InputReader.cpp revision 9626b14a283ef82d16636cf5fb5ba8bb4d30381e
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "InputReader"
18
19//#define LOG_NDEBUG 0
20
21// Log debug messages for each raw event received from the EventHub.
22#define DEBUG_RAW_EVENTS 0
23
24// Log debug messages about touch screen filtering hacks.
25#define DEBUG_HACKS 0
26
27// Log debug messages about virtual key processing.
28#define DEBUG_VIRTUAL_KEYS 0
29
30// Log debug messages about pointers.
31#define DEBUG_POINTERS 0
32
33// Log debug messages about pointer assignment calculations.
34#define DEBUG_POINTER_ASSIGNMENT 0
35
36#include "InputReader.h"
37
38#include <cutils/log.h>
39#include <ui/Keyboard.h>
40#include <ui/VirtualKeyMap.h>
41
42#include <stddef.h>
43#include <stdlib.h>
44#include <unistd.h>
45#include <errno.h>
46#include <limits.h>
47#include <math.h>
48
49#define INDENT "  "
50#define INDENT2 "    "
51#define INDENT3 "      "
52#define INDENT4 "        "
53
54namespace android {
55
56// --- Static Functions ---
57
58template<typename T>
59inline static T abs(const T& value) {
60    return value < 0 ? - value : value;
61}
62
63template<typename T>
64inline static T min(const T& a, const T& b) {
65    return a < b ? a : b;
66}
67
68template<typename T>
69inline static void swap(T& a, T& b) {
70    T temp = a;
71    a = b;
72    b = temp;
73}
74
75inline static float avg(float x, float y) {
76    return (x + y) / 2;
77}
78
79inline static float pythag(float x, float y) {
80    return sqrtf(x * x + y * y);
81}
82
83inline static int32_t signExtendNybble(int32_t value) {
84    return value >= 8 ? value - 16 : value;
85}
86
87static inline const char* toString(bool value) {
88    return value ? "true" : "false";
89}
90
91static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation,
92        const int32_t map[][4], size_t mapSize) {
93    if (orientation != DISPLAY_ORIENTATION_0) {
94        for (size_t i = 0; i < mapSize; i++) {
95            if (value == map[i][0]) {
96                return map[i][orientation];
97            }
98        }
99    }
100    return value;
101}
102
103static const int32_t keyCodeRotationMap[][4] = {
104        // key codes enumerated counter-clockwise with the original (unrotated) key first
105        // no rotation,        90 degree rotation,  180 degree rotation, 270 degree rotation
106        { AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT },
107        { AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN },
108        { AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT },
109        { AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP },
110};
111static const size_t keyCodeRotationMapSize =
112        sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
113
114int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
115    return rotateValueUsingRotationMap(keyCode, orientation,
116            keyCodeRotationMap, keyCodeRotationMapSize);
117}
118
119static const int32_t edgeFlagRotationMap[][4] = {
120        // edge flags enumerated counter-clockwise with the original (unrotated) edge flag first
121        // no rotation,        90 degree rotation,  180 degree rotation, 270 degree rotation
122        { AMOTION_EVENT_EDGE_FLAG_BOTTOM,   AMOTION_EVENT_EDGE_FLAG_RIGHT,
123                AMOTION_EVENT_EDGE_FLAG_TOP,     AMOTION_EVENT_EDGE_FLAG_LEFT },
124        { AMOTION_EVENT_EDGE_FLAG_RIGHT,  AMOTION_EVENT_EDGE_FLAG_TOP,
125                AMOTION_EVENT_EDGE_FLAG_LEFT,   AMOTION_EVENT_EDGE_FLAG_BOTTOM },
126        { AMOTION_EVENT_EDGE_FLAG_TOP,     AMOTION_EVENT_EDGE_FLAG_LEFT,
127                AMOTION_EVENT_EDGE_FLAG_BOTTOM,   AMOTION_EVENT_EDGE_FLAG_RIGHT },
128        { AMOTION_EVENT_EDGE_FLAG_LEFT,   AMOTION_EVENT_EDGE_FLAG_BOTTOM,
129                AMOTION_EVENT_EDGE_FLAG_RIGHT,  AMOTION_EVENT_EDGE_FLAG_TOP },
130};
131static const size_t edgeFlagRotationMapSize =
132        sizeof(edgeFlagRotationMap) / sizeof(edgeFlagRotationMap[0]);
133
134static int32_t rotateEdgeFlag(int32_t edgeFlag, int32_t orientation) {
135    return rotateValueUsingRotationMap(edgeFlag, orientation,
136            edgeFlagRotationMap, edgeFlagRotationMapSize);
137}
138
139static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
140    return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
141}
142
143
144// --- InputReader ---
145
146InputReader::InputReader(const sp<EventHubInterface>& eventHub,
147        const sp<InputReaderPolicyInterface>& policy,
148        const sp<InputDispatcherInterface>& dispatcher) :
149        mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
150        mGlobalMetaState(0), mDisableVirtualKeysTimeout(-1) {
151    configureExcludedDevices();
152    updateGlobalMetaState();
153    updateInputConfiguration();
154}
155
156InputReader::~InputReader() {
157    for (size_t i = 0; i < mDevices.size(); i++) {
158        delete mDevices.valueAt(i);
159    }
160}
161
162void InputReader::loopOnce() {
163    RawEvent rawEvent;
164    mEventHub->getEvent(& rawEvent);
165
166#if DEBUG_RAW_EVENTS
167    LOGD("Input event: device=%d type=0x%x scancode=%d keycode=%d value=%d",
168            rawEvent.deviceId, rawEvent.type, rawEvent.scanCode, rawEvent.keyCode,
169            rawEvent.value);
170#endif
171
172    process(& rawEvent);
173}
174
175void InputReader::process(const RawEvent* rawEvent) {
176    switch (rawEvent->type) {
177    case EventHubInterface::DEVICE_ADDED:
178        addDevice(rawEvent->deviceId);
179        break;
180
181    case EventHubInterface::DEVICE_REMOVED:
182        removeDevice(rawEvent->deviceId);
183        break;
184
185    case EventHubInterface::FINISHED_DEVICE_SCAN:
186        handleConfigurationChanged(rawEvent->when);
187        break;
188
189    default:
190        consumeEvent(rawEvent);
191        break;
192    }
193}
194
195void InputReader::addDevice(int32_t deviceId) {
196    String8 name = mEventHub->getDeviceName(deviceId);
197    uint32_t classes = mEventHub->getDeviceClasses(deviceId);
198
199    InputDevice* device = createDevice(deviceId, name, classes);
200    device->configure();
201
202    if (device->isIgnored()) {
203        LOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, name.string());
204    } else {
205        LOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, name.string(),
206                device->getSources());
207    }
208
209    bool added = false;
210    { // acquire device registry writer lock
211        RWLock::AutoWLock _wl(mDeviceRegistryLock);
212
213        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
214        if (deviceIndex < 0) {
215            mDevices.add(deviceId, device);
216            added = true;
217        }
218    } // release device registry writer lock
219
220    if (! added) {
221        LOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
222        delete device;
223        return;
224    }
225}
226
227void InputReader::removeDevice(int32_t deviceId) {
228    bool removed = false;
229    InputDevice* device = NULL;
230    { // acquire device registry writer lock
231        RWLock::AutoWLock _wl(mDeviceRegistryLock);
232
233        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
234        if (deviceIndex >= 0) {
235            device = mDevices.valueAt(deviceIndex);
236            mDevices.removeItemsAt(deviceIndex, 1);
237            removed = true;
238        }
239    } // release device registry writer lock
240
241    if (! removed) {
242        LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
243        return;
244    }
245
246    if (device->isIgnored()) {
247        LOGI("Device removed: id=%d, name='%s' (ignored non-input device)",
248                device->getId(), device->getName().string());
249    } else {
250        LOGI("Device removed: id=%d, name='%s', sources=0x%08x",
251                device->getId(), device->getName().string(), device->getSources());
252    }
253
254    device->reset();
255
256    delete device;
257}
258
259InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
260    InputDevice* device = new InputDevice(this, deviceId, name);
261
262    // External devices.
263    if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
264        device->setExternal(true);
265    }
266
267    // Switch-like devices.
268    if (classes & INPUT_DEVICE_CLASS_SWITCH) {
269        device->addMapper(new SwitchInputMapper(device));
270    }
271
272    // Keyboard-like devices.
273    uint32_t keyboardSources = 0;
274    int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
275    if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
276        keyboardSources |= AINPUT_SOURCE_KEYBOARD;
277    }
278    if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
279        keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
280    }
281    if (classes & INPUT_DEVICE_CLASS_DPAD) {
282        keyboardSources |= AINPUT_SOURCE_DPAD;
283    }
284    if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
285        keyboardSources |= AINPUT_SOURCE_GAMEPAD;
286    }
287
288    if (keyboardSources != 0) {
289        device->addMapper(new KeyboardInputMapper(device, keyboardSources, keyboardType));
290    }
291
292    // Cursor-like devices.
293    if (classes & INPUT_DEVICE_CLASS_CURSOR) {
294        device->addMapper(new CursorInputMapper(device));
295    }
296
297    // Touchscreens and touchpad devices.
298    if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
299        device->addMapper(new MultiTouchInputMapper(device));
300    } else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
301        device->addMapper(new SingleTouchInputMapper(device));
302    }
303
304    // Joystick-like devices.
305    if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
306        device->addMapper(new JoystickInputMapper(device));
307    }
308
309    return device;
310}
311
312void InputReader::consumeEvent(const RawEvent* rawEvent) {
313    int32_t deviceId = rawEvent->deviceId;
314
315    { // acquire device registry reader lock
316        RWLock::AutoRLock _rl(mDeviceRegistryLock);
317
318        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
319        if (deviceIndex < 0) {
320            LOGW("Discarding event for unknown deviceId %d.", deviceId);
321            return;
322        }
323
324        InputDevice* device = mDevices.valueAt(deviceIndex);
325        if (device->isIgnored()) {
326            //LOGD("Discarding event for ignored deviceId %d.", deviceId);
327            return;
328        }
329
330        device->process(rawEvent);
331    } // release device registry reader lock
332}
333
334void InputReader::handleConfigurationChanged(nsecs_t when) {
335    // Reset global meta state because it depends on the list of all configured devices.
336    updateGlobalMetaState();
337
338    // Update input configuration.
339    updateInputConfiguration();
340
341    // Enqueue configuration changed.
342    mDispatcher->notifyConfigurationChanged(when);
343}
344
345void InputReader::configureExcludedDevices() {
346    Vector<String8> excludedDeviceNames;
347    mPolicy->getExcludedDeviceNames(excludedDeviceNames);
348
349    for (size_t i = 0; i < excludedDeviceNames.size(); i++) {
350        mEventHub->addExcludedDevice(excludedDeviceNames[i]);
351    }
352}
353
354void InputReader::updateGlobalMetaState() {
355    { // acquire state lock
356        AutoMutex _l(mStateLock);
357
358        mGlobalMetaState = 0;
359
360        { // acquire device registry reader lock
361            RWLock::AutoRLock _rl(mDeviceRegistryLock);
362
363            for (size_t i = 0; i < mDevices.size(); i++) {
364                InputDevice* device = mDevices.valueAt(i);
365                mGlobalMetaState |= device->getMetaState();
366            }
367        } // release device registry reader lock
368    } // release state lock
369}
370
371int32_t InputReader::getGlobalMetaState() {
372    { // acquire state lock
373        AutoMutex _l(mStateLock);
374
375        return mGlobalMetaState;
376    } // release state lock
377}
378
379void InputReader::updateInputConfiguration() {
380    { // acquire state lock
381        AutoMutex _l(mStateLock);
382
383        int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
384        int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
385        int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
386        { // acquire device registry reader lock
387            RWLock::AutoRLock _rl(mDeviceRegistryLock);
388
389            InputDeviceInfo deviceInfo;
390            for (size_t i = 0; i < mDevices.size(); i++) {
391                InputDevice* device = mDevices.valueAt(i);
392                device->getDeviceInfo(& deviceInfo);
393                uint32_t sources = deviceInfo.getSources();
394
395                if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) {
396                    touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
397                }
398                if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) {
399                    navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
400                } else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) {
401                    navigationConfig = InputConfiguration::NAVIGATION_DPAD;
402                }
403                if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) {
404                    keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
405                }
406            }
407        } // release device registry reader lock
408
409        mInputConfiguration.touchScreen = touchScreenConfig;
410        mInputConfiguration.keyboard = keyboardConfig;
411        mInputConfiguration.navigation = navigationConfig;
412    } // release state lock
413}
414
415void InputReader::disableVirtualKeysUntil(nsecs_t time) {
416    mDisableVirtualKeysTimeout = time;
417}
418
419bool InputReader::shouldDropVirtualKey(nsecs_t now,
420        InputDevice* device, int32_t keyCode, int32_t scanCode) {
421    if (now < mDisableVirtualKeysTimeout) {
422        LOGI("Dropping virtual key from device %s because virtual keys are "
423                "temporarily disabled for the next %0.3fms.  keyCode=%d, scanCode=%d",
424                device->getName().string(),
425                (mDisableVirtualKeysTimeout - now) * 0.000001,
426                keyCode, scanCode);
427        return true;
428    } else {
429        return false;
430    }
431}
432
433void InputReader::fadePointer() {
434    { // acquire device registry reader lock
435        RWLock::AutoRLock _rl(mDeviceRegistryLock);
436
437        for (size_t i = 0; i < mDevices.size(); i++) {
438            InputDevice* device = mDevices.valueAt(i);
439            device->fadePointer();
440        }
441    } // release device registry reader lock
442}
443
444void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) {
445    { // acquire state lock
446        AutoMutex _l(mStateLock);
447
448        *outConfiguration = mInputConfiguration;
449    } // release state lock
450}
451
452status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) {
453    { // acquire device registry reader lock
454        RWLock::AutoRLock _rl(mDeviceRegistryLock);
455
456        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
457        if (deviceIndex < 0) {
458            return NAME_NOT_FOUND;
459        }
460
461        InputDevice* device = mDevices.valueAt(deviceIndex);
462        if (device->isIgnored()) {
463            return NAME_NOT_FOUND;
464        }
465
466        device->getDeviceInfo(outDeviceInfo);
467        return OK;
468    } // release device registy reader lock
469}
470
471void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) {
472    outDeviceIds.clear();
473
474    { // acquire device registry reader lock
475        RWLock::AutoRLock _rl(mDeviceRegistryLock);
476
477        size_t numDevices = mDevices.size();
478        for (size_t i = 0; i < numDevices; i++) {
479            InputDevice* device = mDevices.valueAt(i);
480            if (! device->isIgnored()) {
481                outDeviceIds.add(device->getId());
482            }
483        }
484    } // release device registy reader lock
485}
486
487int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
488        int32_t keyCode) {
489    return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState);
490}
491
492int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
493        int32_t scanCode) {
494    return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState);
495}
496
497int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
498    return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState);
499}
500
501int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code,
502        GetStateFunc getStateFunc) {
503    { // acquire device registry reader lock
504        RWLock::AutoRLock _rl(mDeviceRegistryLock);
505
506        int32_t result = AKEY_STATE_UNKNOWN;
507        if (deviceId >= 0) {
508            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
509            if (deviceIndex >= 0) {
510                InputDevice* device = mDevices.valueAt(deviceIndex);
511                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
512                    result = (device->*getStateFunc)(sourceMask, code);
513                }
514            }
515        } else {
516            size_t numDevices = mDevices.size();
517            for (size_t i = 0; i < numDevices; i++) {
518                InputDevice* device = mDevices.valueAt(i);
519                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
520                    result = (device->*getStateFunc)(sourceMask, code);
521                    if (result >= AKEY_STATE_DOWN) {
522                        return result;
523                    }
524                }
525            }
526        }
527        return result;
528    } // release device registy reader lock
529}
530
531bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
532        size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
533    memset(outFlags, 0, numCodes);
534    return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags);
535}
536
537bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
538        const int32_t* keyCodes, uint8_t* outFlags) {
539    { // acquire device registry reader lock
540        RWLock::AutoRLock _rl(mDeviceRegistryLock);
541        bool result = false;
542        if (deviceId >= 0) {
543            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
544            if (deviceIndex >= 0) {
545                InputDevice* device = mDevices.valueAt(deviceIndex);
546                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
547                    result = device->markSupportedKeyCodes(sourceMask,
548                            numCodes, keyCodes, outFlags);
549                }
550            }
551        } else {
552            size_t numDevices = mDevices.size();
553            for (size_t i = 0; i < numDevices; i++) {
554                InputDevice* device = mDevices.valueAt(i);
555                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
556                    result |= device->markSupportedKeyCodes(sourceMask,
557                            numCodes, keyCodes, outFlags);
558                }
559            }
560        }
561        return result;
562    } // release device registy reader lock
563}
564
565void InputReader::dump(String8& dump) {
566    mEventHub->dump(dump);
567    dump.append("\n");
568
569    dump.append("Input Reader State:\n");
570
571    { // acquire device registry reader lock
572        RWLock::AutoRLock _rl(mDeviceRegistryLock);
573
574        for (size_t i = 0; i < mDevices.size(); i++) {
575            mDevices.valueAt(i)->dump(dump);
576        }
577    } // release device registy reader lock
578}
579
580
581// --- InputReaderThread ---
582
583InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
584        Thread(/*canCallJava*/ true), mReader(reader) {
585}
586
587InputReaderThread::~InputReaderThread() {
588}
589
590bool InputReaderThread::threadLoop() {
591    mReader->loopOnce();
592    return true;
593}
594
595
596// --- InputDevice ---
597
598InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) :
599        mContext(context), mId(id), mName(name), mSources(0), mIsExternal(false) {
600}
601
602InputDevice::~InputDevice() {
603    size_t numMappers = mMappers.size();
604    for (size_t i = 0; i < numMappers; i++) {
605        delete mMappers[i];
606    }
607    mMappers.clear();
608}
609
610void InputDevice::dump(String8& dump) {
611    InputDeviceInfo deviceInfo;
612    getDeviceInfo(& deviceInfo);
613
614    dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(),
615            deviceInfo.getName().string());
616    dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
617    dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
618    dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
619
620    const KeyedVector<int32_t, InputDeviceInfo::MotionRange> ranges = deviceInfo.getMotionRanges();
621    if (!ranges.isEmpty()) {
622        dump.append(INDENT2 "Motion Ranges:\n");
623        for (size_t i = 0; i < ranges.size(); i++) {
624            int32_t axis = ranges.keyAt(i);
625            const char* label = getAxisLabel(axis);
626            char name[32];
627            if (label) {
628                strncpy(name, label, sizeof(name));
629                name[sizeof(name) - 1] = '\0';
630            } else {
631                snprintf(name, sizeof(name), "%d", axis);
632            }
633            const InputDeviceInfo::MotionRange& range = ranges.valueAt(i);
634            dump.appendFormat(INDENT3 "%s: min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n",
635                    name, range.min, range.max, range.flat, range.fuzz);
636        }
637    }
638
639    size_t numMappers = mMappers.size();
640    for (size_t i = 0; i < numMappers; i++) {
641        InputMapper* mapper = mMappers[i];
642        mapper->dump(dump);
643    }
644}
645
646void InputDevice::addMapper(InputMapper* mapper) {
647    mMappers.add(mapper);
648}
649
650void InputDevice::configure() {
651    if (! isIgnored()) {
652        mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
653    }
654
655    mSources = 0;
656
657    size_t numMappers = mMappers.size();
658    for (size_t i = 0; i < numMappers; i++) {
659        InputMapper* mapper = mMappers[i];
660        mapper->configure();
661        mSources |= mapper->getSources();
662    }
663}
664
665void InputDevice::reset() {
666    size_t numMappers = mMappers.size();
667    for (size_t i = 0; i < numMappers; i++) {
668        InputMapper* mapper = mMappers[i];
669        mapper->reset();
670    }
671}
672
673void InputDevice::process(const RawEvent* rawEvent) {
674    size_t numMappers = mMappers.size();
675    for (size_t i = 0; i < numMappers; i++) {
676        InputMapper* mapper = mMappers[i];
677        mapper->process(rawEvent);
678    }
679}
680
681void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
682    outDeviceInfo->initialize(mId, mName);
683
684    size_t numMappers = mMappers.size();
685    for (size_t i = 0; i < numMappers; i++) {
686        InputMapper* mapper = mMappers[i];
687        mapper->populateDeviceInfo(outDeviceInfo);
688    }
689}
690
691int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
692    return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
693}
694
695int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
696    return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
697}
698
699int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
700    return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
701}
702
703int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
704    int32_t result = AKEY_STATE_UNKNOWN;
705    size_t numMappers = mMappers.size();
706    for (size_t i = 0; i < numMappers; i++) {
707        InputMapper* mapper = mMappers[i];
708        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
709            result = (mapper->*getStateFunc)(sourceMask, code);
710            if (result >= AKEY_STATE_DOWN) {
711                return result;
712            }
713        }
714    }
715    return result;
716}
717
718bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
719        const int32_t* keyCodes, uint8_t* outFlags) {
720    bool result = false;
721    size_t numMappers = mMappers.size();
722    for (size_t i = 0; i < numMappers; i++) {
723        InputMapper* mapper = mMappers[i];
724        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
725            result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
726        }
727    }
728    return result;
729}
730
731int32_t InputDevice::getMetaState() {
732    int32_t result = 0;
733    size_t numMappers = mMappers.size();
734    for (size_t i = 0; i < numMappers; i++) {
735        InputMapper* mapper = mMappers[i];
736        result |= mapper->getMetaState();
737    }
738    return result;
739}
740
741void InputDevice::fadePointer() {
742    size_t numMappers = mMappers.size();
743    for (size_t i = 0; i < numMappers; i++) {
744        InputMapper* mapper = mMappers[i];
745        mapper->fadePointer();
746    }
747}
748
749
750// --- InputMapper ---
751
752InputMapper::InputMapper(InputDevice* device) :
753        mDevice(device), mContext(device->getContext()) {
754}
755
756InputMapper::~InputMapper() {
757}
758
759void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
760    info->addSource(getSources());
761}
762
763void InputMapper::dump(String8& dump) {
764}
765
766void InputMapper::configure() {
767}
768
769void InputMapper::reset() {
770}
771
772int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
773    return AKEY_STATE_UNKNOWN;
774}
775
776int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
777    return AKEY_STATE_UNKNOWN;
778}
779
780int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
781    return AKEY_STATE_UNKNOWN;
782}
783
784bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
785        const int32_t* keyCodes, uint8_t* outFlags) {
786    return false;
787}
788
789int32_t InputMapper::getMetaState() {
790    return 0;
791}
792
793void InputMapper::fadePointer() {
794}
795
796void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump,
797        const RawAbsoluteAxisInfo& axis, const char* name) {
798    if (axis.valid) {
799        dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d\n",
800                name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz);
801    } else {
802        dump.appendFormat(INDENT4 "%s: unknown range\n", name);
803    }
804}
805
806
807// --- SwitchInputMapper ---
808
809SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
810        InputMapper(device) {
811}
812
813SwitchInputMapper::~SwitchInputMapper() {
814}
815
816uint32_t SwitchInputMapper::getSources() {
817    return AINPUT_SOURCE_SWITCH;
818}
819
820void SwitchInputMapper::process(const RawEvent* rawEvent) {
821    switch (rawEvent->type) {
822    case EV_SW:
823        processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value);
824        break;
825    }
826}
827
828void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) {
829    getDispatcher()->notifySwitch(when, switchCode, switchValue, 0);
830}
831
832int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
833    return getEventHub()->getSwitchState(getDeviceId(), switchCode);
834}
835
836
837// --- KeyboardInputMapper ---
838
839KeyboardInputMapper::KeyboardInputMapper(InputDevice* device,
840        uint32_t sources, int32_t keyboardType) :
841        InputMapper(device), mSources(sources),
842        mKeyboardType(keyboardType) {
843    initializeLocked();
844}
845
846KeyboardInputMapper::~KeyboardInputMapper() {
847}
848
849void KeyboardInputMapper::initializeLocked() {
850    mLocked.metaState = AMETA_NONE;
851    mLocked.downTime = 0;
852}
853
854uint32_t KeyboardInputMapper::getSources() {
855    return mSources;
856}
857
858void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
859    InputMapper::populateDeviceInfo(info);
860
861    info->setKeyboardType(mKeyboardType);
862}
863
864void KeyboardInputMapper::dump(String8& dump) {
865    { // acquire lock
866        AutoMutex _l(mLock);
867        dump.append(INDENT2 "Keyboard Input Mapper:\n");
868        dumpParameters(dump);
869        dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
870        dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size());
871        dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState);
872        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
873    } // release lock
874}
875
876
877void KeyboardInputMapper::configure() {
878    InputMapper::configure();
879
880    // Configure basic parameters.
881    configureParameters();
882
883    // Reset LEDs.
884    {
885        AutoMutex _l(mLock);
886        resetLedStateLocked();
887    }
888}
889
890void KeyboardInputMapper::configureParameters() {
891    mParameters.orientationAware = false;
892    getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"),
893            mParameters.orientationAware);
894
895    mParameters.associatedDisplayId = mParameters.orientationAware ? 0 : -1;
896}
897
898void KeyboardInputMapper::dumpParameters(String8& dump) {
899    dump.append(INDENT3 "Parameters:\n");
900    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
901            mParameters.associatedDisplayId);
902    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
903            toString(mParameters.orientationAware));
904}
905
906void KeyboardInputMapper::reset() {
907    for (;;) {
908        int32_t keyCode, scanCode;
909        { // acquire lock
910            AutoMutex _l(mLock);
911
912            // Synthesize key up event on reset if keys are currently down.
913            if (mLocked.keyDowns.isEmpty()) {
914                initializeLocked();
915                resetLedStateLocked();
916                break; // done
917            }
918
919            const KeyDown& keyDown = mLocked.keyDowns.top();
920            keyCode = keyDown.keyCode;
921            scanCode = keyDown.scanCode;
922        } // release lock
923
924        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
925        processKey(when, false, keyCode, scanCode, 0);
926    }
927
928    InputMapper::reset();
929    getContext()->updateGlobalMetaState();
930}
931
932void KeyboardInputMapper::process(const RawEvent* rawEvent) {
933    switch (rawEvent->type) {
934    case EV_KEY: {
935        int32_t scanCode = rawEvent->scanCode;
936        if (isKeyboardOrGamepadKey(scanCode)) {
937            processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode,
938                    rawEvent->flags);
939        }
940        break;
941    }
942    }
943}
944
945bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
946    return scanCode < BTN_MOUSE
947        || scanCode >= KEY_OK
948        || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI);
949}
950
951void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
952        int32_t scanCode, uint32_t policyFlags) {
953    int32_t newMetaState;
954    nsecs_t downTime;
955    bool metaStateChanged = false;
956
957    { // acquire lock
958        AutoMutex _l(mLock);
959
960        if (down) {
961            // Rotate key codes according to orientation if needed.
962            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
963            if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) {
964                int32_t orientation;
965                if (!getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
966                        NULL, NULL, & orientation)) {
967                    orientation = DISPLAY_ORIENTATION_0;
968                }
969
970                keyCode = rotateKeyCode(keyCode, orientation);
971            }
972
973            // Add key down.
974            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
975            if (keyDownIndex >= 0) {
976                // key repeat, be sure to use same keycode as before in case of rotation
977                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
978            } else {
979                // key down
980                if ((policyFlags & POLICY_FLAG_VIRTUAL)
981                        && mContext->shouldDropVirtualKey(when,
982                                getDevice(), keyCode, scanCode)) {
983                    return;
984                }
985
986                mLocked.keyDowns.push();
987                KeyDown& keyDown = mLocked.keyDowns.editTop();
988                keyDown.keyCode = keyCode;
989                keyDown.scanCode = scanCode;
990            }
991
992            mLocked.downTime = when;
993        } else {
994            // Remove key down.
995            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
996            if (keyDownIndex >= 0) {
997                // key up, be sure to use same keycode as before in case of rotation
998                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
999                mLocked.keyDowns.removeAt(size_t(keyDownIndex));
1000            } else {
1001                // key was not actually down
1002                LOGI("Dropping key up from device %s because the key was not down.  "
1003                        "keyCode=%d, scanCode=%d",
1004                        getDeviceName().string(), keyCode, scanCode);
1005                return;
1006            }
1007        }
1008
1009        int32_t oldMetaState = mLocked.metaState;
1010        newMetaState = updateMetaState(keyCode, down, oldMetaState);
1011        if (oldMetaState != newMetaState) {
1012            mLocked.metaState = newMetaState;
1013            metaStateChanged = true;
1014            updateLedStateLocked(false);
1015        }
1016
1017        downTime = mLocked.downTime;
1018    } // release lock
1019
1020    // Key down on external an keyboard should wake the device.
1021    // We don't do this for internal keyboards to prevent them from waking up in your pocket.
1022    // For internal keyboards, the key layout file should specify the policy flags for
1023    // each wake key individually.
1024    // TODO: Use the input device configuration to control this behavior more finely.
1025    if (down && getDevice()->isExternal()
1026            && !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) {
1027        policyFlags |= POLICY_FLAG_WAKE_DROPPED;
1028    }
1029
1030    if (metaStateChanged) {
1031        getContext()->updateGlobalMetaState();
1032    }
1033
1034    if (down && !isMetaKey(keyCode)) {
1035        getContext()->fadePointer();
1036    }
1037
1038    getDispatcher()->notifyKey(when, getDeviceId(), mSources, policyFlags,
1039            down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
1040            AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
1041}
1042
1043ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) {
1044    size_t n = mLocked.keyDowns.size();
1045    for (size_t i = 0; i < n; i++) {
1046        if (mLocked.keyDowns[i].scanCode == scanCode) {
1047            return i;
1048        }
1049    }
1050    return -1;
1051}
1052
1053int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
1054    return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
1055}
1056
1057int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1058    return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
1059}
1060
1061bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
1062        const int32_t* keyCodes, uint8_t* outFlags) {
1063    return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
1064}
1065
1066int32_t KeyboardInputMapper::getMetaState() {
1067    { // acquire lock
1068        AutoMutex _l(mLock);
1069        return mLocked.metaState;
1070    } // release lock
1071}
1072
1073void KeyboardInputMapper::resetLedStateLocked() {
1074    initializeLedStateLocked(mLocked.capsLockLedState, LED_CAPSL);
1075    initializeLedStateLocked(mLocked.numLockLedState, LED_NUML);
1076    initializeLedStateLocked(mLocked.scrollLockLedState, LED_SCROLLL);
1077
1078    updateLedStateLocked(true);
1079}
1080
1081void KeyboardInputMapper::initializeLedStateLocked(LockedState::LedState& ledState, int32_t led) {
1082    ledState.avail = getEventHub()->hasLed(getDeviceId(), led);
1083    ledState.on = false;
1084}
1085
1086void KeyboardInputMapper::updateLedStateLocked(bool reset) {
1087    updateLedStateForModifierLocked(mLocked.capsLockLedState, LED_CAPSL,
1088            AMETA_CAPS_LOCK_ON, reset);
1089    updateLedStateForModifierLocked(mLocked.numLockLedState, LED_NUML,
1090            AMETA_NUM_LOCK_ON, reset);
1091    updateLedStateForModifierLocked(mLocked.scrollLockLedState, LED_SCROLLL,
1092            AMETA_SCROLL_LOCK_ON, reset);
1093}
1094
1095void KeyboardInputMapper::updateLedStateForModifierLocked(LockedState::LedState& ledState,
1096        int32_t led, int32_t modifier, bool reset) {
1097    if (ledState.avail) {
1098        bool desiredState = (mLocked.metaState & modifier) != 0;
1099        if (reset || ledState.on != desiredState) {
1100            getEventHub()->setLedState(getDeviceId(), led, desiredState);
1101            ledState.on = desiredState;
1102        }
1103    }
1104}
1105
1106
1107// --- CursorInputMapper ---
1108
1109CursorInputMapper::CursorInputMapper(InputDevice* device) :
1110        InputMapper(device) {
1111    initializeLocked();
1112}
1113
1114CursorInputMapper::~CursorInputMapper() {
1115}
1116
1117uint32_t CursorInputMapper::getSources() {
1118    return mSources;
1119}
1120
1121void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1122    InputMapper::populateDeviceInfo(info);
1123
1124    if (mParameters.mode == Parameters::MODE_POINTER) {
1125        float minX, minY, maxX, maxY;
1126        if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
1127            info->addMotionRange(AMOTION_EVENT_AXIS_X, minX, maxX, 0.0f, 0.0f);
1128            info->addMotionRange(AMOTION_EVENT_AXIS_Y, minY, maxY, 0.0f, 0.0f);
1129        }
1130    } else {
1131        info->addMotionRange(AMOTION_EVENT_AXIS_X, -1.0f, 1.0f, 0.0f, mXScale);
1132        info->addMotionRange(AMOTION_EVENT_AXIS_Y, -1.0f, 1.0f, 0.0f, mYScale);
1133    }
1134    info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, 0.0f, 1.0f, 0.0f, 0.0f);
1135
1136    if (mHaveVWheel) {
1137        info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, -1.0f, 1.0f, 0.0f, 0.0f);
1138    }
1139    if (mHaveHWheel) {
1140        info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, -1.0f, 1.0f, 0.0f, 0.0f);
1141    }
1142}
1143
1144void CursorInputMapper::dump(String8& dump) {
1145    { // acquire lock
1146        AutoMutex _l(mLock);
1147        dump.append(INDENT2 "Cursor Input Mapper:\n");
1148        dumpParameters(dump);
1149        dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale);
1150        dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale);
1151        dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
1152        dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
1153        dump.appendFormat(INDENT3 "HaveVWheel: %s\n", toString(mHaveVWheel));
1154        dump.appendFormat(INDENT3 "HaveHWheel: %s\n", toString(mHaveHWheel));
1155        dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale);
1156        dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale);
1157        dump.appendFormat(INDENT3 "Down: %s\n", toString(mLocked.down));
1158        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
1159    } // release lock
1160}
1161
1162void CursorInputMapper::configure() {
1163    InputMapper::configure();
1164
1165    // Configure basic parameters.
1166    configureParameters();
1167
1168    // Configure device mode.
