InputReader.cpp revision aa3855d5836d2a2d83baafdf6e40caf90d3dad1c
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "InputReader"
18
19//#define LOG_NDEBUG 0
20
21// Log debug messages for each raw event received from the EventHub.
22#define DEBUG_RAW_EVENTS 0
23
24// Log debug messages about touch screen filtering hacks.
25#define DEBUG_HACKS 0
26
27// Log debug messages about virtual key processing.
28#define DEBUG_VIRTUAL_KEYS 0
29
30// Log debug messages about pointers.
31#define DEBUG_POINTERS 0
32
33// Log debug messages about pointer assignment calculations.
34#define DEBUG_POINTER_ASSIGNMENT 0
35
36// Log debug messages about gesture detection.
37#define DEBUG_GESTURES 0
38
39
40#include "InputReader.h"
41
42#include <cutils/log.h>
43#include <ui/Keyboard.h>
44#include <ui/VirtualKeyMap.h>
45
46#include <stddef.h>
47#include <stdlib.h>
48#include <unistd.h>
49#include <errno.h>
50#include <limits.h>
51#include <math.h>
52
53#define INDENT "  "
54#define INDENT2 "    "
55#define INDENT3 "      "
56#define INDENT4 "        "
57
58namespace android {
59
60// --- Constants ---
61
62// Quiet time between certain gesture transitions.
63// Time to allow for all fingers or buttons to settle into a stable state before
64// starting a new gesture.
65static const nsecs_t QUIET_INTERVAL = 100 * 1000000; // 100 ms
66
67// The minimum speed that a pointer must travel for us to consider switching the active
68// touch pointer to it during a drag.  This threshold is set to avoid switching due
69// to noise from a finger resting on the touch pad (perhaps just pressing it down).
70static const float DRAG_MIN_SWITCH_SPEED = 50.0f; // pixels per second
71
72// Tap gesture delay time.
73// The time between down and up must be less than this to be considered a tap.
74static const nsecs_t TAP_INTERVAL = 100 * 1000000; // 100 ms
75
76// The distance in pixels that the pointer is allowed to move from initial down
77// to up and still be called a tap.
78static const float TAP_SLOP = 5.0f; // 5 pixels
79
80// The transition from INDETERMINATE_MULTITOUCH to SWIPE or FREEFORM gesture mode is made when
81// all of the pointers have traveled this number of pixels from the start point.
82static const float MULTITOUCH_MIN_TRAVEL = 5.0f;
83
84// The transition from INDETERMINATE_MULTITOUCH to SWIPE gesture mode can only occur when the
85// cosine of the angle between the two vectors is greater than or equal to than this value
86// which indicates that the vectors are oriented in the same direction.
87// When the vectors are oriented in the exactly same direction, the cosine is 1.0.
88// (In exactly opposite directions, the cosine is -1.0.)
89static const float SWIPE_TRANSITION_ANGLE_COSINE = 0.5f; // cosine of 45 degrees
90
91
92// --- Static Functions ---
93
94template<typename T>
95inline static T abs(const T& value) {
96    return value < 0 ? - value : value;
97}
98
99template<typename T>
100inline static T min(const T& a, const T& b) {
101    return a < b ? a : b;
102}
103
104template<typename T>
105inline static void swap(T& a, T& b) {
106    T temp = a;
107    a = b;
108    b = temp;
109}
110
111inline static float avg(float x, float y) {
112    return (x + y) / 2;
113}
114
115inline static float pythag(float x, float y) {
116    return sqrtf(x * x + y * y);
117}
118
119inline static int32_t distanceSquared(int32_t x1, int32_t y1, int32_t x2, int32_t y2) {
120    int32_t dx = x1 - x2;
121    int32_t dy = y1 - y2;
122    return dx * dx + dy * dy;
123}
124
125inline static int32_t signExtendNybble(int32_t value) {
126    return value >= 8 ? value - 16 : value;
127}
128
129static inline const char* toString(bool value) {
130    return value ? "true" : "false";
131}
132
133static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation,
134        const int32_t map[][4], size_t mapSize) {
135    if (orientation != DISPLAY_ORIENTATION_0) {
136        for (size_t i = 0; i < mapSize; i++) {
137            if (value == map[i][0]) {
138                return map[i][orientation];
139            }
140        }
141    }
142    return value;
143}
144
145static const int32_t keyCodeRotationMap[][4] = {
146        // key codes enumerated counter-clockwise with the original (unrotated) key first
147        // no rotation,        90 degree rotation,  180 degree rotation, 270 degree rotation
148        { AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT },
149        { AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN },
150        { AKEYCODE_DPAD_UP,     AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT },
151        { AKEYCODE_DPAD_LEFT,   AKEYCODE_DPAD_DOWN,   AKEYCODE_DPAD_RIGHT,  AKEYCODE_DPAD_UP },
152};
153static const size_t keyCodeRotationMapSize =
154        sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
155
156int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
157    return rotateValueUsingRotationMap(keyCode, orientation,
158            keyCodeRotationMap, keyCodeRotationMapSize);
159}
160
161static const int32_t edgeFlagRotationMap[][4] = {
162        // edge flags enumerated counter-clockwise with the original (unrotated) edge flag first
163        // no rotation,        90 degree rotation,  180 degree rotation, 270 degree rotation
164        { AMOTION_EVENT_EDGE_FLAG_BOTTOM,   AMOTION_EVENT_EDGE_FLAG_RIGHT,
165                AMOTION_EVENT_EDGE_FLAG_TOP,     AMOTION_EVENT_EDGE_FLAG_LEFT },
166        { AMOTION_EVENT_EDGE_FLAG_RIGHT,  AMOTION_EVENT_EDGE_FLAG_TOP,
167                AMOTION_EVENT_EDGE_FLAG_LEFT,   AMOTION_EVENT_EDGE_FLAG_BOTTOM },
168        { AMOTION_EVENT_EDGE_FLAG_TOP,     AMOTION_EVENT_EDGE_FLAG_LEFT,
169                AMOTION_EVENT_EDGE_FLAG_BOTTOM,   AMOTION_EVENT_EDGE_FLAG_RIGHT },
170        { AMOTION_EVENT_EDGE_FLAG_LEFT,   AMOTION_EVENT_EDGE_FLAG_BOTTOM,
171                AMOTION_EVENT_EDGE_FLAG_RIGHT,  AMOTION_EVENT_EDGE_FLAG_TOP },
172};
173static const size_t edgeFlagRotationMapSize =
174        sizeof(edgeFlagRotationMap) / sizeof(edgeFlagRotationMap[0]);
175
176static int32_t rotateEdgeFlag(int32_t edgeFlag, int32_t orientation) {
177    return rotateValueUsingRotationMap(edgeFlag, orientation,
178            edgeFlagRotationMap, edgeFlagRotationMapSize);
179}
180
181static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) {
182    return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0;
183}
184
185static uint32_t getButtonStateForScanCode(int32_t scanCode) {
186    // Currently all buttons are mapped to the primary button.
187    switch (scanCode) {
188    case BTN_LEFT:
189    case BTN_RIGHT:
190    case BTN_MIDDLE:
191    case BTN_SIDE:
192    case BTN_EXTRA:
193    case BTN_FORWARD:
194    case BTN_BACK:
195    case BTN_TASK:
196        return BUTTON_STATE_PRIMARY;
197    default:
198        return 0;
199    }
200}
201
202// Returns true if the pointer should be reported as being down given the specified
203// button states.
204static bool isPointerDown(uint32_t buttonState) {
205    return buttonState & BUTTON_STATE_PRIMARY;
206}
207
208static int32_t calculateEdgeFlagsUsingPointerBounds(
209        const sp<PointerControllerInterface>& pointerController, float x, float y) {
210    int32_t edgeFlags = 0;
211    float minX, minY, maxX, maxY;
212    if (pointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
213        if (x <= minX) {
214            edgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT;
215        } else if (x >= maxX) {
216            edgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT;
217        }
218        if (y <= minY) {
219            edgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP;
220        } else if (y >= maxY) {
221            edgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM;
222        }
223    }
224    return edgeFlags;
225}
226
227
228// --- InputReader ---
229
230InputReader::InputReader(const sp<EventHubInterface>& eventHub,
231        const sp<InputReaderPolicyInterface>& policy,
232        const sp<InputDispatcherInterface>& dispatcher) :
233        mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
234        mGlobalMetaState(0), mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX) {
235    configureExcludedDevices();
236    updateGlobalMetaState();
237    updateInputConfiguration();
238}
239
240InputReader::~InputReader() {
241    for (size_t i = 0; i < mDevices.size(); i++) {
242        delete mDevices.valueAt(i);
243    }
244}
245
246void InputReader::loopOnce() {
247    int32_t timeoutMillis = -1;
248    if (mNextTimeout != LLONG_MAX) {
249        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
250        timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout);
251    }
252
253    RawEvent rawEvent;
254    if (mEventHub->getEvent(timeoutMillis, &rawEvent)) {
255#if DEBUG_RAW_EVENTS
256        LOGD("Input event: device=%d type=0x%04x scancode=0x%04x keycode=0x%04x value=0x%04x",
257                rawEvent.deviceId, rawEvent.type, rawEvent.scanCode, rawEvent.keyCode,
258                rawEvent.value);
259#endif
260        process(&rawEvent);
261    } else {
262        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
263#if DEBUG_RAW_EVENTS
264        LOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f);
265#endif
266        mNextTimeout = LLONG_MAX;
267        timeoutExpired(now);
268    }
269}
270
271void InputReader::process(const RawEvent* rawEvent) {
272    switch (rawEvent->type) {
273    case EventHubInterface::DEVICE_ADDED:
274        addDevice(rawEvent->deviceId);
275        break;
276
277    case EventHubInterface::DEVICE_REMOVED:
278        removeDevice(rawEvent->deviceId);
279        break;
280
281    case EventHubInterface::FINISHED_DEVICE_SCAN:
282        handleConfigurationChanged(rawEvent->when);
283        break;
284
285    default:
286        consumeEvent(rawEvent);
287        break;
288    }
289}
290
291void InputReader::addDevice(int32_t deviceId) {
292    String8 name = mEventHub->getDeviceName(deviceId);
293    uint32_t classes = mEventHub->getDeviceClasses(deviceId);
294
295    InputDevice* device = createDevice(deviceId, name, classes);
296    device->configure();
297
298    if (device->isIgnored()) {
299        LOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, name.string());
300    } else {
301        LOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, name.string(),
302                device->getSources());
303    }
304
305    bool added = false;
306    { // acquire device registry writer lock
307        RWLock::AutoWLock _wl(mDeviceRegistryLock);
308
309        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
310        if (deviceIndex < 0) {
311            mDevices.add(deviceId, device);
312            added = true;
313        }
314    } // release device registry writer lock
315
316    if (! added) {
317        LOGW("Ignoring spurious device added event for deviceId %d.", deviceId);
318        delete device;
319        return;
320    }
321}
322
323void InputReader::removeDevice(int32_t deviceId) {
324    bool removed = false;
325    InputDevice* device = NULL;
326    { // acquire device registry writer lock
327        RWLock::AutoWLock _wl(mDeviceRegistryLock);
328
329        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
330        if (deviceIndex >= 0) {
331            device = mDevices.valueAt(deviceIndex);
332            mDevices.removeItemsAt(deviceIndex, 1);
333            removed = true;
334        }
335    } // release device registry writer lock
336
337    if (! removed) {
338        LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId);
339        return;
340    }
341
342    if (device->isIgnored()) {
343        LOGI("Device removed: id=%d, name='%s' (ignored non-input device)",
344                device->getId(), device->getName().string());
345    } else {
346        LOGI("Device removed: id=%d, name='%s', sources=0x%08x",
347                device->getId(), device->getName().string(), device->getSources());
348    }
349
350    device->reset();
351
352    delete device;
353}
354
355InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
356    InputDevice* device = new InputDevice(this, deviceId, name);
357
358    // External devices.
359    if (classes & INPUT_DEVICE_CLASS_EXTERNAL) {
360        device->setExternal(true);
361    }
362
363    // Switch-like devices.
364    if (classes & INPUT_DEVICE_CLASS_SWITCH) {
365        device->addMapper(new SwitchInputMapper(device));
366    }
367
368    // Keyboard-like devices.
369    uint32_t keyboardSource = 0;
370    int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
371    if (classes & INPUT_DEVICE_CLASS_KEYBOARD) {
372        keyboardSource |= AINPUT_SOURCE_KEYBOARD;
373    }
374    if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) {
375        keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
376    }
377    if (classes & INPUT_DEVICE_CLASS_DPAD) {
378        keyboardSource |= AINPUT_SOURCE_DPAD;
379    }
380    if (classes & INPUT_DEVICE_CLASS_GAMEPAD) {
381        keyboardSource |= AINPUT_SOURCE_GAMEPAD;
382    }
383
384    if (keyboardSource != 0) {
385        device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType));
386    }
387
388    // Cursor-like devices.
389    if (classes & INPUT_DEVICE_CLASS_CURSOR) {
390        device->addMapper(new CursorInputMapper(device));
391    }
392
393    // Touchscreens and touchpad devices.
394    if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) {
395        device->addMapper(new MultiTouchInputMapper(device));
396    } else if (classes & INPUT_DEVICE_CLASS_TOUCH) {
397        device->addMapper(new SingleTouchInputMapper(device));
398    }
399
400    // Joystick-like devices.
401    if (classes & INPUT_DEVICE_CLASS_JOYSTICK) {
402        device->addMapper(new JoystickInputMapper(device));
403    }
404
405    return device;
406}
407
408void InputReader::consumeEvent(const RawEvent* rawEvent) {
409    int32_t deviceId = rawEvent->deviceId;
410
411    { // acquire device registry reader lock
412        RWLock::AutoRLock _rl(mDeviceRegistryLock);
413
414        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
415        if (deviceIndex < 0) {
416            LOGW("Discarding event for unknown deviceId %d.", deviceId);
417            return;
418        }
419
420        InputDevice* device = mDevices.valueAt(deviceIndex);
421        if (device->isIgnored()) {
422            //LOGD("Discarding event for ignored deviceId %d.", deviceId);
423            return;
424        }
425
426        device->process(rawEvent);
427    } // release device registry reader lock
428}
429
430void InputReader::timeoutExpired(nsecs_t when) {
431    { // acquire device registry reader lock
432        RWLock::AutoRLock _rl(mDeviceRegistryLock);
433
434        for (size_t i = 0; i < mDevices.size(); i++) {
435            InputDevice* device = mDevices.valueAt(i);
436            if (!device->isIgnored()) {
437                device->timeoutExpired(when);
438            }
439        }
440    } // release device registry reader lock
441}
442
443void InputReader::handleConfigurationChanged(nsecs_t when) {
444    // Reset global meta state because it depends on the list of all configured devices.
445    updateGlobalMetaState();
446
447    // Update input configuration.
448    updateInputConfiguration();
449
450    // Enqueue configuration changed.
451    mDispatcher->notifyConfigurationChanged(when);
452}
453
454void InputReader::configureExcludedDevices() {
455    Vector<String8> excludedDeviceNames;
456    mPolicy->getExcludedDeviceNames(excludedDeviceNames);
457
458    for (size_t i = 0; i < excludedDeviceNames.size(); i++) {
459        mEventHub->addExcludedDevice(excludedDeviceNames[i]);
460    }
461}
462
463void InputReader::updateGlobalMetaState() {
464    { // acquire state lock
465        AutoMutex _l(mStateLock);
466
467        mGlobalMetaState = 0;
468
469        { // acquire device registry reader lock
470            RWLock::AutoRLock _rl(mDeviceRegistryLock);
471
472            for (size_t i = 0; i < mDevices.size(); i++) {
473                InputDevice* device = mDevices.valueAt(i);
474                mGlobalMetaState |= device->getMetaState();
475            }
476        } // release device registry reader lock
477    } // release state lock
478}
479
480int32_t InputReader::getGlobalMetaState() {
481    { // acquire state lock
482        AutoMutex _l(mStateLock);
483
484        return mGlobalMetaState;
485    } // release state lock
486}
487
488void InputReader::updateInputConfiguration() {
489    { // acquire state lock
490        AutoMutex _l(mStateLock);
491
492        int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
493        int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
494        int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
495        { // acquire device registry reader lock
496            RWLock::AutoRLock _rl(mDeviceRegistryLock);
497
498            InputDeviceInfo deviceInfo;
499            for (size_t i = 0; i < mDevices.size(); i++) {
500                InputDevice* device = mDevices.valueAt(i);
501                device->getDeviceInfo(& deviceInfo);
502                uint32_t sources = deviceInfo.getSources();
503
504                if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) {
505                    touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
506                }
507                if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) {
508                    navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
509                } else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) {
510                    navigationConfig = InputConfiguration::NAVIGATION_DPAD;
511                }
512                if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) {
513                    keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
514                }
515            }
516        } // release device registry reader lock
517
518        mInputConfiguration.touchScreen = touchScreenConfig;
519        mInputConfiguration.keyboard = keyboardConfig;
520        mInputConfiguration.navigation = navigationConfig;
521    } // release state lock
522}
523
524void InputReader::disableVirtualKeysUntil(nsecs_t time) {
525    mDisableVirtualKeysTimeout = time;
526}
527
528bool InputReader::shouldDropVirtualKey(nsecs_t now,
529        InputDevice* device, int32_t keyCode, int32_t scanCode) {
530    if (now < mDisableVirtualKeysTimeout) {
531        LOGI("Dropping virtual key from device %s because virtual keys are "
532                "temporarily disabled for the next %0.3fms.  keyCode=%d, scanCode=%d",
533                device->getName().string(),
534                (mDisableVirtualKeysTimeout - now) * 0.000001,
535                keyCode, scanCode);
536        return true;
537    } else {
538        return false;
539    }
540}
541
542void InputReader::fadePointer() {
543    { // acquire device registry reader lock
544        RWLock::AutoRLock _rl(mDeviceRegistryLock);
545
546        for (size_t i = 0; i < mDevices.size(); i++) {
547            InputDevice* device = mDevices.valueAt(i);
548            device->fadePointer();
549        }
550    } // release device registry reader lock
551}
552
553void InputReader::requestTimeoutAtTime(nsecs_t when) {
554    if (when < mNextTimeout) {
555        mNextTimeout = when;
556    }
557}
558
559void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) {
560    { // acquire state lock
561        AutoMutex _l(mStateLock);
562
563        *outConfiguration = mInputConfiguration;
564    } // release state lock
565}
566
567status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) {
568    { // acquire device registry reader lock
569        RWLock::AutoRLock _rl(mDeviceRegistryLock);
570
571        ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
572        if (deviceIndex < 0) {
573            return NAME_NOT_FOUND;
574        }
575
576        InputDevice* device = mDevices.valueAt(deviceIndex);
577        if (device->isIgnored()) {
578            return NAME_NOT_FOUND;
579        }
580
581        device->getDeviceInfo(outDeviceInfo);
582        return OK;
583    } // release device registy reader lock
584}
585
586void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) {
587    outDeviceIds.clear();
588
589    { // acquire device registry reader lock
590        RWLock::AutoRLock _rl(mDeviceRegistryLock);
591
592        size_t numDevices = mDevices.size();
593        for (size_t i = 0; i < numDevices; i++) {
594            InputDevice* device = mDevices.valueAt(i);
595            if (! device->isIgnored()) {
596                outDeviceIds.add(device->getId());
597            }
598        }
599    } // release device registy reader lock
600}
601
602int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
603        int32_t keyCode) {
604    return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState);
605}
606
607int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask,
608        int32_t scanCode) {
609    return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState);
610}
611
612int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) {
613    return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState);
614}
615
616int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code,
617        GetStateFunc getStateFunc) {
618    { // acquire device registry reader lock
619        RWLock::AutoRLock _rl(mDeviceRegistryLock);
620
621        int32_t result = AKEY_STATE_UNKNOWN;
622        if (deviceId >= 0) {
623            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
624            if (deviceIndex >= 0) {
625                InputDevice* device = mDevices.valueAt(deviceIndex);
626                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
627                    result = (device->*getStateFunc)(sourceMask, code);
628                }
629            }
630        } else {
631            size_t numDevices = mDevices.size();
632            for (size_t i = 0; i < numDevices; i++) {
633                InputDevice* device = mDevices.valueAt(i);
634                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
635                    result = (device->*getStateFunc)(sourceMask, code);
636                    if (result >= AKEY_STATE_DOWN) {
637                        return result;
638                    }
639                }
640            }
641        }
642        return result;
643    } // release device registy reader lock
644}
645
646bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask,
647        size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) {
648    memset(outFlags, 0, numCodes);
649    return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags);
650}
651
652bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
653        const int32_t* keyCodes, uint8_t* outFlags) {
654    { // acquire device registry reader lock
655        RWLock::AutoRLock _rl(mDeviceRegistryLock);
656        bool result = false;
657        if (deviceId >= 0) {
658            ssize_t deviceIndex = mDevices.indexOfKey(deviceId);
659            if (deviceIndex >= 0) {
660                InputDevice* device = mDevices.valueAt(deviceIndex);
661                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
662                    result = device->markSupportedKeyCodes(sourceMask,
663                            numCodes, keyCodes, outFlags);
664                }
665            }
666        } else {
667            size_t numDevices = mDevices.size();
668            for (size_t i = 0; i < numDevices; i++) {
669                InputDevice* device = mDevices.valueAt(i);
670                if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) {
671                    result |= device->markSupportedKeyCodes(sourceMask,
672                            numCodes, keyCodes, outFlags);
673                }
674            }
675        }
676        return result;
677    } // release device registy reader lock
678}
679
680void InputReader::dump(String8& dump) {
681    mEventHub->dump(dump);
682    dump.append("\n");
683
684    dump.append("Input Reader State:\n");
685
686    { // acquire device registry reader lock
687        RWLock::AutoRLock _rl(mDeviceRegistryLock);
688
689        for (size_t i = 0; i < mDevices.size(); i++) {
690            mDevices.valueAt(i)->dump(dump);
691        }
692    } // release device registy reader lock
693}
694
695
696// --- InputReaderThread ---
697
698InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
699        Thread(/*canCallJava*/ true), mReader(reader) {
700}
701
702InputReaderThread::~InputReaderThread() {
703}
704
705bool InputReaderThread::threadLoop() {
706    mReader->loopOnce();
707    return true;
708}
709
710
711// --- InputDevice ---
712
713InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) :
714        mContext(context), mId(id), mName(name), mSources(0), mIsExternal(false) {
715}
716
717InputDevice::~InputDevice() {
718    size_t numMappers = mMappers.size();
719    for (size_t i = 0; i < numMappers; i++) {
720        delete mMappers[i];
721    }
722    mMappers.clear();
723}
724
725void InputDevice::dump(String8& dump) {
726    InputDeviceInfo deviceInfo;
727    getDeviceInfo(& deviceInfo);
728
729    dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(),
730            deviceInfo.getName().string());
731    dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
732    dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
733    dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
734
735    const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges();
736    if (!ranges.isEmpty()) {
737        dump.append(INDENT2 "Motion Ranges:\n");
738        for (size_t i = 0; i < ranges.size(); i++) {
739            const InputDeviceInfo::MotionRange& range = ranges.itemAt(i);
740            const char* label = getAxisLabel(range.axis);
741            char name[32];
742            if (label) {
743                strncpy(name, label, sizeof(name));
744                name[sizeof(name) - 1] = '\0';
745            } else {
746                snprintf(name, sizeof(name), "%d", range.axis);
747            }
748            dump.appendFormat(INDENT3 "%s: source=0x%08x, "
749                    "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n",
750                    name, range.source, range.min, range.max, range.flat, range.fuzz);
751        }
752    }
753
754    size_t numMappers = mMappers.size();
755    for (size_t i = 0; i < numMappers; i++) {
756        InputMapper* mapper = mMappers[i];
757        mapper->dump(dump);
758    }
759}
760
761void InputDevice::addMapper(InputMapper* mapper) {
762    mMappers.add(mapper);
763}
764
765void InputDevice::configure() {
766    if (! isIgnored()) {
767        mContext->getEventHub()->getConfiguration(mId, &mConfiguration);
768    }
769
770    mSources = 0;
771
772    size_t numMappers = mMappers.size();
773    for (size_t i = 0; i < numMappers; i++) {
774        InputMapper* mapper = mMappers[i];
775        mapper->configure();
776        mSources |= mapper->getSources();
777    }
778}
779
780void InputDevice::reset() {
781    size_t numMappers = mMappers.size();
782    for (size_t i = 0; i < numMappers; i++) {
783        InputMapper* mapper = mMappers[i];
784        mapper->reset();
785    }
786}
787
788void InputDevice::process(const RawEvent* rawEvent) {
789    size_t numMappers = mMappers.size();
790    for (size_t i = 0; i < numMappers; i++) {
791        InputMapper* mapper = mMappers[i];
792        mapper->process(rawEvent);
793    }
794}
795
796void InputDevice::timeoutExpired(nsecs_t when) {
797    size_t numMappers = mMappers.size();
798    for (size_t i = 0; i < numMappers; i++) {
799        InputMapper* mapper = mMappers[i];
800        mapper->timeoutExpired(when);
801    }
802}
803
804void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) {
805    outDeviceInfo->initialize(mId, mName);
806
807    size_t numMappers = mMappers.size();
808    for (size_t i = 0; i < numMappers; i++) {
809        InputMapper* mapper = mMappers[i];
810        mapper->populateDeviceInfo(outDeviceInfo);
811    }
812}
813
814int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
815    return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState);
816}
817
818int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
819    return getState(sourceMask, scanCode, & InputMapper::getScanCodeState);
820}
821
822int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
823    return getState(sourceMask, switchCode, & InputMapper::getSwitchState);
824}
825
826int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
827    int32_t result = AKEY_STATE_UNKNOWN;
828    size_t numMappers = mMappers.size();
829    for (size_t i = 0; i < numMappers; i++) {
830        InputMapper* mapper = mMappers[i];
831        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
832            result = (mapper->*getStateFunc)(sourceMask, code);
833            if (result >= AKEY_STATE_DOWN) {
834                return result;
835            }
836        }
837    }
838    return result;
839}
840
841bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
842        const int32_t* keyCodes, uint8_t* outFlags) {
843    bool result = false;
844    size_t numMappers = mMappers.size();
845    for (size_t i = 0; i < numMappers; i++) {
846        InputMapper* mapper = mMappers[i];
847        if (sourcesMatchMask(mapper->getSources(), sourceMask)) {
848            result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
849        }
850    }
851    return result;
852}
853
854int32_t InputDevice::getMetaState() {
855    int32_t result = 0;
856    size_t numMappers = mMappers.size();
857    for (size_t i = 0; i < numMappers; i++) {
858        InputMapper* mapper = mMappers[i];
859        result |= mapper->getMetaState();
860    }
861    return result;
862}
863
864void InputDevice::fadePointer() {
865    size_t numMappers = mMappers.size();
866    for (size_t i = 0; i < numMappers; i++) {
867        InputMapper* mapper = mMappers[i];
868        mapper->fadePointer();
869    }
870}
871
872
873// --- InputMapper ---
874
875InputMapper::InputMapper(InputDevice* device) :
876        mDevice(device), mContext(device->getContext()) {
877}
878
879InputMapper::~InputMapper() {
880}
881
882void InputMapper::populateDeviceInfo(InputDeviceInfo* info) {
883    info->addSource(getSources());
884}
885
886void InputMapper::dump(String8& dump) {
887}
888
889void InputMapper::configure() {
890}
891
892void InputMapper::reset() {
893}
894
895void InputMapper::timeoutExpired(nsecs_t when) {
896}
897
898int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
899    return AKEY_STATE_UNKNOWN;
900}
901
902int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
903    return AKEY_STATE_UNKNOWN;
904}
905
906int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
907    return AKEY_STATE_UNKNOWN;
908}
909
910bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
911        const int32_t* keyCodes, uint8_t* outFlags) {
912    return false;
913}
914
915int32_t InputMapper::getMetaState() {
916    return 0;
917}
918
919void InputMapper::fadePointer() {
920}
921
922void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump,
923        const RawAbsoluteAxisInfo& axis, const char* name) {
924    if (axis.valid) {
925        dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d\n",
926                name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz);
927    } else {
928        dump.appendFormat(INDENT4 "%s: unknown range\n", name);
929    }
930}
931
932
933// --- SwitchInputMapper ---
934
935SwitchInputMapper::SwitchInputMapper(InputDevice* device) :
936        InputMapper(device) {
937}
938
939SwitchInputMapper::~SwitchInputMapper() {
940}
941
942uint32_t SwitchInputMapper::getSources() {
943    return AINPUT_SOURCE_SWITCH;
944}
945
946void SwitchInputMapper::process(const RawEvent* rawEvent) {
947    switch (rawEvent->type) {
948    case EV_SW:
949        processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value);
950        break;
951    }
952}
953
954void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) {
955    getDispatcher()->notifySwitch(when, switchCode, switchValue, 0);
956}
957
958int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
959    return getEventHub()->getSwitchState(getDeviceId(), switchCode);
960}
961
962
963// --- KeyboardInputMapper ---
964
965KeyboardInputMapper::KeyboardInputMapper(InputDevice* device,
966        uint32_t source, int32_t keyboardType) :
967        InputMapper(device), mSource(source),
968        mKeyboardType(keyboardType) {
969    initializeLocked();
970}
971
972KeyboardInputMapper::~KeyboardInputMapper() {
973}
974
975void KeyboardInputMapper::initializeLocked() {
976    mLocked.metaState = AMETA_NONE;
977    mLocked.downTime = 0;
978}
979
980uint32_t KeyboardInputMapper::getSources() {
981    return mSource;
982}
983
984void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
985    InputMapper::populateDeviceInfo(info);
986
987    info->setKeyboardType(mKeyboardType);
988}
989
990void KeyboardInputMapper::dump(String8& dump) {
991    { // acquire lock
992        AutoMutex _l(mLock);
993        dump.append(INDENT2 "Keyboard Input Mapper:\n");
994        dumpParameters(dump);
995        dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType);
996        dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size());
997        dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState);
998        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
999    } // release lock
1000}
1001
1002
1003void KeyboardInputMapper::configure() {
1004    InputMapper::configure();
1005
1006    // Configure basic parameters.
