static T min(const T& a, const T& b) {
65    return a < b ? a : b;
66}
67
68template<typename T>
69inline static void swap(T& a, T& b) {
70    T temp = a;
71    a = b;
72    b = temp;
73}
74
75inline static float avg(float x, float y) {
76    return (x + y) / 2;
77}
78
79inline static float pythag(float x, float y) {
80    return sqrtf(x * x + y * y);
81}
82
83static inline const char* toString(bool value) {
84    return value ? "true" : "false";
85}
86
87static const int32_t keyCodeRotationMap[][4] = {
88        // key codes enumerated counter-clockwise with the original (unrotated) key first
89        // no rotation,        90 degree rotation,  180 degree rotation, 270 degree rotation
90        { AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT },
91        { AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN },
92        { AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT },
93        { AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP },
94};
95static const int keyCodeRotationMapSize =
96        sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
97
98int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
99    if (orientation != DISPLAY_ORIENTATION_0) {
100        for (int i = 0; i < keyCodeRotationMapSize; i++) {
101            if (keyCode == keyCodeRotationMap[i][0]) {
102                return keyCodeRotationMap[i][orientation];
103            }
104        }
105    }
106    return keyCode;
107}
108
109static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
110    return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
111}
112
113
114// --- InputReader ---
115
116InputReader::InputReader(const sp<EventHubInterface>& eventHub,
117        const sp<InputReaderPolicyInterface>& policy,
118        const sp<InputDispatcherInterface>& dispatcher) :
119        mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
120        mGlobalMetaState(0) {
121    configureExcludedDevices();
122    updateGlobalMetaState();
123    updateInputConfiguration();
124}
125
126InputReader::~InputReader() {
127    for (size_t i = 0; i < mDevices.size(); i++) {
128        delete mDevices.valueAt(i);
129    }
130}
131
132void InputReader::loopOnce() {
133    RawEvent rawEvent;
134    mEventHub->getEvent(& rawEvent);
135
136#if DEBUG_RAW_EVENTS
137    LOGD("Input event: device=%d type=0x%x scancode=%d keycode=%d value=%d",
138            rawEvent.deviceId, rawEvent.type, rawEvent.scanCode, rawEvent.keyCode,
139            rawEvent.value);
140#endif
141
142    process(& rawEvent);
143}
144
145void InputReader::process(const RawEvent* rawEvent) {
146    switch (rawEvent->type) {
147    case EventHubInterface::DEVICE_ADDED:
148        addDevice(rawEvent->deviceId);
149        break;
150
151    case EventHubInterface::DEVICE_REMOVED:
152        removeDevice(rawEvent->deviceId);
153        break;
154
155    case EventHubInterface::FINISHED_DEVICE_SCAN:
156        handleConfigurationChanged(rawEvent->when);
157        break;
158
159    default:
160        consumeEvent(rawEvent);
161        break;
162    }
163}
164
165void InputReader::addDevice(int32_t deviceId) {
166    String8 name = mEventHub->getDeviceName(deviceId);
167    uint32_t classes = mEventHub->getDeviceClasses(deviceId);
168
169    InputDevice* device = createDevice(deviceId, name, classes);
170    device->configure();
171
172    if (device->isIgnored()) {
173        LOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, name.string());
174    } else {
175        LOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, name.string(),
176                device->getSources());
177    }
178
179    bool added = false;
180    { // acquire device registry writer lock
181        RWLock::AutoWLock _wl(mDeviceRegistryLock);
182
183        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
184        if (deviceIndex < 0) {
185            mDevices.add(deviceId, device);
186            added = true;
187        }
188    } // release device registry writer lock
189
190    if (! added) {
191        LOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
192        delete device;
193        return;
194    }
195}
196
197void InputReader::removeDevice(int32_t deviceId) {
198    bool removed = false;
199    InputDevice* device = NULL;
200    { // acquire device registry writer lock
201        RWLock::AutoWLock _wl(mDeviceRegistryLock);
202
203        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
204        if (deviceIndex >= 0) {
205            device = mDevices.valueAt(deviceIndex);
206            mDevices.removeItemsAt(deviceIndex, 1);
207            removed = true;
208        }
209    } // release device registry writer lock
210
211    if (! removed) {
212        LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
213        return;
214    }
215
216    if (device->isIgnored()) {
217        LOGI("Device removed: id=%d, name='%s' (ignored non-input device)",
218                device->getId(), device->getName().string());
219    } else {
220        LOGI("Device removed: id=%d, name='%s', sources=0x%08x",
221                device->getId(), device->getName().string(), device->getSources());
222    }
223
224    device->reset();
225
226    delete device;
227}
228
229InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
230    InputDevice* device = new InputDevice(this, deviceId, name);
231
232    // Switch-like devices.
233    if (classes & INPUT_DEVICE_CLASS_SWITCH) {
234        device->addMapper(new SwitchInputMapper(device));
235    }
236
237    // Keyboard-like devices.
238    uint32_t keyboardSources = 0;
239    int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
240    if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
241        keyboardSources |= AINPUT_SOURCE_KEYBOARD;
242    }
243    if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
244        keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
245    }
246    if (classes & INPUT_DEVICE_CLASS_DPAD) {
247        keyboardSources |= AINPUT_SOURCE_DPAD;
248    }
249
250    if (keyboardSources != 0) {
251        device->addMapper(new KeyboardInputMapper(device, keyboardSources, keyboardType));
252    }
253
254    // Cursor-like devices.
255    if (classes & INPUT_DEVICE_CLASS_CURSOR) {
256        device->addMapper(new CursorInputMapper(device));
257    }
258
259    // Touchscreen-like devices.
260    if (classes & INPUT_DEVICE_CLASS_TOUCHSCREEN_MT) {
261        device->addMapper(new MultiTouchInputMapper(device));
262    } else if (classes & INPUT_DEVICE_CLASS_TOUCHSCREEN) {
263        device->addMapper(new SingleTouchInputMapper(device));
264    }
265
266    return device;
267}
268
269void InputReader::consumeEvent(const RawEvent* rawEvent) {
270    int32_t deviceId = rawEvent->deviceId;
271
272    { // acquire device registry reader lock
273        RWLock::AutoRLock _rl(mDeviceRegistryLock);
274
275        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
276        if (deviceIndex < 0) {
277            LOGW("Discarding event for unknown deviceId %d.", deviceId);
278            return;
279        }
280
281        InputDevice* device = mDevices.valueAt(deviceIndex);
282        if (device->isIgnored()) {
283            //LOGD("Discarding event for ignored deviceId %d.", deviceId);
284            return;
285        }
286
287        device->process(rawEvent);
288    } // release device registry reader lock
289}
290
291void InputReader::handleConfigurationChanged(nsecs_t when) {
292    // Reset global meta state because it depends on the list of all configured devices.
293    updateGlobalMetaState();
294
295    // Update input configuration.
296    updateInputConfiguration();
297
298    // Enqueue configuration changed.
299    mDispatcher->notifyConfigurationChanged(when);
300}
301
302void InputReader::configureExcludedDevices() {
303    Vector<String8> excludedDeviceNames;
304    mPolicy->getExcludedDeviceNames(excludedDeviceNames);
305
306    for (size_t i = 0; i < excludedDeviceNames.size(); i++) {
307        mEventHub->addExcludedDevice(excludedDeviceNames[i]);
308    }
309}
310
311void InputReader::updateGlobalMetaState() {
312    { // acquire state lock
313        AutoMutex _l(mStateLock);
314
315        mGlobalMetaState = 0;
316
317        { // acquire device registry reader lock
318            RWLock::AutoRLock _rl(mDeviceRegistryLock);
319
320            for (size_t i = 0; i < mDevices.size(); i++) {
321                InputDevice* device = mDevices.valueAt(i);
322                mGlobalMetaState |= device->getMetaState();
323            }
324        } // release device registry reader lock
325    } // release state lock
326}
327
328int32_t InputReader::getGlobalMetaState() {
329    { // acquire state lock
330        AutoMutex _l(mStateLock);
331
332        return mGlobalMetaState;
333    } // release state lock
334}
335
336void InputReader::updateInputConfiguration() {
337    { // acquire state lock
338        AutoMutex _l(mStateLock);
339
340        int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
341        int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
342        int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
343        { // acquire device registry reader lock
344            RWLock::AutoRLock _rl(mDeviceRegistryLock);
345
346            InputDeviceInfo deviceInfo;
347            for (size_t i = 0; i < mDevices.size(); i++) {
348                InputDevice* device = mDevices.valueAt(i);
349                device->getDeviceInfo(& deviceInfo);
350                uint32_t sources = deviceInfo.getSources();
351
352                if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) {
353                    touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
354                }
355                if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) {
356                    navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
357                } else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) {
358                    navigationConfig = InputConfiguration::NAVIGATION_DPAD;
359                }
360                if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) {
361                    keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
362                }
363            }
364        } // release device registry reader lock
365
366        mInputConfiguration.touchScreen = touchScreenConfig;
367        mInputConfiguration.keyboard = keyboardConfig;
368        mInputConfiguration.navigation = navigationConfig;
369    } // release state lock
370}
371
372void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) {
373    { // acquire state lock
374        AutoMutex _l(mStateLock);
375
376        *outConfiguration = mInputConfiguration;
377    } // release state lock
378}
379
380status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) {
381    { // acquire device registry reader lock
382        RWLock::AutoRLock _rl(mDeviceRegistryLock);
383
384        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
385        if (deviceIndex < 0) {
386            return NAME_NOT_FOUND;
387        }
388
389        InputDevice* device = mDevices.valueAt(deviceIndex);
390        if (device->isIgnored()) {
391            return NAME_NOT_FOUND;
392        }
393
394        device->getDeviceInfo(outDeviceInfo);
395        return OK;
396    } // release device registy reader lock
397}
398
399void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) {
400    outDeviceIds.clear();
401
402    { // acquire device registry reader lock
403        RWLock::AutoRLock _rl(mDeviceRegistryLock);
404
405        size_t numDevices = mDevices.size();
406        for (size_t i = 0; i < numDevices; i++) {
407            InputDevice* device = mDevices.valueAt(i);
408            if (! device->isIgnored()) {
409                outDeviceIds.add(device->getId());
410            }
411        }
412    } // release device registy reader lock
413}
414
415int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
416        int32_t keyCode) {
417    return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState);
418}
419
420int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
421        int32_t scanCode) {
422    return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState);
423}
424
425int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
426    return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState);
427}
428
429int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code,
430        GetStateFunc getStateFunc) {
431    { // acquire device registry reader lock
432        RWLock::AutoRLock _rl(mDeviceRegistryLock);
433
434        int32_t result = AKEY_STATE_UNKNOWN;
435        if (deviceId >= 0) {
436            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
437            if (deviceIndex >= 0) {
438                InputDevice* device = mDevices.valueAt(deviceIndex);
439                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
440                    result = (device->*getStateFunc)(sourceMask, code);
441                }
442            }
443        } else {
444            size_t numDevices = mDevices.size();
445            for (size_t i = 0; i < numDevices; i++) {
446                InputDevice* device = mDevices.valueAt(i);
447                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
448                    result = (device->*getStateFunc)(sourceMask, code);
449                    if (result >= AKEY_STATE_DOWN) {
450                        return result;
451                    }
452                }
453            }
454        }
455        return result;
456    } // release device registy reader lock
457}
458
459bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
460        size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
461    memset(outFlags, 0, numCodes);
462    return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags);
463}
464
465bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
466        const int32_t* keyCodes, uint8_t* outFlags) {
467    { // acquire device registry reader lock
468        RWLock::AutoRLock _rl(mDeviceRegistryLock);
469        bool result = false;
470        if (deviceId >= 0) {
471            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
472            if (deviceIndex >= 0) {
473                InputDevice* device = mDevices.valueAt(deviceIndex);
474                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
475                    result = device->markSupportedKeyCodes(sourceMask,
476                            numCodes, keyCodes, outFlags);
477                }
478            }
479        } else {
480            size_t numDevices = mDevices.size();
481            for (size_t i = 0; i < numDevices; i++) {
482                InputDevice* device = mDevices.valueAt(i);
483                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
484                    result |= device->markSupportedKeyCodes(sourceMask,
485                            numCodes, keyCodes, outFlags);
486                }
487            }
488        }
489        return result;
490    } // release device registy reader lock
491}
492
493void InputReader::dump(String8& dump) {
494    mEventHub->dump(dump);
495    dump.append("\n");
496
497    dump.append("Input Reader State:\n");
498
499    { // acquire device registry reader lock
500        RWLock::AutoRLock _rl(mDeviceRegistryLock);
501
502        for (size_t i = 0; i < mDevices.size(); i++) {
503            mDevices.valueAt(i)->dump(dump);
504        }
505    } // release device registy reader lock
506}
507
508
509// --- InputReaderThread ---
510
511InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
512        Thread(/*canCallJava*/ true), mReader(reader) {
513}
514
515InputReaderThread::~InputReaderThread() {
516}
517
518bool InputReaderThread::threadLoop() {
519    mReader->loopOnce();
520    return true;
521}
522
523
524// --- InputDevice ---
525
526InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) :
527        mContext(context), mId(id), mName(name), mSources(0) {
528}
529
530InputDevice::~InputDevice() {
531    size_t numMappers = mMappers.size();
532    for (size_t i = 0; i < numMappers; i++) {
533        delete mMappers[i];
534    }
535    mMappers.clear();
536}
537
538static void dumpMotionRange(String8& dump, const InputDeviceInfo& deviceInfo,
539        int32_t rangeType, const char* name) {
540    const InputDeviceInfo::MotionRange* range = deviceInfo.getMotionRange(rangeType);
541    if (range) {
542        dump.appendFormat(INDENT3 "%s: min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n",
543                name, range->min, range->max, range->flat, range->fuzz);
544    }
545}
546
547void InputDevice::dump(String8& dump) {
548    InputDeviceInfo deviceInfo;
549    getDeviceInfo(& deviceInfo);
550
551    dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(),
552            deviceInfo.getName().string());
553    dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
554    dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
555    if (!deviceInfo.getMotionRanges().isEmpty()) {
556        dump.append(INDENT2 "Motion Ranges:\n");
557        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_X, "X");
558        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_Y, "Y");
559        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_PRESSURE, "Pressure");
560        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_SIZE, "Size");
561        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOUCH_MAJOR, "TouchMajor");
562        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOUCH_MINOR, "TouchMinor");
563        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOOL_MAJOR, "ToolMajor");
564        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOOL_MINOR, "ToolMinor");
565        dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_ORIENTATION, "Orientation");
566    }
567
568    size_t numMappers = mMappers.size();
569    for (size_t i = 0; i < numMappers; i++) {
570        InputMapper* mapper = mMappers[i];
571        mapper->dump(dump);
572    }
573}
574
