Threads.cpp revision d9e1bb76fe1e01fb79bb65959b92051aa18fddbe
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17// #define LOG_NDEBUG 0
18#define LOG_TAG "libutils.threads"
19
20#include <utils/threads.h>
21#include <utils/Log.h>
22
23#include <cutils/sched_policy.h>
24#include <cutils/properties.h>
25
26#include <stdio.h>
27#include <stdlib.h>
28#include <memory.h>
29#include <errno.h>
30#include <assert.h>
31#include <unistd.h>
32
33#if defined(HAVE_PTHREADS)
34# include <pthread.h>
35# include <sched.h>
36# include <sys/resource.h>
37#elif defined(HAVE_WIN32_THREADS)
38# include <windows.h>
39# include <stdint.h>
40# include <process.h>
41# define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
42#endif
43
44#if defined(HAVE_PRCTL)
45#include <sys/prctl.h>
46#endif
47
48/*
49 * ===========================================================================
50 *      Thread wrappers
51 * ===========================================================================
52 */
53
54using namespace android;
55
56// ----------------------------------------------------------------------------
57#if defined(HAVE_PTHREADS)
58// ----------------------------------------------------------------------------
59
60/*
61 * Create and run a new thread.
62 *
63 * We create it "detached", so it cleans up after itself.
64 */
65
66typedef void* (*android_pthread_entry)(void*);
67
68static pthread_once_t gDoSchedulingGroupOnce = PTHREAD_ONCE_INIT;
69static bool gDoSchedulingGroup = true;
70
71static void checkDoSchedulingGroup(void) {
72    char buf[PROPERTY_VALUE_MAX];
73    int len = property_get("debug.sys.noschedgroups", buf, "");
74    if (len > 0) {
75        int temp;
76        if (sscanf(buf, "%d", &temp) == 1) {
77            gDoSchedulingGroup = temp == 0;
78        }
79    }
80}
81
82struct thread_data_t {
83    thread_func_t   entryFunction;
84    void*           userData;
85    int             priority;
86    char *          threadName;
87
88    // we use this trampoline when we need to set the priority with
89    // nice/setpriority.
90    static int trampoline(const thread_data_t* t) {
91        thread_func_t f = t->entryFunction;
92        void* u = t->userData;
93        int prio = t->priority;
94        char * name = t->threadName;
95        delete t;
96        setpriority(PRIO_PROCESS, 0, prio);
97        pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
98        if (gDoSchedulingGroup) {
99            if (prio >= ANDROID_PRIORITY_BACKGROUND) {
100                set_sched_policy(androidGetTid(), SP_BACKGROUND);
101            } else {
102                set_sched_policy(androidGetTid(), SP_FOREGROUND);
103            }
104        }
105
106        if (name) {
107#if defined(HAVE_PRCTL)
108            // Mac OS doesn't have this, and we build libutil for the host too
109            int hasAt = 0;
110            int hasDot = 0;
111            char *s = name;
112            while (*s) {
113                if (*s == '.') hasDot = 1;
114                else if (*s == '@') hasAt = 1;
115                s++;
116            }
117            int len = s - name;
118            if (len < 15 || hasAt || !hasDot) {
119                s = name;
120            } else {
121                s = name + len - 15;
122            }
123            prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
124#endif
125            free(name);
126        }
127        return f(u);
128    }
129};
130
131int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
132                               void *userData,
133                               const char* threadName,
134                               int32_t threadPriority,
135                               size_t threadStackSize,
136                               android_thread_id_t *threadId)
137{
138    pthread_attr_t attr;
139    pthread_attr_init(&attr);
140    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
141
142#ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
143    if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
144        // We could avoid the trampoline if there was a way to get to the
145        // android_thread_id_t (pid) from pthread_t
146        thread_data_t* t = new thread_data_t;
147        t->priority = threadPriority;
148        t->threadName = threadName ? strdup(threadName) : NULL;
149        t->entryFunction = entryFunction;
150        t->userData = userData;
151        entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
152        userData = t;
153    }
154#endif
155
156    if (threadStackSize) {
157        pthread_attr_setstacksize(&attr, threadStackSize);
158    }
159
160    errno = 0;
161    pthread_t thread;
162    int result = pthread_create(&thread, &attr,
163                    (android_pthread_entry)entryFunction, userData);
164    if (result != 0) {
165        LOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
166             "(android threadPriority=%d)",
167            entryFunction, result, errno, threadPriority);
168        return 0;
169    }
170
171    // Note that *threadID is directly available to the parent only, as it is
172    // assigned after the child starts.  Use memory barrier / lock if the child
173    // or other threads also need access.