1007    configureParameters();
1008
1009    // Reset LEDs.
1010    {
1011        AutoMutex _l(mLock);
1012        resetLedStateLocked();
1013    }
1014}
1015
1016void KeyboardInputMapper::configureParameters() {
1017    mParameters.orientationAware = false;
1018    getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"),
1019            mParameters.orientationAware);
1020
1021    mParameters.associatedDisplayId = mParameters.orientationAware ? 0 : -1;
1022}
1023
1024void KeyboardInputMapper::dumpParameters(String8& dump) {
1025    dump.append(INDENT3 "Parameters:\n");
1026    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1027            mParameters.associatedDisplayId);
1028    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1029            toString(mParameters.orientationAware));
1030}
1031
1032void KeyboardInputMapper::reset() {
1033    for (;;) {
1034        int32_t keyCode, scanCode;
1035        { // acquire lock
1036            AutoMutex _l(mLock);
1037
1038            // Synthesize key up event on reset if keys are currently down.
1039            if (mLocked.keyDowns.isEmpty()) {
1040                initializeLocked();
1041                resetLedStateLocked();
1042                break; // done
1043            }
1044
1045            const KeyDown& keyDown = mLocked.keyDowns.top();
1046            keyCode = keyDown.keyCode;
1047            scanCode = keyDown.scanCode;
1048        } // release lock
1049
1050        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
1051        processKey(when, false, keyCode, scanCode, 0);
1052    }
1053
1054    InputMapper::reset();
1055    getContext()->updateGlobalMetaState();
1056}
1057
1058void KeyboardInputMapper::process(const RawEvent* rawEvent) {
1059    switch (rawEvent->type) {
1060    case EV_KEY: {
1061        int32_t scanCode = rawEvent->scanCode;
1062        if (isKeyboardOrGamepadKey(scanCode)) {
1063            processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode,
1064                    rawEvent->flags);
1065        }
1066        break;
1067    }
1068    }
1069}
1070
1071bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) {
1072    return scanCode < BTN_MOUSE
1073        || scanCode >= KEY_OK
1074        || (scanCode >= BTN_MISC && scanCode < BTN_MOUSE)
1075        || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI);
1076}
1077
1078void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
1079        int32_t scanCode, uint32_t policyFlags) {
1080    int32_t newMetaState;
1081    nsecs_t downTime;
1082    bool metaStateChanged = false;
1083
1084    { // acquire lock
1085        AutoMutex _l(mLock);
1086
1087        if (down) {
1088            // Rotate key codes according to orientation if needed.
1089            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1090            if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) {
1091                int32_t orientation;
1092                if (!getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1093                        NULL, NULL, & orientation)) {
1094                    orientation = DISPLAY_ORIENTATION_0;
1095                }
1096
1097                keyCode = rotateKeyCode(keyCode, orientation);
1098            }
1099
1100            // Add key down.
1101            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
1102            if (keyDownIndex >= 0) {
1103                // key repeat, be sure to use same keycode as before in case of rotation
1104                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
1105            } else {
1106                // key down
1107                if ((policyFlags & POLICY_FLAG_VIRTUAL)
1108                        && mContext->shouldDropVirtualKey(when,
1109                                getDevice(), keyCode, scanCode)) {
1110                    return;
1111                }
1112
1113                mLocked.keyDowns.push();
1114                KeyDown& keyDown = mLocked.keyDowns.editTop();
1115                keyDown.keyCode = keyCode;
1116                keyDown.scanCode = scanCode;
1117            }
1118
1119            mLocked.downTime = when;
1120        } else {
1121            // Remove key down.
1122            ssize_t keyDownIndex = findKeyDownLocked(scanCode);
1123            if (keyDownIndex >= 0) {
1124                // key up, be sure to use same keycode as before in case of rotation
1125                keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode;
1126                mLocked.keyDowns.removeAt(size_t(keyDownIndex));
1127            } else {
1128                // key was not actually down
1129                LOGI("Dropping key up from device %s because the key was not down.  "
1130                        "keyCode=%d, scanCode=%d",
1131                        getDeviceName().string(), keyCode, scanCode);
1132                return;
1133            }
1134        }
1135
1136        int32_t oldMetaState = mLocked.metaState;
1137        newMetaState = updateMetaState(keyCode, down, oldMetaState);
1138        if (oldMetaState != newMetaState) {
1139            mLocked.metaState = newMetaState;
1140            metaStateChanged = true;
1141            updateLedStateLocked(false);
1142        }
1143
1144        downTime = mLocked.downTime;
1145    } // release lock
1146
1147    // Key down on external an keyboard should wake the device.
1148    // We don't do this for internal keyboards to prevent them from waking up in your pocket.
1149    // For internal keyboards, the key layout file should specify the policy flags for
1150    // each wake key individually.
1151    // TODO: Use the input device configuration to control this behavior more finely.
1152    if (down && getDevice()->isExternal()
1153            && !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) {
1154        policyFlags |= POLICY_FLAG_WAKE_DROPPED;
1155    }
1156
1157    if (metaStateChanged) {
1158        getContext()->updateGlobalMetaState();
1159    }
1160
1161    if (down && !isMetaKey(keyCode)) {
1162        getContext()->fadePointer();
1163    }
1164
1165    getDispatcher()->notifyKey(when, getDeviceId(), mSource, policyFlags,
1166            down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
1167            AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
1168}
1169
1170ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) {
1171    size_t n = mLocked.keyDowns.size();
1172    for (size_t i = 0; i < n; i++) {
1173        if (mLocked.keyDowns[i].scanCode == scanCode) {
1174            return i;
1175        }
1176    }
1177    return -1;
1178}
1179
1180int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
1181    return getEventHub()->getKeyCodeState(getDeviceId(), keyCode);
1182}
1183
1184int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1185    return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
1186}
1187
1188bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
1189        const int32_t* keyCodes, uint8_t* outFlags) {
1190    return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags);
1191}
1192
1193int32_t KeyboardInputMapper::getMetaState() {
1194    { // acquire lock
1195        AutoMutex _l(mLock);
1196        return mLocked.metaState;
1197    } // release lock
1198}
1199
1200void KeyboardInputMapper::resetLedStateLocked() {
1201    initializeLedStateLocked(mLocked.capsLockLedState, LED_CAPSL);
1202    initializeLedStateLocked(mLocked.numLockLedState, LED_NUML);
1203    initializeLedStateLocked(mLocked.scrollLockLedState, LED_SCROLLL);
1204
1205    updateLedStateLocked(true);
1206}
1207
1208void KeyboardInputMapper::initializeLedStateLocked(LockedState::LedState& ledState, int32_t led) {
1209    ledState.avail = getEventHub()->hasLed(getDeviceId(), led);
1210    ledState.on = false;
1211}
1212
1213void KeyboardInputMapper::updateLedStateLocked(bool reset) {
1214    updateLedStateForModifierLocked(mLocked.capsLockLedState, LED_CAPSL,
1215            AMETA_CAPS_LOCK_ON, reset);
1216    updateLedStateForModifierLocked(mLocked.numLockLedState, LED_NUML,
1217            AMETA_NUM_LOCK_ON, reset);
1218    updateLedStateForModifierLocked(mLocked.scrollLockLedState, LED_SCROLLL,
1219            AMETA_SCROLL_LOCK_ON, reset);
1220}
1221
1222void KeyboardInputMapper::updateLedStateForModifierLocked(LockedState::LedState& ledState,
1223        int32_t led, int32_t modifier, bool reset) {
1224    if (ledState.avail) {
1225        bool desiredState = (mLocked.metaState & modifier) != 0;
1226        if (reset || ledState.on != desiredState) {
1227            getEventHub()->setLedState(getDeviceId(), led, desiredState);
1228            ledState.on = desiredState;
1229        }
1230    }
1231}
1232
1233
1234// --- CursorInputMapper ---
1235
1236CursorInputMapper::CursorInputMapper(InputDevice* device) :
1237        InputMapper(device) {
1238    initializeLocked();
1239}
1240
1241CursorInputMapper::~CursorInputMapper() {
1242}
1243
1244uint32_t CursorInputMapper::getSources() {
1245    return mSource;
1246}
1247
1248void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1249    InputMapper::populateDeviceInfo(info);
1250
1251    if (mParameters.mode == Parameters::MODE_POINTER) {
1252        float minX, minY, maxX, maxY;
1253        if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
1254            info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f);
1255            info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f);
1256        }
1257    } else {
1258        info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale);
1259        info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale);
1260    }
1261    info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f);
1262
1263    if (mHaveVWheel) {
1264        info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
1265    }
1266    if (mHaveHWheel) {
1267        info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f);
1268    }
1269}
1270
1271void CursorInputMapper::dump(String8& dump) {
1272    { // acquire lock
1273        AutoMutex _l(mLock);
1274        dump.append(INDENT2 "Cursor Input Mapper:\n");
1275        dumpParameters(dump);
1276        dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale);
1277        dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale);
1278        dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision);
1279        dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision);
1280        dump.appendFormat(INDENT3 "HaveVWheel: %s\n", toString(mHaveVWheel));
1281        dump.appendFormat(INDENT3 "HaveHWheel: %s\n", toString(mHaveHWheel));
1282        dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale);
1283        dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale);
1284        dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mLocked.buttonState);
1285        dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mLocked.buttonState)));
1286        dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime);
1287    } // release lock
1288}
1289
1290void CursorInputMapper::configure() {
1291    InputMapper::configure();
1292
1293    // Configure basic parameters.
1294    configureParameters();
1295
1296    // Configure device mode.
1297    switch (mParameters.mode) {
1298    case Parameters::MODE_POINTER:
1299        mSource = AINPUT_SOURCE_MOUSE;
1300        mXPrecision = 1.0f;
1301        mYPrecision = 1.0f;
1302        mXScale = 1.0f;
1303        mYScale = 1.0f;
1304        mPointerController = getPolicy()->obtainPointerController(getDeviceId());
1305        break;
1306    case Parameters::MODE_NAVIGATION:
1307        mSource = AINPUT_SOURCE_TRACKBALL;
1308        mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
1309        mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
1310        mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
1311        mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
1312        break;
1313    }
1314
1315    mVWheelScale = 1.0f;
1316    mHWheelScale = 1.0f;
1317
1318    mHaveVWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_WHEEL);
1319    mHaveHWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_HWHEEL);
1320}
1321
1322void CursorInputMapper::configureParameters() {
1323    mParameters.mode = Parameters::MODE_POINTER;
1324    String8 cursorModeString;
1325    if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) {
1326        if (cursorModeString == "navigation") {
1327            mParameters.mode = Parameters::MODE_NAVIGATION;
1328        } else if (cursorModeString != "pointer" && cursorModeString != "default") {
1329            LOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string());
1330        }
1331    }
1332
1333    mParameters.orientationAware = false;
1334    getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"),
1335            mParameters.orientationAware);
1336
1337    mParameters.associatedDisplayId = mParameters.mode == Parameters::MODE_POINTER
1338            || mParameters.orientationAware ? 0 : -1;
1339}
1340
1341void CursorInputMapper::dumpParameters(String8& dump) {
1342    dump.append(INDENT3 "Parameters:\n");
1343    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1344            mParameters.associatedDisplayId);
1345
1346    switch (mParameters.mode) {
1347    case Parameters::MODE_POINTER:
1348        dump.append(INDENT4 "Mode: pointer\n");
1349        break;
1350    case Parameters::MODE_NAVIGATION:
1351        dump.append(INDENT4 "Mode: navigation\n");
1352        break;
1353    default:
1354        assert(false);
1355    }
1356
1357    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1358            toString(mParameters.orientationAware));
1359}
1360
1361void CursorInputMapper::initializeLocked() {
1362    mAccumulator.clear();
1363
1364    mLocked.buttonState = 0;
1365    mLocked.downTime = 0;
1366}
1367
1368void CursorInputMapper::reset() {
1369    for (;;) {
1370        uint32_t buttonState;
1371        { // acquire lock
1372            AutoMutex _l(mLock);
1373
1374            buttonState = mLocked.buttonState;
1375            if (!buttonState) {
1376                initializeLocked();
1377                break; // done
1378            }
1379        } // release lock
1380
1381        // Synthesize button up event on reset.
1382        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
1383        mAccumulator.clear();
1384        mAccumulator.buttonDown = 0;
1385        mAccumulator.buttonUp = buttonState;
1386        mAccumulator.fields = Accumulator::FIELD_BUTTONS;
1387        sync(when);
1388    }
1389
1390    InputMapper::reset();
1391}
1392
1393void CursorInputMapper::process(const RawEvent* rawEvent) {
1394    switch (rawEvent->type) {
1395    case EV_KEY: {
1396        uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
1397        if (buttonState) {
1398            if (rawEvent->value) {
1399                mAccumulator.buttonDown = buttonState;
1400                mAccumulator.buttonUp = 0;
1401            } else {
1402                mAccumulator.buttonDown = 0;
1403                mAccumulator.buttonUp = buttonState;
1404            }
1405            mAccumulator.fields |= Accumulator::FIELD_BUTTONS;
1406
1407            // Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and
1408            // we need to ensure that we report the up/down promptly.
1409            sync(rawEvent->when);
1410            break;
1411        }
1412        break;
1413    }
1414
1415    case EV_REL:
1416        switch (rawEvent->scanCode) {
1417        case REL_X:
1418            mAccumulator.fields |= Accumulator::FIELD_REL_X;
1419            mAccumulator.relX = rawEvent->value;
1420            break;
1421        case REL_Y:
1422            mAccumulator.fields |= Accumulator::FIELD_REL_Y;
1423            mAccumulator.relY = rawEvent->value;
1424            break;
1425        case REL_WHEEL:
1426            mAccumulator.fields |= Accumulator::FIELD_REL_WHEEL;
1427            mAccumulator.relWheel = rawEvent->value;
1428            break;
1429        case REL_HWHEEL:
1430            mAccumulator.fields |= Accumulator::FIELD_REL_HWHEEL;
1431            mAccumulator.relHWheel = rawEvent->value;
1432            break;
1433        }
1434        break;
1435
1436    case EV_SYN:
1437        switch (rawEvent->scanCode) {
1438        case SYN_REPORT:
1439            sync(rawEvent->when);
1440            break;
1441        }
1442        break;
1443    }
1444}
1445
1446void CursorInputMapper::sync(nsecs_t when) {
1447    uint32_t fields = mAccumulator.fields;
1448    if (fields == 0) {
1449        return; // no new state changes, so nothing to do
1450    }
1451
1452    int32_t motionEventAction;
1453    int32_t motionEventEdgeFlags;
1454    PointerCoords pointerCoords;
1455    nsecs_t downTime;
1456    float vscroll, hscroll;
1457    { // acquire lock
1458        AutoMutex _l(mLock);
1459
1460        bool down, downChanged;
1461        bool wasDown = isPointerDown(mLocked.buttonState);
1462        bool buttonsChanged = fields & Accumulator::FIELD_BUTTONS;
1463        if (buttonsChanged) {
1464            mLocked.buttonState = (mLocked.buttonState | mAccumulator.buttonDown)
1465                    & ~mAccumulator.buttonUp;
1466
1467            down = isPointerDown(mLocked.buttonState);
1468
1469            if (!wasDown && down) {
1470                mLocked.downTime = when;
1471                downChanged = true;
1472            } else if (wasDown && !down) {
1473                downChanged = true;
1474            } else {
1475                downChanged = false;
1476            }
1477        } else {
1478            down = wasDown;
1479            downChanged = false;
1480        }
1481
1482        downTime = mLocked.downTime;
1483        float deltaX = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f;
1484        float deltaY = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f;
1485
1486        if (downChanged) {
1487            motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
1488        } else if (down || mPointerController == NULL) {
1489            motionEventAction = AMOTION_EVENT_ACTION_MOVE;
1490        } else {
1491            motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE;
1492        }
1493
1494        if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0
1495                && (deltaX != 0.0f || deltaY != 0.0f)) {
1496            // Rotate motion based on display orientation if needed.