575void InputDevice::addMapper(InputMapper* mapper) {
576    mMappers.add(mapper);
577}
578
579void InputDevice::configure() {
580    if (! isIgnored()) {
581        mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
582    }
583
584    mSources = 0;
585
586    size_t numMappers = mMappers.size();
587    for (size_t i = 0; i < numMappers; i++) {
588        InputMapper* mapper = mMappers[i];
589        mapper->configure();
590        mSources |= mapper->getSources();
591    }
592}
593
594void InputDevice::reset() {
595    size_t numMappers = mMappers.size();
596    for (size_t i = 0; i < numMappers; i++) {
597        InputMapper* mapper = mMappers[i];
598        mapper->reset();
599    }
600}
601
602void InputDevice::process(const RawEvent* rawEvent) {
603    size_t numMappers = mMappers.size();
604    for (size_t i = 0; i < numMappers; i++) {
605        InputMapper* mapper = mMappers[i];
606        mapper->process(rawEvent);
607    }
608}
609
610void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
611    outDeviceInfo->initialize(mId, mName);
612
613    size_t numMappers = mMappers.size();
614    for (size_t i = 0; i < numMappers; i++) {
615        InputMapper* mapper = mMappers[i];
616        mapper->populateDeviceInfo(outDeviceInfo);
617    }
618}
619
620int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
621    return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
622}
623
624int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
625    return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
626}
627
628int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
629    return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
630}
631
632int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
633    int32_t result = AKEY_STATE_UNKNOWN;
634    size_t numMappers = mMappers.size();
635    for (size_t i = 0; i < numMappers; i++) {
636        InputMapper* mapper = mMappers[i];
637        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
638            result = (mapper->*getStateFunc)(sourceMask, code);
639            if (result >= AKEY_STATE_DOWN) {
640                return result;
641            }
642        }
643    }
644    return result;
645}
646
647bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
648        const int32_t* keyCodes, uint8_t* outFlags) {
649    bool result = false;
650    size_t numMappers = mMappers.size();
651    for (size_t i = 0; i < numMappers; i++) {
652        InputMapper* mapper = mMappers[i];
653        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
654            result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
655        }
656    }
657    return result;
658}
659
660int32_t InputDevice::getMetaState() {
661    int32_t result = 0;
662    size_t numMappers = mMappers.size();
663    for (size_t i = 0; i < numMappers; i++) {
664        InputMapper* mapper = mMappers[i];
665        result |= mapper->getMetaState();
666    }
667    return result;
668}
669
670
671// --- InputMapper ---
672
673InputMapper::InputMapper(InputDevice* device) :
674        mDevice(device), mContext(device->getContext()) {
675}
676
677InputMapper::~InputMapper() {
678}
679
680void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
681    info->addSource(getSources());
682}
683
684void InputMapper::dump(String8& dump) {
685}
686
687void InputMapper::configure() {
688}
689
690void InputMapper::reset() {
691}
692
693int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
694    return AKEY_STATE_UNKNOWN;
695}
696
697int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
698    return AKEY_STATE_UNKNOWN;
699}
700
701int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
702    return AKEY_STATE_UNKNOWN;
703}
704
705bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
706        const int32_t* keyCodes, uint8_t* outFlags) {
707    return false;
708}
709
710int32_t InputMapper::getMetaState() {
711    return 0;
712}
713
714
715// --- SwitchInputMapper ---
716
717SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
718        InputMapper(device) {
719}
720
721SwitchInputMapper::~SwitchInputMapper() {
722}
723
724uint32_t SwitchInputMapper::getSources() {
725    return 0;
726}
727
728void SwitchInputMapper::process(const RawEvent* rawEvent) {
729    switch (rawEvent->type) {
730    case EV_SW:
731        processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value);
732        break;
733    }
734}
735
736void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) {
737    getDispatcher()->notifySwitch(when, switchCode, switchValue, 0);
738}
739
740int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
741    return getEventHub()->getSwitchState(getDeviceId(), switchCode);
742}
743
744
745// --- KeyboardInputMapper ---
746
747KeyboardInputMapper::KeyboardInputMapper(InputDevice* device,
748        uint32_t sources, int32_t keyboardType) :
749        InputMapper(device), mSources(sources),
750        mKeyboardType(keyboardType) {
751    initializeLocked();
752}
753
754KeyboardInputMapper::~KeyboardInputMapper() {
755}
756
757void KeyboardInputMapper::initializeLocked() {
758    mLocked.metaState = AMETA_NONE;
759    mLocked.downTime = 0;
760}
761
762uint32_t KeyboardInputMapper::getSources() {
763    return mSources;
764}
765
766void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
767    InputMapper::populateDeviceInfo(info);
768
769    info->setKeyboardType(mKeyboardType);
770}
771
772void KeyboardInputMapper::dump(String8& dump) {
773    { // acquire lock
774        AutoMutex _l(mLock);
775        dump.append(INDENT2 "Keyboard Input Mapper:\n");
776        dumpParameters(dump);
777        dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
778        dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size());
779        dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState);
780        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
781    } // release lock
782}
783
784
785void KeyboardInputMapper::configure() {
786    InputMapper::configure();
787
788    // Configure basic parameters.
789    configureParameters();
790
791    // Reset LEDs.
792    {
793        AutoMutex _l(mLock);
794        resetLedStateLocked();
795    }
796}
797
798void KeyboardInputMapper::configureParameters() {
799    mParameters.orientationAware = false;
800    getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"),
801            mParameters.orientationAware);
802
803    mParameters.associatedDisplayId = mParameters.orientationAware ? 0 : -1;
804}
805
806void KeyboardInputMapper::dumpParameters(String8& dump) {
807    dump.append(INDENT3 "Parameters:\n");
808    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
809            mParameters.associatedDisplayId);
810    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
811            toString(mParameters.orientationAware));
812}
813
814void KeyboardInputMapper::reset() {
815    for (;;) {
816        int32_t keyCode, scanCode;
817        { // acquire lock
818            AutoMutex _l(mLock);
819
820            // Synthesize key up event on reset if keys are currently down.
821            if (mLocked.keyDowns.isEmpty()) {
822                initializeLocked();
823                resetLedStateLocked();
824                break; // done
825            }
826
827            const KeyDown& keyDown = mLocked.keyDowns.top();
828            keyCode = keyDown.keyCode;
829            scanCode = keyDown.scanCode;
830        } // release lock
831
832        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
833        processKey(when, false, keyCode, scanCode, 0);
834    }
835
836    InputMapper::reset();
837    getContext()->updateGlobalMetaState();
838}
839
840void KeyboardInputMapper::process(const RawEvent* rawEvent) {
841    switch (rawEvent->type) {
842    case EV_KEY: {
843        int32_t scanCode = rawEvent->scanCode;
844        if (isKeyboardOrGamepadKey(scanCode)) {
845            processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode,
846                    rawEvent->flags);
847        }
848        break;
849    }
850    }
851}
852
853bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
854    return scanCode < BTN_MOUSE
855        || scanCode >= KEY_OK
856        || (scanCode >= BTN_GAMEPAD && scanCode < BTN_DIGI);
857}
858
859void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
860        int32_t scanCode, uint32_t policyFlags) {
861    int32_t newMetaState;
862    nsecs_t downTime;
863    bool metaStateChanged = false;
864
865    { // acquire lock
866        AutoMutex _l(mLock);
867
868        if (down) {
869            // Rotate key codes according to orientation if needed.
870            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
871            if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) {
872                int32_t orientation;
873                if (!getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
874                        NULL, NULL, & orientation)) {
875                    orientation = DISPLAY_ORIENTATION_0;
876                }
877
878                keyCode = rotateKeyCode(keyCode, orientation);
879            }
880
881            // Add key down.
882            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
883            if (keyDownIndex >= 0) {
884                // key repeat, be sure to use same keycode as before in case of rotation
885                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
886            } else {
887                // key down
888                mLocked.keyDowns.push();
889                KeyDown& keyDown = mLocked.keyDowns.editTop();
890                keyDown.keyCode = keyCode;
891                keyDown.scanCode = scanCode;
892            }
893
894            mLocked.downTime = when;
895        } else {
896            // Remove key down.
897            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
898            if (keyDownIndex >= 0) {
899                // key up, be sure to use same keycode as before in case of rotation
900                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
901                mLocked.keyDowns.removeAt(size_t(keyDownIndex));
902            } else {
903                // key was not actually down
904                LOGI("Dropping key up from device %s because the key was not down.  "
905                        "keyCode=%d, scanCode=%d",
906                        getDeviceName().string(), keyCode, scanCode);
907                return;
908            }
909        }
910
911        int32_t oldMetaState = mLocked.metaState;
912        newMetaState = updateMetaState(keyCode, down, oldMetaState);
913        if (oldMetaState != newMetaState) {
914            mLocked.metaState = newMetaState;
915            metaStateChanged = true;
916            updateLedStateLocked(false);
917        }
918
919        downTime = mLocked.downTime;
920    } // release lock
921
922    if (metaStateChanged) {
923        getContext()->updateGlobalMetaState();
924    }
925
926    if (policyFlags & POLICY_FLAG_FUNCTION) {
927        newMetaState |= AMETA_FUNCTION_ON;
928    }
929    getDispatcher()->notifyKey(when, getDeviceId(), mSources, policyFlags,
930            down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
931            AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
932}
933
934ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) {
935    size_t n = mLocked.keyDowns.size();
936    for (size_t i = 0; i < n; i++) {
937        if (mLocked.keyDowns[i].scanCode == scanCode) {
938            return i;
939        }
940    }
941    return -1;
942}
943
944int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
945    return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
946}
947
948int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
949    return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
950}
951
952bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
953        const int32_t* keyCodes, uint8_t* outFlags) {
954    return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
955}
956
957int32_t KeyboardInputMapper::getMetaState() {
958    { // acquire lock
959        AutoMutex _l(mLock);
960        return mLocked.metaState;
961    } // release lock
962}
963
964void KeyboardInputMapper::resetLedStateLocked() {
965    initializeLedStateLocked(mLocked.capsLockLedState, LED_CAPSL);
966    initializeLedStateLocked(mLocked.numLockLedState, LED_NUML);
967    initializeLedStateLocked(mLocked.scrollLockLedState, LED_SCROLLL);
968
969    updateLedStateLocked(true);
970}
971
972void KeyboardInputMapper::initializeLedStateLocked(LockedState::LedState& ledState, int32_t led) {
973    ledState.avail = getEventHub()->hasLed(getDeviceId(), led);
974    ledState.on = false;
975}
976
977void KeyboardInputMapper::updateLedStateLocked(bool reset) {
978    updateLedStateForModifierLocked(mLocked.capsLockLedState, LED_CAPSL,
979            AMETA_CAPS_LOCK_ON, reset);
980    updateLedStateForModifierLocked(mLocked.numLockLedState, LED_NUML,
981            AMETA_NUM_LOCK_ON, reset);
982    updateLedStateForModifierLocked(mLocked.scrollLockLedState, LED_SCROLLL,
983            AMETA_SCROLL_LOCK_ON, reset);
984}
985
986void KeyboardInputMapper::updateLedStateForModifierLocked(LockedState::LedState& ledState,
987        int32_t led, int32_t modifier, bool reset) {
988    if (ledState.avail) {
989        bool desiredState = (mLocked.metaState & modifier) != 0;
990        if (reset || ledState.on != desiredState) {
991            getEventHub()->setLedState(getDeviceId(), led, desiredState);
992            ledState.on = desiredState;
993        }
994    }
995}
996
997
998// --- CursorInputMapper ---
999
1000CursorInputMapper::CursorInputMapper(InputDevice* device) :
1001        InputMapper(device) {
1002    initializeLocked();
1003}
1004
1005CursorInputMapper::~CursorInputMapper() {
1006}
1007
1008uint32_t CursorInputMapper::getSources() {
1009    return mSources;
1010}
1011
1012void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1013    InputMapper::populateDeviceInfo(info);
1014
1015    if (mParameters.mode == Parameters::MODE_POINTER) {
1016        float minX, minY, maxX, maxY;
1017        if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
1018            info->addMotionRange(AINPUT_MOTION_RANGE_X, minX, maxX, 0.0f, 0.0f);
1019            info->addMotionRange(AINPUT_MOTION_RANGE_Y, minY, maxY, 0.0f, 0.0f);
1020        }
1021    } else {
1022        info->addMotionRange(AINPUT_MOTION_RANGE_X, -1.0f, 1.0f, 0.0f, mXScale);
1023        info->addMotionRange(AINPUT_MOTION_RANGE_Y, -1.0f, 1.0f, 0.0f, mYScale);
1024    }
1025    info->addMotionRange(AINPUT_MOTION_RANGE_PRESSURE, 0.0f, 1.0f, 0.0f, 0.0f);
1026}
1027
1028void CursorInputMapper::dump(String8& dump) {
1029    { // acquire lock
1030        AutoMutex _l(mLock);
1031        dump.append(INDENT2 "Cursor Input Mapper:\n");
1032        dumpParameters(dump);
1033        dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
1034        dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
1035        dump.appendFormat(INDENT3 "Down: %s\n", toString(mLocked.down));
1036        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
1037    } // release lock
1038}
1039
1040void CursorInputMapper::configure() {
1041    InputMapper::configure();
1042
1043    // Configure basic parameters.
1044    configureParameters();
1045
1046    // Configure device mode.
1047    switch (mParameters.mode) {
1048    case Parameters::MODE_POINTER:
1049        mSources = AINPUT_SOURCE_MOUSE;
1050        mXPrecision = 1.0f;
1051        mYPrecision = 1.0f;
1052        mXScale = 1.0f;
1053        mYScale = 1.0f;
1054        mPointerController = getPolicy()->obtainPointerController(getDeviceId());
1055        break;
1056    case Parameters::MODE_NAVIGATION:
1057        mSources = AINPUT_SOURCE_TRACKBALL;
1058        mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
1059        mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
1060        mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
1061        mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
1062        break;
1063    }
1064}
1065
1066void CursorInputMapper::configureParameters() {
1067    mParameters.mode = Parameters::MODE_POINTER;
1068    String8 cursorModeString;
1069    if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) {
1070        if (cursorModeString == "navigation") {
1071            mParameters.mode = Parameters::MODE_NAVIGATION;
1072        } else if (cursorModeString != "pointer" && cursorModeString != "default") {
1073            LOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string());
1074        }
1075    }
1076
1077    mParameters.orientationAware = false;
1078    getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"),
1079            mParameters.orientationAware);
1080
1081    mParameters.associatedDisplayId = mParameters.mode == Parameters::MODE_POINTER
1082            || mParameters.orientationAware ? 0 : -1;
1083}
1084
1085void CursorInputMapper::dumpParameters(String8& dump) {
1086    dump.append(INDENT3 "Parameters:\n");
1087    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1088            mParameters.associatedDisplayId);
1089
1090    switch (mParameters.mode) {
1091    case Parameters::MODE_POINTER:
1092        dump.append(INDENT4 "Mode: pointer\n");
1093        break;
1094    case Parameters::MODE_NAVIGATION:
1095        dump.append(INDENT4 "Mode: navigation\n");
1096        break;
1097    default:
1098        assert(false);
1099    }
1100
1101    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1102            toString(mParameters.orientationAware));
1103}
1104
1105void CursorInputMapper::initializeLocked() {
1106    mAccumulator.clear();
1107
1108    mLocked.down = false;
1109    mLocked.downTime = 0;
1110}
1111
1112void CursorInputMapper::reset() {
1113    for (;;) {
1114        { // acquire lock
1115            AutoMutex _l(mLock);
1116
1117            if (! mLocked.down) {
1118                initializeLocked();
1119                break; // done
1120            }
1121        } // release lock
1122
1123        // Synthesize button up event on reset.