1169    switch (mParameters.mode) {
1170    case Parameters::MODE_POINTER:
1171        mSources = AINPUT_SOURCE_MOUSE;
1172        mXPrecision = 1.0f;
1173        mYPrecision = 1.0f;
1174        mXScale = 1.0f;
1175        mYScale = 1.0f;
1176        mPointerController = getPolicy()->obtainPointerController(getDeviceId());
1177        break;
1178    case Parameters::MODE_NAVIGATION:
1179        mSources = AINPUT_SOURCE_TRACKBALL;
1180        mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
1181        mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
1182        mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
1183        mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
1184        break;
1185    }
1186
1187    mVWheelScale = 1.0f;
1188    mHWheelScale = 1.0f;
1189
1190    mHaveVWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_WHEEL);
1191    mHaveHWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_HWHEEL);
1192}
1193
1194void CursorInputMapper::configureParameters() {
1195    mParameters.mode = Parameters::MODE_POINTER;
1196    String8 cursorModeString;
1197    if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) {
1198        if (cursorModeString == "navigation") {
1199            mParameters.mode = Parameters::MODE_NAVIGATION;
1200        } else if (cursorModeString != "pointer" && cursorModeString != "default") {
1201            LOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string());
1202        }
1203    }
1204
1205    mParameters.orientationAware = false;
1206    getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"),
1207            mParameters.orientationAware);
1208
1209    mParameters.associatedDisplayId = mParameters.mode == Parameters::MODE_POINTER
1210            || mParameters.orientationAware ? 0 : -1;
1211}
1212
1213void CursorInputMapper::dumpParameters(String8& dump) {
1214    dump.append(INDENT3 "Parameters:\n");
1215    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1216            mParameters.associatedDisplayId);
1217
1218    switch (mParameters.mode) {
1219    case Parameters::MODE_POINTER:
1220        dump.append(INDENT4 "Mode: pointer\n");
1221        break;
1222    case Parameters::MODE_NAVIGATION:
1223        dump.append(INDENT4 "Mode: navigation\n");
1224        break;
1225    default:
1226        assert(false);
1227    }
1228
1229    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1230            toString(mParameters.orientationAware));
1231}
1232
1233void CursorInputMapper::initializeLocked() {
1234    mAccumulator.clear();
1235
1236    mLocked.down = false;
1237    mLocked.downTime = 0;
1238}
1239
1240void CursorInputMapper::reset() {
1241    for (;;) {
1242        { // acquire lock
1243            AutoMutex _l(mLock);
1244
1245            if (! mLocked.down) {
1246                initializeLocked();
1247                break; // done
1248            }
1249        } // release lock
1250
1251        // Synthesize button up event on reset.
1252        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
1253        mAccumulator.fields = Accumulator::FIELD_BTN_MOUSE;
1254        mAccumulator.btnMouse = false;
1255        sync(when);
1256    }
1257
1258    InputMapper::reset();
1259}
1260
1261void CursorInputMapper::process(const RawEvent* rawEvent) {
1262    switch (rawEvent->type) {
1263    case EV_KEY:
1264        switch (rawEvent->scanCode) {
1265        case BTN_LEFT:
1266        case BTN_RIGHT:
1267        case BTN_MIDDLE:
1268        case BTN_SIDE:
1269        case BTN_EXTRA:
1270        case BTN_FORWARD:
1271        case BTN_BACK:
1272        case BTN_TASK:
1273            mAccumulator.fields |= Accumulator::FIELD_BTN_MOUSE;
1274            mAccumulator.btnMouse = rawEvent->value != 0;
1275            // Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and
1276            // we need to ensure that we report the up/down promptly.
1277            sync(rawEvent->when);
1278            break;
1279        }
1280        break;
1281
1282    case EV_REL:
1283        switch (rawEvent->scanCode) {
1284        case REL_X:
1285            mAccumulator.fields |= Accumulator::FIELD_REL_X;
1286            mAccumulator.relX = rawEvent->value;
1287            break;
1288        case REL_Y:
1289            mAccumulator.fields |= Accumulator::FIELD_REL_Y;
1290            mAccumulator.relY = rawEvent->value;
1291            break;
1292        case REL_WHEEL:
1293            mAccumulator.fields |= Accumulator::FIELD_REL_WHEEL;
1294            mAccumulator.relWheel = rawEvent->value;
1295            break;
1296        case REL_HWHEEL:
1297            mAccumulator.fields |= Accumulator::FIELD_REL_HWHEEL;
1298            mAccumulator.relHWheel = rawEvent->value;
1299            break;
1300        }
1301        break;
1302
1303    case EV_SYN:
1304        switch (rawEvent->scanCode) {
1305        case SYN_REPORT:
1306            sync(rawEvent->when);
1307            break;
1308        }
1309        break;
1310    }
1311}
1312
1313void CursorInputMapper::sync(nsecs_t when) {
1314    uint32_t fields = mAccumulator.fields;
1315    if (fields == 0) {
1316        return; // no new state changes, so nothing to do
1317    }
1318
1319    int32_t motionEventAction;
1320    int32_t motionEventEdgeFlags;
1321    PointerCoords pointerCoords;
1322    nsecs_t downTime;
1323    float vscroll, hscroll;
1324    { // acquire lock
1325        AutoMutex _l(mLock);
1326
1327        bool downChanged = fields & Accumulator::FIELD_BTN_MOUSE;
1328
1329        if (downChanged) {
1330            if (mAccumulator.btnMouse) {
1331                if (!mLocked.down) {
1332                    mLocked.down = true;
1333                    mLocked.downTime = when;
1334                } else {
1335                    downChanged = false;
1336                }
1337            } else {
1338                if (mLocked.down) {
1339                    mLocked.down = false;
1340                } else {
1341                    downChanged = false;
1342                }
1343            }
1344        }
1345
1346        downTime = mLocked.downTime;
1347        float deltaX = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f;
1348        float deltaY = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f;
1349
1350        if (downChanged) {
1351            motionEventAction = mLocked.down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
1352        } else if (mLocked.down || mPointerController == NULL) {
1353            motionEventAction = AMOTION_EVENT_ACTION_MOVE;
1354        } else {
1355            motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE;
1356        }
1357
1358        if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0
1359                && (deltaX != 0.0f || deltaY != 0.0f)) {
1360            // Rotate motion based on display orientation if needed.
1361            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1362            int32_t orientation;
1363            if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1364                    NULL, NULL, & orientation)) {
1365                orientation = DISPLAY_ORIENTATION_0;
1366            }
1367
1368            float temp;
1369            switch (orientation) {
1370            case DISPLAY_ORIENTATION_90:
1371                temp = deltaX;
1372                deltaX = deltaY;
1373                deltaY = -temp;
1374                break;
1375
1376            case DISPLAY_ORIENTATION_180:
1377                deltaX = -deltaX;
1378                deltaY = -deltaY;
1379                break;
1380
1381            case DISPLAY_ORIENTATION_270:
1382                temp = deltaX;
1383                deltaX = -deltaY;
1384                deltaY = temp;
1385                break;
1386            }
1387        }
1388
1389        pointerCoords.clear();
1390
1391        motionEventEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
1392
1393        if (mPointerController != NULL) {
1394            mPointerController->move(deltaX, deltaY);
1395            if (downChanged) {
1396                mPointerController->setButtonState(mLocked.down ? POINTER_BUTTON_1 : 0);
1397            }
1398            float x, y;
1399            mPointerController->getPosition(&x, &y);
1400            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
1401            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
1402
1403            if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
1404                float minX, minY, maxX, maxY;
1405                if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
1406                    if (x <= minX) {
1407                        motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT;
1408                    } else if (x >= maxX) {
1409                        motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT;
1410                    }
1411                    if (y <= minY) {
1412                        motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP;
1413                    } else if (y >= maxY) {
1414                        motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM;
1415                    }
1416                }
1417            }
1418        } else {
1419            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX);
1420            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY);
1421        }
1422
1423        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, mLocked.down ? 1.0f : 0.0f);
1424
1425        if (mHaveVWheel && (fields & Accumulator::FIELD_REL_WHEEL)) {
1426            vscroll = mAccumulator.relWheel;
1427        } else {
1428            vscroll = 0;
1429        }
1430        if (mHaveHWheel && (fields & Accumulator::FIELD_REL_HWHEEL)) {
1431            hscroll = mAccumulator.relHWheel;
1432        } else {
1433            hscroll = 0;
1434        }
1435        if (hscroll != 0 || vscroll != 0) {
1436            mPointerController->unfade();
1437        }
1438    } // release lock
1439
1440    // Moving an external trackball or mouse should wake the device.
1441    // We don't do this for internal cursor devices to prevent them from waking up
1442    // the device in your pocket.
1443    // TODO: Use the input device configuration to control this behavior more finely.
1444    uint32_t policyFlags = 0;
1445    if (getDevice()->isExternal()) {
1446        policyFlags |= POLICY_FLAG_WAKE_DROPPED;
1447    }
1448
1449    int32_t metaState = mContext->getGlobalMetaState();
1450    int32_t pointerId = 0;
1451    getDispatcher()->notifyMotion(when, getDeviceId(), mSources, policyFlags,
1452            motionEventAction, 0, metaState, motionEventEdgeFlags,
1453            1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime);
1454
1455    mAccumulator.clear();
1456
1457    if (vscroll != 0 || hscroll != 0) {
1458        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll);
1459        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll);
1460
1461        getDispatcher()->notifyMotion(when, getDeviceId(), mSources, policyFlags,
1462                AMOTION_EVENT_ACTION_SCROLL, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
1463                1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime);
1464    }
1465}
1466
1467int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1468    if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
1469        return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
1470    } else {
1471        return AKEY_STATE_UNKNOWN;
1472    }
1473}
1474
1475void CursorInputMapper::fadePointer() {
1476    { // acquire lock
1477        AutoMutex _l(mLock);
1478        mPointerController->fade();
1479    } // release lock
1480}
1481
1482
1483// --- TouchInputMapper ---
1484
1485TouchInputMapper::TouchInputMapper(InputDevice* device) :
1486        InputMapper(device) {
1487    mLocked.surfaceOrientation = -1;
1488    mLocked.surfaceWidth = -1;
1489    mLocked.surfaceHeight = -1;
1490
1491    initializeLocked();
1492}
1493
1494TouchInputMapper::~TouchInputMapper() {
1495}
1496
1497uint32_t TouchInputMapper::getSources() {
1498    return mSources;
1499}
1500
1501void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1502    InputMapper::populateDeviceInfo(info);
1503
1504    { // acquire lock
1505        AutoMutex _l(mLock);
1506
1507        // Ensure surface information is up to date so that orientation changes are
1508        // noticed immediately.
1509        configureSurfaceLocked();
1510
1511        info->addMotionRange(AMOTION_EVENT_AXIS_X, mLocked.orientedRanges.x);
1512        info->addMotionRange(AMOTION_EVENT_AXIS_Y, mLocked.orientedRanges.y);
1513
1514        if (mLocked.orientedRanges.havePressure) {
1515            info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE,
1516                    mLocked.orientedRanges.pressure);
1517        }
1518
1519        if (mLocked.orientedRanges.haveSize) {
1520            info->addMotionRange(AMOTION_EVENT_AXIS_SIZE,
1521                    mLocked.orientedRanges.size);
1522        }
1523
1524        if (mLocked.orientedRanges.haveTouchSize) {
1525            info->addMotionRange(AMOTION_EVENT_AXIS_TOUCH_MAJOR,
1526                    mLocked.orientedRanges.touchMajor);
1527            info->addMotionRange(AMOTION_EVENT_AXIS_TOUCH_MINOR,
1528                    mLocked.orientedRanges.touchMinor);
1529        }
1530
1531        if (mLocked.orientedRanges.haveToolSize) {
1532            info->addMotionRange(AMOTION_EVENT_AXIS_TOOL_MAJOR,
1533                    mLocked.orientedRanges.toolMajor);
1534            info->addMotionRange(AMOTION_EVENT_AXIS_TOOL_MINOR,
1535                    mLocked.orientedRanges.toolMinor);
1536        }
1537
1538        if (mLocked.orientedRanges.haveOrientation) {
1539            info->addMotionRange(AMOTION_EVENT_AXIS_ORIENTATION,
1540                    mLocked.orientedRanges.orientation);
1541        }
1542    } // release lock
1543}
1544
1545void TouchInputMapper::dump(String8& dump) {
1546    { // acquire lock
1547        AutoMutex _l(mLock);
1548        dump.append(INDENT2 "Touch Input Mapper:\n");
1549        dumpParameters(dump);
1550        dumpVirtualKeysLocked(dump);
1551        dumpRawAxes(dump);
1552        dumpCalibration(dump);
1553        dumpSurfaceLocked(dump);
1554        dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n");
1555        dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale);
1556        dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale);
1557        dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision);
1558        dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision);
1559        dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale);
1560        dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale);
1561        dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias);
1562        dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale);
1563        dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias);
1564        dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale);
1565        dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale);
1566        dump.appendFormat(INDENT4 "OrientationSCale: %0.3f\n", mLocked.orientationScale);
1567    } // release lock
1568}
1569
1570void TouchInputMapper::initializeLocked() {
1571    mCurrentTouch.clear();
1572    mLastTouch.clear();
1573    mDownTime = 0;
1574
1575    for (uint32_t i = 0; i < MAX_POINTERS; i++) {
1576        mAveragingTouchFilter.historyStart[i] = 0;
1577        mAveragingTouchFilter.historyEnd[i] = 0;
1578    }
1579
1580    mJumpyTouchFilter.jumpyPointsDropped = 0;
1581
1582    mLocked.currentVirtualKey.down = false;
1583
1584    mLocked.orientedRanges.havePressure = false;
1585    mLocked.orientedRanges.haveSize = false;
1586    mLocked.orientedRanges.haveTouchSize = false;
1587    mLocked.orientedRanges.haveToolSize = false;
1588    mLocked.orientedRanges.haveOrientation = false;
1589}
1590
1591void TouchInputMapper::configure() {
1592    InputMapper::configure();
1593
1594    // Configure basic parameters.
1595    configureParameters();
1596
1597    // Configure sources.
1598    switch (mParameters.deviceType) {
1599    case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
1600        mSources = AINPUT_SOURCE_TOUCHSCREEN;
1601        break;
1602    case Parameters::DEVICE_TYPE_TOUCH_PAD:
1603        mSources = AINPUT_SOURCE_TOUCHPAD;
1604        break;
1605    default:
1606        assert(false);
1607    }
1608
1609    // Configure absolute axis information.
1610    configureRawAxes();
1611
1612    // Prepare input device calibration.
1613    parseCalibration();
1614    resolveCalibration();
1615
1616    { // acquire lock
1617        AutoMutex _l(mLock);
1618
1619         // Configure surface dimensions and orientation.
1620        configureSurfaceLocked();
1621    } // release lock
1622}
1623
1624void TouchInputMapper::configureParameters() {
1625    mParameters.useBadTouchFilter = getPolicy()->filterTouchEvents();
1626    mParameters.useAveragingTouchFilter = getPolicy()->filterTouchEvents();
1627    mParameters.useJumpyTouchFilter = getPolicy()->filterJumpyTouchEvents();
1628    mParameters.virtualKeyQuietTime = getPolicy()->getVirtualKeyQuietTime();
1629
1630    String8 deviceTypeString;
1631    mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
1632    if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
1633            deviceTypeString)) {
1634        if (deviceTypeString == "touchScreen") {
1635            mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1636        } else if (deviceTypeString != "touchPad") {
1637            LOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string());
1638        }
1639    }
1640    bool isTouchScreen = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1641
1642    mParameters.orientationAware = isTouchScreen;
1643    getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"),
1644            mParameters.orientationAware);
1645
1646    mParameters.associatedDisplayId = mParameters.orientationAware || isTouchScreen ? 0 : -1;
1647}
1648
1649void TouchInputMapper::dumpParameters(String8& dump) {
1650    dump.append(INDENT3 "Parameters:\n");
1651
1652    switch (mParameters.deviceType) {
1653    case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
1654        dump.append(INDENT4 "DeviceType: touchScreen\n");
1655        break;
1656    case Parameters::DEVICE_TYPE_TOUCH_PAD:
1657        dump.append(INDENT4 "DeviceType: touchPad\n");
1658        break;
1659    default:
1660        assert(false);
1661    }
1662
1663    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1664            mParameters.associatedDisplayId);
1665    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1666            toString(mParameters.orientationAware));
1667
1668    dump.appendFormat(INDENT4 "UseBadTouchFilter: %s\n",
1669            toString(mParameters.useBadTouchFilter));
1670    dump.appendFormat(INDENT4 "UseAveragingTouchFilter: %s\n",
1671            toString(mParameters.useAveragingTouchFilter));
1672    dump.appendFormat(INDENT4 "UseJumpyTouchFilter: %s\n",
1673            toString(mParameters.useJumpyTouchFilter));
1674}
1675
1676void TouchInputMapper::configureRawAxes() {
1677    mRawAxes.x.clear();
1678    mRawAxes.y.clear();
1679    mRawAxes.pressure.clear();
1680    mRawAxes.touchMajor.clear();
1681    mRawAxes.touchMinor.clear();
1682    mRawAxes.toolMajor.clear();
1683    mRawAxes.toolMinor.clear();
1684    mRawAxes.orientation.clear();
1685}
1686
1687void TouchInputMapper::dumpRawAxes(String8& dump) {
1688    dump.append(INDENT3 "Raw Axes:\n");
1689    dumpRawAbsoluteAxisInfo(dump, mRawAxes.x, "X");
1690    dumpRawAbsoluteAxisInfo(dump, mRawAxes.y, "Y");
1691    dumpRawAbsoluteAxisInfo(dump, mRawAxes.pressure, "Pressure");
1692    dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor");
1693    dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor");
1694    dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor");
1695    dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor");
1696    dumpRawAbsoluteAxisInfo(dump, mRawAxes.orientation, "Orientation");
1697}
1698
1699bool TouchInputMapper::configureSurfaceLocked() {
1700    // Ensure we have valid X and Y axes.