1497            // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1498            int32_t orientation;
1499            if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1500                    NULL, NULL, & orientation)) {
1501                orientation = DISPLAY_ORIENTATION_0;
1502            }
1503
1504            float temp;
1505            switch (orientation) {
1506            case DISPLAY_ORIENTATION_90:
1507                temp = deltaX;
1508                deltaX = deltaY;
1509                deltaY = -temp;
1510                break;
1511
1512            case DISPLAY_ORIENTATION_180:
1513                deltaX = -deltaX;
1514                deltaY = -deltaY;
1515                break;
1516
1517            case DISPLAY_ORIENTATION_270:
1518                temp = deltaX;
1519                deltaX = -deltaY;
1520                deltaY = temp;
1521                break;
1522            }
1523        }
1524
1525        pointerCoords.clear();
1526
1527        motionEventEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
1528
1529        if (mPointerController != NULL) {
1530            mPointerController->move(deltaX, deltaY);
1531            if (buttonsChanged) {
1532                mPointerController->setButtonState(mLocked.buttonState);
1533            }
1534
1535            float x, y;
1536            mPointerController->getPosition(&x, &y);
1537            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x);
1538            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
1539
1540            if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) {
1541                motionEventEdgeFlags = calculateEdgeFlagsUsingPointerBounds(
1542                        mPointerController, x, y);
1543            }
1544        } else {
1545            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX);
1546            pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY);
1547        }
1548
1549        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f);
1550
1551        if (mHaveVWheel && (fields & Accumulator::FIELD_REL_WHEEL)) {
1552            vscroll = mAccumulator.relWheel;
1553        } else {
1554            vscroll = 0;
1555        }
1556        if (mHaveHWheel && (fields & Accumulator::FIELD_REL_HWHEEL)) {
1557            hscroll = mAccumulator.relHWheel;
1558        } else {
1559            hscroll = 0;
1560        }
1561        if (hscroll != 0 || vscroll != 0) {
1562            mPointerController->unfade();
1563        }
1564    } // release lock
1565
1566    // Moving an external trackball or mouse should wake the device.
1567    // We don't do this for internal cursor devices to prevent them from waking up
1568    // the device in your pocket.
1569    // TODO: Use the input device configuration to control this behavior more finely.
1570    uint32_t policyFlags = 0;
1571    if (getDevice()->isExternal()) {
1572        policyFlags |= POLICY_FLAG_WAKE_DROPPED;
1573    }
1574
1575    int32_t metaState = mContext->getGlobalMetaState();
1576    int32_t pointerId = 0;
1577    getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
1578            motionEventAction, 0, metaState, motionEventEdgeFlags,
1579            1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime);
1580
1581    mAccumulator.clear();
1582
1583    if (vscroll != 0 || hscroll != 0) {
1584        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll);
1585        pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll);
1586
1587        getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags,
1588                AMOTION_EVENT_ACTION_SCROLL, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
1589                1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime);
1590    }
1591}
1592
1593int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
1594    if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) {
1595        return getEventHub()->getScanCodeState(getDeviceId(), scanCode);
1596    } else {
1597        return AKEY_STATE_UNKNOWN;
1598    }
1599}
1600
1601void CursorInputMapper::fadePointer() {
1602    { // acquire lock
1603        AutoMutex _l(mLock);
1604        if (mPointerController != NULL) {
1605            mPointerController->fade();
1606        }
1607    } // release lock
1608}
1609
1610
1611// --- TouchInputMapper ---
1612
1613TouchInputMapper::TouchInputMapper(InputDevice* device) :
1614        InputMapper(device) {
1615    mLocked.surfaceOrientation = -1;
1616    mLocked.surfaceWidth = -1;
1617    mLocked.surfaceHeight = -1;
1618
1619    initializeLocked();
1620}
1621
1622TouchInputMapper::~TouchInputMapper() {
1623}
1624
1625uint32_t TouchInputMapper::getSources() {
1626    return mTouchSource | mPointerSource;
1627}
1628
1629void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
1630    InputMapper::populateDeviceInfo(info);
1631
1632    { // acquire lock
1633        AutoMutex _l(mLock);
1634
1635        // Ensure surface information is up to date so that orientation changes are
1636        // noticed immediately.
1637        if (!configureSurfaceLocked()) {
1638            return;
1639        }
1640
1641        info->addMotionRange(mLocked.orientedRanges.x);
1642        info->addMotionRange(mLocked.orientedRanges.y);
1643
1644        if (mLocked.orientedRanges.havePressure) {
1645            info->addMotionRange(mLocked.orientedRanges.pressure);
1646        }
1647
1648        if (mLocked.orientedRanges.haveSize) {
1649            info->addMotionRange(mLocked.orientedRanges.size);
1650        }
1651
1652        if (mLocked.orientedRanges.haveTouchSize) {
1653            info->addMotionRange(mLocked.orientedRanges.touchMajor);
1654            info->addMotionRange(mLocked.orientedRanges.touchMinor);
1655        }
1656
1657        if (mLocked.orientedRanges.haveToolSize) {
1658            info->addMotionRange(mLocked.orientedRanges.toolMajor);
1659            info->addMotionRange(mLocked.orientedRanges.toolMinor);
1660        }
1661
1662        if (mLocked.orientedRanges.haveOrientation) {
1663            info->addMotionRange(mLocked.orientedRanges.orientation);
1664        }
1665
1666        if (mPointerController != NULL) {
1667            float minX, minY, maxX, maxY;
1668            if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) {
1669                info->addMotionRange(AMOTION_EVENT_AXIS_X, mPointerSource,
1670                        minX, maxX, 0.0f, 0.0f);
1671                info->addMotionRange(AMOTION_EVENT_AXIS_Y, mPointerSource,
1672                        minY, maxY, 0.0f, 0.0f);
1673            }
1674            info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mPointerSource,
1675                    0.0f, 1.0f, 0.0f, 0.0f);
1676        }
1677    } // release lock
1678}
1679
1680void TouchInputMapper::dump(String8& dump) {
1681    { // acquire lock
1682        AutoMutex _l(mLock);
1683        dump.append(INDENT2 "Touch Input Mapper:\n");
1684        dumpParameters(dump);
1685        dumpVirtualKeysLocked(dump);
1686        dumpRawAxes(dump);
1687        dumpCalibration(dump);
1688        dumpSurfaceLocked(dump);
1689
1690        dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n");
1691        dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale);
1692        dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale);
1693        dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision);
1694        dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision);
1695        dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale);
1696        dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale);
1697        dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias);
1698        dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale);
1699        dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias);
1700        dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale);
1701        dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale);
1702        dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mLocked.orientationScale);
1703
1704        dump.appendFormat(INDENT3 "Last Touch:\n");
1705        dump.appendFormat(INDENT4 "Pointer Count: %d\n", mLastTouch.pointerCount);
1706        dump.appendFormat(INDENT4 "Button State: 0x%08x\n", mLastTouch.buttonState);
1707
1708        if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
1709            dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n");
1710            dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n",
1711                    mLocked.pointerGestureXMovementScale);
1712            dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n",
1713                    mLocked.pointerGestureYMovementScale);
1714            dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n",
1715                    mLocked.pointerGestureXZoomScale);
1716            dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n",
1717                    mLocked.pointerGestureYZoomScale);
1718            dump.appendFormat(INDENT4 "MaxSwipeWidthSquared: %d\n",
1719                    mLocked.pointerGestureMaxSwipeWidthSquared);
1720        }
1721    } // release lock
1722}
1723
1724void TouchInputMapper::initializeLocked() {
1725    mCurrentTouch.clear();
1726    mLastTouch.clear();
1727    mDownTime = 0;
1728
1729    for (uint32_t i = 0; i < MAX_POINTERS; i++) {
1730        mAveragingTouchFilter.historyStart[i] = 0;
1731        mAveragingTouchFilter.historyEnd[i] = 0;
1732    }
1733
1734    mJumpyTouchFilter.jumpyPointsDropped = 0;
1735
1736    mLocked.currentVirtualKey.down = false;
1737
1738    mLocked.orientedRanges.havePressure = false;
1739    mLocked.orientedRanges.haveSize = false;
1740    mLocked.orientedRanges.haveTouchSize = false;
1741    mLocked.orientedRanges.haveToolSize = false;
1742    mLocked.orientedRanges.haveOrientation = false;
1743
1744    mPointerGesture.reset();
1745}
1746
1747void TouchInputMapper::configure() {
1748    InputMapper::configure();
1749
1750    // Configure basic parameters.
1751    configureParameters();
1752
1753    // Configure sources.
1754    switch (mParameters.deviceType) {
1755    case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
1756        mTouchSource = AINPUT_SOURCE_TOUCHSCREEN;
1757        mPointerSource = 0;
1758        break;
1759    case Parameters::DEVICE_TYPE_TOUCH_PAD:
1760        mTouchSource = AINPUT_SOURCE_TOUCHPAD;
1761        mPointerSource = 0;
1762        break;
1763    case Parameters::DEVICE_TYPE_POINTER:
1764        mTouchSource = AINPUT_SOURCE_TOUCHPAD;
1765        mPointerSource = AINPUT_SOURCE_MOUSE;
1766        break;
1767    default:
1768        assert(false);
1769    }
1770
1771    // Configure absolute axis information.
1772    configureRawAxes();
1773
1774    // Prepare input device calibration.
1775    parseCalibration();
1776    resolveCalibration();
1777
1778    { // acquire lock
1779        AutoMutex _l(mLock);
1780
1781         // Configure surface dimensions and orientation.
1782        configureSurfaceLocked();
1783    } // release lock
1784}
1785
1786void TouchInputMapper::configureParameters() {
1787    mParameters.useBadTouchFilter = getPolicy()->filterTouchEvents();
1788    mParameters.useAveragingTouchFilter = getPolicy()->filterTouchEvents();
1789    mParameters.useJumpyTouchFilter = getPolicy()->filterJumpyTouchEvents();
1790    mParameters.virtualKeyQuietTime = getPolicy()->getVirtualKeyQuietTime();
1791
1792    if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X)
1793            || getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) {
1794        // The device is a cursor device with a touch pad attached.
1795        // By default don't use the touch pad to move the pointer.
1796        mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
1797    } else {
1798        // The device is just a touch pad.
1799        // By default use the touch pad to move the pointer and to perform related gestures.
1800        mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
1801    }
1802
1803    String8 deviceTypeString;
1804    if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"),
1805            deviceTypeString)) {
1806        if (deviceTypeString == "touchScreen") {
1807            mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1808        } else if (deviceTypeString == "touchPad") {
1809            mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD;
1810        } else if (deviceTypeString == "pointer") {
1811            mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER;
1812        } else {
1813            LOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string());
1814        }
1815    }
1816
1817    mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN;
1818    getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"),
1819            mParameters.orientationAware);
1820
1821    mParameters.associatedDisplayId = mParameters.orientationAware
1822            || mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN
1823            || mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
1824            ? 0 : -1;
1825}
1826
1827void TouchInputMapper::dumpParameters(String8& dump) {
1828    dump.append(INDENT3 "Parameters:\n");
1829
1830    switch (mParameters.deviceType) {
1831    case Parameters::DEVICE_TYPE_TOUCH_SCREEN:
1832        dump.append(INDENT4 "DeviceType: touchScreen\n");
1833        break;
1834    case Parameters::DEVICE_TYPE_TOUCH_PAD:
1835        dump.append(INDENT4 "DeviceType: touchPad\n");
1836        break;
1837    case Parameters::DEVICE_TYPE_POINTER:
1838        dump.append(INDENT4 "DeviceType: pointer\n");
1839        break;
1840    default:
1841        assert(false);
1842    }
1843
1844    dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n",
1845            mParameters.associatedDisplayId);
1846    dump.appendFormat(INDENT4 "OrientationAware: %s\n",
1847            toString(mParameters.orientationAware));
1848
1849    dump.appendFormat(INDENT4 "UseBadTouchFilter: %s\n",
1850            toString(mParameters.useBadTouchFilter));
1851    dump.appendFormat(INDENT4 "UseAveragingTouchFilter: %s\n",
1852            toString(mParameters.useAveragingTouchFilter));
1853    dump.appendFormat(INDENT4 "UseJumpyTouchFilter: %s\n",
1854            toString(mParameters.useJumpyTouchFilter));
1855}
1856
1857void TouchInputMapper::configureRawAxes() {
1858    mRawAxes.x.clear();
1859    mRawAxes.y.clear();
1860    mRawAxes.pressure.clear();
1861    mRawAxes.touchMajor.clear();
1862    mRawAxes.touchMinor.clear();
1863    mRawAxes.toolMajor.clear();
1864    mRawAxes.toolMinor.clear();
1865    mRawAxes.orientation.clear();
1866}
1867
1868void TouchInputMapper::dumpRawAxes(String8& dump) {
1869    dump.append(INDENT3 "Raw Axes:\n");
1870    dumpRawAbsoluteAxisInfo(dump, mRawAxes.x, "X");
1871    dumpRawAbsoluteAxisInfo(dump, mRawAxes.y, "Y");
1872    dumpRawAbsoluteAxisInfo(dump, mRawAxes.pressure, "Pressure");
1873    dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor");
1874    dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor");
1875    dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor");
1876    dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor");
1877    dumpRawAbsoluteAxisInfo(dump, mRawAxes.orientation, "Orientation");
1878}
1879
1880bool TouchInputMapper::configureSurfaceLocked() {
1881    // Ensure we have valid X and Y axes.
1882    if (!mRawAxes.x.valid || !mRawAxes.y.valid) {
1883        LOGW(INDENT "Touch device '%s' did not report support for X or Y axis!  "
1884                "The device will be inoperable.", getDeviceName().string());
1885        return false;
1886    }
1887
1888    // Update orientation and dimensions if needed.
1889    int32_t orientation = DISPLAY_ORIENTATION_0;
1890    int32_t width = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
1891    int32_t height = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
1892
1893    if (mParameters.associatedDisplayId >= 0) {
1894        // Note: getDisplayInfo is non-reentrant so we can continue holding the lock.
1895        if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId,
1896                &mLocked.associatedDisplayWidth, &mLocked.associatedDisplayHeight,
1897                &mLocked.associatedDisplayOrientation)) {
1898            return false;
1899        }
1900
1901        // A touch screen inherits the dimensions of the display.
1902        if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
1903            width = mLocked.associatedDisplayWidth;
1904            height = mLocked.associatedDisplayHeight;
1905        }
1906
1907        // The device inherits the orientation of the display if it is orientation aware.
1908        if (mParameters.orientationAware) {
1909            orientation = mLocked.associatedDisplayOrientation;
1910        }
1911    }
1912
1913    if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER
1914            && mPointerController == NULL) {
1915        mPointerController = getPolicy()->obtainPointerController(getDeviceId());
1916    }
1917
1918    bool orientationChanged = mLocked.surfaceOrientation != orientation;
1919    if (orientationChanged) {
1920        mLocked.surfaceOrientation = orientation;
1921    }
1922
1923    bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height;
1924    if (sizeChanged) {
1925        LOGI("Device reconfigured: id=%d, name='%s', surface size is now %dx%d",
1926                getDeviceId(), getDeviceName().string(), width, height);
1927
1928        mLocked.surfaceWidth = width;
1929        mLocked.surfaceHeight = height;
1930
1931        // Configure X and Y factors.
1932        mLocked.xScale = float(width) / (mRawAxes.x.maxValue - mRawAxes.x.minValue + 1);
1933        mLocked.yScale = float(height) / (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1);
1934        mLocked.xPrecision = 1.0f / mLocked.xScale;
1935        mLocked.yPrecision = 1.0f / mLocked.yScale;
1936
1937        mLocked.orientedRanges.x.axis = AMOTION_EVENT_AXIS_X;
1938        mLocked.orientedRanges.x.source = mTouchSource;
1939        mLocked.orientedRanges.y.axis = AMOTION_EVENT_AXIS_Y;
1940        mLocked.orientedRanges.y.source = mTouchSource;
1941
1942        configureVirtualKeysLocked();
1943
1944        // Scale factor for terms that are not oriented in a particular axis.
1945        // If the pixels are square then xScale == yScale otherwise we fake it
1946        // by choosing an average.
1947        mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale);
1948
1949        // Size of diagonal axis.
1950        float diagonalSize = pythag(width, height);
1951
1952        // TouchMajor and TouchMinor factors.
1953        if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) {
1954            mLocked.orientedRanges.haveTouchSize = true;
1955
1956            mLocked.orientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR;
1957            mLocked.orientedRanges.touchMajor.source = mTouchSource;
1958            mLocked.orientedRanges.touchMajor.min = 0;
1959            mLocked.orientedRanges.touchMajor.max = diagonalSize;
1960            mLocked.orientedRanges.touchMajor.flat = 0;
1961            mLocked.orientedRanges.touchMajor.fuzz = 0;
1962
1963            mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor;
1964            mLocked.orientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR;
1965        }
1966
1967        // ToolMajor and ToolMinor factors.
1968        mLocked.toolSizeLinearScale = 0;
1969        mLocked.toolSizeLinearBias = 0;
1970        mLocked.toolSizeAreaScale = 0;
1971        mLocked.toolSizeAreaBias = 0;
1972        if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
1973            if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) {
1974                if (mCalibration.haveToolSizeLinearScale) {
1975                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
1976                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
1977                    mLocked.toolSizeLinearScale = float(min(width, height))
1978                            / mRawAxes.toolMajor.maxValue;
1979                }
1980
1981                if (mCalibration.haveToolSizeLinearBias) {
1982                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
1983                }
1984            } else if (mCalibration.toolSizeCalibration ==
1985                    Calibration::TOOL_SIZE_CALIBRATION_AREA) {
1986                if (mCalibration.haveToolSizeLinearScale) {
1987                    mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale;
1988                } else {
1989                    mLocked.toolSizeLinearScale = min(width, height);
1990                }
1991
1992                if (mCalibration.haveToolSizeLinearBias) {
1993                    mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias;
1994                }
1995
1996                if (mCalibration.haveToolSizeAreaScale) {
1997                    mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale;
1998                } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
1999                    mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue;
2000                }
2001
2002                if (mCalibration.haveToolSizeAreaBias) {
2003                    mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias;
2004                }
2005            }
2006
2007            mLocked.orientedRanges.haveToolSize = true;
2008
2009            mLocked.orientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR;
2010            mLocked.orientedRanges.toolMajor.source = mTouchSource;
2011            mLocked.orientedRanges.toolMajor.min = 0;
2012            mLocked.orientedRanges.toolMajor.max = diagonalSize;
2013            mLocked.orientedRanges.toolMajor.flat = 0;
2014            mLocked.orientedRanges.toolMajor.fuzz = 0;
2015
2016            mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor;
2017            mLocked.orientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR;
2018        }
2019
2020        // Pressure factors.
2021        mLocked.pressureScale = 0;
2022        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) {
2023            RawAbsoluteAxisInfo rawPressureAxis;
2024            switch (mCalibration.pressureSource) {
2025            case Calibration::PRESSURE_SOURCE_PRESSURE:
2026                rawPressureAxis = mRawAxes.pressure;
2027                break;
2028            case Calibration::PRESSURE_SOURCE_TOUCH:
2029                rawPressureAxis = mRawAxes.touchMajor;
2030                break;
2031            default:
2032                rawPressureAxis.clear();
2033            }
2034
2035            if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL
2036                    || mCalibration.pressureCalibration
2037                            == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) {
2038                if (mCalibration.havePressureScale) {
2039                    mLocked.pressureScale = mCalibration.pressureScale;
2040                } else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) {
2041                    mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue;
2042                }
2043            }
2044
2045            mLocked.orientedRanges.havePressure = true;
2046
2047            mLocked.orientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE;
2048            mLocked.orientedRanges.pressure.source = mTouchSource;
2049            mLocked.orientedRanges.pressure.min = 0;
2050            mLocked.orientedRanges.pressure.max = 1.0;
2051            mLocked.orientedRanges.pressure.flat = 0;
2052            mLocked.orientedRanges.pressure.fuzz = 0;
2053        }
2054
2055        // Size factors.
2056        mLocked.sizeScale = 0;
2057        if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) {
2058            if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) {
2059                if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) {
2060                    mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue;
2061                }
2062            }
2063
2064            mLocked.orientedRanges.haveSize = true;
2065
2066            mLocked.orientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE;
2067            mLocked.orientedRanges.size.source = mTouchSource;
2068            mLocked.orientedRanges.size.min = 0;
2069            mLocked.orientedRanges.size.max = 1.0;
2070            mLocked.orientedRanges.size.flat = 0;
2071            mLocked.orientedRanges.size.fuzz = 0;
2072        }
2073
2074        // Orientation
2075        mLocked.orientationScale = 0;
2076        if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) {
2077            if (mCalibration.orientationCalibration
2078                    == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) {
2079                if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) {
2080                    mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue;
2081                }
2082            }
2083
2084            mLocked.orientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION;
2085            mLocked.orientedRanges.orientation.source = mTouchSource;
2086            mLocked.orientedRanges.orientation.min = - M_PI_2;
2087            mLocked.orientedRanges.orientation.max = M_PI_2;
2088            mLocked.orientedRanges.orientation.flat = 0;
2089            mLocked.orientedRanges.orientation.fuzz = 0;
2090        }
2091    }
2092
2093    if (orientationChanged || sizeChanged) {
2094        // Compute oriented surface dimensions, precision, scales and ranges.
2095        // Note that the maximum value reported is an inclusive maximum value so it is one
2096        // unit less than the total width or height of surface.
2097        switch (mLocked.surfaceOrientation) {
2098        case DISPLAY_ORIENTATION_90:
2099        case DISPLAY_ORIENTATION_270:
2100            mLocked.orientedSurfaceWidth = mLocked.surfaceHeight;
2101            mLocked.orientedSurfaceHeight = mLocked.surfaceWidth;
2102
2103            mLocked.orientedXPrecision = mLocked.yPrecision;
2104            mLocked.orientedYPrecision = mLocked.xPrecision;
2105
2106            mLocked.orientedRanges.x.min = 0;
2107            mLocked.orientedRanges.x.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
2108                    * mLocked.yScale;
2109            mLocked.orientedRanges.x.flat = 0;
2110            mLocked.orientedRanges.x.fuzz = mLocked.yScale;
2111
2112            mLocked.orientedRanges.y.min = 0;
2113            mLocked.orientedRanges.y.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
2114                    * mLocked.xScale;
2115            mLocked.orientedRanges.y.flat = 0;
2116            mLocked.orientedRanges.y.fuzz = mLocked.xScale;
2117            break;
2118
2119        default:
2120            mLocked.orientedSurfaceWidth = mLocked.surfaceWidth;
2121            mLocked.orientedSurfaceHeight = mLocked.surfaceHeight;
2122
2123            mLocked.orientedXPrecision = mLocked.xPrecision;
2124            mLocked.orientedYPrecision = mLocked.yPrecision;
2125
2126            mLocked.orientedRanges.x.min = 0;
2127            mLocked.orientedRanges.x.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue)
2128                    * mLocked.xScale;
2129            mLocked.orientedRanges.x.flat = 0;
2130            mLocked.orientedRanges.x.fuzz = mLocked.xScale;
2131
2132            mLocked.orientedRanges.y.min = 0;
2133            mLocked.orientedRanges.y.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue)
2134                    * mLocked.yScale;
2135            mLocked.orientedRanges.y.flat = 0;
2136            mLocked.orientedRanges.y.fuzz = mLocked.yScale;
2137            break;
2138        }
2139
2140        // Compute pointer gesture detection parameters.
2141        // TODO: These factors should not be hardcoded.
2142        if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
2143            int32_t rawWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
2144            int32_t rawHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
2145
2146            // Scale movements such that one whole swipe of the touch pad covers a portion
2147            // of the display along whichever axis of the touch pad is longer.
2148            // Assume that the touch pad has a square aspect ratio such that movements in
2149            // X and Y of the same number of raw units cover the same physical distance.
2150            const float scaleFactor = 0.8f;
2151
2152            mLocked.pointerGestureXMovementScale = rawWidth > rawHeight
2153                    ? scaleFactor * float(mLocked.associatedDisplayWidth) / rawWidth
2154                    : scaleFactor * float(mLocked.associatedDisplayHeight) / rawHeight;
2155            mLocked.pointerGestureYMovementScale = mLocked.pointerGestureXMovementScale;
2156
2157            // Scale zooms to cover a smaller range of the display than movements do.