1124        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
1125        mAccumulator.fields = Accumulator::FIELD_BTN_MOUSE;
1126        mAccumulator.btnMouse = false;
1127        sync(when);
1128    }
1129
1130    InputMapper::reset();
1131}
1132
1133void CursorInputMapper::process(const RawEvent* rawEvent) {
1134    switch (rawEvent->type) {
1135    case EV_KEY:
1136        switch (rawEvent->scanCode) {
1137        case BTN_MOUSE:
1138            mAccumulator.fields |= Accumulator::FIELD_BTN_MOUSE;
1139            mAccumulator.btnMouse = rawEvent->value != 0;
1140            // Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and
1141            // we need to ensure that we report the up/down promptly.
1142            sync(rawEvent->when);
1143            break;
1144        }
1145        break;
1146
1147    case EV_REL:
1148        switch (rawEvent->scanCode) {
1149        case REL_X:
1150            mAccumulator.fields |= Accumulator::FIELD_REL_X;
1151            mAccumulator.relX = rawEvent->value;
1152            break;
1153        case REL_Y:
1154            mAccumulator.fields |= Accumulator::FIELD_REL_Y;
1155            mAccumulator.relY = rawEvent->value;
1156            break;
1157        }
1158        break;
1159
1160    case EV_SYN:
1161        switch (rawEvent->scanCode) {
1162        case SYN_REPORT:
1163            sync(rawEvent->when);
1164            break;
1165        }
1166        break;
1167    }
1168}
1169
1170void CursorInputMapper::sync(nsecs_t when) {
1171    uint32_t fields = mAccumulator.fields;
1172    if (fields == 0) {
1173        return; // no new state changes, so nothing to do
1174    }
1175
1176    int motionEventAction;
1177    PointerCoords pointerCoords;
1178    nsecs_t downTime;
1179    { // acquire lock
1180        AutoMutex _l(mLock);
1181
1182        bool downChanged = fields & Accumulator::FIELD_BTN_MOUSE;
1183
1184        if (downChanged) {
1185            if (mAccumulator.btnMouse) {
1186                if (!mLocked.down) {
1187                    mLocked.down = true;
1188                    mLocked.downTime = when;
1189                } else {
1190                    downChanged = false;
1191                }
1192            } else {
1193                if (mLocked.down) {
1194                    mLocked.down = false;
1195                } else {
1196                    downChanged = false;
1197                }
1198            }
1199        }
1200
1201        downTime = mLocked.downTime;
1202        float deltaX = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f;
1203        float deltaY = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f;
1204
1205        if (downChanged) {
1206            motionEventAction = mLocked.down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
1207        } else {
1208            motionEventAction = AMOTION_EVENT_ACTION_MOVE;
1209        }
1210
1211        if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0
1212                && (deltaX != 0.0f || deltaY != 0.0f)) {
1213            // Rotate motion based on display orientation if needed.
1214            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1215            int32_t orientation;
1216            if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1217                    NULL, NULL, & orientation)) {
1218                orientation = DISPLAY_ORIENTATION_0;
1219            }
1220
1221            float temp;
1222            switch (orientation) {
1223            case DISPLAY_ORIENTATION_90:
1224                temp = deltaX;
1225                deltaX = deltaY;
1226                deltaY = -temp;
1227                break;
1228
1229            case DISPLAY_ORIENTATION_180:
1230                deltaX = -deltaX;
1231                deltaY = -deltaY;
1232                break;
1233
1234            case DISPLAY_ORIENTATION_270:
1235                temp = deltaX;
1236                deltaX = -deltaY;
1237                deltaY = temp;
1238                break;
1239            }
1240        }
1241
1242        if (mPointerController != NULL) {
1243            mPointerController->move(deltaX, deltaY);
1244            if (downChanged) {
1245                mPointerController->setButtonState(mLocked.down ? POINTER_BUTTON_1 : 0);
1246            }
1247            mPointerController->getPosition(&pointerCoords.x, &pointerCoords.y);
1248        } else {
1249            pointerCoords.x = deltaX;
1250            pointerCoords.y = deltaY;
1251        }
1252
1253        pointerCoords.pressure = mLocked.down ? 1.0f : 0.0f;
1254        pointerCoords.size = 0;
1255        pointerCoords.touchMajor = 0;
1256        pointerCoords.touchMinor = 0;
1257        pointerCoords.toolMajor = 0;
1258        pointerCoords.toolMinor = 0;
1259        pointerCoords.orientation = 0;
1260    } // release lock
1261
1262    int32_t metaState = mContext->getGlobalMetaState();
1263    int32_t pointerId = 0;
1264    getDispatcher()->notifyMotion(when, getDeviceId(), mSources, 0,
1265            motionEventAction, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
1266            1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime);
1267
1268    mAccumulator.clear();
1269}
1270
1271int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1272    if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
1273        return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
1274    } else {
1275        return AKEY_STATE_UNKNOWN;
1276    }
1277}
1278
1279
1280// --- TouchInputMapper ---
1281
1282TouchInputMapper::TouchInputMapper(InputDevice* device) :
1283        InputMapper(device) {
1284    mLocked.surfaceOrientation = -1;
1285    mLocked.surfaceWidth = -1;
1286    mLocked.surfaceHeight = -1;
1287
1288    initializeLocked();
1289}
1290
1291TouchInputMapper::~TouchInputMapper() {
1292}
1293
1294uint32_t TouchInputMapper::getSources() {
1295    return mSources;
1296}
1297
1298void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1299    InputMapper::populateDeviceInfo(info);
1300
1301    { // acquire lock
1302        AutoMutex _l(mLock);
1303
1304        // Ensure surface information is up to date so that orientation changes are
1305        // noticed immediately.
1306        configureSurfaceLocked();
1307
1308        info->addMotionRange(AINPUT_MOTION_RANGE_X, mLocked.orientedRanges.x);
1309        info->addMotionRange(AINPUT_MOTION_RANGE_Y, mLocked.orientedRanges.y);
1310
1311        if (mLocked.orientedRanges.havePressure) {
1312            info->addMotionRange(AINPUT_MOTION_RANGE_PRESSURE,
1313                    mLocked.orientedRanges.pressure);
1314        }
1315
1316        if (mLocked.orientedRanges.haveSize) {
1317            info->addMotionRange(AINPUT_MOTION_RANGE_SIZE,
1318                    mLocked.orientedRanges.size);
1319        }
1320
1321        if (mLocked.orientedRanges.haveTouchSize) {
1322            info->addMotionRange(AINPUT_MOTION_RANGE_TOUCH_MAJOR,
1323                    mLocked.orientedRanges.touchMajor);
1324            info->addMotionRange(AINPUT_MOTION_RANGE_TOUCH_MINOR,
1325                    mLocked.orientedRanges.touchMinor);
1326        }
1327
1328        if (mLocked.orientedRanges.haveToolSize) {
1329            info->addMotionRange(AINPUT_MOTION_RANGE_TOOL_MAJOR,
1330                    mLocked.orientedRanges.toolMajor);
1331            info->addMotionRange(AINPUT_MOTION_RANGE_TOOL_MINOR,
1332                    mLocked.orientedRanges.toolMinor);
1333        }
1334
1335        if (mLocked.orientedRanges.haveOrientation) {
1336            info->addMotionRange(AINPUT_MOTION_RANGE_ORIENTATION,
1337                    mLocked.orientedRanges.orientation);
1338        }
1339    } // release lock
1340}
1341
1342void TouchInputMapper::dump(String8& dump) {
1343    { // acquire lock
1344        AutoMutex _l(mLock);
1345        dump.append(INDENT2 "Touch Input Mapper:\n");
1346        dumpParameters(dump);
1347        dumpVirtualKeysLocked(dump);
1348        dumpRawAxes(dump);
1349        dumpCalibration(dump);
1350        dumpSurfaceLocked(dump);
1351        dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n");
1352        dump.appendFormat(INDENT4 "XOrigin: %d\n", mLocked.xOrigin);
1353        dump.appendFormat(INDENT4 "YOrigin: %d\n", mLocked.yOrigin);
1354        dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale);
1355        dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale);
1356        dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision);
1357        dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision);
1358        dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale);
1359        dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale);
1360        dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias);
1361        dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale);
1362        dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias);
1363        dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale);
1364        dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale);
1365        dump.appendFormat(INDENT4 "OrientationSCale: %0.3f\n", mLocked.orientationScale);
1366    } // release lock
1367}
1368
1369void TouchInputMapper::initializeLocked() {
1370    mCurrentTouch.clear();
1371    mLastTouch.clear();
1372    mDownTime = 0;
1373
1374    for (uint32_t i = 0; i < MAX_POINTERS; i++) {
1375        mAveragingTouchFilter.historyStart[i] = 0;
1376        mAveragingTouchFilter.historyEnd[i] = 0;
1377    }
1378
1379    mJumpyTouchFilter.jumpyPointsDropped = 0;
1380
1381    mLocked.currentVirtualKey.down = false;
1382
1383    mLocked.orientedRanges.havePressure = false;
1384    mLocked.orientedRanges.haveSize = false;
1385    mLocked.orientedRanges.haveTouchSize = false;
1386    mLocked.orientedRanges.haveToolSize = false;
1387    mLocked.orientedRanges.haveOrientation = false;
1388}
1389
1390void TouchInputMapper::configure() {
1391    InputMapper::configure();
1392
1393    // Configure basic parameters.
1394    configureParameters();
1395
1396    // Configure sources.
1397    switch (mParameters.deviceType) {
1398    case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
1399        mSources = AINPUT_SOURCE_TOUCHSCREEN;
1400        break;
1401    case Parameters::DEVICE_TYPE_TOUCH_PAD:
1402        mSources = AINPUT_SOURCE_TOUCHPAD;
1403        break;
1404    default:
1405        assert(false);
1406    }
1407
1408    // Configure absolute axis information.
1409    configureRawAxes();
1410
1411    // Prepare input device calibration.
1412    parseCalibration();
1413    resolveCalibration();
1414
1415    { // acquire lock
1416        AutoMutex _l(mLock);
1417
1418         // Configure surface dimensions and orientation.
1419        configureSurfaceLocked();
1420    } // release lock
1421}
1422
1423void TouchInputMapper::configureParameters() {
1424    mParameters.useBadTouchFilter = getPolicy()->filterTouchEvents();
1425    mParameters.useAveragingTouchFilter = getPolicy()->filterTouchEvents();
1426    mParameters.useJumpyTouchFilter = getPolicy()->filterJumpyTouchEvents();
1427
1428    String8 deviceTypeString;
1429    mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1430    if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
1431            deviceTypeString)) {
1432        if (deviceTypeString == "touchPad") {
1433            mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
1434        } else if (deviceTypeString != "touchScreen") {
1435            LOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string());
1436        }
1437    }
1438    bool isTouchScreen = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1439
1440    mParameters.orientationAware = isTouchScreen;
1441    getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"),
1442            mParameters.orientationAware);
1443
1444    mParameters.associatedDisplayId = mParameters.orientationAware || isTouchScreen ? 0 : -1;
1445}
1446
1447void TouchInputMapper::dumpParameters(String8& dump) {
1448    dump.append(INDENT3 "Parameters:\n");
1449
1450    switch (mParameters.deviceType) {
1451    case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
1452        dump.append(INDENT4 "DeviceType: touchScreen\n");
1453        break;
1454    case Parameters::DEVICE_TYPE_TOUCH_PAD:
1455        dump.append(INDENT4 "DeviceType: touchPad\n");
1456        break;
1457    default:
1458        assert(false);
1459    }
1460
1461    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1462            mParameters.associatedDisplayId);
1463    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1464            toString(mParameters.orientationAware));
1465
1466    dump.appendFormat(INDENT4 "UseBadTouchFilter: %s\n",
1467            toString(mParameters.useBadTouchFilter));
1468    dump.appendFormat(INDENT4 "UseAveragingTouchFilter: %s\n",
1469            toString(mParameters.useAveragingTouchFilter));
1470    dump.appendFormat(INDENT4 "UseJumpyTouchFilter: %s\n",
1471            toString(mParameters.useJumpyTouchFilter));
1472}
1473
1474void TouchInputMapper::configureRawAxes() {
1475    mRawAxes.x.clear();
1476    mRawAxes.y.clear();
1477    mRawAxes.pressure.clear();
1478    mRawAxes.touchMajor.clear();
1479    mRawAxes.touchMinor.clear();
1480    mRawAxes.toolMajor.clear();
1481    mRawAxes.toolMinor.clear();
1482    mRawAxes.orientation.clear();
1483}
1484
1485static void dumpAxisInfo(String8& dump, RawAbsoluteAxisInfo axis, const char* name) {
1486    if (axis.valid) {
1487        dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d\n",
1488                name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz);
1489    } else {
1490        dump.appendFormat(INDENT4 "%s: unknown range\n", name);
1491    }
1492}
1493
1494void TouchInputMapper::dumpRawAxes(String8& dump) {
1495    dump.append(INDENT3 "Raw Axes:\n");
1496    dumpAxisInfo(dump, mRawAxes.x, "X");
1497    dumpAxisInfo(dump, mRawAxes.y, "Y");
1498    dumpAxisInfo(dump, mRawAxes.pressure, "Pressure");
1499    dumpAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor");
1500    dumpAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor");
1501    dumpAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor");
1502    dumpAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor");
1503    dumpAxisInfo(dump, mRawAxes.orientation, "Orientation");
1504}
1505
1506bool TouchInputMapper::configureSurfaceLocked() {
1507    // Update orientation and dimensions if needed.