1701    if (!mRawAxes.x.valid || !mRawAxes.y.valid) {
1702        LOGW(INDENT "Touch device '%s' did not report support for X or Y axis!  "
1703                "The device will be inoperable.", getDeviceName().string());
1704        return false;
1705    }
1706
1707    // Update orientation and dimensions if needed.
1708    int32_t orientation = DISPLAY_ORIENTATION_0;
1709    int32_t width = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
1710    int32_t height = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
1711
1712    if (mParameters.associatedDisplayId >= 0) {
1713        bool wantSize = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1714        bool wantOrientation = mParameters.orientationAware;
1715
1716        // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1717        if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1718                wantSize ? &width : NULL, wantSize ? &height : NULL,
1719                wantOrientation ? &orientation : NULL)) {
1720            return false;
1721        }
1722    }
1723
1724    bool orientationChanged = mLocked.surfaceOrientation != orientation;
1725    if (orientationChanged) {
1726        mLocked.surfaceOrientation = orientation;
1727    }
1728
1729    bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height;
1730    if (sizeChanged) {
1731        LOGI("Device reconfigured: id=%d, name='%s', display size is now %dx%d",
1732                getDeviceId(), getDeviceName().string(), width, height);
1733
1734        mLocked.surfaceWidth = width;
1735        mLocked.surfaceHeight = height;
1736
1737        // Configure X and Y factors.
1738        mLocked.xScale = float(width) / (mRawAxes.x.maxValue - mRawAxes.x.minValue + 1);
1739        mLocked.yScale = float(height) / (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1);
1740        mLocked.xPrecision = 1.0f / mLocked.xScale;
1741        mLocked.yPrecision = 1.0f / mLocked.yScale;
1742
1743        configureVirtualKeysLocked();
1744
1745        // Scale factor for terms that are not oriented in a particular axis.
1746        // If the pixels are square then xScale == yScale otherwise we fake it
1747        // by choosing an average.
1748        mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale);
1749
1750        // Size of diagonal axis.
1751        float diagonalSize = pythag(width, height);
1752
1753        // TouchMajor and TouchMinor factors.
1754        if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) {
1755            mLocked.orientedRanges.haveTouchSize = true;
1756            mLocked.orientedRanges.touchMajor.min = 0;
1757            mLocked.orientedRanges.touchMajor.max = diagonalSize;
1758            mLocked.orientedRanges.touchMajor.flat = 0;
1759            mLocked.orientedRanges.touchMajor.fuzz = 0;
1760            mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor;
1761        }
1762
1763        // ToolMajor and ToolMinor factors.
1764        mLocked.toolSizeLinearScale = 0;
1765        mLocked.toolSizeLinearBias = 0;
1766        mLocked.toolSizeAreaScale = 0;
1767        mLocked.toolSizeAreaBias = 0;
1768        if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
1769            if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) {
1770                if (mCalibration.haveToolSizeLinearScale) {
1771                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
1772                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
1773                    mLocked.toolSizeLinearScale = float(min(width, height))
1774                            / mRawAxes.toolMajor.maxValue;
1775                }
1776
1777                if (mCalibration.haveToolSizeLinearBias) {
1778                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
1779                }
1780            } else if (mCalibration.toolSizeCalibration ==
1781                    Calibration::TOOL_SIZE_CALIBRATION_AREA) {
1782                if (mCalibration.haveToolSizeLinearScale) {
1783                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
1784                } else {
1785                    mLocked.toolSizeLinearScale = min(width, height);
1786                }
1787
1788                if (mCalibration.haveToolSizeLinearBias) {
1789                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
1790                }
1791
1792                if (mCalibration.haveToolSizeAreaScale) {
1793                    mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale;
1794                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
1795                    mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue;
1796                }
1797
1798                if (mCalibration.haveToolSizeAreaBias) {
1799                    mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias;
1800                }
1801            }
1802
1803            mLocked.orientedRanges.haveToolSize = true;
1804            mLocked.orientedRanges.toolMajor.min = 0;
1805            mLocked.orientedRanges.toolMajor.max = diagonalSize;
1806            mLocked.orientedRanges.toolMajor.flat = 0;
1807            mLocked.orientedRanges.toolMajor.fuzz = 0;
1808            mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor;
1809        }
1810
1811        // Pressure factors.
1812        mLocked.pressureScale = 0;
1813        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) {
1814            RawAbsoluteAxisInfo rawPressureAxis;
1815            switch (mCalibration.pressureSource) {
1816            case Calibration::PRESSURE_SOURCE_PRESSURE:
1817                rawPressureAxis = mRawAxes.pressure;
1818                break;
1819            case Calibration::PRESSURE_SOURCE_TOUCH:
1820                rawPressureAxis = mRawAxes.touchMajor;
1821                break;
1822            default:
1823                rawPressureAxis.clear();
1824            }
1825
1826            if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
1827                    || mCalibration.pressureCalibration
1828                            == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
1829                if (mCalibration.havePressureScale) {
1830                    mLocked.pressureScale = mCalibration.pressureScale;
1831                } else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) {
1832                    mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue;
1833                }
1834            }
1835
1836            mLocked.orientedRanges.havePressure = true;
1837            mLocked.orientedRanges.pressure.min = 0;
1838            mLocked.orientedRanges.pressure.max = 1.0;
1839            mLocked.orientedRanges.pressure.flat = 0;
1840            mLocked.orientedRanges.pressure.fuzz = 0;
1841        }
1842
1843        // Size factors.
1844        mLocked.sizeScale = 0;
1845        if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
1846            if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) {
1847                if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
1848                    mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue;
1849                }
1850            }
1851
1852            mLocked.orientedRanges.haveSize = true;
1853            mLocked.orientedRanges.size.min = 0;
1854            mLocked.orientedRanges.size.max = 1.0;
1855            mLocked.orientedRanges.size.flat = 0;
1856            mLocked.orientedRanges.size.fuzz = 0;
1857        }
1858
1859        // Orientation
1860        mLocked.orientationScale = 0;
1861        if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) {
1862            if (mCalibration.orientationCalibration
1863                    == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
1864                if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) {
1865                    mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue;
1866                }
1867            }
1868
1869            mLocked.orientedRanges.orientation.min = - M_PI_2;
1870            mLocked.orientedRanges.orientation.max = M_PI_2;
1871            mLocked.orientedRanges.orientation.flat = 0;
1872            mLocked.orientedRanges.orientation.fuzz = 0;
1873        }
1874    }
1875
1876    if (orientationChanged || sizeChanged) {
1877        // Compute oriented surface dimensions, precision, scales and ranges.
1878        // Note that the maximum value reported is an inclusive maximum value so it is one
1879        // unit less than the total width or height of surface.
1880        switch (mLocked.surfaceOrientation) {
1881        case DISPLAY_ORIENTATION_90:
1882        case DISPLAY_ORIENTATION_270:
1883            mLocked.orientedSurfaceWidth = mLocked.surfaceHeight;
1884            mLocked.orientedSurfaceHeight = mLocked.surfaceWidth;
1885
1886            mLocked.orientedXPrecision = mLocked.yPrecision;
1887            mLocked.orientedYPrecision = mLocked.xPrecision;
1888
1889            mLocked.orientedRanges.x.min = 0;
1890            mLocked.orientedRanges.x.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
1891                    * mLocked.yScale;
1892            mLocked.orientedRanges.x.flat = 0;
1893            mLocked.orientedRanges.x.fuzz = mLocked.yScale;
1894
1895            mLocked.orientedRanges.y.min = 0;
1896            mLocked.orientedRanges.y.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
1897                    * mLocked.xScale;
1898            mLocked.orientedRanges.y.flat = 0;
1899            mLocked.orientedRanges.y.fuzz = mLocked.xScale;
1900            break;
1901
1902        default:
1903            mLocked.orientedSurfaceWidth = mLocked.surfaceWidth;
1904            mLocked.orientedSurfaceHeight = mLocked.surfaceHeight;
1905
1906            mLocked.orientedXPrecision = mLocked.xPrecision;
1907            mLocked.orientedYPrecision = mLocked.yPrecision;
1908
1909            mLocked.orientedRanges.x.min = 0;
1910            mLocked.orientedRanges.x.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
1911                    * mLocked.xScale;
1912            mLocked.orientedRanges.x.flat = 0;
1913            mLocked.orientedRanges.x.fuzz = mLocked.xScale;
1914
1915            mLocked.orientedRanges.y.min = 0;
1916            mLocked.orientedRanges.y.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
1917                    * mLocked.yScale;
1918            mLocked.orientedRanges.y.flat = 0;
1919            mLocked.orientedRanges.y.fuzz = mLocked.yScale;
1920            break;
1921        }
1922    }
1923
1924    return true;
1925}
1926
1927void TouchInputMapper::dumpSurfaceLocked(String8& dump) {
1928    dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth);
1929    dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight);
1930    dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation);
1931}
1932
1933void TouchInputMapper::configureVirtualKeysLocked() {
1934    Vector<VirtualKeyDefinition> virtualKeyDefinitions;
1935    getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions);
1936
1937    mLocked.virtualKeys.clear();
1938
1939    if (virtualKeyDefinitions.size() == 0) {
1940        return;
1941    }
1942
1943    mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size());
1944
1945    int32_t touchScreenLeft = mRawAxes.x.minValue;
1946    int32_t touchScreenTop = mRawAxes.y.minValue;
1947    int32_t touchScreenWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
1948    int32_t touchScreenHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
1949
1950    for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
1951        const VirtualKeyDefinition& virtualKeyDefinition =
1952                virtualKeyDefinitions[i];
1953
1954        mLocked.virtualKeys.add();
1955        VirtualKey& virtualKey = mLocked.virtualKeys.editTop();
1956
1957        virtualKey.scanCode = virtualKeyDefinition.scanCode;
1958        int32_t keyCode;
1959        uint32_t flags;
1960        if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode,
1961                & keyCode, & flags)) {
1962            LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
1963                    virtualKey.scanCode);
1964            mLocked.virtualKeys.pop(); // drop the key
1965            continue;
1966        }
1967
1968        virtualKey.keyCode = keyCode;
1969        virtualKey.flags = flags;
1970
1971        // convert the key definition's display coordinates into touch coordinates for a hit box
1972        int32_t halfWidth = virtualKeyDefinition.width / 2;
1973        int32_t halfHeight = virtualKeyDefinition.height / 2;
1974
1975        virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
1976                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
1977        virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
1978                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
1979        virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
1980                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
1981        virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
1982                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
1983    }
1984}
1985
1986void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) {
1987    if (!mLocked.virtualKeys.isEmpty()) {
1988        dump.append(INDENT3 "Virtual Keys:\n");
1989
1990        for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) {
1991            const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i);
1992            dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
1993                    "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
1994                    i, virtualKey.scanCode, virtualKey.keyCode,
1995                    virtualKey.hitLeft, virtualKey.hitRight,
1996                    virtualKey.hitTop, virtualKey.hitBottom);
1997        }
1998    }
1999}
2000
2001void TouchInputMapper::parseCalibration() {
2002    const PropertyMap& in = getDevice()->getConfiguration();
2003    Calibration& out = mCalibration;
2004
2005    // Touch Size
2006    out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT;
2007    String8 touchSizeCalibrationString;
2008    if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) {
2009        if (touchSizeCalibrationString == "none") {
2010            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
2011        } else if (touchSizeCalibrationString == "geometric") {
2012            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC;
2013        } else if (touchSizeCalibrationString == "pressure") {
2014            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
2015        } else if (touchSizeCalibrationString != "default") {
2016            LOGW("Invalid value for touch.touchSize.calibration: '%s'",
2017                    touchSizeCalibrationString.string());
2018        }
2019    }
2020
2021    // Tool Size
2022    out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT;
2023    String8 toolSizeCalibrationString;
2024    if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) {
2025        if (toolSizeCalibrationString == "none") {
2026            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
2027        } else if (toolSizeCalibrationString == "geometric") {
2028            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC;
2029        } else if (toolSizeCalibrationString == "linear") {
2030            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
2031        } else if (toolSizeCalibrationString == "area") {
2032            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA;
2033        } else if (toolSizeCalibrationString != "default") {
2034            LOGW("Invalid value for touch.toolSize.calibration: '%s'",
2035                    toolSizeCalibrationString.string());
2036        }
2037    }
2038
2039    out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"),
2040            out.toolSizeLinearScale);
2041    out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"),
2042            out.toolSizeLinearBias);
2043    out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"),
2044            out.toolSizeAreaScale);
2045    out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"),
2046            out.toolSizeAreaBias);
2047    out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"),
2048            out.toolSizeIsSummed);
2049
2050    // Pressure
2051    out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
2052    String8 pressureCalibrationString;
2053    if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
2054        if (pressureCalibrationString == "none") {
2055            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
2056        } else if (pressureCalibrationString == "physical") {
2057            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
2058        } else if (pressureCalibrationString == "amplitude") {
2059            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
2060        } else if (pressureCalibrationString != "default") {
2061            LOGW("Invalid value for touch.pressure.calibration: '%s'",
2062                    pressureCalibrationString.string());
2063        }
2064    }
2065
2066    out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT;
2067    String8 pressureSourceString;
2068    if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) {
2069        if (pressureSourceString == "pressure") {
2070            out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
2071        } else if (pressureSourceString == "touch") {
2072            out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
2073        } else if (pressureSourceString != "default") {
2074            LOGW("Invalid value for touch.pressure.source: '%s'",
2075                    pressureSourceString.string());
2076        }
2077    }
2078
2079    out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
2080            out.pressureScale);
2081
2082    // Size
2083    out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
2084    String8 sizeCalibrationString;
2085    if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
2086        if (sizeCalibrationString == "none") {
2087            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
2088        } else if (sizeCalibrationString == "normalized") {
2089            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
2090        } else if (sizeCalibrationString != "default") {
2091            LOGW("Invalid value for touch.size.calibration: '%s'",
2092                    sizeCalibrationString.string());
2093        }
2094    }
2095
2096    // Orientation
2097    out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
2098    String8 orientationCalibrationString;
2099    if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
2100        if (orientationCalibrationString == "none") {
2101            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
2102        } else if (orientationCalibrationString == "interpolated") {
2103            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
2104        } else if (orientationCalibrationString == "vector") {
2105            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR;
2106        } else if (orientationCalibrationString != "default") {
2107            LOGW("Invalid value for touch.orientation.calibration: '%s'",
2108                    orientationCalibrationString.string());
2109        }
2110    }
2111}
2112
2113void TouchInputMapper::resolveCalibration() {
2114    // Pressure
2115    switch (mCalibration.pressureSource) {
2116    case Calibration::PRESSURE_SOURCE_DEFAULT:
2117        if (mRawAxes.pressure.valid) {
2118            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
2119        } else if (mRawAxes.touchMajor.valid) {
2120            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
2121        }
2122        break;
2123
2124    case Calibration::PRESSURE_SOURCE_PRESSURE:
2125        if (! mRawAxes.pressure.valid) {
2126            LOGW("Calibration property touch.pressure.source is 'pressure' but "
2127                    "the pressure axis is not available.");
2128        }
2129        break;
2130
2131    case Calibration::PRESSURE_SOURCE_TOUCH:
2132        if (! mRawAxes.touchMajor.valid) {
2133            LOGW("Calibration property touch.pressure.source is 'touch' but "
2134                    "the touchMajor axis is not available.");
2135        }
2136        break;
2137
2138    default:
2139        break;
2140    }
2141
2142    switch (mCalibration.pressureCalibration) {
2143    case Calibration::PRESSURE_CALIBRATION_DEFAULT:
2144        if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) {
2145            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
2146        } else {
2147            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
2148        }
2149        break;
2150
2151    default:
2152        break;
2153    }
2154
2155    // Tool Size
2156    switch (mCalibration.toolSizeCalibration) {
2157    case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT:
2158        if (mRawAxes.toolMajor.valid) {
2159            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
2160        } else {
2161            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
2162        }
2163        break;
2164
2165    default:
2166        break;
2167    }
2168
2169    // Touch Size
2170    switch (mCalibration.touchSizeCalibration) {
2171    case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT:
2172        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE
2173                && mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
2174            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
2175        } else {
2176            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
2177        }
2178        break;
2179
2180    default:
2181        break;
2182    }
2183
2184    // Size
2185    switch (mCalibration.sizeCalibration) {
2186    case Calibration::SIZE_CALIBRATION_DEFAULT:
2187        if (mRawAxes.toolMajor.valid) {
2188            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
2189        } else {
2190            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
2191        }
2192        break;
2193
2194    default:
2195        break;
2196    }
2197
2198    // Orientation
2199    switch (mCalibration.orientationCalibration) {
2200    case Calibration::ORIENTATION_CALIBRATION_DEFAULT:
2201        if (mRawAxes.orientation.valid) {
2202            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
2203        } else {
2204            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
2205        }
2206        break;
2207
2208    default:
2209        break;
2210    }
2211}
2212
2213void TouchInputMapper::dumpCalibration(String8& dump) {
2214    dump.append(INDENT3 "Calibration:\n");
2215
2216    // Touch Size
2217    switch (mCalibration.touchSizeCalibration) {
2218    case Calibration::TOUCH_SIZE_CALIBRATION_NONE:
2219        dump.append(INDENT4 "touch.touchSize.calibration: none\n");
2220        break;
2221    case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
2222        dump.append(INDENT4 "touch.touchSize.calibration: geometric\n");
2223        break;
2224    case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
2225        dump.append(INDENT4 "touch.touchSize.calibration: pressure\n");
2226        break;
2227    default:
2228        assert(false);
2229    }
2230
2231    // Tool Size
2232    switch (mCalibration.toolSizeCalibration) {
2233    case Calibration::TOOL_SIZE_CALIBRATION_NONE:
2234        dump.append(INDENT4 "touch.toolSize.calibration: none\n");
2235        break;
2236    case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
2237        dump.append(INDENT4 "touch.toolSize.calibration: geometric\n");
2238        break;
2239    case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
2240        dump.append(INDENT4 "touch.toolSize.calibration: linear\n");
2241        break;
2242    case Calibration::TOOL_SIZE_CALIBRATION_AREA:
2243        dump.append(INDENT4 "touch.toolSize.calibration: area\n");
2244        break;
2245    default:
2246        assert(false);
2247    }
2248
2249    if (mCalibration.haveToolSizeLinearScale) {
2250        dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n",
2251                mCalibration.toolSizeLinearScale);
2252    }
2253
2254    if (mCalibration.haveToolSizeLinearBias) {
2255        dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n",
2256                mCalibration.toolSizeLinearBias);
2257    }
2258
2259    if (mCalibration.haveToolSizeAreaScale) {
2260        dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n",
2261                mCalibration.toolSizeAreaScale);
2262    }
2263
2264    if (mCalibration.haveToolSizeAreaBias) {
2265        dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n",
2266                mCalibration.toolSizeAreaBias);
2267    }
2268
2269    if (mCalibration.haveToolSizeIsSummed) {
2270        dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %s\n",
2271                toString(mCalibration.toolSizeIsSummed));
2272    }
2273
2274    // Pressure
2275    switch (mCalibration.pressureCalibration) {
2276    case Calibration::PRESSURE_CALIBRATION_NONE:
2277        dump.append(INDENT4 "touch.pressure.calibration: none\n");
2278        break;
2279    case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
2280        dump.append(INDENT4 "touch.pressure.calibration: physical\n");
2281        break;
2282    case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
2283        dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
2284        break;
2285    default:
2286        assert(false);
2287    }
2288
2289    switch (mCalibration.pressureSource) {
2290    case Calibration::PRESSURE_SOURCE_PRESSURE:
2291        dump.append(INDENT4 "touch.pressure.source: pressure\n");
2292        break;
2293    case Calibration::PRESSURE_SOURCE_TOUCH:
2294        dump.append(INDENT4 "touch.pressure.source: touch\n");
2295        break;
2296    case Calibration::PRESSURE_SOURCE_DEFAULT:
2297        break;
2298    default:
2299        assert(false);
2300    }
2301
2302    if (mCalibration.havePressureScale) {
2303        dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
2304                mCalibration.pressureScale);
2305    }
2306
2307    // Size
2308    switch (mCalibration.sizeCalibration) {
2309    case Calibration::SIZE_CALIBRATION_NONE:
2310        dump.append(INDENT4 "touch.size.calibration: none\n");
2311        break;
2312    case Calibration::SIZE_CALIBRATION_NORMALIZED:
2313        dump.append(INDENT4 "touch.size.calibration: normalized\n");
2314        break;
2315    default:
2316        assert(false);
2317    }
2318
2319    // Orientation
2320    switch (mCalibration.orientationCalibration) {
2321    case Calibration::ORIENTATION_CALIBRATION_NONE:
2322        dump.append(INDENT4 "touch.orientation.calibration: none\n");
2323        break;
2324    case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
2325        dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
2326        break;
2327    case Calibration::ORIENTATION_CALIBRATION_VECTOR:
2328        dump.append(INDENT4 "touch.orientation.calibration: vector\n");
2329        break;
2330    default:
2331        assert(false);
2332    }
2333}
2334
2335void TouchInputMapper::reset() {
2336    // Synthesize touch up event if touch is currently down.
