1/*
2 * Copyright 2010-2012, The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "slang_backend.h"
18
19#include <string>
20#include <vector>
21
22#include "bcinfo/BitcodeWrapper.h"
23
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/DeclGroup.h"
27
28#include "clang/Basic/Diagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Basic/TargetOptions.h"
31
32#include "clang/CodeGen/ModuleBuilder.h"
33
34#include "clang/Frontend/CodeGenOptions.h"
35#include "clang/Frontend/FrontendDiagnostic.h"
36
37#include "llvm/Assembly/PrintModulePass.h"
38
39#include "llvm/Bitcode/ReaderWriter.h"
40
41#include "llvm/CodeGen/RegAllocRegistry.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43
44#include "llvm/LLVMContext.h"
45#include "llvm/Module.h"
46#include "llvm/Metadata.h"
47
48#include "llvm/Transforms/IPO/PassManagerBuilder.h"
49
50#include "llvm/Target/TargetData.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/TargetRegistry.h"
54
55#include "llvm/MC/SubtargetFeature.h"
56
57#include "slang_assert.h"
58#include "BitWriter_2_9/ReaderWriter_2_9.h"
59#include "BitWriter_2_9_func/ReaderWriter_2_9_func.h"
60
61namespace slang {
62
63void Backend::CreateFunctionPasses() {
64  if (!mPerFunctionPasses) {
65    mPerFunctionPasses = new llvm::FunctionPassManager(mpModule);
66    mPerFunctionPasses->add(new llvm::TargetData(mpModule));
67
68    llvm::PassManagerBuilder PMBuilder;
69    PMBuilder.OptLevel = mCodeGenOpts.OptimizationLevel;
70    PMBuilder.populateFunctionPassManager(*mPerFunctionPasses);
71  }
72  return;
73}
74
75void Backend::CreateModulePasses() {
76  if (!mPerModulePasses) {
77    mPerModulePasses = new llvm::PassManager();
78    mPerModulePasses->add(new llvm::TargetData(mpModule));
79
80    llvm::PassManagerBuilder PMBuilder;
81    PMBuilder.OptLevel = mCodeGenOpts.OptimizationLevel;
82    PMBuilder.SizeLevel = mCodeGenOpts.OptimizeSize;
83    PMBuilder.SizeLevel = mCodeGenOpts.OptimizeSize;
84    if (mCodeGenOpts.UnitAtATime) {
85      PMBuilder.DisableUnitAtATime = 0;
86    } else {
87      PMBuilder.DisableUnitAtATime = 1;
88    }
89
90    if (mCodeGenOpts.UnrollLoops) {
91      PMBuilder.DisableUnrollLoops = 0;
92    } else {
93      PMBuilder.DisableUnrollLoops = 1;
94    }
95
96    PMBuilder.DisableSimplifyLibCalls = false;
97    PMBuilder.populateModulePassManager(*mPerModulePasses);
98  }
99  return;
100}
101
102bool Backend::CreateCodeGenPasses() {
103  if ((mOT != Slang::OT_Assembly) && (mOT != Slang::OT_Object))
104    return true;
105
106  // Now we add passes for code emitting
107  if (mCodeGenPasses) {
108    return true;
109  } else {
110    mCodeGenPasses = new llvm::FunctionPassManager(mpModule);
111    mCodeGenPasses->add(new llvm::TargetData(mpModule));
112  }
113
114  // Create the TargetMachine for generating code.
115  std::string Triple = mpModule->getTargetTriple();
116
117  std::string Error;
118  const llvm::Target* TargetInfo =
119      llvm::TargetRegistry::lookupTarget(Triple, Error);
120  if (TargetInfo == NULL) {
121    mDiagEngine.Report(clang::diag::err_fe_unable_to_create_target) << Error;
122    return false;
123  }
124
125  // Target Machine Options
126  llvm::TargetOptions Options;
127
128  Options.NoFramePointerElim = mCodeGenOpts.DisableFPElim;
129
130  // Use hardware FPU.
131  //
132  // FIXME: Need to detect the CPU capability and decide whether to use softfp.
133  // To use softfp, change following 2 lines to
134  //
135  // Options.FloatABIType = llvm::FloatABI::Soft;
136  // Options.UseSoftFloat = true;
137  Options.FloatABIType = llvm::FloatABI::Hard;
138  Options.UseSoftFloat = false;
139
140  // BCC needs all unknown symbols resolved at compilation time. So we don't
141  // need any relocation model.
142  llvm::Reloc::Model RM = llvm::Reloc::Static;
143
144  // This is set for the linker (specify how large of the virtual addresses we
145  // can access for all unknown symbols.)