1508    int32_t orientation = DISPLAY_ORIENTATION_0;
1509    int32_t width = mRawAxes.x.getRange();
1510    int32_t height = mRawAxes.y.getRange();
1511
1512    if (mParameters.associatedDisplayId >= 0) {
1513        bool wantSize = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1514        bool wantOrientation = mParameters.orientationAware;
1515
1516        // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1517        if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1518                wantSize ? &width : NULL, wantSize ? &height : NULL,
1519                wantOrientation ? &orientation : NULL)) {
1520            return false;
1521        }
1522    }
1523
1524    bool orientationChanged = mLocked.surfaceOrientation != orientation;
1525    if (orientationChanged) {
1526        mLocked.surfaceOrientation = orientation;
1527    }
1528
1529    bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height;
1530    if (sizeChanged) {
1531        LOGI("Device reconfigured: id=%d, name='%s', display size is now %dx%d",
1532                getDeviceId(), getDeviceName().string(), width, height);
1533
1534        mLocked.surfaceWidth = width;
1535        mLocked.surfaceHeight = height;
1536
1537        // Configure X and Y factors.
1538        if (mRawAxes.x.valid && mRawAxes.y.valid) {
1539            mLocked.xOrigin = mCalibration.haveXOrigin
1540                    ? mCalibration.xOrigin
1541                    : mRawAxes.x.minValue;
1542            mLocked.yOrigin = mCalibration.haveYOrigin
1543                    ? mCalibration.yOrigin
1544                    : mRawAxes.y.minValue;
1545            mLocked.xScale = mCalibration.haveXScale
1546                    ? mCalibration.xScale
1547                    : float(width) / mRawAxes.x.getRange();
1548            mLocked.yScale = mCalibration.haveYScale
1549                    ? mCalibration.yScale
1550                    : float(height) / mRawAxes.y.getRange();
1551            mLocked.xPrecision = 1.0f / mLocked.xScale;
1552            mLocked.yPrecision = 1.0f / mLocked.yScale;
1553
1554            configureVirtualKeysLocked();
1555        } else {
1556            LOGW(INDENT "Touch device did not report support for X or Y axis!");
1557            mLocked.xOrigin = 0;
1558            mLocked.yOrigin = 0;
1559            mLocked.xScale = 1.0f;
1560            mLocked.yScale = 1.0f;
1561            mLocked.xPrecision = 1.0f;
1562            mLocked.yPrecision = 1.0f;
1563        }
1564
1565        // Scale factor for terms that are not oriented in a particular axis.
1566        // If the pixels are square then xScale == yScale otherwise we fake it
1567        // by choosing an average.
1568        mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale);
1569
1570        // Size of diagonal axis.
1571        float diagonalSize = pythag(width, height);
1572
1573        // TouchMajor and TouchMinor factors.
1574        if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) {
1575            mLocked.orientedRanges.haveTouchSize = true;
1576            mLocked.orientedRanges.touchMajor.min = 0;
1577            mLocked.orientedRanges.touchMajor.max = diagonalSize;
1578            mLocked.orientedRanges.touchMajor.flat = 0;
1579            mLocked.orientedRanges.touchMajor.fuzz = 0;
1580            mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor;
1581        }
1582
1583        // ToolMajor and ToolMinor factors.
1584        mLocked.toolSizeLinearScale = 0;
1585        mLocked.toolSizeLinearBias = 0;
1586        mLocked.toolSizeAreaScale = 0;
1587        mLocked.toolSizeAreaBias = 0;
1588        if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
1589            if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) {
1590                if (mCalibration.haveToolSizeLinearScale) {
1591                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
1592                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
1593                    mLocked.toolSizeLinearScale = float(min(width, height))
1594                            / mRawAxes.toolMajor.maxValue;
1595                }
1596
1597                if (mCalibration.haveToolSizeLinearBias) {
1598                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
1599                }
1600            } else if (mCalibration.toolSizeCalibration ==
1601                    Calibration::TOOL_SIZE_CALIBRATION_AREA) {
1602                if (mCalibration.haveToolSizeLinearScale) {
1603                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
1604                } else {
1605                    mLocked.toolSizeLinearScale = min(width, height);
1606                }
1607
1608                if (mCalibration.haveToolSizeLinearBias) {
1609                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
1610                }
1611
1612                if (mCalibration.haveToolSizeAreaScale) {
1613                    mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale;
1614                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
1615                    mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue;
1616                }
1617
1618                if (mCalibration.haveToolSizeAreaBias) {
1619                    mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias;
1620                }
1621            }
1622
1623            mLocked.orientedRanges.haveToolSize = true;
1624            mLocked.orientedRanges.toolMajor.min = 0;
1625            mLocked.orientedRanges.toolMajor.max = diagonalSize;
1626            mLocked.orientedRanges.toolMajor.flat = 0;
1627            mLocked.orientedRanges.toolMajor.fuzz = 0;
1628            mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor;
1629        }
1630
1631        // Pressure factors.
1632        mLocked.pressureScale = 0;
1633        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) {
1634            RawAbsoluteAxisInfo rawPressureAxis;
1635            switch (mCalibration.pressureSource) {
1636            case Calibration::PRESSURE_SOURCE_PRESSURE:
1637                rawPressureAxis = mRawAxes.pressure;
1638                break;
1639            case Calibration::PRESSURE_SOURCE_TOUCH:
1640                rawPressureAxis = mRawAxes.touchMajor;
1641                break;
1642            default:
1643                rawPressureAxis.clear();
1644            }
1645
1646            if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
1647                    || mCalibration.pressureCalibration
1648                            == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
1649                if (mCalibration.havePressureScale) {
1650                    mLocked.pressureScale = mCalibration.pressureScale;
1651                } else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) {
1652                    mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue;
1653                }
1654            }
1655
1656            mLocked.orientedRanges.havePressure = true;
1657            mLocked.orientedRanges.pressure.min = 0;
1658            mLocked.orientedRanges.pressure.max = 1.0;
1659            mLocked.orientedRanges.pressure.flat = 0;
1660            mLocked.orientedRanges.pressure.fuzz = 0;
1661        }
1662
1663        // Size factors.
1664        mLocked.sizeScale = 0;
1665        if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
1666            if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) {
1667                if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
1668                    mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue;
1669                }
1670            }
1671
1672            mLocked.orientedRanges.haveSize = true;
1673            mLocked.orientedRanges.size.min = 0;
1674            mLocked.orientedRanges.size.max = 1.0;
1675            mLocked.orientedRanges.size.flat = 0;
1676            mLocked.orientedRanges.size.fuzz = 0;
1677        }
1678
1679        // Orientation
1680        mLocked.orientationScale = 0;
1681        if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) {
1682            if (mCalibration.orientationCalibration
1683                    == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
1684                if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) {
1685                    mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue;
1686                }
1687            }
1688
1689            mLocked.orientedRanges.orientation.min = - M_PI_2;
1690            mLocked.orientedRanges.orientation.max = M_PI_2;
1691            mLocked.orientedRanges.orientation.flat = 0;
1692            mLocked.orientedRanges.orientation.fuzz = 0;
1693        }
1694    }
1695
1696    if (orientationChanged || sizeChanged) {
1697        // Compute oriented surface dimensions, precision, and scales.
1698        float orientedXScale, orientedYScale;
1699        switch (mLocked.surfaceOrientation) {
1700        case DISPLAY_ORIENTATION_90:
1701        case DISPLAY_ORIENTATION_270:
1702            mLocked.orientedSurfaceWidth = mLocked.surfaceHeight;
1703            mLocked.orientedSurfaceHeight = mLocked.surfaceWidth;
1704            mLocked.orientedXPrecision = mLocked.yPrecision;
1705            mLocked.orientedYPrecision = mLocked.xPrecision;
1706            orientedXScale = mLocked.yScale;
1707            orientedYScale = mLocked.xScale;
1708            break;
1709        default:
1710            mLocked.orientedSurfaceWidth = mLocked.surfaceWidth;
1711            mLocked.orientedSurfaceHeight = mLocked.surfaceHeight;
1712            mLocked.orientedXPrecision = mLocked.xPrecision;
1713            mLocked.orientedYPrecision = mLocked.yPrecision;
1714            orientedXScale = mLocked.xScale;
1715            orientedYScale = mLocked.yScale;
1716            break;
1717        }
1718
1719        // Configure position ranges.
1720        mLocked.orientedRanges.x.min = 0;
1721        mLocked.orientedRanges.x.max = mLocked.orientedSurfaceWidth;
1722        mLocked.orientedRanges.x.flat = 0;
1723        mLocked.orientedRanges.x.fuzz = orientedXScale;
1724
1725        mLocked.orientedRanges.y.min = 0;
1726        mLocked.orientedRanges.y.max = mLocked.orientedSurfaceHeight;
1727        mLocked.orientedRanges.y.flat = 0;
1728        mLocked.orientedRanges.y.fuzz = orientedYScale;
1729    }
1730
1731    return true;
1732}
1733
1734void TouchInputMapper::dumpSurfaceLocked(String8& dump) {
1735    dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth);
1736    dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight);
1737    dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation);
1738}
1739
1740void TouchInputMapper::configureVirtualKeysLocked() {
1741    assert(mRawAxes.x.valid && mRawAxes.y.valid);
1742
1743    Vector<VirtualKeyDefinition> virtualKeyDefinitions;
1744    getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions);
1745
1746    mLocked.virtualKeys.clear();
1747
1748    if (virtualKeyDefinitions.size() == 0) {
1749        return;
1750    }
1751
1752    mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size());
1753
1754    int32_t touchScreenLeft = mRawAxes.x.minValue;
1755    int32_t touchScreenTop = mRawAxes.y.minValue;
1756    int32_t touchScreenWidth = mRawAxes.x.getRange();
1757    int32_t touchScreenHeight = mRawAxes.y.getRange();
1758
1759    for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
1760        const VirtualKeyDefinition& virtualKeyDefinition =
1761                virtualKeyDefinitions[i];
1762
1763        mLocked.virtualKeys.add();
1764        VirtualKey& virtualKey = mLocked.virtualKeys.editTop();
1765
1766        virtualKey.scanCode = virtualKeyDefinition.scanCode;
1767        int32_t keyCode;
1768        uint32_t flags;
1769        if (getEventHub()->scancodeToKeycode(getDeviceId(), virtualKey.scanCode,
1770                & keyCode, & flags)) {
1771            LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
1772                    virtualKey.scanCode);
1773            mLocked.virtualKeys.pop(); // drop the key
1774            continue;
1775        }
1776
1777        virtualKey.keyCode = keyCode;
1778        virtualKey.flags = flags;
1779
1780        // convert the key definition's display coordinates into touch coordinates for a hit box
1781        int32_t halfWidth = virtualKeyDefinition.width / 2;
1782        int32_t halfHeight = virtualKeyDefinition.height / 2;
1783
1784        virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
1785                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
1786        virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
1787                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
1788        virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
1789                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
1790        virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
1791                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
1792
1793    }
1794}
1795
1796void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) {
1797    if (!mLocked.virtualKeys.isEmpty()) {
1798        dump.append(INDENT3 "Virtual Keys:\n");
1799
1800        for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) {
1801            const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i);
1802            dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
1803                    "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
1804                    i, virtualKey.scanCode, virtualKey.keyCode,
1805                    virtualKey.hitLeft, virtualKey.hitRight,
1806                    virtualKey.hitTop, virtualKey.hitBottom);
1807        }
1808    }
1809}
1810
1811void TouchInputMapper::parseCalibration() {
1812    const PropertyMap& in = getDevice()->getConfiguration();
1813    Calibration& out = mCalibration;
1814
1815    // Position
1816    out.haveXOrigin = in.tryGetProperty(String8("touch.position.xOrigin"), out.xOrigin);
1817    out.haveYOrigin = in.tryGetProperty(String8("touch.position.yOrigin"), out.yOrigin);
1818    out.haveXScale = in.tryGetProperty(String8("touch.position.xScale"), out.xScale);
1819    out.haveYScale = in.tryGetProperty(String8("touch.position.yScale"), out.yScale);
1820
1821    // Touch Size
1822    out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT;
1823    String8 touchSizeCalibrationString;
1824    if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) {
1825        if (touchSizeCalibrationString == "none") {
1826            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
1827        } else if (touchSizeCalibrationString == "geometric") {
1828            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC;
1829        } else if (touchSizeCalibrationString == "pressure") {
1830            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
1831        } else if (touchSizeCalibrationString != "default") {
1832            LOGW("Invalid value for touch.touchSize.calibration: '%s'",
1833                    touchSizeCalibrationString.string());
1834        }
1835    }
1836
1837    // Tool Size
1838    out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT;
1839    String8 toolSizeCalibrationString;
1840    if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) {
1841        if (toolSizeCalibrationString == "none") {
1842            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
1843        } else if (toolSizeCalibrationString == "geometric") {
1844            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC;
1845        } else if (toolSizeCalibrationString == "linear") {
1846            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
1847        } else if (toolSizeCalibrationString == "area") {
1848            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA;
1849        } else if (toolSizeCalibrationString != "default") {
1850            LOGW("Invalid value for touch.toolSize.calibration: '%s'",
1851                    toolSizeCalibrationString.string());
1852        }
1853    }
1854
1855    out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"),
1856            out.toolSizeLinearScale);
1857    out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"),
1858            out.toolSizeLinearBias);
1859    out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"),
1860            out.toolSizeAreaScale);
1861    out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"),
1862            out.toolSizeAreaBias);
1863    out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"),
1864            out.toolSizeIsSummed);
1865
1866    // Pressure
1867    out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
1868    String8 pressureCalibrationString;
1869    if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
1870        if (pressureCalibrationString == "none") {
1871            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
1872        } else if (pressureCalibrationString == "physical") {
1873            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
1874        } else if (pressureCalibrationString == "amplitude") {
1875            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
1876        } else if (pressureCalibrationString != "default") {
1877            LOGW("Invalid value for touch.pressure.calibration: '%s'",
1878                    pressureCalibrationString.string());
1879        }
1880    }
1881
1882    out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT;
1883    String8 pressureSourceString;
1884    if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) {
1885        if (pressureSourceString == "pressure") {
1886            out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
1887        } else if (pressureSourceString == "touch") {
1888            out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
1889        } else if (pressureSourceString != "default") {
1890            LOGW("Invalid value for touch.pressure.source: '%s'",
1891                    pressureSourceString.string());
1892        }
1893    }
1894
1895    out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
1896            out.pressureScale);
1897
1898    // Size
1899    out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
1900    String8 sizeCalibrationString;
1901    if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