2337    // This will also take care of finishing virtual key processing if needed.
2338    if (mLastTouch.pointerCount != 0) {
2339        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
2340        mCurrentTouch.clear();
2341        syncTouch(when, true);
2342    }
2343
2344    { // acquire lock
2345        AutoMutex _l(mLock);
2346        initializeLocked();
2347    } // release lock
2348
2349    InputMapper::reset();
2350}
2351
2352void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) {
2353    // Preprocess pointer data.
2354    if (mParameters.useBadTouchFilter) {
2355        if (applyBadTouchFilter()) {
2356            havePointerIds = false;
2357        }
2358    }
2359
2360    if (mParameters.useJumpyTouchFilter) {
2361        if (applyJumpyTouchFilter()) {
2362            havePointerIds = false;
2363        }
2364    }
2365
2366    if (! havePointerIds) {
2367        calculatePointerIds();
2368    }
2369
2370    TouchData temp;
2371    TouchData* savedTouch;
2372    if (mParameters.useAveragingTouchFilter) {
2373        temp.copyFrom(mCurrentTouch);
2374        savedTouch = & temp;
2375
2376        applyAveragingTouchFilter();
2377    } else {
2378        savedTouch = & mCurrentTouch;
2379    }
2380
2381    uint32_t policyFlags = 0;
2382    if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
2383        // Hide the pointer on an initial down.
2384        getContext()->fadePointer();
2385
2386        // Initial downs on external touch devices should wake the device.
2387        // We don't do this for internal touch screens to prevent them from waking
2388        // up in your pocket.
2389        // TODO: Use the input device configuration to control this behavior more finely.
2390        if (getDevice()->isExternal()) {
2391            policyFlags |= POLICY_FLAG_WAKE_DROPPED;
2392        }
2393    }
2394
2395    // Process touches and virtual keys.
2396    TouchResult touchResult = consumeOffScreenTouches(when, policyFlags);
2397    if (touchResult == DISPATCH_TOUCH) {
2398        detectGestures(when);
2399        dispatchTouches(when, policyFlags);
2400    }
2401
2402    // Copy current touch to last touch in preparation for the next cycle.
2403    if (touchResult == DROP_STROKE) {
2404        mLastTouch.clear();
2405    } else {
2406        mLastTouch.copyFrom(*savedTouch);
2407    }
2408}
2409
2410TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches(
2411        nsecs_t when, uint32_t policyFlags) {
2412    int32_t keyEventAction, keyEventFlags;
2413    int32_t keyCode, scanCode, downTime;
2414    TouchResult touchResult;
2415
2416    { // acquire lock
2417        AutoMutex _l(mLock);
2418
2419        // Update surface size and orientation, including virtual key positions.
2420        if (! configureSurfaceLocked()) {
2421            return DROP_STROKE;
2422        }
2423
2424        // Check for virtual key press.
2425        if (mLocked.currentVirtualKey.down) {
2426            if (mCurrentTouch.pointerCount == 0) {
2427                // Pointer went up while virtual key was down.
2428                mLocked.currentVirtualKey.down = false;
2429#if DEBUG_VIRTUAL_KEYS
2430                LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
2431                        mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
2432#endif
2433                keyEventAction = AKEY_EVENT_ACTION_UP;
2434                keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2435                touchResult = SKIP_TOUCH;
2436                goto DispatchVirtualKey;
2437            }
2438
2439            if (mCurrentTouch.pointerCount == 1) {
2440                int32_t x = mCurrentTouch.pointers[0].x;
2441                int32_t y = mCurrentTouch.pointers[0].y;
2442                const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
2443                if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) {
2444                    // Pointer is still within the space of the virtual key.
2445                    return SKIP_TOUCH;
2446                }
2447            }
2448
2449            // Pointer left virtual key area or another pointer also went down.
2450            // Send key cancellation and drop the stroke so subsequent motions will be
2451            // considered fresh downs.  This is useful when the user swipes away from the
2452            // virtual key area into the main display surface.
2453            mLocked.currentVirtualKey.down = false;
2454#if DEBUG_VIRTUAL_KEYS
2455            LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
2456                    mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
2457#endif
2458            keyEventAction = AKEY_EVENT_ACTION_UP;
2459            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
2460                    | AKEY_EVENT_FLAG_CANCELED;
2461
2462            // Check whether the pointer moved inside the display area where we should
2463            // start a new stroke.
2464            int32_t x = mCurrentTouch.pointers[0].x;
2465            int32_t y = mCurrentTouch.pointers[0].y;
2466            if (isPointInsideSurfaceLocked(x, y)) {
2467                mLastTouch.clear();
2468                touchResult = DISPATCH_TOUCH;
2469            } else {
2470                touchResult = DROP_STROKE;
2471            }
2472        } else {
2473            if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) {
2474                // Pointer just went down.  Handle off-screen touches, if needed.
2475                int32_t x = mCurrentTouch.pointers[0].x;
2476                int32_t y = mCurrentTouch.pointers[0].y;
2477                if (! isPointInsideSurfaceLocked(x, y)) {
2478                    // If exactly one pointer went down, check for virtual key hit.
2479                    // Otherwise we will drop the entire stroke.
2480                    if (mCurrentTouch.pointerCount == 1) {
2481                        const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
2482                        if (virtualKey) {
2483                            if (mContext->shouldDropVirtualKey(when, getDevice(),
2484                                    virtualKey->keyCode, virtualKey->scanCode)) {
2485                                return DROP_STROKE;
2486                            }
2487
2488                            mLocked.currentVirtualKey.down = true;
2489                            mLocked.currentVirtualKey.downTime = when;
2490                            mLocked.currentVirtualKey.keyCode = virtualKey->keyCode;
2491                            mLocked.currentVirtualKey.scanCode = virtualKey->scanCode;
2492#if DEBUG_VIRTUAL_KEYS
2493                            LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
2494                                    mLocked.currentVirtualKey.keyCode,
2495                                    mLocked.currentVirtualKey.scanCode);
2496#endif
2497                            keyEventAction = AKEY_EVENT_ACTION_DOWN;
2498                            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM
2499                                    | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2500                            touchResult = SKIP_TOUCH;
2501                            goto DispatchVirtualKey;
2502                        }
2503                    }
2504                    return DROP_STROKE;
2505                }
2506            }
2507            return DISPATCH_TOUCH;
2508        }
2509
2510    DispatchVirtualKey:
2511        // Collect remaining state needed to dispatch virtual key.
2512        keyCode = mLocked.currentVirtualKey.keyCode;
2513        scanCode = mLocked.currentVirtualKey.scanCode;
2514        downTime = mLocked.currentVirtualKey.downTime;
2515    } // release lock
2516
2517    // Dispatch virtual key.
2518    int32_t metaState = mContext->getGlobalMetaState();
2519    policyFlags |= POLICY_FLAG_VIRTUAL;
2520    getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
2521            keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
2522    return touchResult;
2523}
2524
2525void TouchInputMapper::detectGestures(nsecs_t when) {
2526    // Disable all virtual key touches that happen within a short time interval of the
2527    // most recent touch.  The idea is to filter out stray virtual key presses when
2528    // interacting with the touch screen.
2529    //
2530    // Problems we're trying to solve:
2531    //
2532    // 1. While scrolling a list or dragging the window shade, the user swipes down into a
2533    //    virtual key area that is implemented by a separate touch panel and accidentally
2534    //    triggers a virtual key.
2535    //
2536    // 2. While typing in the on screen keyboard, the user taps slightly outside the screen
2537    //    area and accidentally triggers a virtual key.  This often happens when virtual keys
2538    //    are layed out below the screen near to where the on screen keyboard's space bar
2539    //    is displayed.
2540    if (mParameters.virtualKeyQuietTime > 0 && mCurrentTouch.pointerCount != 0) {
2541        mContext->disableVirtualKeysUntil(when + mParameters.virtualKeyQuietTime);
2542    }
2543}
2544
2545void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
2546    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
2547    uint32_t lastPointerCount = mLastTouch.pointerCount;
2548    if (currentPointerCount == 0 && lastPointerCount == 0) {
2549        return; // nothing to do!
2550    }
2551
2552    BitSet32 currentIdBits = mCurrentTouch.idBits;
2553    BitSet32 lastIdBits = mLastTouch.idBits;
2554
2555    if (currentIdBits == lastIdBits) {
2556        // No pointer id changes so this is a move event.
2557        // The dispatcher takes care of batching moves so we don't have to deal with that here.
2558        int32_t motionEventAction = AMOTION_EVENT_ACTION_MOVE;
2559        dispatchTouch(when, policyFlags, & mCurrentTouch,
2560                currentIdBits, -1, currentPointerCount, motionEventAction);
2561    } else {
2562        // There may be pointers going up and pointers going down and pointers moving
2563        // all at the same time.
2564        BitSet32 upIdBits(lastIdBits.value & ~ currentIdBits.value);
2565        BitSet32 downIdBits(currentIdBits.value & ~ lastIdBits.value);
2566        BitSet32 activeIdBits(lastIdBits.value);
2567        uint32_t pointerCount = lastPointerCount;
2568
2569        // Produce an intermediate representation of the touch data that consists of the
2570        // old location of pointers that have just gone up and the new location of pointers that
2571        // have just moved but omits the location of pointers that have just gone down.
2572        TouchData interimTouch;
2573        interimTouch.copyFrom(mLastTouch);
2574
2575        BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
2576        bool moveNeeded = false;
2577        while (!moveIdBits.isEmpty()) {
2578            uint32_t moveId = moveIdBits.firstMarkedBit();
2579            moveIdBits.clearBit(moveId);
2580
2581            int32_t oldIndex = mLastTouch.idToIndex[moveId];
2582            int32_t newIndex = mCurrentTouch.idToIndex[moveId];
2583            if (mLastTouch.pointers[oldIndex] != mCurrentTouch.pointers[newIndex]) {
2584                interimTouch.pointers[oldIndex] = mCurrentTouch.pointers[newIndex];
2585                moveNeeded = true;
2586            }
2587        }
2588
2589        // Dispatch pointer up events using the interim pointer locations.
2590        while (!upIdBits.isEmpty()) {
2591            uint32_t upId = upIdBits.firstMarkedBit();
2592            upIdBits.clearBit(upId);
2593            BitSet32 oldActiveIdBits = activeIdBits;
2594            activeIdBits.clearBit(upId);
2595
2596            int32_t motionEventAction;
2597            if (activeIdBits.isEmpty()) {
2598                motionEventAction = AMOTION_EVENT_ACTION_UP;
2599            } else {
2600                motionEventAction = AMOTION_EVENT_ACTION_POINTER_UP;
2601            }
2602
2603            dispatchTouch(when, policyFlags, &interimTouch,
2604                    oldActiveIdBits, upId, pointerCount, motionEventAction);
2605            pointerCount -= 1;
2606        }
2607
2608        // Dispatch move events if any of the remaining pointers moved from their old locations.
2609        // Although applications receive new locations as part of individual pointer up
2610        // events, they do not generally handle them except when presented in a move event.
2611        if (moveNeeded) {
2612            dispatchTouch(when, policyFlags, &mCurrentTouch,
2613                    activeIdBits, -1, pointerCount, AMOTION_EVENT_ACTION_MOVE);
2614        }
2615
2616        // Dispatch pointer down events using the new pointer locations.
2617        while (!downIdBits.isEmpty()) {
2618            uint32_t downId = downIdBits.firstMarkedBit();
2619            downIdBits.clearBit(downId);
2620            BitSet32 oldActiveIdBits = activeIdBits;
2621            activeIdBits.markBit(downId);
2622
2623            int32_t motionEventAction;
2624            if (oldActiveIdBits.isEmpty()) {
2625                motionEventAction = AMOTION_EVENT_ACTION_DOWN;
2626                mDownTime = when;
2627            } else {
2628                motionEventAction = AMOTION_EVENT_ACTION_POINTER_DOWN;
2629            }
2630
2631            pointerCount += 1;
2632            dispatchTouch(when, policyFlags, &mCurrentTouch,
2633                    activeIdBits, downId, pointerCount, motionEventAction);
2634        }
2635    }
2636}
2637
2638void TouchInputMapper::dispatchTouch(nsecs_t when, uint32_t policyFlags,
2639        TouchData* touch, BitSet32 idBits, uint32_t changedId, uint32_t pointerCount,
2640        int32_t motionEventAction) {
2641    int32_t pointerIds[MAX_POINTERS];
2642    PointerCoords pointerCoords[MAX_POINTERS];
2643    int32_t motionEventEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
2644    float xPrecision, yPrecision;
2645
2646    { // acquire lock
2647        AutoMutex _l(mLock);
2648
2649        // Walk through the the active pointers and map touch screen coordinates (TouchData) into
2650        // display coordinates (PointerCoords) and adjust for display orientation.