2158            // This value determines the area around the pointer that is affected by freeform
2159            // pointer gestures.
2160            mLocked.pointerGestureXZoomScale = mLocked.pointerGestureXMovementScale * 0.4f;
2161            mLocked.pointerGestureYZoomScale = mLocked.pointerGestureYMovementScale * 0.4f;
2162
2163            // Max width between pointers to detect a swipe gesture is 3/4 of the short
2164            // axis of the touch pad.  Touches that are wider than this are translated
2165            // into freeform gestures.
2166            mLocked.pointerGestureMaxSwipeWidthSquared = min(rawWidth, rawHeight) * 3 / 4;
2167            mLocked.pointerGestureMaxSwipeWidthSquared *=
2168                    mLocked.pointerGestureMaxSwipeWidthSquared;
2169        }
2170    }
2171
2172    return true;
2173}
2174
2175void TouchInputMapper::dumpSurfaceLocked(String8& dump) {
2176    dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth);
2177    dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight);
2178    dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation);
2179}
2180
2181void TouchInputMapper::configureVirtualKeysLocked() {
2182    Vector<VirtualKeyDefinition> virtualKeyDefinitions;
2183    getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions);
2184
2185    mLocked.virtualKeys.clear();
2186
2187    if (virtualKeyDefinitions.size() == 0) {
2188        return;
2189    }
2190
2191    mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size());
2192
2193    int32_t touchScreenLeft = mRawAxes.x.minValue;
2194    int32_t touchScreenTop = mRawAxes.y.minValue;
2195    int32_t touchScreenWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1;
2196    int32_t touchScreenHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1;
2197
2198    for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
2199        const VirtualKeyDefinition& virtualKeyDefinition =
2200                virtualKeyDefinitions[i];
2201
2202        mLocked.virtualKeys.add();
2203        VirtualKey& virtualKey = mLocked.virtualKeys.editTop();
2204
2205        virtualKey.scanCode = virtualKeyDefinition.scanCode;
2206        int32_t keyCode;
2207        uint32_t flags;
2208        if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode,
2209                & keyCode, & flags)) {
2210            LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring",
2211                    virtualKey.scanCode);
2212            mLocked.virtualKeys.pop(); // drop the key
2213            continue;
2214        }
2215
2216        virtualKey.keyCode = keyCode;
2217        virtualKey.flags = flags;
2218
2219        // convert the key definition's display coordinates into touch coordinates for a hit box
2220        int32_t halfWidth = virtualKeyDefinition.width / 2;
2221        int32_t halfHeight = virtualKeyDefinition.height / 2;
2222
2223        virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
2224                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
2225        virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
2226                * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft;
2227        virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
2228                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
2229        virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
2230                * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop;
2231    }
2232}
2233
2234void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) {
2235    if (!mLocked.virtualKeys.isEmpty()) {
2236        dump.append(INDENT3 "Virtual Keys:\n");
2237
2238        for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) {
2239            const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i);
2240            dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, "
2241                    "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n",
2242                    i, virtualKey.scanCode, virtualKey.keyCode,
2243                    virtualKey.hitLeft, virtualKey.hitRight,
2244                    virtualKey.hitTop, virtualKey.hitBottom);
2245        }
2246    }
2247}
2248
2249void TouchInputMapper::parseCalibration() {
2250    const PropertyMap& in = getDevice()->getConfiguration();
2251    Calibration& out = mCalibration;
2252
2253    // Touch Size
2254    out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT;
2255    String8 touchSizeCalibrationString;
2256    if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) {
2257        if (touchSizeCalibrationString == "none") {
2258            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
2259        } else if (touchSizeCalibrationString == "geometric") {
2260            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC;
2261        } else if (touchSizeCalibrationString == "pressure") {
2262            out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
2263        } else if (touchSizeCalibrationString != "default") {
2264            LOGW("Invalid value for touch.touchSize.calibration: '%s'",
2265                    touchSizeCalibrationString.string());
2266        }
2267    }
2268
2269    // Tool Size
2270    out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT;
2271    String8 toolSizeCalibrationString;
2272    if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) {
2273        if (toolSizeCalibrationString == "none") {
2274            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
2275        } else if (toolSizeCalibrationString == "geometric") {
2276            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC;
2277        } else if (toolSizeCalibrationString == "linear") {
2278            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
2279        } else if (toolSizeCalibrationString == "area") {
2280            out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA;
2281        } else if (toolSizeCalibrationString != "default") {
2282            LOGW("Invalid value for touch.toolSize.calibration: '%s'",
2283                    toolSizeCalibrationString.string());
2284        }
2285    }
2286
2287    out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"),
2288            out.toolSizeLinearScale);
2289    out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"),
2290            out.toolSizeLinearBias);
2291    out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"),
2292            out.toolSizeAreaScale);
2293    out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"),
2294            out.toolSizeAreaBias);
2295    out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"),
2296            out.toolSizeIsSummed);
2297
2298    // Pressure
2299    out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT;
2300    String8 pressureCalibrationString;
2301    if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) {
2302        if (pressureCalibrationString == "none") {
2303            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
2304        } else if (pressureCalibrationString == "physical") {
2305            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL;
2306        } else if (pressureCalibrationString == "amplitude") {
2307            out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
2308        } else if (pressureCalibrationString != "default") {
2309            LOGW("Invalid value for touch.pressure.calibration: '%s'",
2310                    pressureCalibrationString.string());
2311        }
2312    }
2313
2314    out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT;
2315    String8 pressureSourceString;
2316    if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) {
2317        if (pressureSourceString == "pressure") {
2318            out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
2319        } else if (pressureSourceString == "touch") {
2320            out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
2321        } else if (pressureSourceString != "default") {
2322            LOGW("Invalid value for touch.pressure.source: '%s'",
2323                    pressureSourceString.string());
2324        }
2325    }
2326
2327    out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"),
2328            out.pressureScale);
2329
2330    // Size
2331    out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT;
2332    String8 sizeCalibrationString;
2333    if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) {
2334        if (sizeCalibrationString == "none") {
2335            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
2336        } else if (sizeCalibrationString == "normalized") {
2337            out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
2338        } else if (sizeCalibrationString != "default") {
2339            LOGW("Invalid value for touch.size.calibration: '%s'",
2340                    sizeCalibrationString.string());
2341        }
2342    }
2343
2344    // Orientation
2345    out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT;
2346    String8 orientationCalibrationString;
2347    if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) {
2348        if (orientationCalibrationString == "none") {
2349            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
2350        } else if (orientationCalibrationString == "interpolated") {
2351            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
2352        } else if (orientationCalibrationString == "vector") {
2353            out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR;
2354        } else if (orientationCalibrationString != "default") {
2355            LOGW("Invalid value for touch.orientation.calibration: '%s'",
2356                    orientationCalibrationString.string());
2357        }
2358    }
2359}
2360
2361void TouchInputMapper::resolveCalibration() {
2362    // Pressure
2363    switch (mCalibration.pressureSource) {
2364    case Calibration::PRESSURE_SOURCE_DEFAULT:
2365        if (mRawAxes.pressure.valid) {
2366            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE;
2367        } else if (mRawAxes.touchMajor.valid) {
2368            mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH;
2369        }
2370        break;
2371
2372    case Calibration::PRESSURE_SOURCE_PRESSURE:
2373        if (! mRawAxes.pressure.valid) {
2374            LOGW("Calibration property touch.pressure.source is 'pressure' but "
2375                    "the pressure axis is not available.");
2376        }
2377        break;
2378
2379    case Calibration::PRESSURE_SOURCE_TOUCH:
2380        if (! mRawAxes.touchMajor.valid) {
2381            LOGW("Calibration property touch.pressure.source is 'touch' but "
2382                    "the touchMajor axis is not available.");
2383        }
2384        break;
2385
2386    default:
2387        break;
2388    }
2389
2390    switch (mCalibration.pressureCalibration) {
2391    case Calibration::PRESSURE_CALIBRATION_DEFAULT:
2392        if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) {
2393            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE;
2394        } else {
2395            mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE;
2396        }
2397        break;
2398
2399    default:
2400        break;
2401    }
2402
2403    // Tool Size
2404    switch (mCalibration.toolSizeCalibration) {
2405    case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT:
2406        if (mRawAxes.toolMajor.valid) {
2407            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR;
2408        } else {
2409            mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE;
2410        }
2411        break;
2412
2413    default:
2414        break;
2415    }
2416
2417    // Touch Size
2418    switch (mCalibration.touchSizeCalibration) {
2419    case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT:
2420        if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE
2421                && mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) {
2422            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE;
2423        } else {
2424            mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE;
2425        }
2426        break;
2427
2428    default:
2429        break;
2430    }
2431
2432    // Size
2433    switch (mCalibration.sizeCalibration) {
2434    case Calibration::SIZE_CALIBRATION_DEFAULT:
2435        if (mRawAxes.toolMajor.valid) {
2436            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED;
2437        } else {
2438            mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE;
2439        }
2440        break;
2441
2442    default:
2443        break;
2444    }
2445
2446    // Orientation
2447    switch (mCalibration.orientationCalibration) {
2448    case Calibration::ORIENTATION_CALIBRATION_DEFAULT:
2449        if (mRawAxes.orientation.valid) {
2450            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED;
2451        } else {
2452            mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE;
2453        }
2454        break;
2455
2456    default:
2457        break;
2458    }
2459}
2460
2461void TouchInputMapper::dumpCalibration(String8& dump) {
2462    dump.append(INDENT3 "Calibration:\n");
2463
2464    // Touch Size
2465    switch (mCalibration.touchSizeCalibration) {
2466    case Calibration::TOUCH_SIZE_CALIBRATION_NONE:
2467        dump.append(INDENT4 "touch.touchSize.calibration: none\n");
2468        break;
2469    case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
2470        dump.append(INDENT4 "touch.touchSize.calibration: geometric\n");
2471        break;
2472    case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
2473        dump.append(INDENT4 "touch.touchSize.calibration: pressure\n");
2474        break;
2475    default:
2476        assert(false);
2477    }
2478
2479    // Tool Size
2480    switch (mCalibration.toolSizeCalibration) {
2481    case Calibration::TOOL_SIZE_CALIBRATION_NONE:
2482        dump.append(INDENT4 "touch.toolSize.calibration: none\n");
2483        break;
2484    case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
2485        dump.append(INDENT4 "touch.toolSize.calibration: geometric\n");
2486        break;
2487    case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
2488        dump.append(INDENT4 "touch.toolSize.calibration: linear\n");
2489        break;
2490    case Calibration::TOOL_SIZE_CALIBRATION_AREA:
2491        dump.append(INDENT4 "touch.toolSize.calibration: area\n");
2492        break;
2493    default:
2494        assert(false);
2495    }
2496
2497    if (mCalibration.haveToolSizeLinearScale) {
2498        dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n",
2499                mCalibration.toolSizeLinearScale);
2500    }
2501
2502    if (mCalibration.haveToolSizeLinearBias) {
2503        dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n",
2504                mCalibration.toolSizeLinearBias);
2505    }
2506
2507    if (mCalibration.haveToolSizeAreaScale) {
2508        dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n",
2509                mCalibration.toolSizeAreaScale);
2510    }
2511
2512    if (mCalibration.haveToolSizeAreaBias) {
2513        dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n",
2514                mCalibration.toolSizeAreaBias);
2515    }
2516
2517    if (mCalibration.haveToolSizeIsSummed) {
2518        dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %s\n",
2519                toString(mCalibration.toolSizeIsSummed));
2520    }
2521
2522    // Pressure
2523    switch (mCalibration.pressureCalibration) {
2524    case Calibration::PRESSURE_CALIBRATION_NONE:
2525        dump.append(INDENT4 "touch.pressure.calibration: none\n");
2526        break;
2527    case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
2528        dump.append(INDENT4 "touch.pressure.calibration: physical\n");
2529        break;
2530    case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
2531        dump.append(INDENT4 "touch.pressure.calibration: amplitude\n");
2532        break;
2533    default:
2534        assert(false);
2535    }
2536
2537    switch (mCalibration.pressureSource) {
2538    case Calibration::PRESSURE_SOURCE_PRESSURE:
2539        dump.append(INDENT4 "touch.pressure.source: pressure\n");
2540        break;
2541    case Calibration::PRESSURE_SOURCE_TOUCH:
2542        dump.append(INDENT4 "touch.pressure.source: touch\n");
2543        break;
2544    case Calibration::PRESSURE_SOURCE_DEFAULT:
2545        break;
2546    default:
2547        assert(false);
2548    }
2549
2550    if (mCalibration.havePressureScale) {
2551        dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n",
2552                mCalibration.pressureScale);
2553    }
2554
2555    // Size
2556    switch (mCalibration.sizeCalibration) {
2557    case Calibration::SIZE_CALIBRATION_NONE:
2558        dump.append(INDENT4 "touch.size.calibration: none\n");
2559        break;
2560    case Calibration::SIZE_CALIBRATION_NORMALIZED:
2561        dump.append(INDENT4 "touch.size.calibration: normalized\n");
2562        break;
2563    default:
2564        assert(false);
2565    }
2566
2567    // Orientation
2568    switch (mCalibration.orientationCalibration) {
2569    case Calibration::ORIENTATION_CALIBRATION_NONE:
2570        dump.append(INDENT4 "touch.orientation.calibration: none\n");
2571        break;
2572    case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
2573        dump.append(INDENT4 "touch.orientation.calibration: interpolated\n");
2574        break;
2575    case Calibration::ORIENTATION_CALIBRATION_VECTOR:
2576        dump.append(INDENT4 "touch.orientation.calibration: vector\n");
2577        break;
2578    default:
2579        assert(false);
2580    }
2581}
2582
2583void TouchInputMapper::reset() {
2584    // Synthesize touch up event if touch is currently down.
2585    // This will also take care of finishing virtual key processing if needed.
2586    if (mLastTouch.pointerCount != 0) {
2587        nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
2588        mCurrentTouch.clear();
2589        syncTouch(when, true);
2590    }
2591
2592    { // acquire lock
2593        AutoMutex _l(mLock);
2594        initializeLocked();
2595    } // release lock
2596
2597    InputMapper::reset();
2598}
2599
2600void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) {
2601#if DEBUG_RAW_EVENTS
2602    if (!havePointerIds) {
2603        LOGD("syncTouch: pointerCount=%d, no pointer ids", mCurrentTouch.pointerCount);
2604    } else {
2605        LOGD("syncTouch: pointerCount=%d, up=0x%08x, down=0x%08x, move=0x%08x, "
2606                "last=0x%08x, current=0x%08x", mCurrentTouch.pointerCount,
2607                mLastTouch.idBits.value & ~mCurrentTouch.idBits.value,
2608                mCurrentTouch.idBits.value & ~mLastTouch.idBits.value,
2609                mLastTouch.idBits.value & mCurrentTouch.idBits.value,
2610                mLastTouch.idBits.value, mCurrentTouch.idBits.value);
2611    }
2612#endif
2613
2614    // Preprocess pointer data.
2615    if (mParameters.useBadTouchFilter) {
2616        if (applyBadTouchFilter()) {
2617            havePointerIds = false;
2618        }
2619    }
2620
2621    if (mParameters.useJumpyTouchFilter) {
2622        if (applyJumpyTouchFilter()) {
2623            havePointerIds = false;
2624        }
2625    }
2626
2627    if (!havePointerIds) {
2628        calculatePointerIds();
2629    }
2630
2631    TouchData temp;
2632    TouchData* savedTouch;
2633    if (mParameters.useAveragingTouchFilter) {
2634        temp.copyFrom(mCurrentTouch);
2635        savedTouch = & temp;
2636
2637        applyAveragingTouchFilter();
2638    } else {
2639        savedTouch = & mCurrentTouch;
2640    }
2641
2642    uint32_t policyFlags = 0;
2643    if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
2644        if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) {
2645            // If this is a touch screen, hide the pointer on an initial down.
2646            getContext()->fadePointer();
2647        }
2648
2649        // Initial downs on external touch devices should wake the device.
2650        // We don't do this for internal touch screens to prevent them from waking
2651        // up in your pocket.
2652        // TODO: Use the input device configuration to control this behavior more finely.
2653        if (getDevice()->isExternal()) {
2654            policyFlags |= POLICY_FLAG_WAKE_DROPPED;
2655        }
2656    }
2657
2658    // Process touches and virtual keys.
2659    TouchResult touchResult = consumeOffScreenTouches(when, policyFlags);
2660    if (touchResult == DISPATCH_TOUCH) {
2661        suppressSwipeOntoVirtualKeys(when);
2662        if (mPointerController != NULL) {
2663            dispatchPointerGestures(when, policyFlags);
2664        }
2665        dispatchTouches(when, policyFlags);
2666    }
2667
2668    // Copy current touch to last touch in preparation for the next cycle.
2669    // Keep the button state so we can track edge-triggered button state changes.
2670    if (touchResult == DROP_STROKE) {
2671        mLastTouch.clear();
2672        mLastTouch.buttonState = savedTouch->buttonState;
2673    } else {
2674        mLastTouch.copyFrom(*savedTouch);
2675    }
2676}
2677
2678TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches(
2679        nsecs_t when, uint32_t policyFlags) {
2680    int32_t keyEventAction, keyEventFlags;
2681    int32_t keyCode, scanCode, downTime;
2682    TouchResult touchResult;
2683
2684    { // acquire lock
2685        AutoMutex _l(mLock);
2686
2687        // Update surface size and orientation, including virtual key positions.
2688        if (! configureSurfaceLocked()) {
2689            return DROP_STROKE;
2690        }
2691
2692        // Check for virtual key press.
2693        if (mLocked.currentVirtualKey.down) {
2694            if (mCurrentTouch.pointerCount == 0) {
2695                // Pointer went up while virtual key was down.
2696                mLocked.currentVirtualKey.down = false;
2697#if DEBUG_VIRTUAL_KEYS
2698                LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
2699                        mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
2700#endif
2701                keyEventAction = AKEY_EVENT_ACTION_UP;
2702                keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2703                touchResult = SKIP_TOUCH;
2704                goto DispatchVirtualKey;
2705            }
2706
2707            if (mCurrentTouch.pointerCount == 1) {
2708                int32_t x = mCurrentTouch.pointers[0].x;
2709                int32_t y = mCurrentTouch.pointers[0].y;
2710                const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
2711                if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) {
2712                    // Pointer is still within the space of the virtual key.
2713                    return SKIP_TOUCH;
2714                }
2715            }
2716
2717            // Pointer left virtual key area or another pointer also went down.
2718            // Send key cancellation and drop the stroke so subsequent motions will be
2719            // considered fresh downs.  This is useful when the user swipes away from the
2720            // virtual key area into the main display surface.
2721            mLocked.currentVirtualKey.down = false;
2722#if DEBUG_VIRTUAL_KEYS
2723            LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
2724                    mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode);
2725#endif
2726            keyEventAction = AKEY_EVENT_ACTION_UP;
2727            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
2728                    | AKEY_EVENT_FLAG_CANCELED;
2729
2730            // Check whether the pointer moved inside the display area where we should
2731            // start a new stroke.
2732            int32_t x = mCurrentTouch.pointers[0].x;
2733            int32_t y = mCurrentTouch.pointers[0].y;
2734            if (isPointInsideSurfaceLocked(x, y)) {
2735                mLastTouch.clear();
2736                touchResult = DISPATCH_TOUCH;
2737            } else {
2738                touchResult = DROP_STROKE;
2739            }
2740        } else {
2741            if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) {
2742                // Pointer just went down.  Handle off-screen touches, if needed.
2743                int32_t x = mCurrentTouch.pointers[0].x;
2744                int32_t y = mCurrentTouch.pointers[0].y;
2745                if (! isPointInsideSurfaceLocked(x, y)) {
2746                    // If exactly one pointer went down, check for virtual key hit.
2747                    // Otherwise we will drop the entire stroke.
2748                    if (mCurrentTouch.pointerCount == 1) {
2749                        const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y);
2750                        if (virtualKey) {
2751                            if (mContext->shouldDropVirtualKey(when, getDevice(),
2752                                    virtualKey->keyCode, virtualKey->scanCode)) {
2753                                return DROP_STROKE;
2754                            }
2755
2756                            mLocked.currentVirtualKey.down = true;
2757                            mLocked.currentVirtualKey.downTime = when;
2758                            mLocked.currentVirtualKey.keyCode = virtualKey->keyCode;
2759                            mLocked.currentVirtualKey.scanCode = virtualKey->scanCode;
2760#if DEBUG_VIRTUAL_KEYS
2761                            LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
2762                                    mLocked.currentVirtualKey.keyCode,
2763                                    mLocked.currentVirtualKey.scanCode);
2764#endif
2765                            keyEventAction = AKEY_EVENT_ACTION_DOWN;
2766                            keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM
2767                                    | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
2768                            touchResult = SKIP_TOUCH;
2769                            goto DispatchVirtualKey;
2770                        }
2771                    }
2772                    return DROP_STROKE;
2773                }
2774            }
2775            return DISPATCH_TOUCH;
2776        }
2777
2778    DispatchVirtualKey:
2779        // Collect remaining state needed to dispatch virtual key.
2780        keyCode = mLocked.currentVirtualKey.keyCode;
2781        scanCode = mLocked.currentVirtualKey.scanCode;
2782        downTime = mLocked.currentVirtualKey.downTime;
2783    } // release lock
2784
2785    // Dispatch virtual key.
2786    int32_t metaState = mContext->getGlobalMetaState();
2787    policyFlags |= POLICY_FLAG_VIRTUAL;
2788    getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags,
2789            keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
2790    return touchResult;
2791}
2792
2793void TouchInputMapper::suppressSwipeOntoVirtualKeys(nsecs_t when) {
2794    // Disable all virtual key touches that happen within a short time interval of the
2795    // most recent touch.  The idea is to filter out stray virtual key presses when
2796    // interacting with the touch screen.
2797    //
2798    // Problems we're trying to solve:
2799    //
2800    // 1. While scrolling a list or dragging the window shade, the user swipes down into a
2801    //    virtual key area that is implemented by a separate touch panel and accidentally
2802    //    triggers a virtual key.
2803    //
2804    // 2. While typing in the on screen keyboard, the user taps slightly outside the screen
2805    //    area and accidentally triggers a virtual key.  This often happens when virtual keys
2806    //    are layed out below the screen near to where the on screen keyboard's space bar
2807    //    is displayed.
2808    if (mParameters.virtualKeyQuietTime > 0 && mCurrentTouch.pointerCount != 0) {
2809        mContext->disableVirtualKeysUntil(when + mParameters.virtualKeyQuietTime);
2810    }
2811}
2812
2813void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) {
2814    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
2815    uint32_t lastPointerCount = mLastTouch.pointerCount;
2816    if (currentPointerCount == 0 && lastPointerCount == 0) {
2817        return; // nothing to do!
2818    }
2819
2820    // Update current touch coordinates.
2821    int32_t edgeFlags;
2822    float xPrecision, yPrecision;
2823    prepareTouches(&edgeFlags, &xPrecision, &yPrecision);
2824
2825    // Dispatch motions.
2826    BitSet32 currentIdBits = mCurrentTouch.idBits;
2827    BitSet32 lastIdBits = mLastTouch.idBits;
2828    uint32_t metaState = getContext()->getGlobalMetaState();
2829
2830    if (currentIdBits == lastIdBits) {
2831        // No pointer id changes so this is a move event.
2832        // The dispatcher takes care of batching moves so we don't have to deal with that here.