1902        if (sizeCalibrationString == "none") {
1903            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
1904        } else if (sizeCalibrationString == "normalized") {
1905            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
1906        } else if (sizeCalibrationString != "default") {
1907            LOGW("Invalid value for touch.size.calibration: '%s'",
1908                    sizeCalibrationString.string());
1909        }
1910    }
1911
1912    // Orientation
1913    out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
1914    String8 orientationCalibrationString;
1915    if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
1916        if (orientationCalibrationString == "none") {
1917            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
1918        } else if (orientationCalibrationString == "interpolated") {
1919            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
1920        } else if (orientationCalibrationString != "default") {
1921            LOGW("Invalid value for touch.orientation.calibration: '%s'",
1922                    orientationCalibrationString.string());
1923        }
1924    }
1925}
1926
1927void TouchInputMapper::resolveCalibration() {
1928    // Pressure
1929    switch (mCalibration.pressureSource) {
1930    case Calibration::PRESSURE_SOURCE_DEFAULT:
1931        if (mRawAxes.pressure.valid) {
1932            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
1933        } else if (mRawAxes.touchMajor.valid) {
1934            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
1935        }
1936        break;
1937
1938    case Calibration::PRESSURE_SOURCE_PRESSURE:
1939        if (! mRawAxes.pressure.valid) {
1940            LOGW("Calibration property touch.pressure.source is 'pressure' but "
1941                    "the pressure axis is not available.");
1942        }
1943        break;
1944
1945    case Calibration::PRESSURE_SOURCE_TOUCH:
1946        if (! mRawAxes.touchMajor.valid) {
1947            LOGW("Calibration property touch.pressure.source is 'touch' but "
1948                    "the touchMajor axis is not available.");
1949        }
1950        break;
1951
1952    default:
1953        break;
1954    }
1955
1956    switch (mCalibration.pressureCalibration) {
1957    case Calibration::PRESSURE_CALIBRATION_DEFAULT:
1958        if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) {
1959            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
1960        } else {
1961            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
1962        }
1963        break;
1964
1965    default:
1966        break;
1967    }
1968
1969    // Tool Size
1970    switch (mCalibration.toolSizeCalibration) {
1971    case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT:
1972        if (mRawAxes.toolMajor.valid) {
1973            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
1974        } else {
1975            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
1976        }
1977        break;
1978
1979    default:
1980        break;
1981    }
1982
1983    // Touch Size
1984    switch (mCalibration.touchSizeCalibration) {
1985    case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT:
1986        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE
1987                && mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
1988            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
1989        } else {
1990            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
1991        }
1992        break;
1993
1994    default:
1995        break;
1996    }
1997
1998    // Size
1999    switch (mCalibration.sizeCalibration) {
2000    case Calibration::SIZE_CALIBRATION_DEFAULT:
2001        if (mRawAxes.toolMajor.valid) {
2002            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
2003        } else {
2004            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
2005        }
2006        break;
2007
2008    default:
2009        break;
2010    }
2011
2012    // Orientation
2013    switch (mCalibration.orientationCalibration) {
2014    case Calibration::ORIENTATION_CALIBRATION_DEFAULT:
2015        if (mRawAxes.orientation.valid) {
2016            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
2017        } else {
2018            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
2019        }
2020        break;
2021
2022    default:
2023        break;
2024    }
2025}
2026
2027void TouchInputMapper::dumpCalibration(String8& dump) {
2028    dump.append(INDENT3 "Calibration:\n");
2029
2030    // Position
2031    if (mCalibration.haveXOrigin) {
2032        dump.appendFormat(INDENT4 "touch.position.xOrigin: %d\n", mCalibration.xOrigin);
2033    }
2034    if (mCalibration.haveYOrigin) {
2035        dump.appendFormat(INDENT4 "touch.position.yOrigin: %d\n", mCalibration.yOrigin);
2036    }
2037    if (mCalibration.haveXScale) {
2038        dump.appendFormat(INDENT4 "touch.position.xScale: %0.3f\n", mCalibration.xScale);
2039    }
2040    if (mCalibration.haveYScale) {
2041        dump.appendFormat(INDENT4 "touch.position.yScale: %0.3f\n", mCalibration.yScale);
2042    }
2043
2044    // Touch Size
2045    switch (mCalibration.touchSizeCalibration) {
2046    case Calibration::TOUCH_SIZE_CALIBRATION_NONE:
2047        dump.append(INDENT4 "touch.touchSize.calibration: none\n");
2048        break;
2049    case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
2050        dump.append(INDENT4 "touch.touchSize.calibration: geometric\n");
2051        break;
2052    case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
2053        dump.append(INDENT4 "touch.touchSize.calibration: pressure\n");
2054        break;
2055    default:
2056        assert(false);
2057    }
2058
2059    // Tool Size
2060    switch (mCalibration.toolSizeCalibration) {
2061    case Calibration::TOOL_SIZE_CALIBRATION_NONE:
2062        dump.append(INDENT4 "touch.toolSize.calibration: none\n");
2063        break;
2064    case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
2065        dump.append(INDENT4 "touch.toolSize.calibration: geometric\n");
2066        break;
2067    case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
2068        dump.append(INDENT4 "touch.toolSize.calibration: linear\n");
2069        break;
2070    case Calibration::TOOL_SIZE_CALIBRATION_AREA:
2071        dump.append(INDENT4 "touch.toolSize.calibration: area\n");
2072        break;
2073    default:
2074        assert(false);
2075    }
2076
2077    if (mCalibration.haveToolSizeLinearScale) {
2078        dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n",
2079                mCalibration.toolSizeLinearScale);
2080    }
2081
2082    if (mCalibration.haveToolSizeLinearBias) {
2083        dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n",
2084                mCalibration.toolSizeLinearBias);
2085    }
2086
2087    if (mCalibration.haveToolSizeAreaScale) {
2088        dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n",
2089                mCalibration.toolSizeAreaScale);
2090    }
2091
2092    if (mCalibration.haveToolSizeAreaBias) {
2093        dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n",
2094                mCalibration.toolSizeAreaBias);
2095    }
2096
2097    if (mCalibration.haveToolSizeIsSummed) {
2098        dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %s\n",
2099                toString(mCalibration.toolSizeIsSummed));
2100    }
2101
2102    // Pressure
2103    switch (mCalibration.pressureCalibration) {
2104    case Calibration::PRESSURE_CALIBRATION_NONE:
2105        dump.append(INDENT4 "touch.pressure.calibration: none\n");
2106        break;
2107    case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
2108        dump.append(INDENT4 "touch.pressure.calibration: physical\n");
2109        break;
2110    case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
2111        dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
2112        break;
2113    default:
2114        assert(false);
2115    }
2116
2117    switch (mCalibration.pressureSource) {
2118    case Calibration::PRESSURE_SOURCE_PRESSURE:
2119        dump.append(INDENT4 "touch.pressure.source: pressure\n");
2120        break;
2121    case Calibration::PRESSURE_SOURCE_TOUCH:
2122        dump.append(INDENT4 "touch.pressure.source: touch\n");
2123        break;
2124    case Calibration::PRESSURE_SOURCE_DEFAULT:
2125        break;
2126    default:
2127        assert(false);
2128    }
2129
2130    if (mCalibration.havePressureScale) {
2131        dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
2132                mCalibration.pressureScale);
2133    }
2134
2135    // Size
2136    switch (mCalibration.sizeCalibration) {
2137    case Calibration::SIZE_CALIBRATION_NONE:
2138        dump.append(INDENT4 "touch.size.calibration: none\n");
2139        break;
2140    case Calibration::SIZE_CALIBRATION_NORMALIZED:
2141        dump.append(INDENT4 "touch.size.calibration: normalized\n");
2142        break;
2143    default:
2144        assert(false);
2145    }
2146
2147    // Orientation
2148    switch (mCalibration.orientationCalibration) {
2149    case Calibration::ORIENTATION_CALIBRATION_NONE:
2150        dump.append(INDENT4 "touch.orientation.calibration: none\n");
2151        break;
2152    case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
2153        dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
2154        break;
2155    default:
2156        assert(false);
2157    }
2158}
2159
2160void TouchInputMapper::reset() {
2161    // Synthesize touch up event if touch is currently down.
2162    // This will also take care of finishing virtual key processing if needed.
2163    if (mLastTouch.pointerCount != 0) {
2164        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
2165        mCurrentTouch.clear();
2166        syncTouch(when, true);
2167    }
2168
2169    { // acquire lock
2170        AutoMutex _l(mLock);
2171        initializeLocked();
2172    } // release lock
2173
2174    InputMapper::reset();
2175}
2176
2177void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) {
2178    uint32_t policyFlags = 0;
2179
2180    // Preprocess pointer data.
2181
2182    if (mParameters.useBadTouchFilter) {
2183        if (applyBadTouchFilter()) {
2184            havePointerIds = false;
2185        }
2186    }
2187
2188    if (mParameters.useJumpyTouchFilter) {
2189        if (applyJumpyTouchFilter()) {
2190            havePointerIds = false;
2191        }
2192    }
2193
2194    if (! havePointerIds) {
2195        calculatePointerIds();
2196    }
2197
2198    TouchData temp;
2199    TouchData* savedTouch;
2200    if (mParameters.useAveragingTouchFilter) {
2201        temp.copyFrom(mCurrentTouch);
2202        savedTouch = & temp;
2203
2204        applyAveragingTouchFilter();
2205    } else {
2206        savedTouch = & mCurrentTouch;
2207    }
2208
2209    // Process touches and virtual keys.
2210
2211    TouchResult touchResult = consumeOffScreenTouches(when, policyFlags);
2212    if (touchResult == DISPATCH_TOUCH) {
2213        dispatchTouches(when, policyFlags);
2214    }
2215
2216    // Copy current touch to last touch in preparation for the next cycle.
2217
2218    if (touchResult == DROP_STROKE) {
2219        mLastTouch.clear();
2220    } else {
2221        mLastTouch.copyFrom(*savedTouch);
2222    }
2223}
2224
2225TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches(
2226        nsecs_t when, uint32_t policyFlags) {
2227    int32_t keyEventAction, keyEventFlags;
2228    int32_t keyCode, scanCode, downTime;
2229    TouchResult touchResult;
2230
2231    { // acquire lock
2232        AutoMutex _l(mLock);
2233
2234        // Update surface size and orientation, including virtual key positions.
2235        if (! configureSurfaceLocked()) {
2236            return DROP_STROKE;
2237        }
2238
2239        // Check for virtual key press.
2240        if (mLocked.currentVirtualKey.down) {
2241            if (mCurrentTouch.pointerCount == 0) {
2242                // Pointer went up while virtual key was down.
2243                mLocked.currentVirtualKey.down = false;
2244#if DEBUG_VIRTUAL_KEYS
2245                LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
2246                        mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
2247#endif
2248                keyEventAction = AKEY_EVENT_ACTION_UP;
2249                keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2250                touchResult = SKIP_TOUCH;
2251                goto DispatchVirtualKey;
2252            }
2253
2254            if (mCurrentTouch.pointerCount == 1) {
2255                int32_t x = mCurrentTouch.pointers[0].x;
2256                int32_t y = mCurrentTouch.pointers[0].y;
2257                const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
2258                if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) {
2259                    // Pointer is still within the space of the virtual key.
2260                    return SKIP_TOUCH;
2261                }
2262            }
2263
2264            // Pointer left virtual key area or another pointer also went down.
2265            // Send key cancellation and drop the stroke so subsequent motions will be
2266            // considered fresh downs.  This is useful when the user swipes away from the
2267            // virtual key area into the main display surface.
2268            mLocked.currentVirtualKey.down = false;
2269#if DEBUG_VIRTUAL_KEYS
2270            LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
2271                    mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
2272#endif
2273            keyEventAction = AKEY_EVENT_ACTION_UP;
2274            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
2275                    | AKEY_EVENT_FLAG_CANCELED;
2276
2277            // Check whether the pointer moved inside the display area where we should
2278            // start a new stroke.
2279            int32_t x = mCurrentTouch.pointers[0].x;
2280            int32_t y = mCurrentTouch.pointers[0].y;
2281            if (isPointInsideSurfaceLocked(x, y)) {
2282                mLastTouch.clear();
2283                touchResult = DISPATCH_TOUCH;
2284            } else {
2285                touchResult = DROP_STROKE;
2286            }
2287        } else {
2288            if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) {
2289                // Pointer just went down.  Handle off-screen touches, if needed.
2290                int32_t x = mCurrentTouch.pointers[0].x;
2291                int32_t y = mCurrentTouch.pointers[0].y;
2292                if (! isPointInsideSurfaceLocked(x, y)) {
2293                    // If exactly one pointer went down, check for virtual key hit.
2294                    // Otherwise we will drop the entire stroke.
2295                    if (mCurrentTouch.pointerCount == 1) {
2296                        const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
2297                        if (virtualKey) {
2298                            mLocked.currentVirtualKey.down = true;
2299                            mLocked.currentVirtualKey.downTime = when;
2300                            mLocked.currentVirtualKey.keyCode = virtualKey->keyCode;
2301                            mLocked.currentVirtualKey.scanCode = virtualKey->scanCode;
2302#if DEBUG_VIRTUAL_KEYS
2303                            LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
2304                                    mLocked.currentVirtualKey.keyCode,
2305                                    mLocked.currentVirtualKey.scanCode);
2306#endif
2307                            keyEventAction = AKEY_EVENT_ACTION_DOWN;
2308                            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM
2309                                    | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2310                            touchResult = SKIP_TOUCH;
2311                            goto DispatchVirtualKey;
2312                        }
2313                    }
2314                    return DROP_STROKE;
2315                }
2316            }
2317            return DISPATCH_TOUCH;
2318        }
2319
2320    DispatchVirtualKey:
2321        // Collect remaining state needed to dispatch virtual key.
2322        keyCode = mLocked.currentVirtualKey.keyCode;
2323        scanCode = mLocked.currentVirtualKey.scanCode;
2324        downTime = mLocked.currentVirtualKey.downTime;
2325    } // release lock
2326
2327    // Dispatch virtual key.
2328    int32_t metaState = mContext->getGlobalMetaState();
2329    policyFlags |= POLICY_FLAG_VIRTUAL;
2330    getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
2331            keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
2332    return touchResult;
2333}
2334
2335void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
2336    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
2337    uint32_t lastPointerCount = mLastTouch.pointerCount;
2338    if (currentPointerCount == 0 && lastPointerCount == 0) {
2339        return; // nothing to do!
2340    }
2341
2342    BitSet32 currentIdBits = mCurrentTouch.idBits;
2343    BitSet32 lastIdBits = mLastTouch.idBits;
2344
2345    if (currentIdBits == lastIdBits) {
2346        // No pointer id changes so this is a move event.
2347        // The dispatcher takes care of batching moves so we don't have to deal with that here.
2348        int32_t motionEventAction = AMOTION_EVENT_ACTION_MOVE;
2349        dispatchTouch(when, policyFlags, & mCurrentTouch,
2350                currentIdBits, -1, currentPointerCount, motionEventAction);
2351    } else {
2352        // There may be pointers going up and pointers going down and pointers moving
2353        // all at the same time.
2354        BitSet32 upIdBits(lastIdBits.value & ~ currentIdBits.value);
2355        BitSet32 downIdBits(currentIdBits.value & ~ lastIdBits.value);
2356        BitSet32 activeIdBits(lastIdBits.value);
2357        uint32_t pointerCount = lastPointerCount;
2358
2359        // Produce an intermediate representation of the touch data that consists of the
2360        // old location of pointers that have just gone up and the new location of pointers that
2361        // have just moved but omits the location of pointers that have just gone down.