2651        for (uint32_t outIndex = 0; ! idBits.isEmpty(); outIndex++) {
2652            uint32_t id = idBits.firstMarkedBit();
2653            idBits.clearBit(id);
2654            uint32_t inIndex = touch->idToIndex[id];
2655
2656            const PointerData& in = touch->pointers[inIndex];
2657
2658            // ToolMajor and ToolMinor
2659            float toolMajor, toolMinor;
2660            switch (mCalibration.toolSizeCalibration) {
2661            case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
2662                toolMajor = in.toolMajor * mLocked.geometricScale;
2663                if (mRawAxes.toolMinor.valid) {
2664                    toolMinor = in.toolMinor * mLocked.geometricScale;
2665                } else {
2666                    toolMinor = toolMajor;
2667                }
2668                break;
2669            case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
2670                toolMajor = in.toolMajor != 0
2671                        ? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias
2672                        : 0;
2673                if (mRawAxes.toolMinor.valid) {
2674                    toolMinor = in.toolMinor != 0
2675                            ? in.toolMinor * mLocked.toolSizeLinearScale
2676                                    + mLocked.toolSizeLinearBias
2677                            : 0;
2678                } else {
2679                    toolMinor = toolMajor;
2680                }
2681                break;
2682            case Calibration::TOOL_SIZE_CALIBRATION_AREA:
2683                if (in.toolMajor != 0) {
2684                    float diameter = sqrtf(in.toolMajor
2685                            * mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias);
2686                    toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias;
2687                } else {
2688                    toolMajor = 0;
2689                }
2690                toolMinor = toolMajor;
2691                break;
2692            default:
2693                toolMajor = 0;
2694                toolMinor = 0;
2695                break;
2696            }
2697
2698            if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) {
2699                toolMajor /= pointerCount;
2700                toolMinor /= pointerCount;
2701            }
2702
2703            // Pressure
2704            float rawPressure;
2705            switch (mCalibration.pressureSource) {
2706            case Calibration::PRESSURE_SOURCE_PRESSURE:
2707                rawPressure = in.pressure;
2708                break;
2709            case Calibration::PRESSURE_SOURCE_TOUCH:
2710                rawPressure = in.touchMajor;
2711                break;
2712            default:
2713                rawPressure = 0;
2714            }
2715
2716            float pressure;
2717            switch (mCalibration.pressureCalibration) {
2718            case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
2719            case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
2720                pressure = rawPressure * mLocked.pressureScale;
2721                break;
2722            default:
2723                pressure = 1;
2724                break;
2725            }
2726
2727            // TouchMajor and TouchMinor
2728            float touchMajor, touchMinor;
2729            switch (mCalibration.touchSizeCalibration) {
2730            case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
2731                touchMajor = in.touchMajor * mLocked.geometricScale;
2732                if (mRawAxes.touchMinor.valid) {
2733                    touchMinor = in.touchMinor * mLocked.geometricScale;
2734                } else {
2735                    touchMinor = touchMajor;
2736                }
2737                break;
2738            case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
2739                touchMajor = toolMajor * pressure;
2740                touchMinor = toolMinor * pressure;
2741                break;
2742            default:
2743                touchMajor = 0;
2744                touchMinor = 0;
2745                break;
2746            }
2747
2748            if (touchMajor > toolMajor) {
2749                touchMajor = toolMajor;
2750            }
2751            if (touchMinor > toolMinor) {
2752                touchMinor = toolMinor;
2753            }
2754
2755            // Size
2756            float size;
2757            switch (mCalibration.sizeCalibration) {
2758            case Calibration::SIZE_CALIBRATION_NORMALIZED: {
2759                float rawSize = mRawAxes.toolMinor.valid
2760                        ? avg(in.toolMajor, in.toolMinor)
2761                        : in.toolMajor;
2762                size = rawSize * mLocked.sizeScale;
2763                break;
2764            }
2765            default:
2766                size = 0;
2767                break;
2768            }
2769
2770            // Orientation
2771            float orientation;
2772            switch (mCalibration.orientationCalibration) {
2773            case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
2774                orientation = in.orientation * mLocked.orientationScale;
2775                break;
2776            case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
2777                int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
2778                int32_t c2 = signExtendNybble(in.orientation & 0x0f);
2779                if (c1 != 0 || c2 != 0) {
2780                    orientation = atan2f(c1, c2) * 0.5f;
2781                    float scale = 1.0f + pythag(c1, c2) / 16.0f;
2782                    touchMajor *= scale;
2783                    touchMinor /= scale;
2784                    toolMajor *= scale;
2785                    toolMinor /= scale;
2786                } else {
2787                    orientation = 0;
2788                }
2789                break;
2790            }
2791            default:
2792                orientation = 0;
2793            }
2794
2795            // X and Y
2796            // Adjust coords for surface orientation.
2797            float x, y;
2798            switch (mLocked.surfaceOrientation) {
2799            case DISPLAY_ORIENTATION_90:
2800                x = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
2801                y = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
2802                orientation -= M_PI_2;
2803                if (orientation < - M_PI_2) {
2804                    orientation += M_PI;
2805                }
2806                break;
2807            case DISPLAY_ORIENTATION_180:
2808                x = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
2809                y = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
2810                break;
2811            case DISPLAY_ORIENTATION_270:
2812                x = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
2813                y = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
2814                orientation += M_PI_2;
2815                if (orientation > M_PI_2) {
2816                    orientation -= M_PI;
2817                }
2818                break;
2819            default:
2820                x = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
2821                y = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
2822                break;
2823            }
2824
2825            // Write output coords.
2826            PointerCoords& out = pointerCoords[outIndex];
2827            out.clear();
2828            out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
2829            out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
2830            out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
2831            out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
2832            out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
2833            out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
2834            out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
2835            out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
2836            out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
2837
2838            pointerIds[outIndex] = int32_t(id);
2839
2840            if (id == changedId) {
2841                motionEventAction |= outIndex << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
2842            }
2843        }
2844
2845        // Check edge flags by looking only at the first pointer since the flags are
2846        // global to the event.
2847        if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
2848            uint32_t inIndex = touch->idToIndex[pointerIds[0]];
2849            const PointerData& in = touch->pointers[inIndex];
2850
2851            if (in.x <= mRawAxes.x.minValue) {
2852                motionEventEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_LEFT,
2853                        mLocked.surfaceOrientation);
2854            } else if (in.x >= mRawAxes.x.maxValue) {
2855                motionEventEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_RIGHT,
2856                        mLocked.surfaceOrientation);
2857            }
2858            if (in.y <= mRawAxes.y.minValue) {
2859                motionEventEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_TOP,
2860                        mLocked.surfaceOrientation);
2861            } else if (in.y >= mRawAxes.y.maxValue) {
2862                motionEventEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_BOTTOM,
2863                        mLocked.surfaceOrientation);
2864            }
2865        }
2866
2867        xPrecision = mLocked.orientedXPrecision;
2868        yPrecision = mLocked.orientedYPrecision;
2869    } // release lock
2870
2871    getDispatcher()->notifyMotion(when, getDeviceId(), mSources, policyFlags,
2872            motionEventAction, 0, getContext()->getGlobalMetaState(), motionEventEdgeFlags,
2873            pointerCount, pointerIds, pointerCoords,
2874            xPrecision, yPrecision, mDownTime);
2875}
2876
2877bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) {
2878    return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue
2879            && y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue;
2880}
2881
2882const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked(
2883        int32_t x, int32_t y) {
2884    size_t numVirtualKeys = mLocked.virtualKeys.size();
2885    for (size_t i = 0; i < numVirtualKeys; i++) {
2886        const VirtualKey& virtualKey = mLocked.virtualKeys[i];
2887
2888#if DEBUG_VIRTUAL_KEYS
2889        LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
2890                "left=%d, top=%d, right=%d, bottom=%d",
2891                x, y,
2892                virtualKey.keyCode, virtualKey.scanCode,
2893                virtualKey.hitLeft, virtualKey.hitTop,
2894                virtualKey.hitRight, virtualKey.hitBottom);
2895#endif
2896
2897        if (virtualKey.isHit(x, y)) {
2898            return & virtualKey;
2899        }
2900    }
2901
2902    return NULL;
2903}
2904
2905void TouchInputMapper::calculatePointerIds() {
2906    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
2907    uint32_t lastPointerCount = mLastTouch.pointerCount;
2908
2909    if (currentPointerCount == 0) {
2910        // No pointers to assign.
2911        mCurrentTouch.idBits.clear();
2912    } else if (lastPointerCount == 0) {
2913        // All pointers are new.
2914        mCurrentTouch.idBits.clear();
2915        for (uint32_t i = 0; i < currentPointerCount; i++) {
2916            mCurrentTouch.pointers[i].id = i;
2917            mCurrentTouch.idToIndex[i] = i;
2918            mCurrentTouch.idBits.markBit(i);
2919        }
2920    } else if (currentPointerCount == 1 && lastPointerCount == 1) {
2921        // Only one pointer and no change in count so it must have the same id as before.
2922        uint32_t id = mLastTouch.pointers[0].id;
2923        mCurrentTouch.pointers[0].id = id;
2924        mCurrentTouch.idToIndex[id] = 0;
2925        mCurrentTouch.idBits.value = BitSet32::valueForBit(id);
2926    } else {
2927        // General case.
2928        // We build a heap of squared euclidean distances between current and last pointers
2929        // associated with the current and last pointer indices.  Then, we find the best
2930        // match (by distance) for each current pointer.
2931        PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
2932
2933        uint32_t heapSize = 0;
2934        for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
2935                currentPointerIndex++) {
2936            for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
2937                    lastPointerIndex++) {
2938                int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x
2939                        - mLastTouch.pointers[lastPointerIndex].x;
2940                int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y
2941                        - mLastTouch.pointers[lastPointerIndex].y;
2942
2943                uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
2944
2945                // Insert new element into the heap (sift up).
2946                heap[heapSize].currentPointerIndex = currentPointerIndex;
2947                heap[heapSize].lastPointerIndex = lastPointerIndex;
2948                heap[heapSize].distance = distance;
2949                heapSize += 1;
2950            }
2951        }
2952
2953        // Heapify
2954        for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
2955            startIndex -= 1;
2956            for (uint32_t parentIndex = startIndex; ;) {
2957                uint32_t childIndex = parentIndex * 2 + 1;
2958                if (childIndex >= heapSize) {
2959                    break;
2960                }
2961
2962                if (childIndex + 1 < heapSize
2963                        && heap[childIndex + 1].distance < heap[childIndex].distance) {
2964                    childIndex += 1;
2965                }
2966
2967                if (heap[parentIndex].distance <= heap[childIndex].distance) {
2968                    break;
2969                }
2970
2971                swap(heap[parentIndex], heap[childIndex]);
2972                parentIndex = childIndex;
2973            }
2974        }
2975
2976#if DEBUG_POINTER_ASSIGNMENT
2977        LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize);
2978        for (size_t i = 0; i < heapSize; i++) {
2979            LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
2980                    i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
2981                    heap[i].distance);
2982        }
2983#endif
2984
2985        // Pull matches out by increasing order of distance.
2986        // To avoid reassigning pointers that have already been matched, the loop keeps track
2987        // of which last and current pointers have been matched using the matchedXXXBits variables.
2988        // It also tracks the used pointer id bits.
2989        BitSet32 matchedLastBits(0);
2990        BitSet32 matchedCurrentBits(0);
2991        BitSet32 usedIdBits(0);
2992        bool first = true;
2993        for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) {
2994            for (;;) {
2995                if (first) {
2996                    // The first time through the loop, we just consume the root element of
2997                    // the heap (the one with smallest distance).
2998                    first = false;
2999                } else {
3000                    // Previous iterations consumed the root element of the heap.
3001                    // Pop root element off of the heap (sift down).
3002                    heapSize -= 1;
3003                    assert(heapSize > 0);
3004
3005                    // Sift down.
3006                    heap[0] = heap[heapSize];
3007                    for (uint32_t parentIndex = 0; ;) {
3008                        uint32_t childIndex = parentIndex * 2 + 1;
3009                        if (childIndex >= heapSize) {
3010                            break;
3011                        }
3012
3013                        if (childIndex + 1 < heapSize
3014                                && heap[childIndex + 1].distance < heap[childIndex].distance) {
3015                            childIndex += 1;
3016                        }
3017
3018                        if (heap[parentIndex].distance <= heap[childIndex].distance) {
3019                            break;
3020                        }
3021
3022                        swap(heap[parentIndex], heap[childIndex]);
3023                        parentIndex = childIndex;
3024                    }
3025
3026#if DEBUG_POINTER_ASSIGNMENT
3027                    LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize);
3028                    for (size_t i = 0; i < heapSize; i++) {
3029                        LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
3030                                i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
3031                                heap[i].distance);
3032                    }
3033#endif
3034                }
3035
3036                uint32_t currentPointerIndex = heap[0].currentPointerIndex;
3037                if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
3038
3039                uint32_t lastPointerIndex = heap[0].lastPointerIndex;
3040                if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
3041
3042                matchedCurrentBits.markBit(currentPointerIndex);
3043                matchedLastBits.markBit(lastPointerIndex);
3044
3045                uint32_t id = mLastTouch.pointers[lastPointerIndex].id;
3046                mCurrentTouch.pointers[currentPointerIndex].id = id;
3047                mCurrentTouch.idToIndex[id] = currentPointerIndex;
3048                usedIdBits.markBit(id);
3049
3050#if DEBUG_POINTER_ASSIGNMENT
3051                LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
3052                        lastPointerIndex, currentPointerIndex, id, heap[0].distance);
3053#endif
3054                break;
3055            }
3056        }
3057
3058        // Assign fresh ids to new pointers.
3059        if (currentPointerCount > lastPointerCount) {
3060            for (uint32_t i = currentPointerCount - lastPointerCount; ;) {
3061                uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit();
3062                uint32_t id = usedIdBits.firstUnmarkedBit();
3063
3064                mCurrentTouch.pointers[currentPointerIndex].id = id;
3065                mCurrentTouch.idToIndex[id] = currentPointerIndex;
3066                usedIdBits.markBit(id);
3067
3068#if DEBUG_POINTER_ASSIGNMENT
3069                LOGD("calculatePointerIds - assigned: cur=%d, id=%d",
3070                        currentPointerIndex, id);
3071#endif
3072
3073                if (--i == 0) break; // done
3074                matchedCurrentBits.markBit(currentPointerIndex);
3075            }
3076        }
3077
3078        // Fix id bits.
3079        mCurrentTouch.idBits = usedIdBits;
3080    }
3081}
3082
3083/* Special hack for devices that have bad screen data: if one of the
3084 * points has moved more than a screen height from the last position,
3085 * then drop it. */
3086bool TouchInputMapper::applyBadTouchFilter() {
3087    uint32_t pointerCount = mCurrentTouch.pointerCount;
3088
3089    // Nothing to do if there are no points.
3090    if (pointerCount == 0) {
3091        return false;
3092    }
3093
3094    // Don't do anything if a finger is going down or up.  We run
3095    // here before assigning pointer IDs, so there isn't a good
3096    // way to do per-finger matching.
3097    if (pointerCount != mLastTouch.pointerCount) {
3098        return false;
3099    }
3100
3101    // We consider a single movement across more than a 7/16 of
3102    // the long size of the screen to be bad.  This was a magic value
3103    // determined by looking at the maximum distance it is feasible
3104    // to actually move in one sample.
3105    int32_t maxDeltaY = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) * 7 / 16;
3106
3107    // XXX The original code in InputDevice.java included commented out
3108    //     code for testing the X axis.  Note that when we drop a point
3109    //     we don't actually restore the old X either.  Strange.
3110    //     The old code also tries to track when bad points were previously
3111    //     detected but it turns out that due to the placement of a "break"
3112    //     at the end of the loop, we never set mDroppedBadPoint to true
3113    //     so it is effectively dead code.
3114    // Need to figure out if the old code is busted or just overcomplicated
3115    // but working as intended.
3116
3117    // Look through all new points and see if any are farther than
3118    // acceptable from all previous points.
3119    for (uint32_t i = pointerCount; i-- > 0; ) {
3120        int32_t y = mCurrentTouch.pointers[i].y;
3121        int32_t closestY = INT_MAX;
3122        int32_t closestDeltaY = 0;
3123
3124#if DEBUG_HACKS
3125        LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y);
3126#endif
3127
3128        for (uint32_t j = pointerCount; j-- > 0; ) {
3129            int32_t lastY = mLastTouch.pointers[j].y;
3130            int32_t deltaY = abs(y - lastY);
3131
3132#if DEBUG_HACKS
3133            LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d",
3134                    j, lastY, deltaY);
3135#endif
3136
3137            if (deltaY < maxDeltaY) {
3138                goto SkipSufficientlyClosePoint;
3139            }
3140            if (deltaY < closestDeltaY) {
3141                closestDeltaY = deltaY;
3142                closestY = lastY;
3143            }
3144        }
3145
3146        // Must not have found a close enough match.
3147#if DEBUG_HACKS
3148        LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d",
3149                i, y, closestY, closestDeltaY, maxDeltaY);
3150#endif
3151
3152        mCurrentTouch.pointers[i].y = closestY;
3153        return true; // XXX original code only corrects one point
3154
3155    SkipSufficientlyClosePoint: ;
3156    }
3157
3158    // No change.
3159    return false;
3160}
3161
3162/* Special hack for devices that have bad screen data: drop points where
3163 * the coordinate value for one axis has jumped to the other pointer's location.
3164 */
3165bool TouchInputMapper::applyJumpyTouchFilter() {
3166    uint32_t pointerCount = mCurrentTouch.pointerCount;
3167    if (mLastTouch.pointerCount != pointerCount) {
3168#if DEBUG_HACKS
3169        LOGD("JumpyTouchFilter: Different pointer count %d -> %d",
3170                mLastTouch.pointerCount, pointerCount);
3171        for (uint32_t i = 0; i < pointerCount; i++) {
3172            LOGD("  Pointer %d (%d, %d)", i,
3173                    mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
3174        }
3175#endif
3176
3177        if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) {
3178            if (mLastTouch.pointerCount == 1 && pointerCount == 2) {
3179                // Just drop the first few events going from 1 to 2 pointers.