174    if (threadId != NULL) {
175        *threadId = (android_thread_id_t)thread; // XXX: this is not portable
176    }
177    return 1;
178}
179
180android_thread_id_t androidGetThreadId()
181{
182    return (android_thread_id_t)pthread_self();
183}
184
185// ----------------------------------------------------------------------------
186#elif defined(HAVE_WIN32_THREADS)
187// ----------------------------------------------------------------------------
188
189/*
190 * Trampoline to make us __stdcall-compliant.
191 *
192 * We're expected to delete "vDetails" when we're done.
193 */
194struct threadDetails {
195    int (*func)(void*);
196    void* arg;
197};
198static __stdcall unsigned int threadIntermediary(void* vDetails)
199{
200    struct threadDetails* pDetails = (struct threadDetails*) vDetails;
201    int result;
202
203    result = (*(pDetails->func))(pDetails->arg);
204
205    delete pDetails;
206
207    LOG(LOG_VERBOSE, "thread", "thread exiting\n");
208    return (unsigned int) result;
209}
210
211/*
212 * Create and run a new thread.
213 */
214static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
215{
216    HANDLE hThread;
217    struct threadDetails* pDetails = new threadDetails; // must be on heap
218    unsigned int thrdaddr;
219
220    pDetails->func = fn;
221    pDetails->arg = arg;
222
223#if defined(HAVE__BEGINTHREADEX)
224    hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
225                    &thrdaddr);
226    if (hThread == 0)
227#elif defined(HAVE_CREATETHREAD)
228    hThread = CreateThread(NULL, 0,
229                    (LPTHREAD_START_ROUTINE) threadIntermediary,
230                    (void*) pDetails, 0, (DWORD*) &thrdaddr);
231    if (hThread == NULL)
232#endif
233    {
234        LOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
235        return false;
236    }
237
238#if defined(HAVE_CREATETHREAD)
239    /* close the management handle */
240    CloseHandle(hThread);
241#endif
242
243    if (id != NULL) {
244      	*id = (android_thread_id_t)thrdaddr;
245    }
246
247    return true;
248}
249
250int androidCreateRawThreadEtc(android_thread_func_t fn,
251                               void *userData,
252                               const char* threadName,
253                               int32_t threadPriority,
254                               size_t threadStackSize,
255                               android_thread_id_t *threadId)
256{
257    return doCreateThread(  fn, userData, threadId);
258}
259
260android_thread_id_t androidGetThreadId()
261{
262    return (android_thread_id_t)GetCurrentThreadId();
263}
264
265// ----------------------------------------------------------------------------
266#else
267#error "Threads not supported"
268#endif
269
270// ----------------------------------------------------------------------------
271
272int androidCreateThread(android_thread_func_t fn, void* arg)
273{
274    return createThreadEtc(fn, arg);
275}
276
277int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
278{
279    return createThreadEtc(fn, arg, "android:unnamed_thread",
280                           PRIORITY_DEFAULT, 0, id);
281}
282
283static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
284
285int androidCreateThreadEtc(android_thread_func_t entryFunction,
286                            void *userData,
287                            const char* threadName,
288                            int32_t threadPriority,
289                            size_t threadStackSize,
290                            android_thread_id_t *threadId)
291{
292    return gCreateThreadFn(entryFunction, userData, threadName,
293        threadPriority, threadStackSize, threadId);
294}
295
296void androidSetCreateThreadFunc(android_create_thread_fn func)
297{
298    gCreateThreadFn = func;
299}
300
301pid_t androidGetTid()
302{
303#ifdef HAVE_GETTID
304    return gettid();
305#else
306    return getpid();
307#endif
308}
309
310int androidSetThreadSchedulingGroup(pid_t tid, int grp)
311{
312    if (grp > ANDROID_TGROUP_MAX || grp < 0) {
313        return BAD_VALUE;
314    }
315
316#if defined(HAVE_PTHREADS)
317    pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
318    if (gDoSchedulingGroup) {
319        if (set_sched_policy(tid, (grp == ANDROID_TGROUP_BG_NONINTERACT) ?