2362        TouchData interimTouch;
2363        interimTouch.copyFrom(mLastTouch);
2364
2365        BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
2366        bool moveNeeded = false;
2367        while (!moveIdBits.isEmpty()) {
2368            uint32_t moveId = moveIdBits.firstMarkedBit();
2369            moveIdBits.clearBit(moveId);
2370
2371            int32_t oldIndex = mLastTouch.idToIndex[moveId];
2372            int32_t newIndex = mCurrentTouch.idToIndex[moveId];
2373            if (mLastTouch.pointers[oldIndex] != mCurrentTouch.pointers[newIndex]) {
2374                interimTouch.pointers[oldIndex] = mCurrentTouch.pointers[newIndex];
2375                moveNeeded = true;
2376            }
2377        }
2378
2379        // Dispatch pointer up events using the interim pointer locations.
2380        while (!upIdBits.isEmpty()) {
2381            uint32_t upId = upIdBits.firstMarkedBit();
2382            upIdBits.clearBit(upId);
2383            BitSet32 oldActiveIdBits = activeIdBits;
2384            activeIdBits.clearBit(upId);
2385
2386            int32_t motionEventAction;
2387            if (activeIdBits.isEmpty()) {
2388                motionEventAction = AMOTION_EVENT_ACTION_UP;
2389            } else {
2390                motionEventAction = AMOTION_EVENT_ACTION_POINTER_UP;
2391            }
2392
2393            dispatchTouch(when, policyFlags, &interimTouch,
2394                    oldActiveIdBits, upId, pointerCount, motionEventAction);
2395            pointerCount -= 1;
2396        }
2397
2398        // Dispatch move events if any of the remaining pointers moved from their old locations.
2399        // Although applications receive new locations as part of individual pointer up
2400        // events, they do not generally handle them except when presented in a move event.
2401        if (moveNeeded) {
2402            dispatchTouch(when, policyFlags, &mCurrentTouch,
2403                    activeIdBits, -1, pointerCount, AMOTION_EVENT_ACTION_MOVE);
2404        }
2405
2406        // Dispatch pointer down events using the new pointer locations.
2407        while (!downIdBits.isEmpty()) {
2408            uint32_t downId = downIdBits.firstMarkedBit();
2409            downIdBits.clearBit(downId);
2410            BitSet32 oldActiveIdBits = activeIdBits;
2411            activeIdBits.markBit(downId);
2412
2413            int32_t motionEventAction;
2414            if (oldActiveIdBits.isEmpty()) {
2415                motionEventAction = AMOTION_EVENT_ACTION_DOWN;
2416                mDownTime = when;
2417            } else {
2418                motionEventAction = AMOTION_EVENT_ACTION_POINTER_DOWN;
2419            }
2420
2421            pointerCount += 1;
2422            dispatchTouch(when, policyFlags, &mCurrentTouch,
2423                    activeIdBits, downId, pointerCount, motionEventAction);
2424        }
2425    }
2426}
2427
2428void TouchInputMapper::dispatchTouch(nsecs_t when, uint32_t policyFlags,
2429        TouchData* touch, BitSet32 idBits, uint32_t changedId, uint32_t pointerCount,
2430        int32_t motionEventAction) {
2431    int32_t pointerIds[MAX_POINTERS];
2432    PointerCoords pointerCoords[MAX_POINTERS];
2433    int32_t motionEventEdgeFlags = 0;
2434    float xPrecision, yPrecision;
2435
2436    { // acquire lock
2437        AutoMutex _l(mLock);
2438
2439        // Walk through the the active pointers and map touch screen coordinates (TouchData) into
2440        // display coordinates (PointerCoords) and adjust for display orientation.
2441        for (uint32_t outIndex = 0; ! idBits.isEmpty(); outIndex++) {
2442            uint32_t id = idBits.firstMarkedBit();
2443            idBits.clearBit(id);
2444            uint32_t inIndex = touch->idToIndex[id];
2445
2446            const PointerData& in = touch->pointers[inIndex];
2447
2448            // X and Y
2449            float x = float(in.x - mLocked.xOrigin) * mLocked.xScale;
2450            float y = float(in.y - mLocked.yOrigin) * mLocked.yScale;
2451
2452            // ToolMajor and ToolMinor
2453            float toolMajor, toolMinor;
2454            switch (mCalibration.toolSizeCalibration) {
2455            case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
2456                toolMajor = in.toolMajor * mLocked.geometricScale;
2457                if (mRawAxes.toolMinor.valid) {
2458                    toolMinor = in.toolMinor * mLocked.geometricScale;
2459                } else {
2460                    toolMinor = toolMajor;
2461                }
2462                break;
2463            case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
2464                toolMajor = in.toolMajor != 0
2465                        ? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias
2466                        : 0;
2467                if (mRawAxes.toolMinor.valid) {
2468                    toolMinor = in.toolMinor != 0
2469                            ? in.toolMinor * mLocked.toolSizeLinearScale
2470                                    + mLocked.toolSizeLinearBias
2471                            : 0;
2472                } else {
2473                    toolMinor = toolMajor;
2474                }
2475                break;
2476            case Calibration::TOOL_SIZE_CALIBRATION_AREA:
2477                if (in.toolMajor != 0) {
2478                    float diameter = sqrtf(in.toolMajor
2479                            * mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias);
2480                    toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias;
2481                } else {
2482                    toolMajor = 0;
2483                }
2484                toolMinor = toolMajor;
2485                break;
2486            default:
2487                toolMajor = 0;
2488                toolMinor = 0;
2489                break;
2490            }
2491
2492            if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) {
2493                toolMajor /= pointerCount;
2494                toolMinor /= pointerCount;
2495            }
2496
2497            // Pressure
2498            float rawPressure;
2499            switch (mCalibration.pressureSource) {
2500            case Calibration::PRESSURE_SOURCE_PRESSURE:
2501                rawPressure = in.pressure;
2502                break;
2503            case Calibration::PRESSURE_SOURCE_TOUCH:
2504                rawPressure = in.touchMajor;
2505                break;
2506            default:
2507                rawPressure = 0;
2508            }
2509
2510            float pressure;
2511            switch (mCalibration.pressureCalibration) {
2512            case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
2513            case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
2514                pressure = rawPressure * mLocked.pressureScale;
2515                break;
2516            default:
2517                pressure = 1;
2518                break;
2519            }
2520
2521            // TouchMajor and TouchMinor
2522            float touchMajor, touchMinor;
2523            switch (mCalibration.touchSizeCalibration) {
2524            case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
2525                touchMajor = in.touchMajor * mLocked.geometricScale;
2526                if (mRawAxes.touchMinor.valid) {
2527                    touchMinor = in.touchMinor * mLocked.geometricScale;
2528                } else {
2529                    touchMinor = touchMajor;
2530                }
2531                break;
2532            case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
2533                touchMajor = toolMajor * pressure;
2534                touchMinor = toolMinor * pressure;
2535                break;
2536            default:
2537                touchMajor = 0;
2538                touchMinor = 0;
2539                break;
2540            }
2541
2542            if (touchMajor > toolMajor) {
2543                touchMajor = toolMajor;
2544            }
2545            if (touchMinor > toolMinor) {
2546                touchMinor = toolMinor;
2547            }
2548
2549            // Size
2550            float size;
2551            switch (mCalibration.sizeCalibration) {
2552            case Calibration::SIZE_CALIBRATION_NORMALIZED: {
2553                float rawSize = mRawAxes.toolMinor.valid
2554                        ? avg(in.toolMajor, in.toolMinor)
2555                        : in.toolMajor;
2556                size = rawSize * mLocked.sizeScale;
2557                break;
2558            }
2559            default:
2560                size = 0;
2561                break;
2562            }
2563
2564            // Orientation
2565            float orientation;
2566            switch (mCalibration.orientationCalibration) {
2567            case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
2568                orientation = in.orientation * mLocked.orientationScale;
2569                break;
2570            default:
2571                orientation = 0;
2572            }
2573
2574            // Adjust coords for orientation.
2575            switch (mLocked.surfaceOrientation) {
2576            case DISPLAY_ORIENTATION_90: {
2577                float xTemp = x;
2578                x = y;
2579                y = mLocked.surfaceWidth - xTemp;
2580                orientation -= M_PI_2;
2581                if (orientation < - M_PI_2) {
2582                    orientation += M_PI;
2583                }
2584                break;
2585            }
2586            case DISPLAY_ORIENTATION_180: {
2587                x = mLocked.surfaceWidth - x;
2588                y = mLocked.surfaceHeight - y;
2589                orientation = - orientation;
2590                break;
2591            }
2592            case DISPLAY_ORIENTATION_270: {
2593                float xTemp = x;
2594                x = mLocked.surfaceHeight - y;
2595                y = xTemp;
2596                orientation += M_PI_2;
2597                if (orientation > M_PI_2) {
2598                    orientation -= M_PI;
2599                }
2600                break;
2601            }
2602            }
2603
2604            // Write output coords.
2605            PointerCoords& out = pointerCoords[outIndex];
2606            out.x = x;
2607            out.y = y;
2608            out.pressure = pressure;
2609            out.size = size;
2610            out.touchMajor = touchMajor;
2611            out.touchMinor = touchMinor;
2612            out.toolMajor = toolMajor;
2613            out.toolMinor = toolMinor;
2614            out.orientation = orientation;
2615
2616            pointerIds[outIndex] = int32_t(id);
2617
2618            if (id == changedId) {
2619                motionEventAction |= outIndex << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
2620            }
2621        }
2622
2623        // Check edge flags by looking only at the first pointer since the flags are
2624        // global to the event.
2625        if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
2626            if (pointerCoords[0].x <= 0) {
2627                motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT;
2628            } else if (pointerCoords[0].x >= mLocked.orientedSurfaceWidth) {
2629                motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT;
2630            }
2631            if (pointerCoords[0].y <= 0) {
2632                motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP;
2633            } else if (pointerCoords[0].y >= mLocked.orientedSurfaceHeight) {
2634                motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM;
2635            }
2636        }
2637
2638        xPrecision = mLocked.orientedXPrecision;
2639        yPrecision = mLocked.orientedYPrecision;
2640    } // release lock
2641
2642    getDispatcher()->notifyMotion(when, getDeviceId(), mSources, policyFlags,
2643            motionEventAction, 0, getContext()->getGlobalMetaState(), motionEventEdgeFlags,
2644            pointerCount, pointerIds, pointerCoords,
2645            xPrecision, yPrecision, mDownTime);
2646}
2647
2648bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) {
2649    if (mRawAxes.x.valid && mRawAxes.y.valid) {
2650        return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue
2651                && y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue;
2652    }
2653    return true;
2654}
2655
2656const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked(
2657        int32_t x, int32_t y) {
2658    size_t numVirtualKeys = mLocked.virtualKeys.size();
2659    for (size_t i = 0; i < numVirtualKeys; i++) {
2660        const VirtualKey& virtualKey = mLocked.virtualKeys[i];
2661
2662#if DEBUG_VIRTUAL_KEYS
2663        LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
2664                "left=%d, top=%d, right=%d, bottom=%d",
2665                x, y,
2666                virtualKey.keyCode, virtualKey.scanCode,
2667                virtualKey.hitLeft, virtualKey.hitTop,
2668                virtualKey.hitRight, virtualKey.hitBottom);
2669#endif
2670
2671        if (virtualKey.isHit(x, y)) {
2672            return & virtualKey;
2673        }
2674    }
2675
2676    return NULL;
2677}
2678
2679void TouchInputMapper::calculatePointerIds() {
2680    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
2681    uint32_t lastPointerCount = mLastTouch.pointerCount;
2682
2683    if (currentPointerCount == 0) {
2684        // No pointers to assign.
2685        mCurrentTouch.idBits.clear();
2686    } else if (lastPointerCount == 0) {
2687        // All pointers are new.
2688        mCurrentTouch.idBits.clear();
2689        for (uint32_t i = 0; i < currentPointerCount; i++) {
2690            mCurrentTouch.pointers[i].id = i;
2691            mCurrentTouch.idToIndex[i] = i;
2692            mCurrentTouch.idBits.markBit(i);
2693        }
2694    } else if (currentPointerCount == 1 && lastPointerCount == 1) {
2695        // Only one pointer and no change in count so it must have the same id as before.
2696        uint32_t id = mLastTouch.pointers[0].id;
2697        mCurrentTouch.pointers[0].id = id;
2698        mCurrentTouch.idToIndex[id] = 0;
2699        mCurrentTouch.idBits.value = BitSet32::valueForBit(id);
2700    } else {
2701        // General case.
2702        // We build a heap of squared euclidean distances between current and last pointers
2703        // associated with the current and last pointer indices.  Then, we find the best
2704        // match (by distance) for each current pointer.
2705        PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
2706
2707        uint32_t heapSize = 0;
2708        for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
2709                currentPointerIndex++) {
2710            for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
2711                    lastPointerIndex++) {
2712                int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x
2713                        - mLastTouch.pointers[lastPointerIndex].x;
2714                int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y
2715                        - mLastTouch.pointers[lastPointerIndex].y;
2716
2717                uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
2718
2719                // Insert new element into the heap (sift up).
2720                heap[heapSize].currentPointerIndex = currentPointerIndex;
2721                heap[heapSize].lastPointerIndex = lastPointerIndex;
2722                heap[heapSize].distance = distance;
2723                heapSize += 1;
2724            }
2725        }
2726
2727        // Heapify
2728        for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
2729            startIndex -= 1;
2730            for (uint32_t parentIndex = startIndex; ;) {
2731                uint32_t childIndex = parentIndex * 2 + 1;
2732                if (childIndex >= heapSize) {
2733                    break;
2734                }
2735
2736                if (childIndex + 1 < heapSize
2737                        && heap[childIndex + 1].distance < heap[childIndex].distance) {
2738                    childIndex += 1;
2739                }
2740
2741                if (heap[parentIndex].distance <= heap[childIndex].distance) {
2742                    break;
2743                }
2744
2745                swap(heap[parentIndex], heap[childIndex]);
2746                parentIndex = childIndex;
2747            }
2748        }
2749
2750#if DEBUG_POINTER_ASSIGNMENT
2751        LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize);
2752        for (size_t i = 0; i < heapSize; i++) {
2753            LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
2754                    i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
2755                    heap[i].distance);
2756        }
2757#endif
2758
2759        // Pull matches out by increasing order of distance.
2760        // To avoid reassigning pointers that have already been matched, the loop keeps track
2761        // of which last and current pointers have been matched using the matchedXXXBits variables.
2762        // It also tracks the used pointer id bits.
2763        BitSet32 matchedLastBits(0);
2764        BitSet32 matchedCurrentBits(0);
2765        BitSet32 usedIdBits(0);
2766        bool first = true;
2767        for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) {
2768            for (;;) {
2769                if (first) {
2770                    // The first time through the loop, we just consume the root element of
2771                    // the heap (the one with smallest distance).