2833        dispatchMotion(when, policyFlags, mTouchSource,
2834                AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
2835                mCurrentTouchCoords, mCurrentTouch.idToIndex, currentIdBits, -1,
2836                xPrecision, yPrecision, mDownTime);
2837    } else {
2838        // There may be pointers going up and pointers going down and pointers moving
2839        // all at the same time.
2840        BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value);
2841        BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value);
2842        BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value);
2843        BitSet32 dispatchedIdBits(lastIdBits.value);
2844
2845        // Update last coordinates of pointers that have moved so that we observe the new
2846        // pointer positions at the same time as other pointers that have just gone up.
2847        bool moveNeeded = updateMovedPointerCoords(
2848                mCurrentTouchCoords, mCurrentTouch.idToIndex,
2849                mLastTouchCoords, mLastTouch.idToIndex,
2850                moveIdBits);
2851
2852        // Dispatch pointer up events.
2853        while (!upIdBits.isEmpty()) {
2854            uint32_t upId = upIdBits.firstMarkedBit();
2855            upIdBits.clearBit(upId);
2856
2857            dispatchMotion(when, policyFlags, mTouchSource,
2858                    AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, 0,
2859                    mLastTouchCoords, mLastTouch.idToIndex, dispatchedIdBits, upId,
2860                    xPrecision, yPrecision, mDownTime);
2861            dispatchedIdBits.clearBit(upId);
2862        }
2863
2864        // Dispatch move events if any of the remaining pointers moved from their old locations.
2865        // Although applications receive new locations as part of individual pointer up
2866        // events, they do not generally handle them except when presented in a move event.
2867        if (moveNeeded) {
2868            assert(moveIdBits.value == dispatchedIdBits.value);
2869            dispatchMotion(when, policyFlags, mTouchSource,
2870                    AMOTION_EVENT_ACTION_MOVE, 0, metaState, 0,
2871                    mCurrentTouchCoords, mCurrentTouch.idToIndex, dispatchedIdBits, -1,
2872                    xPrecision, yPrecision, mDownTime);
2873        }
2874
2875        // Dispatch pointer down events using the new pointer locations.
2876        while (!downIdBits.isEmpty()) {
2877            uint32_t downId = downIdBits.firstMarkedBit();
2878            downIdBits.clearBit(downId);
2879            dispatchedIdBits.markBit(downId);
2880
2881            if (dispatchedIdBits.count() == 1) {
2882                // First pointer is going down.  Set down time.
2883                mDownTime = when;
2884            } else {
2885                // Only send edge flags with first pointer down.
2886                edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
2887            }
2888
2889            dispatchMotion(when, policyFlags, mTouchSource,
2890                    AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, edgeFlags,
2891                    mCurrentTouchCoords, mCurrentTouch.idToIndex, dispatchedIdBits, downId,
2892                    xPrecision, yPrecision, mDownTime);
2893        }
2894    }
2895
2896    // Update state for next time.
2897    for (uint32_t i = 0; i < currentPointerCount; i++) {
2898        mLastTouchCoords[i].copyFrom(mCurrentTouchCoords[i]);
2899    }
2900}
2901
2902void TouchInputMapper::prepareTouches(int32_t* outEdgeFlags,
2903        float* outXPrecision, float* outYPrecision) {
2904    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
2905    uint32_t lastPointerCount = mLastTouch.pointerCount;
2906
2907    AutoMutex _l(mLock);
2908
2909    // Walk through the the active pointers and map touch screen coordinates (TouchData) into
2910    // display or surface coordinates (PointerCoords) and adjust for display orientation.
2911    for (uint32_t i = 0; i < currentPointerCount; i++) {
2912        const PointerData& in = mCurrentTouch.pointers[i];
2913
2914        // ToolMajor and ToolMinor
2915        float toolMajor, toolMinor;
2916        switch (mCalibration.toolSizeCalibration) {
2917        case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC:
2918            toolMajor = in.toolMajor * mLocked.geometricScale;
2919            if (mRawAxes.toolMinor.valid) {
2920                toolMinor = in.toolMinor * mLocked.geometricScale;
2921            } else {
2922                toolMinor = toolMajor;
2923            }
2924            break;
2925        case Calibration::TOOL_SIZE_CALIBRATION_LINEAR:
2926            toolMajor = in.toolMajor != 0
2927                    ? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias
2928                    : 0;
2929            if (mRawAxes.toolMinor.valid) {
2930                toolMinor = in.toolMinor != 0
2931                        ? in.toolMinor * mLocked.toolSizeLinearScale
2932                                + mLocked.toolSizeLinearBias
2933                        : 0;
2934            } else {
2935                toolMinor = toolMajor;
2936            }
2937            break;
2938        case Calibration::TOOL_SIZE_CALIBRATION_AREA:
2939            if (in.toolMajor != 0) {
2940                float diameter = sqrtf(in.toolMajor
2941                        * mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias);
2942                toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias;
2943            } else {
2944                toolMajor = 0;
2945            }
2946            toolMinor = toolMajor;
2947            break;
2948        default:
2949            toolMajor = 0;
2950            toolMinor = 0;
2951            break;
2952        }
2953
2954        if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) {
2955            toolMajor /= currentPointerCount;
2956            toolMinor /= currentPointerCount;
2957        }
2958
2959        // Pressure
2960        float rawPressure;
2961        switch (mCalibration.pressureSource) {
2962        case Calibration::PRESSURE_SOURCE_PRESSURE:
2963            rawPressure = in.pressure;
2964            break;
2965        case Calibration::PRESSURE_SOURCE_TOUCH:
2966            rawPressure = in.touchMajor;
2967            break;
2968        default:
2969            rawPressure = 0;
2970        }
2971
2972        float pressure;
2973        switch (mCalibration.pressureCalibration) {
2974        case Calibration::PRESSURE_CALIBRATION_PHYSICAL:
2975        case Calibration::PRESSURE_CALIBRATION_AMPLITUDE:
2976            pressure = rawPressure * mLocked.pressureScale;
2977            break;
2978        default:
2979            pressure = 1;
2980            break;
2981        }
2982
2983        // TouchMajor and TouchMinor
2984        float touchMajor, touchMinor;
2985        switch (mCalibration.touchSizeCalibration) {
2986        case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC:
2987            touchMajor = in.touchMajor * mLocked.geometricScale;
2988            if (mRawAxes.touchMinor.valid) {
2989                touchMinor = in.touchMinor * mLocked.geometricScale;
2990            } else {
2991                touchMinor = touchMajor;
2992            }
2993            break;
2994        case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE:
2995            touchMajor = toolMajor * pressure;
2996            touchMinor = toolMinor * pressure;
2997            break;
2998        default:
2999            touchMajor = 0;
3000            touchMinor = 0;
3001            break;
3002        }
3003
3004        if (touchMajor > toolMajor) {
3005            touchMajor = toolMajor;
3006        }
3007        if (touchMinor > toolMinor) {
3008            touchMinor = toolMinor;
3009        }
3010
3011        // Size
3012        float size;
3013        switch (mCalibration.sizeCalibration) {
3014        case Calibration::SIZE_CALIBRATION_NORMALIZED: {
3015            float rawSize = mRawAxes.toolMinor.valid
3016                    ? avg(in.toolMajor, in.toolMinor)
3017                    : in.toolMajor;
3018            size = rawSize * mLocked.sizeScale;
3019            break;
3020        }
3021        default:
3022            size = 0;
3023            break;
3024        }
3025
3026        // Orientation
3027        float orientation;
3028        switch (mCalibration.orientationCalibration) {
3029        case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED:
3030            orientation = in.orientation * mLocked.orientationScale;
3031            break;
3032        case Calibration::ORIENTATION_CALIBRATION_VECTOR: {
3033            int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4);
3034            int32_t c2 = signExtendNybble(in.orientation & 0x0f);
3035            if (c1 != 0 || c2 != 0) {
3036                orientation = atan2f(c1, c2) * 0.5f;
3037                float scale = 1.0f + pythag(c1, c2) / 16.0f;
3038                touchMajor *= scale;
3039                touchMinor /= scale;
3040                toolMajor *= scale;
3041                toolMinor /= scale;
3042            } else {
3043                orientation = 0;
3044            }
3045            break;
3046        }
3047        default:
3048            orientation = 0;
3049        }
3050
3051        // X and Y
3052        // Adjust coords for surface orientation.
3053        float x, y;
3054        switch (mLocked.surfaceOrientation) {
3055        case DISPLAY_ORIENTATION_90:
3056            x = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
3057            y = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
3058            orientation -= M_PI_2;
3059            if (orientation < - M_PI_2) {
3060                orientation += M_PI;
3061            }
3062            break;
3063        case DISPLAY_ORIENTATION_180:
3064            x = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale;
3065            y = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
3066            break;
3067        case DISPLAY_ORIENTATION_270:
3068            x = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale;
3069            y = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
3070            orientation += M_PI_2;
3071            if (orientation > M_PI_2) {
3072                orientation -= M_PI;
3073            }
3074            break;
3075        default:
3076            x = float(in.x - mRawAxes.x.minValue) * mLocked.xScale;
3077            y = float(in.y - mRawAxes.y.minValue) * mLocked.yScale;
3078            break;
3079        }
3080
3081        // Write output coords.
3082        PointerCoords& out = mCurrentTouchCoords[i];
3083        out.clear();
3084        out.setAxisValue(AMOTION_EVENT_AXIS_X, x);
3085        out.setAxisValue(AMOTION_EVENT_AXIS_Y, y);
3086        out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure);
3087        out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size);
3088        out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor);
3089        out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor);
3090        out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor);
3091        out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor);
3092        out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation);
3093    }
3094
3095    // Check edge flags by looking only at the first pointer since the flags are
3096    // global to the event.
3097    *outEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
3098    if (lastPointerCount == 0 && currentPointerCount > 0) {
3099        const PointerData& in = mCurrentTouch.pointers[0];
3100
3101        if (in.x <= mRawAxes.x.minValue) {
3102            *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_LEFT,
3103                    mLocked.surfaceOrientation);
3104        } else if (in.x >= mRawAxes.x.maxValue) {
3105            *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_RIGHT,
3106                    mLocked.surfaceOrientation);
3107        }
3108        if (in.y <= mRawAxes.y.minValue) {
3109            *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_TOP,
3110                    mLocked.surfaceOrientation);
3111        } else if (in.y >= mRawAxes.y.maxValue) {
3112            *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_BOTTOM,
3113                    mLocked.surfaceOrientation);
3114        }
3115    }
3116
3117    *outXPrecision = mLocked.orientedXPrecision;
3118    *outYPrecision = mLocked.orientedYPrecision;
3119}
3120
3121void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags) {
3122    // Update current gesture coordinates.
3123    bool cancelPreviousGesture, finishPreviousGesture;
3124    preparePointerGestures(when, &cancelPreviousGesture, &finishPreviousGesture);
3125
3126    // Send events!
3127    uint32_t metaState = getContext()->getGlobalMetaState();
3128
3129    // Update last coordinates of pointers that have moved so that we observe the new
3130    // pointer positions at the same time as other pointers that have just gone up.
3131    bool down = mPointerGesture.currentGestureMode == PointerGesture::CLICK_OR_DRAG
3132            || mPointerGesture.currentGestureMode == PointerGesture::SWIPE
3133            || mPointerGesture.currentGestureMode == PointerGesture::FREEFORM;
3134    bool moveNeeded = false;
3135    if (down && !cancelPreviousGesture && !finishPreviousGesture
3136            && mPointerGesture.lastGesturePointerCount != 0
3137            && mPointerGesture.currentGesturePointerCount != 0) {
3138        BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value
3139                & mPointerGesture.lastGestureIdBits.value);
3140        moveNeeded = updateMovedPointerCoords(
3141                mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3142                mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
3143                movedGestureIdBits);
3144    }
3145
3146    // Send motion events for all pointers that went up or were canceled.
3147    BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits);
3148    if (!dispatchedGestureIdBits.isEmpty()) {
3149        if (cancelPreviousGesture) {
3150            dispatchMotion(when, policyFlags, mPointerSource,
3151                    AMOTION_EVENT_ACTION_CANCEL, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
3152                    mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
3153                    dispatchedGestureIdBits, -1,
3154                    0, 0, mPointerGesture.downTime);
3155
3156            dispatchedGestureIdBits.clear();
3157        } else {
3158            BitSet32 upGestureIdBits;
3159            if (finishPreviousGesture) {
3160                upGestureIdBits = dispatchedGestureIdBits;
3161            } else {
3162                upGestureIdBits.value = dispatchedGestureIdBits.value
3163                        & ~mPointerGesture.currentGestureIdBits.value;
3164            }
3165            while (!upGestureIdBits.isEmpty()) {
3166                uint32_t id = upGestureIdBits.firstMarkedBit();
3167                upGestureIdBits.clearBit(id);
3168
3169                dispatchMotion(when, policyFlags, mPointerSource,
3170                        AMOTION_EVENT_ACTION_POINTER_UP, 0,
3171                        metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
3172                        mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex,
3173                        dispatchedGestureIdBits, id,
3174                        0, 0, mPointerGesture.downTime);
3175
3176                dispatchedGestureIdBits.clearBit(id);
3177            }
3178        }
3179    }
3180
3181    // Send motion events for all pointers that moved.
3182    if (moveNeeded) {
3183        dispatchMotion(when, policyFlags, mPointerSource,
3184                AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
3185                mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3186                dispatchedGestureIdBits, -1,
3187                0, 0, mPointerGesture.downTime);
3188    }
3189
3190    // Send motion events for all pointers that went down.
3191    if (down) {
3192        BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value
3193                & ~dispatchedGestureIdBits.value);
3194        while (!downGestureIdBits.isEmpty()) {
3195            uint32_t id = downGestureIdBits.firstMarkedBit();
3196            downGestureIdBits.clearBit(id);
3197            dispatchedGestureIdBits.markBit(id);
3198
3199            int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
3200            if (dispatchedGestureIdBits.count() == 1) {
3201                // First pointer is going down.  Calculate edge flags and set down time.
3202                uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
3203                const PointerCoords& downCoords = mPointerGesture.currentGestureCoords[index];
3204                edgeFlags = calculateEdgeFlagsUsingPointerBounds(mPointerController,
3205                        downCoords.getAxisValue(AMOTION_EVENT_AXIS_X),
3206                        downCoords.getAxisValue(AMOTION_EVENT_AXIS_Y));
3207                mPointerGesture.downTime = when;
3208            }
3209
3210            dispatchMotion(when, policyFlags, mPointerSource,
3211                    AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, edgeFlags,
3212                    mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3213                    dispatchedGestureIdBits, id,
3214                    0, 0, mPointerGesture.downTime);
3215        }
3216    }
3217
3218    // Send down and up for a tap.
3219    if (mPointerGesture.currentGestureMode == PointerGesture::TAP) {
3220        const PointerCoords& coords = mPointerGesture.currentGestureCoords[0];
3221        int32_t edgeFlags = calculateEdgeFlagsUsingPointerBounds(mPointerController,
3222                coords.getAxisValue(AMOTION_EVENT_AXIS_X),
3223                coords.getAxisValue(AMOTION_EVENT_AXIS_Y));
3224        nsecs_t downTime = mPointerGesture.downTime = mPointerGesture.tapTime;
3225        mPointerGesture.resetTapTime();
3226
3227        dispatchMotion(downTime, policyFlags, mPointerSource,
3228                AMOTION_EVENT_ACTION_DOWN, 0, metaState, edgeFlags,
3229                mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3230                mPointerGesture.currentGestureIdBits, -1,
3231                0, 0, downTime);
3232        dispatchMotion(when, policyFlags, mPointerSource,
3233                AMOTION_EVENT_ACTION_UP, 0, metaState, edgeFlags,
3234                mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3235                mPointerGesture.currentGestureIdBits, -1,
3236                0, 0, downTime);
3237    }
3238
3239    // Send motion events for hover.
3240    if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) {
3241        dispatchMotion(when, policyFlags, mPointerSource,
3242                AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
3243                mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex,
3244                mPointerGesture.currentGestureIdBits, -1,
3245                0, 0, mPointerGesture.downTime);
3246    }
3247
3248    // Update state.
3249    mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode;
3250    if (!down) {
3251        mPointerGesture.lastGesturePointerCount = 0;
3252        mPointerGesture.lastGestureIdBits.clear();
3253    } else {
3254        uint32_t currentGesturePointerCount = mPointerGesture.currentGesturePointerCount;
3255        mPointerGesture.lastGesturePointerCount = currentGesturePointerCount;
3256        mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits;
3257        for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) {
3258            uint32_t id = idBits.firstMarkedBit();
3259            idBits.clearBit(id);
3260            uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
3261            mPointerGesture.lastGestureCoords[index].copyFrom(
3262                    mPointerGesture.currentGestureCoords[index]);
3263            mPointerGesture.lastGestureIdToIndex[id] = index;
3264        }
3265    }
3266}
3267
3268void TouchInputMapper::preparePointerGestures(nsecs_t when,
3269        bool* outCancelPreviousGesture, bool* outFinishPreviousGesture) {
3270    *outCancelPreviousGesture = false;
3271    *outFinishPreviousGesture = false;
3272
3273    AutoMutex _l(mLock);
3274
3275    // Update the velocity tracker.
3276    {
3277        VelocityTracker::Position positions[MAX_POINTERS];
3278        uint32_t count = 0;
3279        for (BitSet32 idBits(mCurrentTouch.idBits); !idBits.isEmpty(); count++) {
3280            uint32_t id = idBits.firstMarkedBit();
3281            idBits.clearBit(id);
3282            uint32_t index = mCurrentTouch.idToIndex[id];
3283            positions[count].x = mCurrentTouch.pointers[index].x
3284                    * mLocked.pointerGestureXMovementScale;
3285            positions[count].y = mCurrentTouch.pointers[index].y
3286                    * mLocked.pointerGestureYMovementScale;
3287        }
3288        mPointerGesture.velocityTracker.addMovement(when, mCurrentTouch.idBits, positions);
3289    }
3290
3291    // Pick a new active touch id if needed.
3292    // Choose an arbitrary pointer that just went down, if there is one.
3293    // Otherwise choose an arbitrary remaining pointer.
3294    // This guarantees we always have an active touch id when there is at least one pointer.
3295    // We always switch to the newest pointer down because that's usually where the user's
3296    // attention is focused.
3297    int32_t activeTouchId;
3298    BitSet32 downTouchIdBits(mCurrentTouch.idBits.value & ~mLastTouch.idBits.value);
3299    if (!downTouchIdBits.isEmpty()) {
3300        activeTouchId = mPointerGesture.activeTouchId = downTouchIdBits.firstMarkedBit();
3301    } else {
3302        activeTouchId = mPointerGesture.activeTouchId;
3303        if (activeTouchId < 0 || !mCurrentTouch.idBits.hasBit(activeTouchId)) {
3304            if (!mCurrentTouch.idBits.isEmpty()) {
3305                activeTouchId = mPointerGesture.activeTouchId =
3306                        mCurrentTouch.idBits.firstMarkedBit();
3307            } else {
3308                activeTouchId = mPointerGesture.activeTouchId = -1;
3309            }
3310        }
3311    }
3312
3313    // Update the touch origin data to track where each finger originally went down.
3314    if (mCurrentTouch.pointerCount == 0 || mPointerGesture.touchOrigin.pointerCount == 0) {
3315        // Fast path when all fingers have gone up or down.
3316        mPointerGesture.touchOrigin.copyFrom(mCurrentTouch);
3317    } else {
3318        // Slow path when only some fingers have gone up or down.
3319        for (BitSet32 idBits(mPointerGesture.touchOrigin.idBits.value
3320                & ~mCurrentTouch.idBits.value); !idBits.isEmpty(); ) {
3321            uint32_t id = idBits.firstMarkedBit();
3322            idBits.clearBit(id);
3323            mPointerGesture.touchOrigin.idBits.clearBit(id);
3324            uint32_t index = mPointerGesture.touchOrigin.idToIndex[id];
3325            uint32_t count = --mPointerGesture.touchOrigin.pointerCount;
3326            while (index < count) {
3327                mPointerGesture.touchOrigin.pointers[index] =
3328                        mPointerGesture.touchOrigin.pointers[index + 1];
3329                uint32_t movedId = mPointerGesture.touchOrigin.pointers[index].id;
3330                mPointerGesture.touchOrigin.idToIndex[movedId] = index;
3331                index += 1;
3332            }
3333        }
3334        for (BitSet32 idBits(mCurrentTouch.idBits.value
3335                & ~mPointerGesture.touchOrigin.idBits.value); !idBits.isEmpty(); ) {
3336            uint32_t id = idBits.firstMarkedBit();
3337            idBits.clearBit(id);
3338            mPointerGesture.touchOrigin.idBits.markBit(id);
3339            uint32_t index = mPointerGesture.touchOrigin.pointerCount++;
3340            mPointerGesture.touchOrigin.pointers[index] =
3341                    mCurrentTouch.pointers[mCurrentTouch.idToIndex[id]];
3342            mPointerGesture.touchOrigin.idToIndex[id] = index;
3343        }
3344    }
3345
3346    // Determine whether we are in quiet time.
3347    bool isQuietTime = when < mPointerGesture.quietTime + QUIET_INTERVAL;
3348    if (!isQuietTime) {
3349        if ((mPointerGesture.lastGestureMode == PointerGesture::SWIPE
3350                || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM)
3351                && mCurrentTouch.pointerCount < 2) {
3352            // Enter quiet time when exiting swipe or freeform state.
3353            // This is to prevent accidentally entering the hover state and flinging the
3354            // pointer when finishing a swipe and there is still one pointer left onscreen.
3355            isQuietTime = true;
3356        } else if (mPointerGesture.lastGestureMode == PointerGesture::CLICK_OR_DRAG
3357                && mCurrentTouch.pointerCount >= 2
3358                && !isPointerDown(mCurrentTouch.buttonState)) {
3359            // Enter quiet time when releasing the button and there are still two or more
3360            // fingers down.  This may indicate that one finger was used to press the button
3361            // but it has not gone up yet.
3362            isQuietTime = true;
3363        }
3364        if (isQuietTime) {
3365            mPointerGesture.quietTime = when;
3366        }
3367    }
3368
3369    // Switch states based on button and pointer state.
3370    if (isQuietTime) {
3371        // Case 1: Quiet time. (QUIET)
3372#if DEBUG_GESTURES
3373        LOGD("Gestures: QUIET for next %0.3fms",
3374                (mPointerGesture.quietTime + QUIET_INTERVAL - when) * 0.000001f);
3375#endif
3376        *outFinishPreviousGesture = true;
3377
3378        mPointerGesture.activeGestureId = -1;
3379        mPointerGesture.currentGestureMode = PointerGesture::QUIET;
3380        mPointerGesture.currentGesturePointerCount = 0;
3381        mPointerGesture.currentGestureIdBits.clear();
3382    } else if (isPointerDown(mCurrentTouch.buttonState)) {
3383        // Case 2: Button is pressed. (DRAG)
3384        // The pointer follows the active touch point.
3385        // Emit DOWN, MOVE, UP events at the pointer location.
3386        //
3387        // Only the active touch matters; other fingers are ignored.  This policy helps
3388        // to handle the case where the user places a second finger on the touch pad
3389        // to apply the necessary force to depress an integrated button below the surface.
3390        // We don't want the second finger to be delivered to applications.
3391        //
3392        // For this to work well, we need to make sure to track the pointer that is really
3393        // active.  If the user first puts one finger down to click then adds another
3394        // finger to drag then the active pointer should switch to the finger that is
3395        // being dragged.