3180                // They're bad often enough that they're not worth considering.
3181                mCurrentTouch.pointerCount = 1;
3182                mJumpyTouchFilter.jumpyPointsDropped += 1;
3183
3184#if DEBUG_HACKS
3185                LOGD("JumpyTouchFilter: Pointer 2 dropped");
3186#endif
3187                return true;
3188            } else if (mLastTouch.pointerCount == 2 && pointerCount == 1) {
3189                // The event when we go from 2 -> 1 tends to be messed up too
3190                mCurrentTouch.pointerCount = 2;
3191                mCurrentTouch.pointers[0] = mLastTouch.pointers[0];
3192                mCurrentTouch.pointers[1] = mLastTouch.pointers[1];
3193                mJumpyTouchFilter.jumpyPointsDropped += 1;
3194
3195#if DEBUG_HACKS
3196                for (int32_t i = 0; i < 2; i++) {
3197                    LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i,
3198                            mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
3199                }
3200#endif
3201                return true;
3202            }
3203        }
3204        // Reset jumpy points dropped on other transitions or if limit exceeded.
3205        mJumpyTouchFilter.jumpyPointsDropped = 0;
3206
3207#if DEBUG_HACKS
3208        LOGD("JumpyTouchFilter: Transition - drop limit reset");
3209#endif
3210        return false;
3211    }
3212
3213    // We have the same number of pointers as last time.
3214    // A 'jumpy' point is one where the coordinate value for one axis
3215    // has jumped to the other pointer's location. No need to do anything
3216    // else if we only have one pointer.
3217    if (pointerCount < 2) {
3218        return false;
3219    }
3220
3221    if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) {
3222        int jumpyEpsilon = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) / JUMPY_EPSILON_DIVISOR;
3223
3224        // We only replace the single worst jumpy point as characterized by pointer distance
3225        // in a single axis.
3226        int32_t badPointerIndex = -1;
3227        int32_t badPointerReplacementIndex = -1;
3228        int32_t badPointerDistance = INT_MIN; // distance to be corrected
3229
3230        for (uint32_t i = pointerCount; i-- > 0; ) {
3231            int32_t x = mCurrentTouch.pointers[i].x;
3232            int32_t y = mCurrentTouch.pointers[i].y;
3233
3234#if DEBUG_HACKS
3235            LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y);
3236#endif
3237
3238            // Check if a touch point is too close to another's coordinates
3239            bool dropX = false, dropY = false;
3240            for (uint32_t j = 0; j < pointerCount; j++) {
3241                if (i == j) {
3242                    continue;
3243                }
3244
3245                if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) {
3246                    dropX = true;
3247                    break;
3248                }
3249
3250                if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) {
3251                    dropY = true;
3252                    break;
3253                }
3254            }
3255            if (! dropX && ! dropY) {
3256                continue; // not jumpy
3257            }
3258
3259            // Find a replacement candidate by comparing with older points on the
3260            // complementary (non-jumpy) axis.
3261            int32_t distance = INT_MIN; // distance to be corrected
3262            int32_t replacementIndex = -1;
3263
3264            if (dropX) {
3265                // X looks too close.  Find an older replacement point with a close Y.
3266                int32_t smallestDeltaY = INT_MAX;
3267                for (uint32_t j = 0; j < pointerCount; j++) {
3268                    int32_t deltaY = abs(y - mLastTouch.pointers[j].y);
3269                    if (deltaY < smallestDeltaY) {
3270                        smallestDeltaY = deltaY;
3271                        replacementIndex = j;
3272                    }
3273                }
3274                distance = abs(x - mLastTouch.pointers[replacementIndex].x);
3275            } else {
3276                // Y looks too close.  Find an older replacement point with a close X.
3277                int32_t smallestDeltaX = INT_MAX;
3278                for (uint32_t j = 0; j < pointerCount; j++) {
3279                    int32_t deltaX = abs(x - mLastTouch.pointers[j].x);
3280                    if (deltaX < smallestDeltaX) {
3281                        smallestDeltaX = deltaX;
3282                        replacementIndex = j;
3283                    }
3284                }
3285                distance = abs(y - mLastTouch.pointers[replacementIndex].y);
3286            }
3287
3288            // If replacing this pointer would correct a worse error than the previous ones
3289            // considered, then use this replacement instead.
3290            if (distance > badPointerDistance) {
3291                badPointerIndex = i;
3292                badPointerReplacementIndex = replacementIndex;
3293                badPointerDistance = distance;
3294            }
3295        }
3296
3297        // Correct the jumpy pointer if one was found.
3298        if (badPointerIndex >= 0) {
3299#if DEBUG_HACKS
3300            LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)",
3301                    badPointerIndex,
3302                    mLastTouch.pointers[badPointerReplacementIndex].x,
3303                    mLastTouch.pointers[badPointerReplacementIndex].y);
3304#endif
3305
3306            mCurrentTouch.pointers[badPointerIndex].x =
3307                    mLastTouch.pointers[badPointerReplacementIndex].x;
3308            mCurrentTouch.pointers[badPointerIndex].y =
3309                    mLastTouch.pointers[badPointerReplacementIndex].y;
3310            mJumpyTouchFilter.jumpyPointsDropped += 1;
3311            return true;
3312        }
3313    }
3314
3315    mJumpyTouchFilter.jumpyPointsDropped = 0;
3316    return false;
3317}
3318
3319/* Special hack for devices that have bad screen data: aggregate and
3320 * compute averages of the coordinate data, to reduce the amount of
3321 * jitter seen by applications. */
3322void TouchInputMapper::applyAveragingTouchFilter() {
3323    for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) {
3324        uint32_t id = mCurrentTouch.pointers[currentIndex].id;
3325        int32_t x = mCurrentTouch.pointers[currentIndex].x;
3326        int32_t y = mCurrentTouch.pointers[currentIndex].y;
3327        int32_t pressure;
3328        switch (mCalibration.pressureSource) {
3329        case Calibration::PRESSURE_SOURCE_PRESSURE:
3330            pressure = mCurrentTouch.pointers[currentIndex].pressure;
3331            break;
3332        case Calibration::PRESSURE_SOURCE_TOUCH:
3333            pressure = mCurrentTouch.pointers[currentIndex].touchMajor;
3334            break;
3335        default:
3336            pressure = 1;
3337            break;
3338        }
3339
3340        if (mLastTouch.idBits.hasBit(id)) {
3341            // Pointer was down before and is still down now.
3342            // Compute average over history trace.
3343            uint32_t start = mAveragingTouchFilter.historyStart[id];
3344            uint32_t end = mAveragingTouchFilter.historyEnd[id];
3345
3346            int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x;
3347            int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y;
3348            uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
3349
3350#if DEBUG_HACKS
3351            LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld",
3352                    id, distance);
3353#endif
3354
3355            if (distance < AVERAGING_DISTANCE_LIMIT) {
3356                // Increment end index in preparation for recording new historical data.
3357                end += 1;
3358                if (end > AVERAGING_HISTORY_SIZE) {
3359                    end = 0;
3360                }
3361
3362                // If the end index has looped back to the start index then we have filled
3363                // the historical trace up to the desired size so we drop the historical
3364                // data at the start of the trace.
3365                if (end == start) {
3366                    start += 1;
3367                    if (start > AVERAGING_HISTORY_SIZE) {
3368                        start = 0;
3369                    }
3370                }
3371
3372                // Add the raw data to the historical trace.
3373                mAveragingTouchFilter.historyStart[id] = start;
3374                mAveragingTouchFilter.historyEnd[id] = end;
3375                mAveragingTouchFilter.historyData[end].pointers[id].x = x;
3376                mAveragingTouchFilter.historyData[end].pointers[id].y = y;
3377                mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure;
3378
3379                // Average over all historical positions in the trace by total pressure.
3380                int32_t averagedX = 0;
3381                int32_t averagedY = 0;
3382                int32_t totalPressure = 0;
3383                for (;;) {
3384                    int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x;
3385                    int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y;
3386                    int32_t historicalPressure = mAveragingTouchFilter.historyData[start]
3387                            .pointers[id].pressure;
3388
3389                    averagedX += historicalX * historicalPressure;
3390                    averagedY += historicalY * historicalPressure;
3391                    totalPressure += historicalPressure;
3392
3393                    if (start == end) {
3394                        break;
3395                    }
3396
3397                    start += 1;
3398                    if (start > AVERAGING_HISTORY_SIZE) {
3399                        start = 0;
3400                    }
3401                }
3402
3403                if (totalPressure != 0) {
3404                    averagedX /= totalPressure;
3405                    averagedY /= totalPressure;
3406
3407#if DEBUG_HACKS
3408                    LOGD("AveragingTouchFilter: Pointer id %d - "
3409                            "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure,
3410                            averagedX, averagedY);
3411#endif
3412
3413                    mCurrentTouch.pointers[currentIndex].x = averagedX;
3414                    mCurrentTouch.pointers[currentIndex].y = averagedY;
3415                }
3416            } else {
3417#if DEBUG_HACKS
3418                LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id);
3419#endif
3420            }
3421        } else {
3422#if DEBUG_HACKS
3423            LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id);
3424#endif
3425        }
3426
3427        // Reset pointer history.
3428        mAveragingTouchFilter.historyStart[id] = 0;
3429        mAveragingTouchFilter.historyEnd[id] = 0;
3430        mAveragingTouchFilter.historyData[0].pointers[id].x = x;
3431        mAveragingTouchFilter.historyData[0].pointers[id].y = y;
3432        mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure;
3433    }
3434}
3435
3436int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
3437    { // acquire lock
3438        AutoMutex _l(mLock);
3439
3440        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) {
3441            return AKEY_STATE_VIRTUAL;
3442        }
3443
3444        size_t numVirtualKeys = mLocked.virtualKeys.size();
3445        for (size_t i = 0; i < numVirtualKeys; i++) {
3446            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
3447            if (virtualKey.keyCode == keyCode) {
3448                return AKEY_STATE_UP;
3449            }
3450        }
3451    } // release lock
3452
3453    return AKEY_STATE_UNKNOWN;
3454}
3455
3456int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
3457    { // acquire lock
3458        AutoMutex _l(mLock);
3459
3460        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) {
3461            return AKEY_STATE_VIRTUAL;
3462        }
3463
3464        size_t numVirtualKeys = mLocked.virtualKeys.size();
3465        for (size_t i = 0; i < numVirtualKeys; i++) {
3466            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
3467            if (virtualKey.scanCode == scanCode) {
3468                return AKEY_STATE_UP;
3469            }
3470        }
3471    } // release lock
3472
3473    return AKEY_STATE_UNKNOWN;
3474}
3475
3476bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
3477        const int32_t* keyCodes, uint8_t* outFlags) {
3478    { // acquire lock
3479        AutoMutex _l(mLock);
3480
3481        size_t numVirtualKeys = mLocked.virtualKeys.size();
3482        for (size_t i = 0; i < numVirtualKeys; i++) {
3483            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
3484
3485            for (size_t i = 0; i < numCodes; i++) {
3486                if (virtualKey.keyCode == keyCodes[i]) {
3487                    outFlags[i] = 1;
3488                }
3489            }
3490        }
3491    } // release lock
3492
3493    return true;
3494}
3495
3496
3497// --- SingleTouchInputMapper ---
3498
3499SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) :
3500        TouchInputMapper(device) {
3501    initialize();
3502}
3503
3504SingleTouchInputMapper::~SingleTouchInputMapper() {
3505}
3506
3507void SingleTouchInputMapper::initialize() {
3508    mAccumulator.clear();
3509
3510    mDown = false;
3511    mX = 0;
3512    mY = 0;
3513    mPressure = 0; // default to 0 for devices that don't report pressure
3514    mToolWidth = 0; // default to 0 for devices that don't report tool width
3515}
3516
3517void SingleTouchInputMapper::reset() {
3518    TouchInputMapper::reset();
3519
3520    initialize();
3521 }
3522
3523void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
3524    switch (rawEvent->type) {
3525    case EV_KEY:
3526        switch (rawEvent->scanCode) {
3527        case BTN_TOUCH:
3528            mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH;
3529            mAccumulator.btnTouch = rawEvent->value != 0;
3530            // Don't sync immediately.  Wait until the next SYN_REPORT since we might
3531            // not have received valid position information yet.  This logic assumes that
3532            // BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet.
3533            break;
3534        }
3535        break;
3536
3537    case EV_ABS:
3538        switch (rawEvent->scanCode) {
3539        case ABS_X:
3540            mAccumulator.fields |= Accumulator::FIELD_ABS_X;
3541            mAccumulator.absX = rawEvent->value;
3542            break;
3543        case ABS_Y:
3544            mAccumulator.fields |= Accumulator::FIELD_ABS_Y;
3545            mAccumulator.absY = rawEvent->value;
3546            break;
3547        case ABS_PRESSURE:
3548            mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE;
3549            mAccumulator.absPressure = rawEvent->value;
3550            break;
3551        case ABS_TOOL_WIDTH:
3552            mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH;
3553            mAccumulator.absToolWidth = rawEvent->value;
3554            break;
3555        }
3556        break;
3557
3558    case EV_SYN:
3559        switch (rawEvent->scanCode) {
3560        case SYN_REPORT:
3561            sync(rawEvent->when);
3562            break;
3563        }
3564        break;
3565    }
3566}
3567
3568void SingleTouchInputMapper::sync(nsecs_t when) {
3569    uint32_t fields = mAccumulator.fields;
3570    if (fields == 0) {
3571        return; // no new state changes, so nothing to do
3572    }
3573
3574    if (fields & Accumulator::FIELD_BTN_TOUCH) {
3575        mDown = mAccumulator.btnTouch;
3576    }
3577
3578    if (fields & Accumulator::FIELD_ABS_X) {
3579        mX = mAccumulator.absX;
3580    }
3581
3582    if (fields & Accumulator::FIELD_ABS_Y) {
3583        mY = mAccumulator.absY;
3584    }
3585
3586    if (fields & Accumulator::FIELD_ABS_PRESSURE) {
3587        mPressure = mAccumulator.absPressure;
3588    }
3589
3590    if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) {
3591        mToolWidth = mAccumulator.absToolWidth;
3592    }
3593
3594    mCurrentTouch.clear();
3595
3596    if (mDown) {
3597        mCurrentTouch.pointerCount = 1;
3598        mCurrentTouch.pointers[0].id = 0;
3599        mCurrentTouch.pointers[0].x = mX;
3600        mCurrentTouch.pointers[0].y = mY;
3601        mCurrentTouch.pointers[0].pressure = mPressure;
3602        mCurrentTouch.pointers[0].touchMajor = 0;
3603        mCurrentTouch.pointers[0].touchMinor = 0;
3604        mCurrentTouch.pointers[0].toolMajor = mToolWidth;
3605        mCurrentTouch.pointers[0].toolMinor = mToolWidth;
3606        mCurrentTouch.pointers[0].orientation = 0;
3607        mCurrentTouch.idToIndex[0] = 0;
3608        mCurrentTouch.idBits.markBit(0);
3609    }
3610
3611    syncTouch(when, true);
3612
3613    mAccumulator.clear();
3614}
3615
3616void SingleTouchInputMapper::configureRawAxes() {
3617    TouchInputMapper::configureRawAxes();
3618
3619    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x);
3620    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y);
3621    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure);
3622    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor);
3623}
3624
3625
3626// --- MultiTouchInputMapper ---
3627
3628MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) :
3629        TouchInputMapper(device) {
3630    initialize();
3631}
3632
3633MultiTouchInputMapper::~MultiTouchInputMapper() {
3634}
3635
3636void MultiTouchInputMapper::initialize() {
3637    mAccumulator.clear();
3638}
3639
3640void MultiTouchInputMapper::reset() {
3641    TouchInputMapper::reset();
3642
3643    initialize();
3644}
3645
3646void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
3647    switch (rawEvent->type) {
3648    case EV_ABS: {
3649        uint32_t pointerIndex = mAccumulator.pointerCount;
3650        Accumulator::Pointer* pointer = & mAccumulator.pointers[pointerIndex];
3651
3652        switch (rawEvent->scanCode) {
3653        case ABS_MT_POSITION_X:
3654            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_X;
3655            pointer->absMTPositionX = rawEvent->value;
3656            break;
3657        case ABS_MT_POSITION_Y:
3658            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y;
3659            pointer->absMTPositionY = rawEvent->value;
3660            break;
3661        case ABS_MT_TOUCH_MAJOR:
3662            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
3663            pointer->absMTTouchMajor = rawEvent->value;
3664            break;
3665        case ABS_MT_TOUCH_MINOR:
3666            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR;
3667            pointer->absMTTouchMinor = rawEvent->value;
3668            break;
3669        case ABS_MT_WIDTH_MAJOR:
3670            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
3671            pointer->absMTWidthMajor = rawEvent->value;
3672            break;
3673        case ABS_MT_WIDTH_MINOR:
3674            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR;
3675            pointer->absMTWidthMinor = rawEvent->value;
3676            break;
3677        case ABS_MT_ORIENTATION:
3678            pointer->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION;
3679            pointer->absMTOrientation = rawEvent->value;
3680            break;
3681        case ABS_MT_TRACKING_ID:
3682            pointer->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID;
3683            pointer->absMTTrackingId = rawEvent->value;
3684            break;
3685        case ABS_MT_PRESSURE:
3686            pointer->fields |= Accumulator::FIELD_ABS_MT_PRESSURE;
3687            pointer->absMTPressure = rawEvent->value;
3688            break;
3689        }
3690        break;
3691    }
3692
3693    case EV_SYN:
3694        switch (rawEvent->scanCode) {
3695        case SYN_MT_REPORT: {
3696            // MultiTouch Sync: The driver has returned all data for *one* of the pointers.