2772                    first = false;
2773                } else {
2774                    // Previous iterations consumed the root element of the heap.
2775                    // Pop root element off of the heap (sift down).
2776                    heapSize -= 1;
2777                    assert(heapSize > 0);
2778
2779                    // Sift down.
2780                    heap[0] = heap[heapSize];
2781                    for (uint32_t parentIndex = 0; ;) {
2782                        uint32_t childIndex = parentIndex * 2 + 1;
2783                        if (childIndex >= heapSize) {
2784                            break;
2785                        }
2786
2787                        if (childIndex + 1 < heapSize
2788                                && heap[childIndex + 1].distance < heap[childIndex].distance) {
2789                            childIndex += 1;
2790                        }
2791
2792                        if (heap[parentIndex].distance <= heap[childIndex].distance) {
2793                            break;
2794                        }
2795
2796                        swap(heap[parentIndex], heap[childIndex]);
2797                        parentIndex = childIndex;
2798                    }
2799
2800#if DEBUG_POINTER_ASSIGNMENT
2801                    LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize);
2802                    for (size_t i = 0; i < heapSize; i++) {
2803                        LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
2804                                i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
2805                                heap[i].distance);
2806                    }
2807#endif
2808                }
2809
2810                uint32_t currentPointerIndex = heap[0].currentPointerIndex;
2811                if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
2812
2813                uint32_t lastPointerIndex = heap[0].lastPointerIndex;
2814                if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
2815
2816                matchedCurrentBits.markBit(currentPointerIndex);
2817                matchedLastBits.markBit(lastPointerIndex);
2818
2819                uint32_t id = mLastTouch.pointers[lastPointerIndex].id;
2820                mCurrentTouch.pointers[currentPointerIndex].id = id;
2821                mCurrentTouch.idToIndex[id] = currentPointerIndex;
2822                usedIdBits.markBit(id);
2823
2824#if DEBUG_POINTER_ASSIGNMENT
2825                LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
2826                        lastPointerIndex, currentPointerIndex, id, heap[0].distance);
2827#endif
2828                break;
2829            }
2830        }
2831
2832        // Assign fresh ids to new pointers.
2833        if (currentPointerCount > lastPointerCount) {
2834            for (uint32_t i = currentPointerCount - lastPointerCount; ;) {
2835                uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit();
2836                uint32_t id = usedIdBits.firstUnmarkedBit();
2837
2838                mCurrentTouch.pointers[currentPointerIndex].id = id;
2839                mCurrentTouch.idToIndex[id] = currentPointerIndex;
2840                usedIdBits.markBit(id);
2841
2842#if DEBUG_POINTER_ASSIGNMENT
2843                LOGD("calculatePointerIds - assigned: cur=%d, id=%d",
2844                        currentPointerIndex, id);
2845#endif
2846
2847                if (--i == 0) break; // done
2848                matchedCurrentBits.markBit(currentPointerIndex);
2849            }
2850        }
2851
2852        // Fix id bits.
2853        mCurrentTouch.idBits = usedIdBits;
2854    }
2855}
2856
2857/* Special hack for devices that have bad screen data: if one of the
2858 * points has moved more than a screen height from the last position,
2859 * then drop it. */
2860bool TouchInputMapper::applyBadTouchFilter() {
2861    // This hack requires valid axis parameters.
2862    if (! mRawAxes.y.valid) {
2863        return false;
2864    }
2865
2866    uint32_t pointerCount = mCurrentTouch.pointerCount;
2867
2868    // Nothing to do if there are no points.
2869    if (pointerCount == 0) {
2870        return false;
2871    }
2872
2873    // Don't do anything if a finger is going down or up.  We run
2874    // here before assigning pointer IDs, so there isn't a good
2875    // way to do per-finger matching.
2876    if (pointerCount != mLastTouch.pointerCount) {
2877        return false;
2878    }
2879
2880    // We consider a single movement across more than a 7/16 of
2881    // the long size of the screen to be bad.  This was a magic value
2882    // determined by looking at the maximum distance it is feasible
2883    // to actually move in one sample.
2884    int32_t maxDeltaY = mRawAxes.y.getRange() * 7 / 16;
2885
2886    // XXX The original code in InputDevice.java included commented out
2887    //     code for testing the X axis.  Note that when we drop a point
2888    //     we don't actually restore the old X either.  Strange.
2889    //     The old code also tries to track when bad points were previously
2890    //     detected but it turns out that due to the placement of a "break"
2891    //     at the end of the loop, we never set mDroppedBadPoint to true
2892    //     so it is effectively dead code.
2893    // Need to figure out if the old code is busted or just overcomplicated
2894    // but working as intended.
2895
2896    // Look through all new points and see if any are farther than
2897    // acceptable from all previous points.
2898    for (uint32_t i = pointerCount; i-- > 0; ) {
2899        int32_t y = mCurrentTouch.pointers[i].y;
2900        int32_t closestY = INT_MAX;
2901        int32_t closestDeltaY = 0;
2902
2903#if DEBUG_HACKS
2904        LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y);
2905#endif
2906
2907        for (uint32_t j = pointerCount; j-- > 0; ) {
2908            int32_t lastY = mLastTouch.pointers[j].y;
2909            int32_t deltaY = abs(y - lastY);
2910
2911#if DEBUG_HACKS
2912            LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d",
2913                    j, lastY, deltaY);
2914#endif
2915
2916            if (deltaY < maxDeltaY) {
2917                goto SkipSufficientlyClosePoint;
2918            }
2919            if (deltaY < closestDeltaY) {
2920                closestDeltaY = deltaY;
2921                closestY = lastY;
2922            }
2923        }
2924
2925        // Must not have found a close enough match.
2926#if DEBUG_HACKS
2927        LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d",
2928                i, y, closestY, closestDeltaY, maxDeltaY);
2929#endif
2930
2931        mCurrentTouch.pointers[i].y = closestY;
2932        return true; // XXX original code only corrects one point
2933
2934    SkipSufficientlyClosePoint: ;
2935    }
2936
2937    // No change.
2938    return false;
2939}
2940
2941/* Special hack for devices that have bad screen data: drop points where
2942 * the coordinate value for one axis has jumped to the other pointer's location.
2943 */
2944bool TouchInputMapper::applyJumpyTouchFilter() {
2945    // This hack requires valid axis parameters.
2946    if (! mRawAxes.y.valid) {
2947        return false;
2948    }
2949
2950    uint32_t pointerCount = mCurrentTouch.pointerCount;
2951    if (mLastTouch.pointerCount != pointerCount) {
2952#if DEBUG_HACKS
2953        LOGD("JumpyTouchFilter: Different pointer count %d -> %d",
2954                mLastTouch.pointerCount, pointerCount);
2955        for (uint32_t i = 0; i < pointerCount; i++) {
2956            LOGD("  Pointer %d (%d, %d)", i,
2957                    mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
2958        }
2959#endif
2960
2961        if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) {
2962            if (mLastTouch.pointerCount == 1 && pointerCount == 2) {
2963                // Just drop the first few events going from 1 to 2 pointers.
2964                // They're bad often enough that they're not worth considering.
2965                mCurrentTouch.pointerCount = 1;
2966                mJumpyTouchFilter.jumpyPointsDropped += 1;
2967
2968#if DEBUG_HACKS
2969                LOGD("JumpyTouchFilter: Pointer 2 dropped");
2970#endif
2971                return true;
2972            } else if (mLastTouch.pointerCount == 2 && pointerCount == 1) {
2973                // The event when we go from 2 -> 1 tends to be messed up too
2974                mCurrentTouch.pointerCount = 2;
2975                mCurrentTouch.pointers[0] = mLastTouch.pointers[0];
2976                mCurrentTouch.pointers[1] = mLastTouch.pointers[1];
2977                mJumpyTouchFilter.jumpyPointsDropped += 1;
2978
2979#if DEBUG_HACKS
2980                for (int32_t i = 0; i < 2; i++) {
2981                    LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i,
2982                            mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
2983                }
2984#endif
2985                return true;
2986            }
2987        }
2988        // Reset jumpy points dropped on other transitions or if limit exceeded.
2989        mJumpyTouchFilter.jumpyPointsDropped = 0;
2990
2991#if DEBUG_HACKS
2992        LOGD("JumpyTouchFilter: Transition - drop limit reset");
2993#endif
2994        return false;
2995    }
2996
2997    // We have the same number of pointers as last time.
2998    // A 'jumpy' point is one where the coordinate value for one axis
2999    // has jumped to the other pointer's location. No need to do anything
3000    // else if we only have one pointer.
3001    if (pointerCount < 2) {
3002        return false;
3003    }
3004
3005    if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) {
3006        int jumpyEpsilon = mRawAxes.y.getRange() / JUMPY_EPSILON_DIVISOR;
3007
3008        // We only replace the single worst jumpy point as characterized by pointer distance
3009        // in a single axis.
3010        int32_t badPointerIndex = -1;
3011        int32_t badPointerReplacementIndex = -1;
3012        int32_t badPointerDistance = INT_MIN; // distance to be corrected
3013
3014        for (uint32_t i = pointerCount; i-- > 0; ) {
3015            int32_t x = mCurrentTouch.pointers[i].x;
3016            int32_t y = mCurrentTouch.pointers[i].y;
3017
3018#if DEBUG_HACKS
3019            LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y);
3020#endif
3021
3022            // Check if a touch point is too close to another's coordinates
3023            bool dropX = false, dropY = false;
3024            for (uint32_t j = 0; j < pointerCount; j++) {
3025                if (i == j) {
3026                    continue;
3027                }
3028
3029                if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) {
3030                    dropX = true;
3031                    break;
3032                }
3033
3034                if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) {
3035                    dropY = true;
3036                    break;
3037                }
3038            }
3039            if (! dropX && ! dropY) {
3040                continue; // not jumpy
3041            }
3042
3043            // Find a replacement candidate by comparing with older points on the
3044            // complementary (non-jumpy) axis.
3045            int32_t distance = INT_MIN; // distance to be corrected
3046            int32_t replacementIndex = -1;
3047
3048            if (dropX) {
3049                // X looks too close.  Find an older replacement point with a close Y.
3050                int32_t smallestDeltaY = INT_MAX;
3051                for (uint32_t j = 0; j < pointerCount; j++) {
3052                    int32_t deltaY = abs(y - mLastTouch.pointers[j].y);
3053                    if (deltaY < smallestDeltaY) {
3054                        smallestDeltaY = deltaY;
3055                        replacementIndex = j;
3056                    }
3057                }
3058                distance = abs(x - mLastTouch.pointers[replacementIndex].x);
3059            } else {
3060                // Y looks too close.  Find an older replacement point with a close X.
3061                int32_t smallestDeltaX = INT_MAX;
3062                for (uint32_t j = 0; j < pointerCount; j++) {
3063                    int32_t deltaX = abs(x - mLastTouch.pointers[j].x);
3064                    if (deltaX < smallestDeltaX) {
3065                        smallestDeltaX = deltaX;
3066                        replacementIndex = j;
3067                    }
3068                }
3069                distance = abs(y - mLastTouch.pointers[replacementIndex].y);
3070            }
3071
3072            // If replacing this pointer would correct a worse error than the previous ones
3073            // considered, then use this replacement instead.
3074            if (distance > badPointerDistance) {
3075                badPointerIndex = i;
3076                badPointerReplacementIndex = replacementIndex;
3077                badPointerDistance = distance;
3078            }
3079        }
3080
3081        // Correct the jumpy pointer if one was found.
3082        if (badPointerIndex >= 0) {
3083#if DEBUG_HACKS
3084            LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)",
3085                    badPointerIndex,
3086                    mLastTouch.pointers[badPointerReplacementIndex].x,
3087                    mLastTouch.pointers[badPointerReplacementIndex].y);
3088#endif
3089
3090            mCurrentTouch.pointers[badPointerIndex].x =
3091                    mLastTouch.pointers[badPointerReplacementIndex].x;
3092            mCurrentTouch.pointers[badPointerIndex].y =
3093                    mLastTouch.pointers[badPointerReplacementIndex].y;
3094            mJumpyTouchFilter.jumpyPointsDropped += 1;
3095            return true;
3096        }
3097    }
3098
3099    mJumpyTouchFilter.jumpyPointsDropped = 0;
3100    return false;
3101}
3102
3103/* Special hack for devices that have bad screen data: aggregate and
3104 * compute averages of the coordinate data, to reduce the amount of
3105 * jitter seen by applications. */
3106void TouchInputMapper::applyAveragingTouchFilter() {
3107    for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) {
3108        uint32_t id = mCurrentTouch.pointers[currentIndex].id;
3109        int32_t x = mCurrentTouch.pointers[currentIndex].x;
3110        int32_t y = mCurrentTouch.pointers[currentIndex].y;
3111        int32_t pressure;
3112        switch (mCalibration.pressureSource) {
3113        case Calibration::PRESSURE_SOURCE_PRESSURE:
3114            pressure = mCurrentTouch.pointers[currentIndex].pressure;
3115            break;
3116        case Calibration::PRESSURE_SOURCE_TOUCH:
3117            pressure = mCurrentTouch.pointers[currentIndex].touchMajor;
3118            break;
3119        default:
3120            pressure = 1;
3121            break;
3122        }
3123
3124        if (mLastTouch.idBits.hasBit(id)) {
3125            // Pointer was down before and is still down now.
3126            // Compute average over history trace.
3127            uint32_t start = mAveragingTouchFilter.historyStart[id];
3128            uint32_t end = mAveragingTouchFilter.historyEnd[id];
3129
3130            int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x;
3131            int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y;
3132            uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
3133
3134#if DEBUG_HACKS
3135            LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld",
3136                    id, distance);
3137#endif
3138
3139            if (distance < AVERAGING_DISTANCE_LIMIT) {
3140                // Increment end index in preparation for recording new historical data.
3141                end += 1;
3142                if (end > AVERAGING_HISTORY_SIZE) {
3143                    end = 0;
3144                }
3145
3146                // If the end index has looped back to the start index then we have filled
3147                // the historical trace up to the desired size so we drop the historical
3148                // data at the start of the trace.
3149                if (end == start) {
3150                    start += 1;
3151                    if (start > AVERAGING_HISTORY_SIZE) {
3152                        start = 0;
3153                    }
3154                }
3155
3156                // Add the raw data to the historical trace.
3157                mAveragingTouchFilter.historyStart[id] = start;
3158                mAveragingTouchFilter.historyEnd[id] = end;
3159                mAveragingTouchFilter.historyData[end].pointers[id].x = x;
3160                mAveragingTouchFilter.historyData[end].pointers[id].y = y;
3161                mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure;
3162
3163                // Average over all historical positions in the trace by total pressure.