3396#if DEBUG_GESTURES
3397        LOGD("Gestures: CLICK_OR_DRAG activeTouchId=%d, "
3398                "currentTouchPointerCount=%d", activeTouchId, mCurrentTouch.pointerCount);
3399#endif
3400        // Reset state when just starting.
3401        if (mPointerGesture.lastGestureMode != PointerGesture::CLICK_OR_DRAG) {
3402            *outFinishPreviousGesture = true;
3403            mPointerGesture.activeGestureId = 0;
3404        }
3405
3406        // Switch pointers if needed.
3407        // Find the fastest pointer and follow it.
3408        if (activeTouchId >= 0) {
3409            if (mCurrentTouch.pointerCount > 1) {
3410                int32_t bestId = -1;
3411                float bestSpeed = DRAG_MIN_SWITCH_SPEED;
3412                for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) {
3413                    uint32_t id = mCurrentTouch.pointers[i].id;
3414                    float vx, vy;
3415                    if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) {
3416                        float speed = pythag(vx, vy);
3417                        if (speed > bestSpeed) {
3418                            bestId = id;
3419                            bestSpeed = speed;
3420                        }
3421                    }
3422                }
3423                if (bestId >= 0 && bestId != activeTouchId) {
3424                    mPointerGesture.activeTouchId = activeTouchId = bestId;
3425#if DEBUG_GESTURES
3426                    LOGD("Gestures: CLICK_OR_DRAG switched pointers, "
3427                            "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed);
3428#endif
3429                }
3430            }
3431
3432            if (mLastTouch.idBits.hasBit(activeTouchId)) {
3433                const PointerData& currentPointer =
3434                        mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]];
3435                const PointerData& lastPointer =
3436                        mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]];
3437                float deltaX = (currentPointer.x - lastPointer.x)
3438                        * mLocked.pointerGestureXMovementScale;
3439                float deltaY = (currentPointer.y - lastPointer.y)
3440                        * mLocked.pointerGestureYMovementScale;
3441                mPointerController->move(deltaX, deltaY);
3442            }
3443        }
3444
3445        float x, y;
3446        mPointerController->getPosition(&x, &y);
3447
3448        mPointerGesture.currentGestureMode = PointerGesture::CLICK_OR_DRAG;
3449        mPointerGesture.currentGesturePointerCount = 1;
3450        mPointerGesture.currentGestureIdBits.clear();
3451        mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
3452        mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
3453        mPointerGesture.currentGestureCoords[0].clear();
3454        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
3455        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
3456        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
3457    } else if (mCurrentTouch.pointerCount == 0) {
3458        // Case 3. No fingers down and button is not pressed. (NEUTRAL)
3459        *outFinishPreviousGesture = true;
3460
3461        // Watch for taps coming out of HOVER or INDETERMINATE_MULTITOUCH mode.
3462        bool tapped = false;
3463        if (mPointerGesture.lastGestureMode == PointerGesture::HOVER
3464                || mPointerGesture.lastGestureMode
3465                        == PointerGesture::INDETERMINATE_MULTITOUCH) {
3466            if (when <= mPointerGesture.tapTime + TAP_INTERVAL) {
3467                float x, y;
3468                mPointerController->getPosition(&x, &y);
3469                if (fabs(x - mPointerGesture.initialPointerX) <= TAP_SLOP
3470                        && fabs(y - mPointerGesture.initialPointerY) <= TAP_SLOP) {
3471#if DEBUG_GESTURES
3472                    LOGD("Gestures: TAP");
3473#endif
3474                    mPointerGesture.activeGestureId = 0;
3475                    mPointerGesture.currentGestureMode = PointerGesture::TAP;
3476                    mPointerGesture.currentGesturePointerCount = 1;
3477                    mPointerGesture.currentGestureIdBits.clear();
3478                    mPointerGesture.currentGestureIdBits.markBit(
3479                            mPointerGesture.activeGestureId);
3480                    mPointerGesture.currentGestureIdToIndex[
3481                            mPointerGesture.activeGestureId] = 0;
3482                    mPointerGesture.currentGestureCoords[0].clear();
3483                    mPointerGesture.currentGestureCoords[0].setAxisValue(
3484                            AMOTION_EVENT_AXIS_X, mPointerGesture.initialPointerX);
3485                    mPointerGesture.currentGestureCoords[0].setAxisValue(
3486                            AMOTION_EVENT_AXIS_Y, mPointerGesture.initialPointerY);
3487                    mPointerGesture.currentGestureCoords[0].setAxisValue(
3488                            AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
3489                    tapped = true;
3490                } else {
3491#if DEBUG_GESTURES
3492                    LOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f",
3493                            x - mPointerGesture.initialPointerX,
3494                            y - mPointerGesture.initialPointerY);
3495#endif
3496                }
3497            } else {
3498#if DEBUG_GESTURES
3499                LOGD("Gestures: Not a TAP, delay=%lld",
3500                        when - mPointerGesture.tapTime);
3501#endif
3502            }
3503        }
3504        if (!tapped) {
3505#if DEBUG_GESTURES
3506            LOGD("Gestures: NEUTRAL");
3507#endif
3508            mPointerGesture.activeGestureId = -1;
3509            mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL;
3510            mPointerGesture.currentGesturePointerCount = 0;
3511            mPointerGesture.currentGestureIdBits.clear();
3512        }
3513    } else if (mCurrentTouch.pointerCount == 1) {
3514        // Case 4. Exactly one finger down, button is not pressed. (HOVER)
3515        // The pointer follows the active touch point.
3516        // Emit HOVER_MOVE events at the pointer location.
3517        assert(activeTouchId >= 0);
3518
3519#if DEBUG_GESTURES
3520        LOGD("Gestures: HOVER");
3521#endif
3522
3523        if (mLastTouch.idBits.hasBit(activeTouchId)) {
3524            const PointerData& currentPointer =
3525                    mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]];
3526            const PointerData& lastPointer =
3527                    mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]];
3528            float deltaX = (currentPointer.x - lastPointer.x)
3529                    * mLocked.pointerGestureXMovementScale;
3530            float deltaY = (currentPointer.y - lastPointer.y)
3531                    * mLocked.pointerGestureYMovementScale;
3532            mPointerController->move(deltaX, deltaY);
3533        }
3534
3535        *outFinishPreviousGesture = true;
3536        mPointerGesture.activeGestureId = 0;
3537
3538        float x, y;
3539        mPointerController->getPosition(&x, &y);
3540
3541        mPointerGesture.currentGestureMode = PointerGesture::HOVER;
3542        mPointerGesture.currentGesturePointerCount = 1;
3543        mPointerGesture.currentGestureIdBits.clear();
3544        mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
3545        mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
3546        mPointerGesture.currentGestureCoords[0].clear();
3547        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
3548        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
3549        mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 0.0f);
3550
3551        if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
3552            mPointerGesture.tapTime = when;
3553            mPointerGesture.initialPointerX = x;
3554            mPointerGesture.initialPointerY = y;
3555        }
3556    } else {
3557        // Case 5. At least two fingers down, button is not pressed. (SWIPE or FREEFORM
3558        // or INDETERMINATE_MULTITOUCH)
3559        // Initially we watch and wait for something interesting to happen so as to
3560        // avoid making a spurious guess as to the nature of the gesture.  For example,
3561        // the fingers may be in transition to some other state such as pressing or
3562        // releasing the button or we may be performing a two finger tap.
3563        //
3564        // Fix the centroid of the figure when the gesture actually starts.
3565        // We do not recalculate the centroid at any other time during the gesture because
3566        // it would affect the relationship of the touch points relative to the pointer location.
3567        assert(activeTouchId >= 0);
3568
3569        uint32_t currentTouchPointerCount = mCurrentTouch.pointerCount;
3570        if (currentTouchPointerCount > MAX_POINTERS) {
3571            currentTouchPointerCount = MAX_POINTERS;
3572        }
3573
3574        if (mPointerGesture.lastGestureMode != PointerGesture::INDETERMINATE_MULTITOUCH
3575                && mPointerGesture.lastGestureMode != PointerGesture::SWIPE
3576                && mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
3577            mPointerGesture.currentGestureMode = PointerGesture::INDETERMINATE_MULTITOUCH;
3578
3579            *outFinishPreviousGesture = true;
3580            mPointerGesture.activeGestureId = -1;
3581
3582            // Remember the initial pointer location.
3583            // Everything we do will be relative to this location.
3584            mPointerController->getPosition(&mPointerGesture.initialPointerX,
3585                    &mPointerGesture.initialPointerY);
3586
3587            // Track taps.
3588            if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) {
3589                mPointerGesture.tapTime = when;
3590            }
3591
3592            // Reset the touch origin to be relative to exactly where the fingers are now
3593            // in case they have moved some distance away as part of a previous gesture.
3594            // We want to know how far the fingers have traveled since we started considering
3595            // a multitouch gesture.
3596            mPointerGesture.touchOrigin.copyFrom(mCurrentTouch);
3597        } else {
3598            mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode;
3599        }
3600
3601        if (mPointerGesture.currentGestureMode == PointerGesture::INDETERMINATE_MULTITOUCH) {
3602            // Wait for the pointers to start moving before doing anything.
3603            bool decideNow = true;
3604            for (uint32_t i = 0; i < currentTouchPointerCount; i++) {
3605                const PointerData& current = mCurrentTouch.pointers[i];
3606                const PointerData& origin = mPointerGesture.touchOrigin.pointers[
3607                        mPointerGesture.touchOrigin.idToIndex[current.id]];
3608                float distance = pythag(
3609                        (current.x - origin.x) * mLocked.pointerGestureXZoomScale,
3610                        (current.y - origin.y) * mLocked.pointerGestureYZoomScale);
3611                if (distance < MULTITOUCH_MIN_TRAVEL) {
3612                    decideNow = false;
3613                    break;
3614                }
3615            }
3616
3617            if (decideNow) {
3618                mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
3619                if (currentTouchPointerCount == 2
3620                        && distanceSquared(
3621                                mCurrentTouch.pointers[0].x, mCurrentTouch.pointers[0].y,
3622                                mCurrentTouch.pointers[1].x, mCurrentTouch.pointers[1].y)
3623                                <= mLocked.pointerGestureMaxSwipeWidthSquared) {
3624                    const PointerData& current1 = mCurrentTouch.pointers[0];
3625                    const PointerData& current2 = mCurrentTouch.pointers[1];
3626                    const PointerData& origin1 = mPointerGesture.touchOrigin.pointers[
3627                            mPointerGesture.touchOrigin.idToIndex[current1.id]];
3628                    const PointerData& origin2 = mPointerGesture.touchOrigin.pointers[
3629                            mPointerGesture.touchOrigin.idToIndex[current2.id]];
3630
3631                    float x1 = (current1.x - origin1.x) * mLocked.pointerGestureXZoomScale;
3632                    float y1 = (current1.y - origin1.y) * mLocked.pointerGestureYZoomScale;
3633                    float x2 = (current2.x - origin2.x) * mLocked.pointerGestureXZoomScale;
3634                    float y2 = (current2.y - origin2.y) * mLocked.pointerGestureYZoomScale;
3635                    float magnitude1 = pythag(x1, y1);
3636                    float magnitude2 = pythag(x2, y2);
3637
3638                    // Calculate the dot product of the vectors.
3639                    // When the vectors are oriented in approximately the same direction,
3640                    // the angle betweeen them is near zero and the cosine of the angle
3641                    // approches 1.0.  Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2).
3642                    // We know that the magnitude is at least MULTITOUCH_MIN_TRAVEL because
3643                    // we checked it above.
3644                    float dot = x1 * x2 + y1 * y2;
3645                    float cosine = dot / (magnitude1 * magnitude2); // denominator always > 0
3646                    if (cosine > SWIPE_TRANSITION_ANGLE_COSINE) {
3647                        mPointerGesture.currentGestureMode = PointerGesture::SWIPE;
3648                    }
3649                }
3650
3651                // Remember the initial centroid for the duration of the gesture.
3652                mPointerGesture.initialCentroidX = 0;
3653                mPointerGesture.initialCentroidY = 0;
3654                for (uint32_t i = 0; i < currentTouchPointerCount; i++) {
3655                    const PointerData& touch = mCurrentTouch.pointers[i];
3656                    mPointerGesture.initialCentroidX += touch.x;
3657                    mPointerGesture.initialCentroidY += touch.y;
3658                }
3659                mPointerGesture.initialCentroidX /= int32_t(currentTouchPointerCount);
3660                mPointerGesture.initialCentroidY /= int32_t(currentTouchPointerCount);
3661
3662                mPointerGesture.activeGestureId = 0;
3663            }
3664        } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
3665            // Switch to FREEFORM if additional pointers go down.
3666            if (currentTouchPointerCount > 2) {
3667                *outCancelPreviousGesture = true;
3668                mPointerGesture.currentGestureMode = PointerGesture::FREEFORM;
3669            }
3670        }
3671
3672        if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) {
3673            // SWIPE mode.
3674#if DEBUG_GESTURES
3675            LOGD("Gestures: SWIPE activeTouchId=%d,"
3676                    "activeGestureId=%d, currentTouchPointerCount=%d",
3677                    activeTouchId, mPointerGesture.activeGestureId, currentTouchPointerCount);
3678#endif
3679            assert(mPointerGesture.activeGestureId >= 0);
3680
3681            float x = (mCurrentTouch.pointers[0].x + mCurrentTouch.pointers[1].x
3682                    - mPointerGesture.initialCentroidX * 2) * 0.5f
3683                    * mLocked.pointerGestureXMovementScale + mPointerGesture.initialPointerX;
3684            float y = (mCurrentTouch.pointers[0].y + mCurrentTouch.pointers[1].y
3685                    - mPointerGesture.initialCentroidY * 2) * 0.5f
3686                    * mLocked.pointerGestureYMovementScale + mPointerGesture.initialPointerY;
3687
3688            mPointerGesture.currentGesturePointerCount = 1;
3689            mPointerGesture.currentGestureIdBits.clear();
3690            mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId);
3691            mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0;
3692            mPointerGesture.currentGestureCoords[0].clear();
3693            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x);
3694            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y);
3695            mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
3696        } else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) {
3697            // FREEFORM mode.
3698#if DEBUG_GESTURES
3699            LOGD("Gestures: FREEFORM activeTouchId=%d,"
3700                    "activeGestureId=%d, currentTouchPointerCount=%d",
3701                    activeTouchId, mPointerGesture.activeGestureId, currentTouchPointerCount);
3702#endif
3703            assert(mPointerGesture.activeGestureId >= 0);
3704
3705            mPointerGesture.currentGesturePointerCount = currentTouchPointerCount;
3706            mPointerGesture.currentGestureIdBits.clear();
3707
3708            BitSet32 mappedTouchIdBits;
3709            BitSet32 usedGestureIdBits;
3710            if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) {
3711                // Initially, assign the active gesture id to the active touch point
3712                // if there is one.  No other touch id bits are mapped yet.
3713                if (!*outCancelPreviousGesture) {
3714                    mappedTouchIdBits.markBit(activeTouchId);
3715                    usedGestureIdBits.markBit(mPointerGesture.activeGestureId);
3716                    mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] =
3717                            mPointerGesture.activeGestureId;
3718                } else {
3719                    mPointerGesture.activeGestureId = -1;
3720                }
3721            } else {
3722                // Otherwise, assume we mapped all touches from the previous frame.
3723                // Reuse all mappings that are still applicable.
3724                mappedTouchIdBits.value = mLastTouch.idBits.value & mCurrentTouch.idBits.value;
3725                usedGestureIdBits = mPointerGesture.lastGestureIdBits;
3726
3727                // Check whether we need to choose a new active gesture id because the
3728                // current went went up.
3729                for (BitSet32 upTouchIdBits(mLastTouch.idBits.value & ~mCurrentTouch.idBits.value);
3730                        !upTouchIdBits.isEmpty(); ) {
3731                    uint32_t upTouchId = upTouchIdBits.firstMarkedBit();
3732                    upTouchIdBits.clearBit(upTouchId);
3733                    uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId];
3734                    if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) {
3735                        mPointerGesture.activeGestureId = -1;
3736                        break;
3737                    }
3738                }
3739            }
3740
3741#if DEBUG_GESTURES
3742            LOGD("Gestures: FREEFORM follow up "
3743                    "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, "
3744                    "activeGestureId=%d",
3745                    mappedTouchIdBits.value, usedGestureIdBits.value,
3746                    mPointerGesture.activeGestureId);
3747#endif
3748
3749            for (uint32_t i = 0; i < currentTouchPointerCount; i++) {
3750                uint32_t touchId = mCurrentTouch.pointers[i].id;
3751                uint32_t gestureId;
3752                if (!mappedTouchIdBits.hasBit(touchId)) {
3753                    gestureId = usedGestureIdBits.firstUnmarkedBit();
3754                    usedGestureIdBits.markBit(gestureId);
3755                    mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId;
3756#if DEBUG_GESTURES
3757                    LOGD("Gestures: FREEFORM "
3758                            "new mapping for touch id %d -> gesture id %d",
3759                            touchId, gestureId);
3760#endif
3761                } else {
3762                    gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId];
3763#if DEBUG_GESTURES
3764                    LOGD("Gestures: FREEFORM "
3765                            "existing mapping for touch id %d -> gesture id %d",
3766                            touchId, gestureId);
3767#endif
3768                }
3769                mPointerGesture.currentGestureIdBits.markBit(gestureId);
3770                mPointerGesture.currentGestureIdToIndex[gestureId] = i;
3771
3772                float x = (mCurrentTouch.pointers[i].x - mPointerGesture.initialCentroidX)
3773                        * mLocked.pointerGestureXZoomScale + mPointerGesture.initialPointerX;
3774                float y = (mCurrentTouch.pointers[i].y - mPointerGesture.initialCentroidY)
3775                        * mLocked.pointerGestureYZoomScale + mPointerGesture.initialPointerY;
3776
3777                mPointerGesture.currentGestureCoords[i].clear();
3778                mPointerGesture.currentGestureCoords[i].setAxisValue(
3779                        AMOTION_EVENT_AXIS_X, x);
3780                mPointerGesture.currentGestureCoords[i].setAxisValue(
3781                        AMOTION_EVENT_AXIS_Y, y);
3782                mPointerGesture.currentGestureCoords[i].setAxisValue(
3783                        AMOTION_EVENT_AXIS_PRESSURE, 1.0f);
3784            }
3785
3786            if (mPointerGesture.activeGestureId < 0) {
3787                mPointerGesture.activeGestureId =
3788                        mPointerGesture.currentGestureIdBits.firstMarkedBit();
3789#if DEBUG_GESTURES
3790                LOGD("Gestures: FREEFORM new "
3791                        "activeGestureId=%d", mPointerGesture.activeGestureId);
3792#endif
3793            }
3794        } else {
3795            // INDETERMINATE_MULTITOUCH mode.
3796            // Do nothing.
3797#if DEBUG_GESTURES
3798            LOGD("Gestures: INDETERMINATE_MULTITOUCH");
3799#endif
3800        }
3801    }
3802
3803    // Unfade the pointer if the user is doing anything with the touch pad.
3804    mPointerController->setButtonState(mCurrentTouch.buttonState);
3805    if (mCurrentTouch.buttonState || mCurrentTouch.pointerCount != 0) {
3806        mPointerController->unfade();
3807    }
3808
3809#if DEBUG_GESTURES
3810    LOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, "
3811            "currentGestureMode=%d, currentGesturePointerCount=%d, currentGestureIdBits=0x%08x, "
3812            "lastGestureMode=%d, lastGesturePointerCount=%d, lastGestureIdBits=0x%08x",
3813            toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture),
3814            mPointerGesture.currentGestureMode, mPointerGesture.currentGesturePointerCount,
3815            mPointerGesture.currentGestureIdBits.value,
3816            mPointerGesture.lastGestureMode, mPointerGesture.lastGesturePointerCount,
3817            mPointerGesture.lastGestureIdBits.value);
3818    for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) {
3819        uint32_t id = idBits.firstMarkedBit();
3820        idBits.clearBit(id);
3821        uint32_t index = mPointerGesture.currentGestureIdToIndex[id];
3822        const PointerCoords& coords = mPointerGesture.currentGestureCoords[index];
3823        LOGD("  currentGesture[%d]: index=%d, x=%0.3f, y=%0.3f, pressure=%0.3f",
3824                id, index, coords.getAxisValue(AMOTION_EVENT_AXIS_X),
3825                coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
3826                coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
3827    }
3828    for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) {
3829        uint32_t id = idBits.firstMarkedBit();
3830        idBits.clearBit(id);
3831        uint32_t index = mPointerGesture.lastGestureIdToIndex[id];
3832        const PointerCoords& coords = mPointerGesture.lastGestureCoords[index];
3833        LOGD("  lastGesture[%d]: index=%d, x=%0.3f, y=%0.3f, pressure=%0.3f",
3834                id, index, coords.getAxisValue(AMOTION_EVENT_AXIS_X),
3835                coords.getAxisValue(AMOTION_EVENT_AXIS_Y),
3836                coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
3837    }
3838#endif
3839}
3840
3841void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source,
3842        int32_t action, int32_t flags, uint32_t metaState, int32_t edgeFlags,
3843        const PointerCoords* coords, const uint32_t* idToIndex, BitSet32 idBits,
3844        int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) {
3845    PointerCoords pointerCoords[MAX_POINTERS];
3846    int32_t pointerIds[MAX_POINTERS];
3847    uint32_t pointerCount = 0;
3848    while (!idBits.isEmpty()) {
3849        uint32_t id = idBits.firstMarkedBit();
3850        idBits.clearBit(id);
3851        uint32_t index = idToIndex[id];
3852        pointerIds[pointerCount] = id;
3853        pointerCoords[pointerCount].copyFrom(coords[index]);
3854
3855        if (changedId >= 0 && id == uint32_t(changedId)) {
3856            action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
3857        }
3858
3859        pointerCount += 1;
3860    }
3861
3862    assert(pointerCount != 0);
3863
3864    if (changedId >= 0 && pointerCount == 1) {
3865        // Replace initial down and final up action.
3866        // We can compare the action without masking off the changed pointer index
3867        // because we know the index is 0.
3868        if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) {
3869            action = AMOTION_EVENT_ACTION_DOWN;
3870        } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) {
3871            action = AMOTION_EVENT_ACTION_UP;
3872        } else {
3873            // Can't happen.
3874            assert(false);
3875        }
3876    }
3877
3878    getDispatcher()->notifyMotion(when, getDeviceId(), source, policyFlags,
3879            action, flags, metaState, edgeFlags,
3880            pointerCount, pointerIds, pointerCoords, xPrecision, yPrecision, downTime);
3881}
3882
3883bool TouchInputMapper::updateMovedPointerCoords(
3884        const PointerCoords* inCoords, const uint32_t* inIdToIndex,
3885        PointerCoords* outCoords, const uint32_t* outIdToIndex, BitSet32 idBits) const {
3886    bool changed = false;
3887    while (!idBits.isEmpty()) {
3888        uint32_t id = idBits.firstMarkedBit();
3889        idBits.clearBit(id);
3890
3891        uint32_t inIndex = inIdToIndex[id];
3892        uint32_t outIndex = outIdToIndex[id];
3893        const PointerCoords& curInCoords = inCoords[inIndex];
3894        PointerCoords& curOutCoords = outCoords[outIndex];
3895
3896        if (curInCoords != curOutCoords) {
3897            curOutCoords.copyFrom(curInCoords);
3898            changed = true;
3899        }
3900    }
3901    return changed;
3902}
3903
3904void TouchInputMapper::fadePointer() {
3905    { // acquire lock
3906        AutoMutex _l(mLock);
3907        if (mPointerController != NULL) {
3908            mPointerController->fade();
3909        }
3910    } // release lock
3911}
3912
3913bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) {
3914    return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue
3915            && y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue;
3916}
3917
3918const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked(
3919        int32_t x, int32_t y) {
3920    size_t numVirtualKeys = mLocked.virtualKeys.size();
3921    for (size_t i = 0; i < numVirtualKeys; i++) {
3922        const VirtualKey& virtualKey = mLocked.virtualKeys[i];
3923
3924#if DEBUG_VIRTUAL_KEYS
3925        LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
3926                "left=%d, top=%d, right=%d, bottom=%d",
3927                x, y,
3928                virtualKey.keyCode, virtualKey.scanCode,
3929                virtualKey.hitLeft, virtualKey.hitTop,
3930                virtualKey.hitRight, virtualKey.hitBottom);
3931#endif
3932
3933        if (virtualKey.isHit(x, y)) {
3934            return & virtualKey;
3935        }
3936    }
3937
3938    return NULL;
3939}
3940
3941void TouchInputMapper::calculatePointerIds() {
3942    uint32_t currentPointerCount = mCurrentTouch.pointerCount;
3943    uint32_t lastPointerCount = mLastTouch.pointerCount;
3944
3945    if (currentPointerCount == 0) {
3946        // No pointers to assign.