146  llvm::CodeModel::Model CM;
147  if (mpModule->getPointerSize() == llvm::Module::Pointer32) {
148    CM = llvm::CodeModel::Small;
149  } else {
150    // The target may have pointer size greater than 32 (e.g. x86_64
151    // architecture) may need large data address model
152    CM = llvm::CodeModel::Medium;
153  }
154
155  // Setup feature string
156  std::string FeaturesStr;
157  if (mTargetOpts.CPU.size() || mTargetOpts.Features.size()) {
158    llvm::SubtargetFeatures Features;
159
160    for (std::vector<std::string>::const_iterator
161             I = mTargetOpts.Features.begin(), E = mTargetOpts.Features.end();
162         I != E;
163         I++)
164      Features.AddFeature(*I);
165
166    FeaturesStr = Features.getString();
167  }
168
169  llvm::TargetMachine *TM =
170    TargetInfo->createTargetMachine(Triple, mTargetOpts.CPU, FeaturesStr,
171                                    Options, RM, CM);
172
173  // Register scheduler
174  llvm::RegisterScheduler::setDefault(llvm::createDefaultScheduler);
175
176  // Register allocation policy:
177  //  createFastRegisterAllocator: fast but bad quality
178  //  createGreedyRegisterAllocator: not so fast but good quality
179  llvm::RegisterRegAlloc::setDefault((mCodeGenOpts.OptimizationLevel == 0) ?
180                                     llvm::createFastRegisterAllocator :
181                                     llvm::createGreedyRegisterAllocator);
182
183  llvm::CodeGenOpt::Level OptLevel = llvm::CodeGenOpt::Default;
184  if (mCodeGenOpts.OptimizationLevel == 0) {
185    OptLevel = llvm::CodeGenOpt::None;
186  } else if (mCodeGenOpts.OptimizationLevel == 3) {
187    OptLevel = llvm::CodeGenOpt::Aggressive;
188  }
189
190  llvm::TargetMachine::CodeGenFileType CGFT =
191      llvm::TargetMachine::CGFT_AssemblyFile;
192  if (mOT == Slang::OT_Object) {
193    CGFT = llvm::TargetMachine::CGFT_ObjectFile;
194  }
195  if (TM->addPassesToEmitFile(*mCodeGenPasses, FormattedOutStream,
196                              CGFT, OptLevel)) {
197    mDiagEngine.Report(clang::diag::err_fe_unable_to_interface_with_target);
198    return false;
199  }
200
201  return true;
202}
203
204Backend::Backend(clang::DiagnosticsEngine *DiagEngine,
205                 const clang::CodeGenOptions &CodeGenOpts,
206                 const clang::TargetOptions &TargetOpts,
207                 PragmaList *Pragmas,
208                 llvm::raw_ostream *OS,
209                 Slang::OutputType OT)
210    : ASTConsumer(),
211      mTargetOpts(TargetOpts),
212      mpModule(NULL),
213      mpOS(OS),
214      mOT(OT),
215      mGen(NULL),
216      mPerFunctionPasses(NULL),
217      mPerModulePasses(NULL),
218      mCodeGenPasses(NULL),
219      mLLVMContext(llvm::getGlobalContext()),
220      mDiagEngine(*DiagEngine),
221      mCodeGenOpts(CodeGenOpts),
222      mPragmas(Pragmas) {
223  FormattedOutStream.setStream(*mpOS,
224                               llvm::formatted_raw_ostream::PRESERVE_STREAM);
225  mGen = CreateLLVMCodeGen(mDiagEngine, "", mCodeGenOpts, mLLVMContext);
226  return;
227}
228
229void Backend::Initialize(clang::ASTContext &Ctx) {
230  mGen->Initialize(Ctx);
231
232  mpModule = mGen->GetModule();
233
234  return;
235}
236
237// Encase the Bitcode in a wrapper containing RS version information.
238void Backend::WrapBitcode(llvm::raw_string_ostream &Bitcode) {
239  bcinfo::AndroidBitcodeWrapper wrapper;
240  size_t actualWrapperLen = bcinfo::writeAndroidBitcodeWrapper(
241      &wrapper, Bitcode.str().length(), getTargetAPI(),
242      SlangVersion::CURRENT, mCodeGenOpts.OptimizationLevel);
243
244  slangAssert(actualWrapperLen > 0);
245
246  // Write out the bitcode wrapper.
247  FormattedOutStream.write(reinterpret_cast<char*>(&wrapper), actualWrapperLen);
248
249  // Write out the actual encoded bitcode.
250  FormattedOutStream << Bitcode.str();
251  return;
252}
253
254bool Backend::HandleTopLevelDecl(clang::DeclGroupRef D) {
255  return mGen->HandleTopLevelDecl(D);
256}
257
258void Backend::HandleTranslationUnit(clang::ASTContext &Ctx) {
259  HandleTranslationUnitPre(Ctx);
260
261  mGen->HandleTranslationUnit(Ctx);
262
263  // Here, we complete a translation unit (whole translation unit is now in LLVM
264  // IR). Now, interact with LLVM backend to generate actual machine code (asm
265  // or machine code, whatever.)
266
267  // Silently ignore if we weren't initialized for some reason.