3164                int32_t averagedX = 0;
3165                int32_t averagedY = 0;
3166                int32_t totalPressure = 0;
3167                for (;;) {
3168                    int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x;
3169                    int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y;
3170                    int32_t historicalPressure = mAveragingTouchFilter.historyData[start]
3171                            .pointers[id].pressure;
3172
3173                    averagedX += historicalX * historicalPressure;
3174                    averagedY += historicalY * historicalPressure;
3175                    totalPressure += historicalPressure;
3176
3177                    if (start == end) {
3178                        break;
3179                    }
3180
3181                    start += 1;
3182                    if (start > AVERAGING_HISTORY_SIZE) {
3183                        start = 0;
3184                    }
3185                }
3186
3187                if (totalPressure != 0) {
3188                    averagedX /= totalPressure;
3189                    averagedY /= totalPressure;
3190
3191#if DEBUG_HACKS
3192                    LOGD("AveragingTouchFilter: Pointer id %d - "
3193                            "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure,
3194                            averagedX, averagedY);
3195#endif
3196
3197                    mCurrentTouch.pointers[currentIndex].x = averagedX;
3198                    mCurrentTouch.pointers[currentIndex].y = averagedY;
3199                }
3200            } else {
3201#if DEBUG_HACKS
3202                LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id);
3203#endif
3204            }
3205        } else {
3206#if DEBUG_HACKS
3207            LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id);
3208#endif
3209        }
3210
3211        // Reset pointer history.
3212        mAveragingTouchFilter.historyStart[id] = 0;
3213        mAveragingTouchFilter.historyEnd[id] = 0;
3214        mAveragingTouchFilter.historyData[0].pointers[id].x = x;
3215        mAveragingTouchFilter.historyData[0].pointers[id].y = y;
3216        mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure;
3217    }
3218}
3219
3220int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
3221    { // acquire lock
3222        AutoMutex _l(mLock);
3223
3224        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) {
3225            return AKEY_STATE_VIRTUAL;
3226        }
3227
3228        size_t numVirtualKeys = mLocked.virtualKeys.size();
3229        for (size_t i = 0; i < numVirtualKeys; i++) {
3230            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
3231            if (virtualKey.keyCode == keyCode) {
3232                return AKEY_STATE_UP;
3233            }
3234        }
3235    } // release lock
3236
3237    return AKEY_STATE_UNKNOWN;
3238}
3239
3240int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
3241    { // acquire lock
3242        AutoMutex _l(mLock);
3243
3244        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) {
3245            return AKEY_STATE_VIRTUAL;
3246        }
3247
3248        size_t numVirtualKeys = mLocked.virtualKeys.size();
3249        for (size_t i = 0; i < numVirtualKeys; i++) {
3250            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
3251            if (virtualKey.scanCode == scanCode) {
3252                return AKEY_STATE_UP;
3253            }
3254        }
3255    } // release lock
3256
3257    return AKEY_STATE_UNKNOWN;
3258}
3259
3260bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
3261        const int32_t* keyCodes, uint8_t* outFlags) {
3262    { // acquire lock
3263        AutoMutex _l(mLock);
3264
3265        size_t numVirtualKeys = mLocked.virtualKeys.size();
3266        for (size_t i = 0; i < numVirtualKeys; i++) {
3267            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
3268
3269            for (size_t i = 0; i < numCodes; i++) {
3270                if (virtualKey.keyCode == keyCodes[i]) {
3271                    outFlags[i] = 1;
3272                }
3273            }
3274        }
3275    } // release lock
3276
3277    return true;
3278}
3279
3280
3281// --- SingleTouchInputMapper ---
3282
3283SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) :
3284        TouchInputMapper(device) {
3285    initialize();
3286}
3287
3288SingleTouchInputMapper::~SingleTouchInputMapper() {
3289}
3290
3291void SingleTouchInputMapper::initialize() {
3292    mAccumulator.clear();
3293
3294    mDown = false;
3295    mX = 0;
3296    mY = 0;
3297    mPressure = 0; // default to 0 for devices that don't report pressure
3298    mToolWidth = 0; // default to 0 for devices that don't report tool width
3299}
3300
3301void SingleTouchInputMapper::reset() {
3302    TouchInputMapper::reset();
3303
3304    initialize();
3305 }
3306
3307void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
3308    switch (rawEvent->type) {
3309    case EV_KEY:
3310        switch (rawEvent->scanCode) {
3311        case BTN_TOUCH:
3312            mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH;
3313            mAccumulator.btnTouch = rawEvent->value != 0;
3314            // Don't sync immediately.  Wait until the next SYN_REPORT since we might
3315            // not have received valid position information yet.  This logic assumes that
3316            // BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet.
3317            break;
3318        }
3319        break;
3320
3321    case EV_ABS:
3322        switch (rawEvent->scanCode) {
3323        case ABS_X:
3324            mAccumulator.fields |= Accumulator::FIELD_ABS_X;
3325            mAccumulator.absX = rawEvent->value;
3326            break;
3327        case ABS_Y:
3328            mAccumulator.fields |= Accumulator::FIELD_ABS_Y;
3329            mAccumulator.absY = rawEvent->value;
3330            break;
3331        case ABS_PRESSURE:
3332            mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE;
3333            mAccumulator.absPressure = rawEvent->value;
3334            break;
3335        case ABS_TOOL_WIDTH:
3336            mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH;
3337            mAccumulator.absToolWidth = rawEvent->value;
3338            break;
3339        }
3340        break;
3341
3342    case EV_SYN:
3343        switch (rawEvent->scanCode) {
3344        case SYN_REPORT:
3345            sync(rawEvent->when);
3346            break;
3347        }
3348        break;
3349    }
3350}
3351
3352void SingleTouchInputMapper::sync(nsecs_t when) {
3353    uint32_t fields = mAccumulator.fields;
3354    if (fields == 0) {
3355        return; // no new state changes, so nothing to do
3356    }
3357
3358    if (fields & Accumulator::FIELD_BTN_TOUCH) {
3359        mDown = mAccumulator.btnTouch;
3360    }
3361
3362    if (fields & Accumulator::FIELD_ABS_X) {
3363        mX = mAccumulator.absX;
3364    }
3365
3366    if (fields & Accumulator::FIELD_ABS_Y) {
3367        mY = mAccumulator.absY;
3368    }
3369
3370    if (fields & Accumulator::FIELD_ABS_PRESSURE) {
3371        mPressure = mAccumulator.absPressure;
3372    }
3373
3374    if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) {
3375        mToolWidth = mAccumulator.absToolWidth;
3376    }
3377
3378    mCurrentTouch.clear();
3379
3380    if (mDown) {
3381        mCurrentTouch.pointerCount = 1;
3382        mCurrentTouch.pointers[0].id = 0;
3383        mCurrentTouch.pointers[0].x = mX;
3384        mCurrentTouch.pointers[0].y = mY;
3385        mCurrentTouch.pointers[0].pressure = mPressure;
3386        mCurrentTouch.pointers[0].touchMajor = 0;
3387        mCurrentTouch.pointers[0].touchMinor = 0;
3388        mCurrentTouch.pointers[0].toolMajor = mToolWidth;
3389        mCurrentTouch.pointers[0].toolMinor = mToolWidth;
3390        mCurrentTouch.pointers[0].orientation = 0;
3391        mCurrentTouch.idToIndex[0] = 0;
3392        mCurrentTouch.idBits.markBit(0);
3393    }
3394
3395    syncTouch(when, true);
3396
3397    mAccumulator.clear();
3398}
3399
3400void SingleTouchInputMapper::configureRawAxes() {
3401    TouchInputMapper::configureRawAxes();
3402
3403    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x);
3404    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y);
3405    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure);
3406    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor);
3407}
3408
3409
3410// --- MultiTouchInputMapper ---
3411
3412MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) :
3413        TouchInputMapper(device) {
3414    initialize();
3415}
3416
3417MultiTouchInputMapper::~MultiTouchInputMapper() {
3418}
3419
3420void MultiTouchInputMapper::initialize() {
3421    mAccumulator.clear();
3422}
3423
3424void MultiTouchInputMapper::reset() {
3425    TouchInputMapper::reset();
3426
3427    initialize();
3428}
3429
3430void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
3431    switch (rawEvent->type) {
3432    case EV_ABS: {
3433        uint32_t pointerIndex = mAccumulator.pointerCount;
3434        Accumulator::Pointer* pointer = & mAccumulator.pointers[pointerIndex];
3435
3436        switch (rawEvent->scanCode) {
3437        case ABS_MT_POSITION_X:
3438            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_X;
3439            pointer->absMTPositionX = rawEvent->value;
3440            break;
3441        case ABS_MT_POSITION_Y:
3442            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y;
3443            pointer->absMTPositionY = rawEvent->value;
3444            break;
3445        case ABS_MT_TOUCH_MAJOR:
3446            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
3447            pointer->absMTTouchMajor = rawEvent->value;
3448            break;
3449        case ABS_MT_TOUCH_MINOR:
3450            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR;
3451            pointer->absMTTouchMinor = rawEvent->value;
3452            break;
3453        case ABS_MT_WIDTH_MAJOR:
3454            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
3455            pointer->absMTWidthMajor = rawEvent->value;
3456            break;
3457        case ABS_MT_WIDTH_MINOR:
3458            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR;
3459            pointer->absMTWidthMinor = rawEvent->value;
3460            break;
3461        case ABS_MT_ORIENTATION:
3462            pointer->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION;
3463            pointer->absMTOrientation = rawEvent->value;
3464            break;
3465        case ABS_MT_TRACKING_ID:
3466            pointer->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID;
3467            pointer->absMTTrackingId = rawEvent->value;
3468            break;
3469        case ABS_MT_PRESSURE:
3470            pointer->fields |= Accumulator::FIELD_ABS_MT_PRESSURE;
3471            pointer->absMTPressure = rawEvent->value;
3472            break;
3473        }
3474        break;
3475    }
3476
3477    case EV_SYN:
3478        switch (rawEvent->scanCode) {
3479        case SYN_MT_REPORT: {
3480            // MultiTouch Sync: The driver has returned all data for *one* of the pointers.
3481            uint32_t pointerIndex = mAccumulator.pointerCount;
3482
3483            if (mAccumulator.pointers[pointerIndex].fields) {
3484                if (pointerIndex == MAX_POINTERS) {
3485                    LOGW("MultiTouch device driver returned more than maximum of %d pointers.",
3486                            MAX_POINTERS);
3487                } else {
3488                    pointerIndex += 1;
3489                    mAccumulator.pointerCount = pointerIndex;
3490                }
3491            }
3492
3493            mAccumulator.pointers[pointerIndex].clear();
3494            break;
3495        }
3496
3497        case SYN_REPORT:
3498            sync(rawEvent->when);
3499            break;
3500        }
3501        break;
3502    }
3503}
3504
3505void MultiTouchInputMapper::sync(nsecs_t when) {
3506    static const uint32_t REQUIRED_FIELDS =
3507            Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y;
3508
3509    uint32_t inCount = mAccumulator.pointerCount;
3510    uint32_t outCount = 0;
3511    bool havePointerIds = true;
3512
3513    mCurrentTouch.clear();
3514
3515    for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) {
3516        const Accumulator::Pointer& inPointer = mAccumulator.pointers[inIndex];
3517        uint32_t fields = inPointer.fields;
3518
3519        if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
3520            // Some drivers send empty MT sync packets without X / Y to indicate a pointer up.
3521            // Drop this finger.
3522            continue;
3523        }
3524
3525        PointerData& outPointer = mCurrentTouch.pointers[outCount];
3526        outPointer.x = inPointer.absMTPositionX;
3527        outPointer.y = inPointer.absMTPositionY;
3528
3529        if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) {
3530            if (inPointer.absMTPressure <= 0) {
3531                // Some devices send sync packets with X / Y but with a 0 pressure to indicate
3532                // a pointer going up.  Drop this finger.
3533                continue;
3534            }
3535            outPointer.pressure = inPointer.absMTPressure;
3536        } else {
3537            // Default pressure to 0 if absent.
3538            outPointer.pressure = 0;
3539        }
3540
3541        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) {
3542            if (inPointer.absMTTouchMajor <= 0) {
3543                // Some devices send sync packets with X / Y but with a 0 touch major to indicate
3544                // a pointer going up.  Drop this finger.
3545                continue;
3546            }
3547            outPointer.touchMajor = inPointer.absMTTouchMajor;
3548        } else {
3549            // Default touch area to 0 if absent.
3550            outPointer.touchMajor = 0;
3551        }
3552
3553        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) {
3554            outPointer.touchMinor = inPointer.absMTTouchMinor;
3555        } else {
3556            // Assume touch area is circular.
3557            outPointer.touchMinor = outPointer.touchMajor;
3558        }
3559
3560        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) {
3561            outPointer.toolMajor = inPointer.absMTWidthMajor;
3562        } else {
3563            // Default tool area to 0 if absent.
3564            outPointer.toolMajor = 0;
3565        }
3566
3567        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) {
3568            outPointer.toolMinor = inPointer.absMTWidthMinor;
3569        } else {
3570            // Assume tool area is circular.
3571            outPointer.toolMinor = outPointer.toolMajor;
3572        }
3573
3574        if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) {
3575            outPointer.orientation = inPointer.absMTOrientation;
3576        } else {
3577            // Default orientation to vertical if absent.
3578            outPointer.orientation = 0;
3579        }
3580
3581        // Assign pointer id using tracking id if available.
3582        if (havePointerIds) {
3583            if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) {
3584                uint32_t id = uint32_t(inPointer.absMTTrackingId);
3585
3586                if (id > MAX_POINTER_ID) {
3587#if DEBUG_POINTERS
3588                    LOGD("Pointers: Ignoring driver provided pointer id %d because "
3589                            "it is larger than max supported id %d",
3590                            id, MAX_POINTER_ID);
3591#endif
3592                    havePointerIds = false;
3593                }
3594                else {
3595                    outPointer.id = id;
3596                    mCurrentTouch.idToIndex[id] = outCount;
3597                    mCurrentTouch.idBits.markBit(id);
3598                }
3599            } else {
3600                havePointerIds = false;
3601            }
3602        }
3603
3604        outCount += 1;
3605    }
3606
3607    mCurrentTouch.pointerCount = outCount;
3608
3609    syncTouch(when, havePointerIds);
3610
3611    mAccumulator.clear();
3612}
3613
3614void MultiTouchInputMapper::configureRawAxes() {
3615    TouchInputMapper::configureRawAxes();
3616
3617    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, & mRawAxes.x);
3618    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, & mRawAxes.y);
3619    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, & mRawAxes.touchMajor);
3620    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, & mRawAxes.touchMinor);
3621    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, & mRawAxes.toolMajor);
3622    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, & mRawAxes.toolMinor);
3623    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, & mRawAxes.orientation);
3624    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, & mRawAxes.pressure);
3625}
3626
3627
3628} // namespace android
3629