3947        mCurrentTouch.idBits.clear();
3948    } else if (lastPointerCount == 0) {
3949        // All pointers are new.
3950        mCurrentTouch.idBits.clear();
3951        for (uint32_t i = 0; i < currentPointerCount; i++) {
3952            mCurrentTouch.pointers[i].id = i;
3953            mCurrentTouch.idToIndex[i] = i;
3954            mCurrentTouch.idBits.markBit(i);
3955        }
3956    } else if (currentPointerCount == 1 && lastPointerCount == 1) {
3957        // Only one pointer and no change in count so it must have the same id as before.
3958        uint32_t id = mLastTouch.pointers[0].id;
3959        mCurrentTouch.pointers[0].id = id;
3960        mCurrentTouch.idToIndex[id] = 0;
3961        mCurrentTouch.idBits.value = BitSet32::valueForBit(id);
3962    } else {
3963        // General case.
3964        // We build a heap of squared euclidean distances between current and last pointers
3965        // associated with the current and last pointer indices.  Then, we find the best
3966        // match (by distance) for each current pointer.
3967        PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS];
3968
3969        uint32_t heapSize = 0;
3970        for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
3971                currentPointerIndex++) {
3972            for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
3973                    lastPointerIndex++) {
3974                int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x
3975                        - mLastTouch.pointers[lastPointerIndex].x;
3976                int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y
3977                        - mLastTouch.pointers[lastPointerIndex].y;
3978
3979                uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
3980
3981                // Insert new element into the heap (sift up).
3982                heap[heapSize].currentPointerIndex = currentPointerIndex;
3983                heap[heapSize].lastPointerIndex = lastPointerIndex;
3984                heap[heapSize].distance = distance;
3985                heapSize += 1;
3986            }
3987        }
3988
3989        // Heapify
3990        for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) {
3991            startIndex -= 1;
3992            for (uint32_t parentIndex = startIndex; ;) {
3993                uint32_t childIndex = parentIndex * 2 + 1;
3994                if (childIndex >= heapSize) {
3995                    break;
3996                }
3997
3998                if (childIndex + 1 < heapSize
3999                        && heap[childIndex + 1].distance < heap[childIndex].distance) {
4000                    childIndex += 1;
4001                }
4002
4003                if (heap[parentIndex].distance <= heap[childIndex].distance) {
4004                    break;
4005                }
4006
4007                swap(heap[parentIndex], heap[childIndex]);
4008                parentIndex = childIndex;
4009            }
4010        }
4011
4012#if DEBUG_POINTER_ASSIGNMENT
4013        LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize);
4014        for (size_t i = 0; i < heapSize; i++) {
4015            LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
4016                    i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
4017                    heap[i].distance);
4018        }
4019#endif
4020
4021        // Pull matches out by increasing order of distance.
4022        // To avoid reassigning pointers that have already been matched, the loop keeps track
4023        // of which last and current pointers have been matched using the matchedXXXBits variables.
4024        // It also tracks the used pointer id bits.
4025        BitSet32 matchedLastBits(0);
4026        BitSet32 matchedCurrentBits(0);
4027        BitSet32 usedIdBits(0);
4028        bool first = true;
4029        for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) {
4030            for (;;) {
4031                if (first) {
4032                    // The first time through the loop, we just consume the root element of
4033                    // the heap (the one with smallest distance).
4034                    first = false;
4035                } else {
4036                    // Previous iterations consumed the root element of the heap.
4037                    // Pop root element off of the heap (sift down).
4038                    heapSize -= 1;
4039                    assert(heapSize > 0);
4040
4041                    // Sift down.
4042                    heap[0] = heap[heapSize];
4043                    for (uint32_t parentIndex = 0; ;) {
4044                        uint32_t childIndex = parentIndex * 2 + 1;
4045                        if (childIndex >= heapSize) {
4046                            break;
4047                        }
4048
4049                        if (childIndex + 1 < heapSize
4050                                && heap[childIndex + 1].distance < heap[childIndex].distance) {
4051                            childIndex += 1;
4052                        }
4053
4054                        if (heap[parentIndex].distance <= heap[childIndex].distance) {
4055                            break;
4056                        }
4057
4058                        swap(heap[parentIndex], heap[childIndex]);
4059                        parentIndex = childIndex;
4060                    }
4061
4062#if DEBUG_POINTER_ASSIGNMENT
4063                    LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize);
4064                    for (size_t i = 0; i < heapSize; i++) {
4065                        LOGD("  heap[%d]: cur=%d, last=%d, distance=%lld",
4066                                i, heap[i].currentPointerIndex, heap[i].lastPointerIndex,
4067                                heap[i].distance);
4068                    }
4069#endif
4070                }
4071
4072                uint32_t currentPointerIndex = heap[0].currentPointerIndex;
4073                if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
4074
4075                uint32_t lastPointerIndex = heap[0].lastPointerIndex;
4076                if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
4077
4078                matchedCurrentBits.markBit(currentPointerIndex);
4079                matchedLastBits.markBit(lastPointerIndex);
4080
4081                uint32_t id = mLastTouch.pointers[lastPointerIndex].id;
4082                mCurrentTouch.pointers[currentPointerIndex].id = id;
4083                mCurrentTouch.idToIndex[id] = currentPointerIndex;
4084                usedIdBits.markBit(id);
4085
4086#if DEBUG_POINTER_ASSIGNMENT
4087                LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld",
4088                        lastPointerIndex, currentPointerIndex, id, heap[0].distance);
4089#endif
4090                break;
4091            }
4092        }
4093
4094        // Assign fresh ids to new pointers.
4095        if (currentPointerCount > lastPointerCount) {
4096            for (uint32_t i = currentPointerCount - lastPointerCount; ;) {
4097                uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit();
4098                uint32_t id = usedIdBits.firstUnmarkedBit();
4099
4100                mCurrentTouch.pointers[currentPointerIndex].id = id;
4101                mCurrentTouch.idToIndex[id] = currentPointerIndex;
4102                usedIdBits.markBit(id);
4103
4104#if DEBUG_POINTER_ASSIGNMENT
4105                LOGD("calculatePointerIds - assigned: cur=%d, id=%d",
4106                        currentPointerIndex, id);
4107#endif
4108
4109                if (--i == 0) break; // done
4110                matchedCurrentBits.markBit(currentPointerIndex);
4111            }
4112        }
4113
4114        // Fix id bits.
4115        mCurrentTouch.idBits = usedIdBits;
4116    }
4117}
4118
4119/* Special hack for devices that have bad screen data: if one of the
4120 * points has moved more than a screen height from the last position,
4121 * then drop it. */
4122bool TouchInputMapper::applyBadTouchFilter() {
4123    uint32_t pointerCount = mCurrentTouch.pointerCount;
4124
4125    // Nothing to do if there are no points.
4126    if (pointerCount == 0) {
4127        return false;
4128    }
4129
4130    // Don't do anything if a finger is going down or up.  We run
4131    // here before assigning pointer IDs, so there isn't a good
4132    // way to do per-finger matching.
4133    if (pointerCount != mLastTouch.pointerCount) {
4134        return false;
4135    }
4136
4137    // We consider a single movement across more than a 7/16 of
4138    // the long size of the screen to be bad.  This was a magic value
4139    // determined by looking at the maximum distance it is feasible
4140    // to actually move in one sample.
4141    int32_t maxDeltaY = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) * 7 / 16;
4142
4143    // XXX The original code in InputDevice.java included commented out
4144    //     code for testing the X axis.  Note that when we drop a point
4145    //     we don't actually restore the old X either.  Strange.
4146    //     The old code also tries to track when bad points were previously
4147    //     detected but it turns out that due to the placement of a "break"
4148    //     at the end of the loop, we never set mDroppedBadPoint to true
4149    //     so it is effectively dead code.
4150    // Need to figure out if the old code is busted or just overcomplicated
4151    // but working as intended.
4152
4153    // Look through all new points and see if any are farther than
4154    // acceptable from all previous points.
4155    for (uint32_t i = pointerCount; i-- > 0; ) {
4156        int32_t y = mCurrentTouch.pointers[i].y;
4157        int32_t closestY = INT_MAX;
4158        int32_t closestDeltaY = 0;
4159
4160#if DEBUG_HACKS
4161        LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y);
4162#endif
4163
4164        for (uint32_t j = pointerCount; j-- > 0; ) {
4165            int32_t lastY = mLastTouch.pointers[j].y;
4166            int32_t deltaY = abs(y - lastY);
4167
4168#if DEBUG_HACKS
4169            LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d",
4170                    j, lastY, deltaY);
4171#endif
4172
4173            if (deltaY < maxDeltaY) {
4174                goto SkipSufficientlyClosePoint;
4175            }
4176            if (deltaY < closestDeltaY) {
4177                closestDeltaY = deltaY;
4178                closestY = lastY;
4179            }
4180        }
4181
4182        // Must not have found a close enough match.
4183#if DEBUG_HACKS
4184        LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d",
4185                i, y, closestY, closestDeltaY, maxDeltaY);
4186#endif
4187
4188        mCurrentTouch.pointers[i].y = closestY;
4189        return true; // XXX original code only corrects one point
4190
4191    SkipSufficientlyClosePoint: ;
4192    }
4193
4194    // No change.
4195    return false;
4196}
4197
4198/* Special hack for devices that have bad screen data: drop points where
4199 * the coordinate value for one axis has jumped to the other pointer's location.
4200 */
4201bool TouchInputMapper::applyJumpyTouchFilter() {
4202    uint32_t pointerCount = mCurrentTouch.pointerCount;
4203    if (mLastTouch.pointerCount != pointerCount) {
4204#if DEBUG_HACKS
4205        LOGD("JumpyTouchFilter: Different pointer count %d -> %d",
4206                mLastTouch.pointerCount, pointerCount);
4207        for (uint32_t i = 0; i < pointerCount; i++) {
4208            LOGD("  Pointer %d (%d, %d)", i,
4209                    mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
4210        }
4211#endif
4212
4213        if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) {
4214            if (mLastTouch.pointerCount == 1 && pointerCount == 2) {
4215                // Just drop the first few events going from 1 to 2 pointers.
4216                // They're bad often enough that they're not worth considering.
4217                mCurrentTouch.pointerCount = 1;
4218                mJumpyTouchFilter.jumpyPointsDropped += 1;
4219
4220#if DEBUG_HACKS
4221                LOGD("JumpyTouchFilter: Pointer 2 dropped");
4222#endif
4223                return true;
4224            } else if (mLastTouch.pointerCount == 2 && pointerCount == 1) {
4225                // The event when we go from 2 -> 1 tends to be messed up too
4226                mCurrentTouch.pointerCount = 2;
4227                mCurrentTouch.pointers[0] = mLastTouch.pointers[0];
4228                mCurrentTouch.pointers[1] = mLastTouch.pointers[1];
4229                mJumpyTouchFilter.jumpyPointsDropped += 1;
4230
4231#if DEBUG_HACKS
4232                for (int32_t i = 0; i < 2; i++) {
4233                    LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i,
4234                            mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y);
4235                }
4236#endif
4237                return true;
4238            }
4239        }
4240        // Reset jumpy points dropped on other transitions or if limit exceeded.
4241        mJumpyTouchFilter.jumpyPointsDropped = 0;
4242
4243#if DEBUG_HACKS
4244        LOGD("JumpyTouchFilter: Transition - drop limit reset");
4245#endif
4246        return false;
4247    }
4248
4249    // We have the same number of pointers as last time.
4250    // A 'jumpy' point is one where the coordinate value for one axis
4251    // has jumped to the other pointer's location. No need to do anything
4252    // else if we only have one pointer.
4253    if (pointerCount < 2) {
4254        return false;
4255    }
4256
4257    if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) {
4258        int jumpyEpsilon = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) / JUMPY_EPSILON_DIVISOR;
4259
4260        // We only replace the single worst jumpy point as characterized by pointer distance
4261        // in a single axis.
4262        int32_t badPointerIndex = -1;
4263        int32_t badPointerReplacementIndex = -1;
4264        int32_t badPointerDistance = INT_MIN; // distance to be corrected
4265
4266        for (uint32_t i = pointerCount; i-- > 0; ) {
4267            int32_t x = mCurrentTouch.pointers[i].x;
4268            int32_t y = mCurrentTouch.pointers[i].y;
4269
4270#if DEBUG_HACKS
4271            LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y);
4272#endif
4273
4274            // Check if a touch point is too close to another's coordinates
4275            bool dropX = false, dropY = false;
4276            for (uint32_t j = 0; j < pointerCount; j++) {
4277                if (i == j) {
4278                    continue;
4279                }
4280
4281                if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) {
4282                    dropX = true;
4283                    break;
4284                }
4285
4286                if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) {
4287                    dropY = true;
4288                    break;
4289                }
4290            }
4291            if (! dropX && ! dropY) {
4292                continue; // not jumpy
4293            }
4294
4295            // Find a replacement candidate by comparing with older points on the
4296            // complementary (non-jumpy) axis.
4297            int32_t distance = INT_MIN; // distance to be corrected
4298            int32_t replacementIndex = -1;
4299
4300            if (dropX) {
4301                // X looks too close.  Find an older replacement point with a close Y.
4302                int32_t smallestDeltaY = INT_MAX;
4303                for (uint32_t j = 0; j < pointerCount; j++) {
4304                    int32_t deltaY = abs(y - mLastTouch.pointers[j].y);
4305                    if (deltaY < smallestDeltaY) {
4306                        smallestDeltaY = deltaY;
4307                        replacementIndex = j;
4308                    }
4309                }
4310                distance = abs(x - mLastTouch.pointers[replacementIndex].x);
4311            } else {
4312                // Y looks too close.  Find an older replacement point with a close X.
4313                int32_t smallestDeltaX = INT_MAX;
4314                for (uint32_t j = 0; j < pointerCount; j++) {
4315                    int32_t deltaX = abs(x - mLastTouch.pointers[j].x);
4316                    if (deltaX < smallestDeltaX) {
4317                        smallestDeltaX = deltaX;
4318                        replacementIndex = j;
4319                    }
4320                }
4321                distance = abs(y - mLastTouch.pointers[replacementIndex].y);
4322            }
4323
4324            // If replacing this pointer would correct a worse error than the previous ones
4325            // considered, then use this replacement instead.
4326            if (distance > badPointerDistance) {
4327                badPointerIndex = i;
4328                badPointerReplacementIndex = replacementIndex;
4329                badPointerDistance = distance;
4330            }
4331        }
4332
4333        // Correct the jumpy pointer if one was found.
4334        if (badPointerIndex >= 0) {
4335#if DEBUG_HACKS
4336            LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)",
4337                    badPointerIndex,
4338                    mLastTouch.pointers[badPointerReplacementIndex].x,
4339                    mLastTouch.pointers[badPointerReplacementIndex].y);
4340#endif
4341
4342            mCurrentTouch.pointers[badPointerIndex].x =
4343                    mLastTouch.pointers[badPointerReplacementIndex].x;
4344            mCurrentTouch.pointers[badPointerIndex].y =
4345                    mLastTouch.pointers[badPointerReplacementIndex].y;
4346            mJumpyTouchFilter.jumpyPointsDropped += 1;
4347            return true;
4348        }
4349    }
4350
4351    mJumpyTouchFilter.jumpyPointsDropped = 0;
4352    return false;
4353}
4354
4355/* Special hack for devices that have bad screen data: aggregate and
4356 * compute averages of the coordinate data, to reduce the amount of
4357 * jitter seen by applications. */
4358void TouchInputMapper::applyAveragingTouchFilter() {
4359    for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) {
4360        uint32_t id = mCurrentTouch.pointers[currentIndex].id;
4361        int32_t x = mCurrentTouch.pointers[currentIndex].x;
4362        int32_t y = mCurrentTouch.pointers[currentIndex].y;
4363        int32_t pressure;
4364        switch (mCalibration.pressureSource) {
4365        case Calibration::PRESSURE_SOURCE_PRESSURE:
4366            pressure = mCurrentTouch.pointers[currentIndex].pressure;
4367            break;
4368        case Calibration::PRESSURE_SOURCE_TOUCH:
4369            pressure = mCurrentTouch.pointers[currentIndex].touchMajor;
4370            break;
4371        default:
4372            pressure = 1;
4373            break;
4374        }
4375
4376        if (mLastTouch.idBits.hasBit(id)) {
4377            // Pointer was down before and is still down now.
4378            // Compute average over history trace.
4379            uint32_t start = mAveragingTouchFilter.historyStart[id];
4380            uint32_t end = mAveragingTouchFilter.historyEnd[id];
4381
4382            int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x;
4383            int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y;
4384            uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
4385
4386#if DEBUG_HACKS
4387            LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld",
4388                    id, distance);
4389#endif
4390
4391            if (distance < AVERAGING_DISTANCE_LIMIT) {
4392                // Increment end index in preparation for recording new historical data.
4393                end += 1;
4394                if (end > AVERAGING_HISTORY_SIZE) {
4395                    end = 0;
4396                }
4397
4398                // If the end index has looped back to the start index then we have filled
4399                // the historical trace up to the desired size so we drop the historical
4400                // data at the start of the trace.
4401                if (end == start) {
4402                    start += 1;
4403                    if (start > AVERAGING_HISTORY_SIZE) {
4404                        start = 0;
4405                    }
4406                }
4407
4408                // Add the raw data to the historical trace.
4409                mAveragingTouchFilter.historyStart[id] = start;
4410                mAveragingTouchFilter.historyEnd[id] = end;
4411                mAveragingTouchFilter.historyData[end].pointers[id].x = x;
4412                mAveragingTouchFilter.historyData[end].pointers[id].y = y;
4413                mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure;
4414
4415                // Average over all historical positions in the trace by total pressure.
4416                int32_t averagedX = 0;
4417                int32_t averagedY = 0;
4418                int32_t totalPressure = 0;
4419                for (;;) {
4420                    int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x;
4421                    int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y;
4422                    int32_t historicalPressure = mAveragingTouchFilter.historyData[start]
4423                            .pointers[id].pressure;
4424
4425                    averagedX += historicalX * historicalPressure;
4426                    averagedY += historicalY * historicalPressure;
4427                    totalPressure += historicalPressure;
4428
4429                    if (start == end) {
4430                        break;
4431                    }
4432
4433                    start += 1;
4434                    if (start > AVERAGING_HISTORY_SIZE) {
4435                        start = 0;
4436                    }
4437                }
4438
4439                if (totalPressure != 0) {
4440                    averagedX /= totalPressure;
4441                    averagedY /= totalPressure;
4442
4443#if DEBUG_HACKS
4444                    LOGD("AveragingTouchFilter: Pointer id %d - "
4445                            "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure,
4446                            averagedX, averagedY);
4447#endif
4448
4449                    mCurrentTouch.pointers[currentIndex].x = averagedX;
4450                    mCurrentTouch.pointers[currentIndex].y = averagedY;
4451                }
4452            } else {
4453#if DEBUG_HACKS
4454                LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id);
4455#endif
4456            }
4457        } else {
4458#if DEBUG_HACKS
4459            LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id);
4460#endif
4461        }
4462
4463        // Reset pointer history.
4464        mAveragingTouchFilter.historyStart[id] = 0;
4465        mAveragingTouchFilter.historyEnd[id] = 0;
4466        mAveragingTouchFilter.historyData[0].pointers[id].x = x;
4467        mAveragingTouchFilter.historyData[0].pointers[id].y = y;
4468        mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure;
4469    }
4470}
4471
4472int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
4473    { // acquire lock
4474        AutoMutex _l(mLock);
4475
4476        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) {
4477            return AKEY_STATE_VIRTUAL;
4478        }
4479
4480        size_t numVirtualKeys = mLocked.virtualKeys.size();
4481        for (size_t i = 0; i < numVirtualKeys; i++) {
4482            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
4483            if (virtualKey.keyCode == keyCode) {
4484                return AKEY_STATE_UP;
4485            }
4486        }
4487    } // release lock
4488
4489    return AKEY_STATE_UNKNOWN;
4490}
4491
4492int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
4493    { // acquire lock
4494        AutoMutex _l(mLock);
4495
4496        if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) {
4497            return AKEY_STATE_VIRTUAL;
4498        }
4499
4500        size_t numVirtualKeys = mLocked.virtualKeys.size();
4501        for (size_t i = 0; i < numVirtualKeys; i++) {
4502            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
4503            if (virtualKey.scanCode == scanCode) {
4504                return AKEY_STATE_UP;
4505            }
4506        }
4507    } // release lock
4508
4509    return AKEY_STATE_UNKNOWN;
4510}
4511
4512bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
4513        const int32_t* keyCodes, uint8_t* outFlags) {
4514    { // acquire lock
4515        AutoMutex _l(mLock);
4516
4517        size_t numVirtualKeys = mLocked.virtualKeys.size();
4518        for (size_t i = 0; i < numVirtualKeys; i++) {
4519            const VirtualKey& virtualKey = mLocked.virtualKeys[i];
4520
4521            for (size_t i = 0; i < numCodes; i++) {
4522                if (virtualKey.keyCode == keyCodes[i]) {
4523                    outFlags[i] = 1;
4524                }
4525            }
4526        }
4527    } // release lock
4528
4529    return true;
4530}
4531
4532
4533// --- SingleTouchInputMapper ---
4534
4535SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) :
4536        TouchInputMapper(device) {
4537    initialize();
4538}
4539
4540SingleTouchInputMapper::~SingleTouchInputMapper() {
4541}
4542
4543void SingleTouchInputMapper::initialize() {
4544    mAccumulator.clear();
4545
4546    mDown = false;
4547    mX = 0;
4548    mY = 0;
4549    mPressure = 0; // default to 0 for devices that don't report pressure
4550    mToolWidth = 0; // default to 0 for devices that don't report tool width
4551    mButtonState = 0;
4552}
4553
4554void SingleTouchInputMapper::reset() {
4555    TouchInputMapper::reset();
4556
4557    initialize();
4558 }
4559
4560void SingleTouchInputMapper::process(const RawEvent* rawEvent) {
4561    switch (rawEvent->type) {
4562    case EV_KEY:
4563        switch (rawEvent->scanCode) {
4564        case BTN_TOUCH:
4565            mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH;
4566            mAccumulator.btnTouch = rawEvent->value != 0;
4567            // Don't sync immediately.  Wait until the next SYN_REPORT since we might
4568            // not have received valid position information yet.  This logic assumes that
4569            // BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet.