268  if (!mpModule)
269    return;
270
271  llvm::Module *M = mGen->ReleaseModule();
272  if (!M) {
273    // The module has been released by IR gen on failures, do not double free.
274    mpModule = NULL;
275    return;
276  }
277
278  slangAssert(mpModule == M &&
279              "Unexpected module change during LLVM IR generation");
280
281  // Insert #pragma information into metadata section of module
282  if (!mPragmas->empty()) {
283    llvm::NamedMDNode *PragmaMetadata =
284        mpModule->getOrInsertNamedMetadata(Slang::PragmaMetadataName);
285    for (PragmaList::const_iterator I = mPragmas->begin(), E = mPragmas->end();
286         I != E;
287         I++) {
288      llvm::SmallVector<llvm::Value*, 2> Pragma;
289      // Name goes first
290      Pragma.push_back(llvm::MDString::get(mLLVMContext, I->first));
291      // And then value
292      Pragma.push_back(llvm::MDString::get(mLLVMContext, I->second));
293
294      // Create MDNode and insert into PragmaMetadata
295      PragmaMetadata->addOperand(
296          llvm::MDNode::get(mLLVMContext, Pragma));
297    }
298  }
299
300  HandleTranslationUnitPost(mpModule);
301
302  // Create passes for optimization and code emission
303
304  // Create and run per-function passes
305  CreateFunctionPasses();
306  if (mPerFunctionPasses) {
307    mPerFunctionPasses->doInitialization();
308
309    for (llvm::Module::iterator I = mpModule->begin(), E = mpModule->end();
310         I != E;
311         I++)
312      if (!I->isDeclaration())
313        mPerFunctionPasses->run(*I);
314
315    mPerFunctionPasses->doFinalization();
316  }
317
318  // Create and run module passes
319  CreateModulePasses();
320  if (mPerModulePasses)
321    mPerModulePasses->run(*mpModule);
322
323  switch (mOT) {
324    case Slang::OT_Assembly:
325    case Slang::OT_Object: {
326      if (!CreateCodeGenPasses())
327        return;
328
329      mCodeGenPasses->doInitialization();
330
331      for (llvm::Module::iterator I = mpModule->begin(), E = mpModule->end();
332          I != E;
333          I++)
334        if (!I->isDeclaration())
335          mCodeGenPasses->run(*I);
336
337      mCodeGenPasses->doFinalization();
338      break;
339    }
340    case Slang::OT_LLVMAssembly: {
341      llvm::PassManager *LLEmitPM = new llvm::PassManager();
342      LLEmitPM->add(llvm::createPrintModulePass(&FormattedOutStream));
343      LLEmitPM->run(*mpModule);
344      break;
345    }
346    case Slang::OT_Bitcode: {
347      llvm::PassManager *BCEmitPM = new llvm::PassManager();
348      std::string BCStr;
349      llvm::raw_string_ostream Bitcode(BCStr);
350      unsigned int TargetAPI = getTargetAPI();
351      switch (TargetAPI) {
352        case SLANG_HC_TARGET_API:
353        case SLANG_HC_MR1_TARGET_API:
354        case SLANG_HC_MR2_TARGET_API: {
355          // Pre-ICS targets must use the LLVM 2.9 BitcodeWriter
356          BCEmitPM->add(llvm_2_9::createBitcodeWriterPass(Bitcode));
357          break;
358        }
359        case SLANG_ICS_TARGET_API:
360        case SLANG_ICS_MR1_TARGET_API: {
361          // ICS targets must use the LLVM 2.9_func BitcodeWriter
362          BCEmitPM->add(llvm_2_9_func::createBitcodeWriterPass(Bitcode));
363          break;
364        }
365        default: {
366          if (TargetAPI < SLANG_MINIMUM_TARGET_API ||
367              TargetAPI > SLANG_MAXIMUM_TARGET_API) {
368            slangAssert(false && "Invalid target API value");
369          }
370          BCEmitPM->add(llvm::createBitcodeWriterPass(Bitcode));
371          break;
372        }
373      }
374
375      BCEmitPM->run(*mpModule);
376      WrapBitcode(Bitcode);
377      break;
378    }
379    case Slang::OT_Nothing: {
380      return;
381    }
382    default: {
383      slangAssert(false && "Unknown output type");
384    }
385  }
386
387  FormattedOutStream.flush();
388
389  return;
390}
391
392void Backend::HandleTagDeclDefinition(clang::TagDecl *D) {
393  mGen->HandleTagDeclDefinition(D);
394  return;
395}
396
397void Backend::CompleteTentativeDefinition(clang::VarDecl *D) {
398  mGen->CompleteTentativeDefinition(D);
399  return;
400}
401
402Backend::~Backend() {
403  delete mpModule;
404  delete mGen;
405  delete mPerFunctionPasses;
406  delete mPerModulePasses;
407  delete mCodeGenPasses;
408  return;
409}
410
411}  // namespace slang
412