3697            uint32_t pointerIndex = mAccumulator.pointerCount;
3698
3699            if (mAccumulator.pointers[pointerIndex].fields) {
3700                if (pointerIndex == MAX_POINTERS) {
3701                    LOGW("MultiTouch device driver returned more than maximum of %d pointers.",
3702                            MAX_POINTERS);
3703                } else {
3704                    pointerIndex += 1;
3705                    mAccumulator.pointerCount = pointerIndex;
3706                }
3707            }
3708
3709            mAccumulator.pointers[pointerIndex].clear();
3710            break;
3711        }
3712
3713        case SYN_REPORT:
3714            sync(rawEvent->when);
3715            break;
3716        }
3717        break;
3718    }
3719}
3720
3721void MultiTouchInputMapper::sync(nsecs_t when) {
3722    static const uint32_t REQUIRED_FIELDS =
3723            Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y;
3724
3725    uint32_t inCount = mAccumulator.pointerCount;
3726    uint32_t outCount = 0;
3727    bool havePointerIds = true;
3728
3729    mCurrentTouch.clear();
3730
3731    for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) {
3732        const Accumulator::Pointer& inPointer = mAccumulator.pointers[inIndex];
3733        uint32_t fields = inPointer.fields;
3734
3735        if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
3736            // Some drivers send empty MT sync packets without X / Y to indicate a pointer up.
3737            // Drop this finger.
3738            continue;
3739        }
3740
3741        PointerData& outPointer = mCurrentTouch.pointers[outCount];
3742        outPointer.x = inPointer.absMTPositionX;
3743        outPointer.y = inPointer.absMTPositionY;
3744
3745        if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) {
3746            if (inPointer.absMTPressure <= 0) {
3747                // Some devices send sync packets with X / Y but with a 0 pressure to indicate
3748                // a pointer going up.  Drop this finger.
3749                continue;
3750            }
3751            outPointer.pressure = inPointer.absMTPressure;
3752        } else {
3753            // Default pressure to 0 if absent.
3754            outPointer.pressure = 0;
3755        }
3756
3757        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) {
3758            if (inPointer.absMTTouchMajor <= 0) {
3759                // Some devices send sync packets with X / Y but with a 0 touch major to indicate
3760                // a pointer going up.  Drop this finger.
3761                continue;
3762            }
3763            outPointer.touchMajor = inPointer.absMTTouchMajor;
3764        } else {
3765            // Default touch area to 0 if absent.
3766            outPointer.touchMajor = 0;
3767        }
3768
3769        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) {
3770            outPointer.touchMinor = inPointer.absMTTouchMinor;
3771        } else {
3772            // Assume touch area is circular.
3773            outPointer.touchMinor = outPointer.touchMajor;
3774        }
3775
3776        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) {
3777            outPointer.toolMajor = inPointer.absMTWidthMajor;
3778        } else {
3779            // Default tool area to 0 if absent.
3780            outPointer.toolMajor = 0;
3781        }
3782
3783        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) {
3784            outPointer.toolMinor = inPointer.absMTWidthMinor;
3785        } else {
3786            // Assume tool area is circular.
3787            outPointer.toolMinor = outPointer.toolMajor;
3788        }
3789
3790        if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) {
3791            outPointer.orientation = inPointer.absMTOrientation;
3792        } else {
3793            // Default orientation to vertical if absent.
3794            outPointer.orientation = 0;
3795        }
3796
3797        // Assign pointer id using tracking id if available.
3798        if (havePointerIds) {
3799            if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) {
3800                uint32_t id = uint32_t(inPointer.absMTTrackingId);
3801
3802                if (id > MAX_POINTER_ID) {
3803#if DEBUG_POINTERS
3804                    LOGD("Pointers: Ignoring driver provided pointer id %d because "
3805                            "it is larger than max supported id %d",
3806                            id, MAX_POINTER_ID);
3807#endif
3808                    havePointerIds = false;
3809                }
3810                else {
3811                    outPointer.id = id;
3812                    mCurrentTouch.idToIndex[id] = outCount;
3813                    mCurrentTouch.idBits.markBit(id);
3814                }
3815            } else {
3816                havePointerIds = false;
3817            }
3818        }
3819
3820        outCount += 1;
3821    }
3822
3823    mCurrentTouch.pointerCount = outCount;
3824
3825    syncTouch(when, havePointerIds);
3826
3827    mAccumulator.clear();
3828}
3829
3830void MultiTouchInputMapper::configureRawAxes() {
3831    TouchInputMapper::configureRawAxes();
3832
3833    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, & mRawAxes.x);
3834    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, & mRawAxes.y);
3835    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, & mRawAxes.touchMajor);
3836    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, & mRawAxes.touchMinor);
3837    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, & mRawAxes.toolMajor);
3838    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, & mRawAxes.toolMinor);
3839    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, & mRawAxes.orientation);
3840    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, & mRawAxes.pressure);
3841}
3842
3843
3844// --- JoystickInputMapper ---
3845
3846JoystickInputMapper::JoystickInputMapper(InputDevice* device) :
3847        InputMapper(device) {
3848}
3849
3850JoystickInputMapper::~JoystickInputMapper() {
3851}
3852
3853uint32_t JoystickInputMapper::getSources() {
3854    return AINPUT_SOURCE_JOYSTICK;
3855}
3856
3857void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
3858    InputMapper::populateDeviceInfo(info);
3859
3860    for (size_t i = 0; i < mAxes.size(); i++) {
3861        const Axis& axis = mAxes.valueAt(i);
3862        info->addMotionRange(axis.axisInfo.axis, axis.min, axis.max, axis.flat, axis.fuzz);
3863        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
3864            info->addMotionRange(axis.axisInfo.highAxis, axis.min, axis.max, axis.flat, axis.fuzz);
3865        }
3866    }
3867}
3868
3869void JoystickInputMapper::dump(String8& dump) {
3870    dump.append(INDENT2 "Joystick Input Mapper:\n");
3871
3872    dump.append(INDENT3 "Axes:\n");
3873    size_t numAxes = mAxes.size();
3874    for (size_t i = 0; i < numAxes; i++) {
3875        const Axis& axis = mAxes.valueAt(i);
3876        const char* label = getAxisLabel(axis.axisInfo.axis);
3877        if (label) {
3878            dump.appendFormat(INDENT4 "%s", label);
3879        } else {
3880            dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis);
3881        }
3882        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
3883            label = getAxisLabel(axis.axisInfo.highAxis);
3884            if (label) {
3885                dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue);
3886            } else {
3887                dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis,
3888                        axis.axisInfo.splitValue);
3889            }
3890        } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) {
3891            dump.append(" (invert)");
3892        }
3893
3894        dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f\n",
3895                axis.min, axis.max, axis.flat, axis.fuzz);
3896        dump.appendFormat(INDENT4 "  scale=%0.5f, offset=%0.5f, "
3897                "highScale=%0.5f, highOffset=%0.5f\n",
3898                axis.scale, axis.offset, axis.highScale, axis.highOffset);
3899        dump.appendFormat(INDENT4 "  rawAxis=%d, rawMin=%d, rawMax=%d, rawFlat=%d, rawFuzz=%d\n",
3900                mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
3901                axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz);
3902    }
3903}
3904
3905void JoystickInputMapper::configure() {
3906    InputMapper::configure();
3907
3908    // Collect all axes.
3909    for (int32_t abs = 0; abs <= ABS_MAX; abs++) {
3910        RawAbsoluteAxisInfo rawAxisInfo;
3911        getEventHub()->getAbsoluteAxisInfo(getDeviceId(), abs, &rawAxisInfo);
3912        if (rawAxisInfo.valid) {
3913            // Map axis.
3914            AxisInfo axisInfo;
3915            bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo);
3916            if (!explicitlyMapped) {
3917                // Axis is not explicitly mapped, will choose a generic axis later.
3918                axisInfo.mode = AxisInfo::MODE_NORMAL;
3919                axisInfo.axis = -1;
3920            }
3921
3922            // Apply flat override.
3923            int32_t rawFlat = axisInfo.flatOverride < 0
3924                    ? rawAxisInfo.flat : axisInfo.flatOverride;
3925
3926            // Calculate scaling factors and limits.
3927            Axis axis;
3928            if (axisInfo.mode == AxisInfo::MODE_SPLIT) {
3929                float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue);
3930                float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue);
3931                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
3932                        scale, 0.0f, highScale, 0.0f,
3933                        0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
3934            } else if (isCenteredAxis(axisInfo.axis)) {
3935                float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
3936                float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
3937                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
3938                        scale, offset, scale, offset,
3939                        -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
3940            } else {
3941                float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
3942                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
3943                        scale, 0.0f, scale, 0.0f,
3944                        0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
3945            }
3946
3947            // To eliminate noise while the joystick is at rest, filter out small variations
3948            // in axis values up front.
3949            axis.filter = axis.flat * 0.25f;
3950
3951            mAxes.add(abs, axis);
3952        }
3953    }
3954
3955    // If there are too many axes, start dropping them.
3956    // Prefer to keep explicitly mapped axes.
3957    if (mAxes.size() > PointerCoords::MAX_AXES) {
3958        LOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.",
3959                getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES);
3960        pruneAxes(true);
3961        pruneAxes(false);
3962    }
3963
3964    // Assign generic axis ids to remaining axes.
3965    int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1;
3966    size_t numAxes = mAxes.size();
3967    for (size_t i = 0; i < numAxes; i++) {
3968        Axis& axis = mAxes.editValueAt(i);
3969        if (axis.axisInfo.axis < 0) {
3970            while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16
3971                    && haveAxis(nextGenericAxisId)) {
3972                nextGenericAxisId += 1;
3973            }
3974
3975            if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) {
3976                axis.axisInfo.axis = nextGenericAxisId;
3977                nextGenericAxisId += 1;
3978            } else {
3979                LOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids "
3980                        "have already been assigned to other axes.",
3981                        getDeviceName().string(), mAxes.keyAt(i));
3982                mAxes.removeItemsAt(i--);
3983                numAxes -= 1;
3984            }
3985        }
3986    }
3987}
3988
3989bool JoystickInputMapper::haveAxis(int32_t axisId) {
3990    size_t numAxes = mAxes.size();
3991    for (size_t i = 0; i < numAxes; i++) {
3992        const Axis& axis = mAxes.valueAt(i);
3993        if (axis.axisInfo.axis == axisId
3994                || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT
3995                        && axis.axisInfo.highAxis == axisId)) {
3996            return true;
3997        }
3998    }
3999    return false;
4000}
4001
4002void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) {
4003    size_t i = mAxes.size();
4004    while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) {
4005        if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) {
4006            continue;
4007        }
4008        LOGI("Discarding joystick '%s' axis %d because there are too many axes.",
4009                getDeviceName().string(), mAxes.keyAt(i));
4010        mAxes.removeItemsAt(i);
4011    }
4012}
4013
4014bool JoystickInputMapper::isCenteredAxis(int32_t axis) {
4015    switch (axis) {
4016    case AMOTION_EVENT_AXIS_X:
4017    case AMOTION_EVENT_AXIS_Y:
4018    case AMOTION_EVENT_AXIS_Z:
4019    case AMOTION_EVENT_AXIS_RX:
4020    case AMOTION_EVENT_AXIS_RY:
4021    case AMOTION_EVENT_AXIS_RZ:
4022    case AMOTION_EVENT_AXIS_HAT_X:
4023    case AMOTION_EVENT_AXIS_HAT_Y:
4024    case AMOTION_EVENT_AXIS_ORIENTATION:
4025    case AMOTION_EVENT_AXIS_RUDDER:
4026    case AMOTION_EVENT_AXIS_WHEEL:
4027        return true;
4028    default:
4029        return false;
4030    }
4031}
4032
4033void JoystickInputMapper::reset() {
4034    // Recenter all axes.
4035    nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
4036
4037    size_t numAxes = mAxes.size();
4038    for (size_t i = 0; i < numAxes; i++) {
4039        Axis& axis = mAxes.editValueAt(i);
4040        axis.resetValue();
4041    }
4042
4043    sync(when, true /*force*/);
4044
4045    InputMapper::reset();
4046}
4047
4048void JoystickInputMapper::process(const RawEvent* rawEvent) {
4049    switch (rawEvent->type) {
4050    case EV_ABS: {
4051        ssize_t index = mAxes.indexOfKey(rawEvent->scanCode);
4052        if (index >= 0) {
4053            Axis& axis = mAxes.editValueAt(index);
4054            float newValue, highNewValue;
4055            switch (axis.axisInfo.mode) {
4056            case AxisInfo::MODE_INVERT:
4057                newValue = (axis.rawAxisInfo.maxValue - rawEvent->value)
4058                        * axis.scale + axis.offset;
4059                highNewValue = 0.0f;
4060                break;
4061            case AxisInfo::MODE_SPLIT:
4062                if (rawEvent->value < axis.axisInfo.splitValue) {
4063                    newValue = (axis.axisInfo.splitValue - rawEvent->value)
4064                            * axis.scale + axis.offset;
4065                    highNewValue = 0.0f;
4066                } else if (rawEvent->value > axis.axisInfo.splitValue) {
4067                    newValue = 0.0f;
4068                    highNewValue = (rawEvent->value - axis.axisInfo.splitValue)
4069                            * axis.highScale + axis.highOffset;
4070                } else {
4071                    newValue = 0.0f;
4072                    highNewValue = 0.0f;
4073                }
4074                break;
4075            default:
4076                newValue = rawEvent->value * axis.scale + axis.offset;
4077                highNewValue = 0.0f;
4078                break;
4079            }
4080            axis.newValue = newValue;
4081            axis.highNewValue = highNewValue;
4082        }
4083        break;
4084    }
4085
4086    case EV_SYN:
4087        switch (rawEvent->scanCode) {
4088        case SYN_REPORT:
4089            sync(rawEvent->when, false /*force*/);
4090            break;
4091        }
4092        break;
4093    }
4094}
4095
4096void JoystickInputMapper::sync(nsecs_t when, bool force) {
4097    if (!filterAxes(force)) {
4098        return;
4099    }
4100
4101    int32_t metaState = mContext->getGlobalMetaState();
4102
4103    PointerCoords pointerCoords;
4104    pointerCoords.clear();
4105
4106    size_t numAxes = mAxes.size();
4107    for (size_t i = 0; i < numAxes; i++) {
4108        const Axis& axis = mAxes.valueAt(i);
4109        pointerCoords.setAxisValue(axis.axisInfo.axis, axis.currentValue);
4110        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
4111            pointerCoords.setAxisValue(axis.axisInfo.highAxis, axis.highCurrentValue);
4112        }
4113    }
4114
4115    // Moving a joystick axis should not wake the devide because joysticks can
4116    // be fairly noisy even when not in use.  On the other hand, pushing a gamepad
4117    // button will likely wake the device.
4118    // TODO: Use the input device configuration to control this behavior more finely.
4119    uint32_t policyFlags = 0;
4120
4121    int32_t pointerId = 0;
4122    getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags,
4123            AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
4124            1, &pointerId, &pointerCoords, 0, 0, 0);
4125}
4126
4127bool JoystickInputMapper::filterAxes(bool force) {
4128    bool atLeastOneSignificantChange = force;
4129    size_t numAxes = mAxes.size();
4130    for (size_t i = 0; i < numAxes; i++) {
4131        Axis& axis = mAxes.editValueAt(i);
4132        if (force || hasValueChangedSignificantly(axis.filter,
4133                axis.newValue, axis.currentValue, axis.min, axis.max)) {
4134            axis.currentValue = axis.newValue;
4135            atLeastOneSignificantChange = true;
4136        }
4137        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
4138            if (force || hasValueChangedSignificantly(axis.filter,
4139                    axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) {
4140                axis.highCurrentValue = axis.highNewValue;
4141                atLeastOneSignificantChange = true;
4142            }
4143        }
4144    }
4145    return atLeastOneSignificantChange;
4146}
4147
4148bool JoystickInputMapper::hasValueChangedSignificantly(
4149        float filter, float newValue, float currentValue, float min, float max) {
4150    if (newValue != currentValue) {
4151        // Filter out small changes in value unless the value is converging on the axis
4152        // bounds or center point.  This is intended to reduce the amount of information
4153        // sent to applications by particularly noisy joysticks (such as PS3).
4154        if (fabs(newValue - currentValue) > filter
4155                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min)
4156                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max)
4157                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) {
4158            return true;
4159        }
4160    }
4161    return false;
4162}
4163
4164bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange(
4165        float filter, float newValue, float currentValue, float thresholdValue) {
4166    float newDistance = fabs(newValue - thresholdValue);
4167    if (newDistance < filter) {
4168        float oldDistance = fabs(currentValue - thresholdValue);
4169        if (newDistance < oldDistance) {
4170            return true;
4171        }
4172    }
4173    return false;
4174}
4175
4176} // namespace android
4177