4570            break;
4571        default:
4572            if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
4573                uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
4574                if (buttonState) {
4575                    if (rawEvent->value) {
4576                        mAccumulator.buttonDown |= buttonState;
4577                    } else {
4578                        mAccumulator.buttonUp |= buttonState;
4579                    }
4580                    mAccumulator.fields |= Accumulator::FIELD_BUTTONS;
4581                }
4582            }
4583            break;
4584        }
4585        break;
4586
4587    case EV_ABS:
4588        switch (rawEvent->scanCode) {
4589        case ABS_X:
4590            mAccumulator.fields |= Accumulator::FIELD_ABS_X;
4591            mAccumulator.absX = rawEvent->value;
4592            break;
4593        case ABS_Y:
4594            mAccumulator.fields |= Accumulator::FIELD_ABS_Y;
4595            mAccumulator.absY = rawEvent->value;
4596            break;
4597        case ABS_PRESSURE:
4598            mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE;
4599            mAccumulator.absPressure = rawEvent->value;
4600            break;
4601        case ABS_TOOL_WIDTH:
4602            mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH;
4603            mAccumulator.absToolWidth = rawEvent->value;
4604            break;
4605        }
4606        break;
4607
4608    case EV_SYN:
4609        switch (rawEvent->scanCode) {
4610        case SYN_REPORT:
4611            sync(rawEvent->when);
4612            break;
4613        }
4614        break;
4615    }
4616}
4617
4618void SingleTouchInputMapper::sync(nsecs_t when) {
4619    uint32_t fields = mAccumulator.fields;
4620    if (fields == 0) {
4621        return; // no new state changes, so nothing to do
4622    }
4623
4624    if (fields & Accumulator::FIELD_BTN_TOUCH) {
4625        mDown = mAccumulator.btnTouch;
4626    }
4627
4628    if (fields & Accumulator::FIELD_ABS_X) {
4629        mX = mAccumulator.absX;
4630    }
4631
4632    if (fields & Accumulator::FIELD_ABS_Y) {
4633        mY = mAccumulator.absY;
4634    }
4635
4636    if (fields & Accumulator::FIELD_ABS_PRESSURE) {
4637        mPressure = mAccumulator.absPressure;
4638    }
4639
4640    if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) {
4641        mToolWidth = mAccumulator.absToolWidth;
4642    }
4643
4644    if (fields & Accumulator::FIELD_BUTTONS) {
4645        mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp;
4646    }
4647
4648    mCurrentTouch.clear();
4649
4650    if (mDown) {
4651        mCurrentTouch.pointerCount = 1;
4652        mCurrentTouch.pointers[0].id = 0;
4653        mCurrentTouch.pointers[0].x = mX;
4654        mCurrentTouch.pointers[0].y = mY;
4655        mCurrentTouch.pointers[0].pressure = mPressure;
4656        mCurrentTouch.pointers[0].touchMajor = 0;
4657        mCurrentTouch.pointers[0].touchMinor = 0;
4658        mCurrentTouch.pointers[0].toolMajor = mToolWidth;
4659        mCurrentTouch.pointers[0].toolMinor = mToolWidth;
4660        mCurrentTouch.pointers[0].orientation = 0;
4661        mCurrentTouch.idToIndex[0] = 0;
4662        mCurrentTouch.idBits.markBit(0);
4663        mCurrentTouch.buttonState = mButtonState;
4664    }
4665
4666    syncTouch(when, true);
4667
4668    mAccumulator.clear();
4669}
4670
4671void SingleTouchInputMapper::configureRawAxes() {
4672    TouchInputMapper::configureRawAxes();
4673
4674    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x);
4675    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y);
4676    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure);
4677    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor);
4678}
4679
4680
4681// --- MultiTouchInputMapper ---
4682
4683MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) :
4684        TouchInputMapper(device) {
4685    initialize();
4686}
4687
4688MultiTouchInputMapper::~MultiTouchInputMapper() {
4689}
4690
4691void MultiTouchInputMapper::initialize() {
4692    mAccumulator.clear();
4693    mButtonState = 0;
4694}
4695
4696void MultiTouchInputMapper::reset() {
4697    TouchInputMapper::reset();
4698
4699    initialize();
4700}
4701
4702void MultiTouchInputMapper::process(const RawEvent* rawEvent) {
4703    switch (rawEvent->type) {
4704    case EV_KEY: {
4705        if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) {
4706            uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode);
4707            if (buttonState) {
4708                if (rawEvent->value) {
4709                    mAccumulator.buttonDown |= buttonState;
4710                } else {
4711                    mAccumulator.buttonUp |= buttonState;
4712                }
4713            }
4714        }
4715        break;
4716    }
4717
4718    case EV_ABS: {
4719        uint32_t pointerIndex = mAccumulator.pointerCount;
4720        Accumulator::Pointer* pointer = & mAccumulator.pointers[pointerIndex];
4721
4722        switch (rawEvent->scanCode) {
4723        case ABS_MT_POSITION_X:
4724            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_X;
4725            pointer->absMTPositionX = rawEvent->value;
4726            break;
4727        case ABS_MT_POSITION_Y:
4728            pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y;
4729            pointer->absMTPositionY = rawEvent->value;
4730            break;
4731        case ABS_MT_TOUCH_MAJOR:
4732            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
4733            pointer->absMTTouchMajor = rawEvent->value;
4734            break;
4735        case ABS_MT_TOUCH_MINOR:
4736            pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR;
4737            pointer->absMTTouchMinor = rawEvent->value;
4738            break;
4739        case ABS_MT_WIDTH_MAJOR:
4740            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
4741            pointer->absMTWidthMajor = rawEvent->value;
4742            break;
4743        case ABS_MT_WIDTH_MINOR:
4744            pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR;
4745            pointer->absMTWidthMinor = rawEvent->value;
4746            break;
4747        case ABS_MT_ORIENTATION:
4748            pointer->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION;
4749            pointer->absMTOrientation = rawEvent->value;
4750            break;
4751        case ABS_MT_TRACKING_ID:
4752            pointer->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID;
4753            pointer->absMTTrackingId = rawEvent->value;
4754            break;
4755        case ABS_MT_PRESSURE:
4756            pointer->fields |= Accumulator::FIELD_ABS_MT_PRESSURE;
4757            pointer->absMTPressure = rawEvent->value;
4758            break;
4759        }
4760        break;
4761    }
4762
4763    case EV_SYN:
4764        switch (rawEvent->scanCode) {
4765        case SYN_MT_REPORT: {
4766            // MultiTouch Sync: The driver has returned all data for *one* of the pointers.
4767            uint32_t pointerIndex = mAccumulator.pointerCount;
4768
4769            if (mAccumulator.pointers[pointerIndex].fields) {
4770                if (pointerIndex == MAX_POINTERS) {
4771                    LOGW("MultiTouch device driver returned more than maximum of %d pointers.",
4772                            MAX_POINTERS);
4773                } else {
4774                    pointerIndex += 1;
4775                    mAccumulator.pointerCount = pointerIndex;
4776                }
4777            }
4778
4779            mAccumulator.pointers[pointerIndex].clear();
4780            break;
4781        }
4782
4783        case SYN_REPORT:
4784            sync(rawEvent->when);
4785            break;
4786        }
4787        break;
4788    }
4789}
4790
4791void MultiTouchInputMapper::sync(nsecs_t when) {
4792    static const uint32_t REQUIRED_FIELDS =
4793            Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y;
4794
4795    uint32_t inCount = mAccumulator.pointerCount;
4796    uint32_t outCount = 0;
4797    bool havePointerIds = true;
4798
4799    mCurrentTouch.clear();
4800
4801    for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) {
4802        const Accumulator::Pointer& inPointer = mAccumulator.pointers[inIndex];
4803        uint32_t fields = inPointer.fields;
4804
4805        if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
4806            // Some drivers send empty MT sync packets without X / Y to indicate a pointer up.
4807            // Drop this finger.
4808            continue;
4809        }
4810
4811        PointerData& outPointer = mCurrentTouch.pointers[outCount];
4812        outPointer.x = inPointer.absMTPositionX;
4813        outPointer.y = inPointer.absMTPositionY;
4814
4815        if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) {
4816            if (inPointer.absMTPressure <= 0) {
4817                // Some devices send sync packets with X / Y but with a 0 pressure to indicate
4818                // a pointer going up.  Drop this finger.
4819                continue;
4820            }
4821            outPointer.pressure = inPointer.absMTPressure;
4822        } else {
4823            // Default pressure to 0 if absent.
4824            outPointer.pressure = 0;
4825        }
4826
4827        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) {
4828            if (inPointer.absMTTouchMajor <= 0) {
4829                // Some devices send sync packets with X / Y but with a 0 touch major to indicate
4830                // a pointer going up.  Drop this finger.
4831                continue;
4832            }
4833            outPointer.touchMajor = inPointer.absMTTouchMajor;
4834        } else {
4835            // Default touch area to 0 if absent.
4836            outPointer.touchMajor = 0;
4837        }
4838
4839        if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) {
4840            outPointer.touchMinor = inPointer.absMTTouchMinor;
4841        } else {
4842            // Assume touch area is circular.
4843            outPointer.touchMinor = outPointer.touchMajor;
4844        }
4845
4846        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) {
4847            outPointer.toolMajor = inPointer.absMTWidthMajor;
4848        } else {
4849            // Default tool area to 0 if absent.
4850            outPointer.toolMajor = 0;
4851        }
4852
4853        if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) {
4854            outPointer.toolMinor = inPointer.absMTWidthMinor;
4855        } else {
4856            // Assume tool area is circular.
4857            outPointer.toolMinor = outPointer.toolMajor;
4858        }
4859
4860        if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) {
4861            outPointer.orientation = inPointer.absMTOrientation;
4862        } else {
4863            // Default orientation to vertical if absent.
4864            outPointer.orientation = 0;
4865        }
4866
4867        // Assign pointer id using tracking id if available.
4868        if (havePointerIds) {
4869            if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) {
4870                uint32_t id = uint32_t(inPointer.absMTTrackingId);
4871
4872                if (id > MAX_POINTER_ID) {
4873#if DEBUG_POINTERS
4874                    LOGD("Pointers: Ignoring driver provided pointer id %d because "
4875                            "it is larger than max supported id %d",
4876                            id, MAX_POINTER_ID);
4877#endif
4878                    havePointerIds = false;
4879                }
4880                else {
4881                    outPointer.id = id;
4882                    mCurrentTouch.idToIndex[id] = outCount;
4883                    mCurrentTouch.idBits.markBit(id);
4884                }
4885            } else {
4886                havePointerIds = false;
4887            }
4888        }
4889
4890        outCount += 1;
4891    }
4892
4893    mCurrentTouch.pointerCount = outCount;
4894
4895    mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp;
4896    mCurrentTouch.buttonState = mButtonState;
4897
4898    syncTouch(when, havePointerIds);
4899
4900    mAccumulator.clear();
4901}
4902
4903void MultiTouchInputMapper::configureRawAxes() {
4904    TouchInputMapper::configureRawAxes();
4905
4906    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, & mRawAxes.x);
4907    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, & mRawAxes.y);
4908    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, & mRawAxes.touchMajor);
4909    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, & mRawAxes.touchMinor);
4910    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, & mRawAxes.toolMajor);
4911    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, & mRawAxes.toolMinor);
4912    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, & mRawAxes.orientation);
4913    getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, & mRawAxes.pressure);
4914}
4915
4916
4917// --- JoystickInputMapper ---
4918
4919JoystickInputMapper::JoystickInputMapper(InputDevice* device) :
4920        InputMapper(device) {
4921}
4922
4923JoystickInputMapper::~JoystickInputMapper() {
4924}
4925
4926uint32_t JoystickInputMapper::getSources() {
4927    return AINPUT_SOURCE_JOYSTICK;
4928}
4929
4930void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) {
4931    InputMapper::populateDeviceInfo(info);
4932
4933    for (size_t i = 0; i < mAxes.size(); i++) {
4934        const Axis& axis = mAxes.valueAt(i);
4935        info->addMotionRange(axis.axisInfo.axis, AINPUT_SOURCE_JOYSTICK,
4936                axis.min, axis.max, axis.flat, axis.fuzz);
4937        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
4938            info->addMotionRange(axis.axisInfo.highAxis, AINPUT_SOURCE_JOYSTICK,
4939                    axis.min, axis.max, axis.flat, axis.fuzz);
4940        }
4941    }
4942}
4943
4944void JoystickInputMapper::dump(String8& dump) {
4945    dump.append(INDENT2 "Joystick Input Mapper:\n");
4946
4947    dump.append(INDENT3 "Axes:\n");
4948    size_t numAxes = mAxes.size();
4949    for (size_t i = 0; i < numAxes; i++) {
4950        const Axis& axis = mAxes.valueAt(i);
4951        const char* label = getAxisLabel(axis.axisInfo.axis);
4952        if (label) {
4953            dump.appendFormat(INDENT4 "%s", label);
4954        } else {
4955            dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis);
4956        }
4957        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
4958            label = getAxisLabel(axis.axisInfo.highAxis);
4959            if (label) {
4960                dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue);
4961            } else {
4962                dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis,
4963                        axis.axisInfo.splitValue);
4964            }
4965        } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) {
4966            dump.append(" (invert)");
4967        }
4968
4969        dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f\n",
4970                axis.min, axis.max, axis.flat, axis.fuzz);
4971        dump.appendFormat(INDENT4 "  scale=%0.5f, offset=%0.5f, "
4972                "highScale=%0.5f, highOffset=%0.5f\n",
4973                axis.scale, axis.offset, axis.highScale, axis.highOffset);
4974        dump.appendFormat(INDENT4 "  rawAxis=%d, rawMin=%d, rawMax=%d, rawFlat=%d, rawFuzz=%d\n",
4975                mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue,
4976                axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz);
4977    }
4978}
4979
4980void JoystickInputMapper::configure() {
4981    InputMapper::configure();
4982
4983    // Collect all axes.
4984    for (int32_t abs = 0; abs <= ABS_MAX; abs++) {
4985        RawAbsoluteAxisInfo rawAxisInfo;
4986        getEventHub()->getAbsoluteAxisInfo(getDeviceId(), abs, &rawAxisInfo);
4987        if (rawAxisInfo.valid) {
4988            // Map axis.
4989            AxisInfo axisInfo;
4990            bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo);
4991            if (!explicitlyMapped) {
4992                // Axis is not explicitly mapped, will choose a generic axis later.
4993                axisInfo.mode = AxisInfo::MODE_NORMAL;
4994                axisInfo.axis = -1;
4995            }
4996
4997            // Apply flat override.
4998            int32_t rawFlat = axisInfo.flatOverride < 0
4999                    ? rawAxisInfo.flat : axisInfo.flatOverride;
5000
5001            // Calculate scaling factors and limits.
5002            Axis axis;
5003            if (axisInfo.mode == AxisInfo::MODE_SPLIT) {
5004                float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue);
5005                float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue);
5006                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
5007                        scale, 0.0f, highScale, 0.0f,
5008                        0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
5009            } else if (isCenteredAxis(axisInfo.axis)) {
5010                float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
5011                float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale;
5012                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
5013                        scale, offset, scale, offset,
5014                        -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
5015            } else {
5016                float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue);
5017                axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped,
5018                        scale, 0.0f, scale, 0.0f,
5019                        0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale);
5020            }
5021
5022            // To eliminate noise while the joystick is at rest, filter out small variations
5023            // in axis values up front.
5024            axis.filter = axis.flat * 0.25f;
5025
5026            mAxes.add(abs, axis);
5027        }
5028    }
5029
5030    // If there are too many axes, start dropping them.
5031    // Prefer to keep explicitly mapped axes.
5032    if (mAxes.size() > PointerCoords::MAX_AXES) {
5033        LOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.",
5034                getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES);
5035        pruneAxes(true);
5036        pruneAxes(false);
5037    }
5038
5039    // Assign generic axis ids to remaining axes.
5040    int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1;
5041    size_t numAxes = mAxes.size();
5042    for (size_t i = 0; i < numAxes; i++) {
5043        Axis& axis = mAxes.editValueAt(i);
5044        if (axis.axisInfo.axis < 0) {
5045            while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16
5046                    && haveAxis(nextGenericAxisId)) {
5047                nextGenericAxisId += 1;
5048            }
5049
5050            if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) {
5051                axis.axisInfo.axis = nextGenericAxisId;
5052                nextGenericAxisId += 1;
5053            } else {
5054                LOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids "
5055                        "have already been assigned to other axes.",
5056                        getDeviceName().string(), mAxes.keyAt(i));
5057                mAxes.removeItemsAt(i--);
5058                numAxes -= 1;
5059            }
5060        }
5061    }
5062}
5063
5064bool JoystickInputMapper::haveAxis(int32_t axisId) {
5065    size_t numAxes = mAxes.size();
5066    for (size_t i = 0; i < numAxes; i++) {
5067        const Axis& axis = mAxes.valueAt(i);
5068        if (axis.axisInfo.axis == axisId
5069                || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT
5070                        && axis.axisInfo.highAxis == axisId)) {
5071            return true;
5072        }
5073    }
5074    return false;
5075}
5076
5077void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) {
5078    size_t i = mAxes.size();
5079    while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) {
5080        if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) {
5081            continue;
5082        }
5083        LOGI("Discarding joystick '%s' axis %d because there are too many axes.",
5084                getDeviceName().string(), mAxes.keyAt(i));
5085        mAxes.removeItemsAt(i);
5086    }
5087}
5088
5089bool JoystickInputMapper::isCenteredAxis(int32_t axis) {
5090    switch (axis) {
5091    case AMOTION_EVENT_AXIS_X:
5092    case AMOTION_EVENT_AXIS_Y:
5093    case AMOTION_EVENT_AXIS_Z:
5094    case AMOTION_EVENT_AXIS_RX:
5095    case AMOTION_EVENT_AXIS_RY:
5096    case AMOTION_EVENT_AXIS_RZ:
5097    case AMOTION_EVENT_AXIS_HAT_X:
5098    case AMOTION_EVENT_AXIS_HAT_Y:
5099    case AMOTION_EVENT_AXIS_ORIENTATION:
5100    case AMOTION_EVENT_AXIS_RUDDER:
5101    case AMOTION_EVENT_AXIS_WHEEL:
5102        return true;
5103    default:
5104        return false;
5105    }
5106}
5107
5108void JoystickInputMapper::reset() {
5109    // Recenter all axes.
5110    nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC);
5111
5112    size_t numAxes = mAxes.size();
5113    for (size_t i = 0; i < numAxes; i++) {
5114        Axis& axis = mAxes.editValueAt(i);
5115        axis.resetValue();
5116    }
5117
5118    sync(when, true /*force*/);
5119
5120    InputMapper::reset();
5121}
5122
5123void JoystickInputMapper::process(const RawEvent* rawEvent) {
5124    switch (rawEvent->type) {
5125    case EV_ABS: {
5126        ssize_t index = mAxes.indexOfKey(rawEvent->scanCode);
5127        if (index >= 0) {
5128            Axis& axis = mAxes.editValueAt(index);
5129            float newValue, highNewValue;
5130            switch (axis.axisInfo.mode) {
5131            case AxisInfo::MODE_INVERT:
5132                newValue = (axis.rawAxisInfo.maxValue - rawEvent->value)
5133                        * axis.scale + axis.offset;
5134                highNewValue = 0.0f;
5135                break;
5136            case AxisInfo::MODE_SPLIT:
5137                if (rawEvent->value < axis.axisInfo.splitValue) {
5138                    newValue = (axis.axisInfo.splitValue - rawEvent->value)
5139                            * axis.scale + axis.offset;
5140                    highNewValue = 0.0f;
5141                } else if (rawEvent->value > axis.axisInfo.splitValue) {
5142                    newValue = 0.0f;
5143                    highNewValue = (rawEvent->value - axis.axisInfo.splitValue)
5144                            * axis.highScale + axis.highOffset;
5145                } else {
5146                    newValue = 0.0f;
5147                    highNewValue = 0.0f;
5148                }
5149                break;
5150            default:
5151                newValue = rawEvent->value * axis.scale + axis.offset;
5152                highNewValue = 0.0f;
5153                break;
5154            }
5155            axis.newValue = newValue;
5156            axis.highNewValue = highNewValue;
5157        }
5158        break;
5159    }
5160
5161    case EV_SYN:
5162        switch (rawEvent->scanCode) {
5163        case SYN_REPORT:
5164            sync(rawEvent->when, false /*force*/);
5165            break;
5166        }
5167        break;
5168    }
5169}
5170
5171void JoystickInputMapper::sync(nsecs_t when, bool force) {
5172    if (!filterAxes(force)) {
5173        return;
5174    }
5175
5176    int32_t metaState = mContext->getGlobalMetaState();
5177
5178    PointerCoords pointerCoords;
5179    pointerCoords.clear();
5180
5181    size_t numAxes = mAxes.size();
5182    for (size_t i = 0; i < numAxes; i++) {
5183        const Axis& axis = mAxes.valueAt(i);
5184        pointerCoords.setAxisValue(axis.axisInfo.axis, axis.currentValue);
5185        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
5186            pointerCoords.setAxisValue(axis.axisInfo.highAxis, axis.highCurrentValue);
5187        }
5188    }
5189
5190    // Moving a joystick axis should not wake the devide because joysticks can
5191    // be fairly noisy even when not in use.  On the other hand, pushing a gamepad
5192    // button will likely wake the device.
5193    // TODO: Use the input device configuration to control this behavior more finely.
5194    uint32_t policyFlags = 0;
5195
5196    int32_t pointerId = 0;
5197    getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags,
5198            AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE,
5199            1, &pointerId, &pointerCoords, 0, 0, 0);
5200}
5201
5202bool JoystickInputMapper::filterAxes(bool force) {
5203    bool atLeastOneSignificantChange = force;
5204    size_t numAxes = mAxes.size();
5205    for (size_t i = 0; i < numAxes; i++) {
5206        Axis& axis = mAxes.editValueAt(i);
5207        if (force || hasValueChangedSignificantly(axis.filter,
5208                axis.newValue, axis.currentValue, axis.min, axis.max)) {
5209            axis.currentValue = axis.newValue;
5210            atLeastOneSignificantChange = true;
5211        }
5212        if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) {
5213            if (force || hasValueChangedSignificantly(axis.filter,
5214                    axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) {
5215                axis.highCurrentValue = axis.highNewValue;
5216                atLeastOneSignificantChange = true;
5217            }
5218        }
5219    }
5220    return atLeastOneSignificantChange;
5221}
5222
5223bool JoystickInputMapper::hasValueChangedSignificantly(
5224        float filter, float newValue, float currentValue, float min, float max) {
5225    if (newValue != currentValue) {
5226        // Filter out small changes in value unless the value is converging on the axis
5227        // bounds or center point.  This is intended to reduce the amount of information
5228        // sent to applications by particularly noisy joysticks (such as PS3).
5229        if (fabs(newValue - currentValue) > filter
5230                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min)
5231                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max)
5232                || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) {
5233            return true;
5234        }
5235    }
5236    return false;
5237}
5238
5239bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange(
5240        float filter, float newValue, float currentValue, float thresholdValue) {
5241    float newDistance = fabs(newValue - thresholdValue);
5242    if (newDistance < filter) {
5243        float oldDistance = fabs(currentValue - thresholdValue);
5244        if (newDistance < oldDistance) {
5245            return true;
5246        }
5247    }
5248    return false;
5249}
5250
5251} // namespace android
5252