320                                          SP_BACKGROUND : SP_FOREGROUND)) {
321            return PERMISSION_DENIED;
322        }
323    }
324#endif
325
326    return NO_ERROR;
327}
328
329int androidSetThreadPriority(pid_t tid, int pri)
330{
331    int rc = 0;
332
333#if defined(HAVE_PTHREADS)
334    int lasterr = 0;
335
336    pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
337    if (gDoSchedulingGroup) {
338        if (pri >= ANDROID_PRIORITY_BACKGROUND) {
339            rc = set_sched_policy(tid, SP_BACKGROUND);
340        } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
341            rc = set_sched_policy(tid, SP_FOREGROUND);
342        }
343    }
344
345    if (rc) {
346        lasterr = errno;
347    }
348
349    if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
350        rc = INVALID_OPERATION;
351    } else {
352        errno = lasterr;
353    }
354#endif
355
356    return rc;
357}
358
359namespace android {
360
361/*
362 * ===========================================================================
363 *      Mutex class
364 * ===========================================================================
365 */
366
367#if defined(HAVE_PTHREADS)
368// implemented as inlines in threads.h
369#elif defined(HAVE_WIN32_THREADS)
370
371Mutex::Mutex()
372{
373    HANDLE hMutex;
374
375    assert(sizeof(hMutex) == sizeof(mState));
376
377    hMutex = CreateMutex(NULL, FALSE, NULL);
378    mState = (void*) hMutex;
379}
380
381Mutex::Mutex(const char* name)
382{
383    // XXX: name not used for now
384    HANDLE hMutex;
385
386    assert(sizeof(hMutex) == sizeof(mState));
387
388    hMutex = CreateMutex(NULL, FALSE, NULL);
389    mState = (void*) hMutex;
390}
391
392Mutex::Mutex(int type, const char* name)
393{
394    // XXX: type and name not used for now
395    HANDLE hMutex;
396
397    assert(sizeof(hMutex) == sizeof(mState));
398
399    hMutex = CreateMutex(NULL, FALSE, NULL);
400    mState = (void*) hMutex;
401}
402
403Mutex::~Mutex()
404{
405    CloseHandle((HANDLE) mState);
406}
407
408status_t Mutex::lock()
409{
410    DWORD dwWaitResult;
411    dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
412    return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
413}
414
415void Mutex::unlock()
416{
417    if (!ReleaseMutex((HANDLE) mState))
418        LOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
419}
420
421status_t Mutex::tryLock()
422{
423    DWORD dwWaitResult;
424
425    dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
426    if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
427        LOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
428    return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
429}
430
431#else
432#error "Somebody forgot to implement threads for this platform."
433#endif
434
435
436/*
437 * ===========================================================================
438 *      Condition class
439 * ===========================================================================
440 */
441
442#if defined(HAVE_PTHREADS)
443// implemented as inlines in threads.h
444#elif defined(HAVE_WIN32_THREADS)
445
446/*
447 * Windows doesn't have a condition variable solution.  It's possible
448 * to create one, but it's easy to get it wrong.  For a discussion, and
449 * the origin of this implementation, see:
450 *
451 *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
452 *
453 * The implementation shown on the page does NOT follow POSIX semantics.
454 * As an optimization they require acquiring the external mutex before
455 * calling signal() and broadcast(), whereas POSIX only requires grabbing
456 * it before calling wait().  The implementation here has been un-optimized
457 * to have the correct behavior.
458 */
459typedef struct WinCondition {
460    // Number of waiting threads.
461    int                 waitersCount;
462
463    // Serialize access to waitersCount.
464    CRITICAL_SECTION    waitersCountLock;
465
466    // Semaphore used to queue up threads waiting for the condition to
467    // become signaled.
468    HANDLE              sema;
469
470    // An auto-reset event used by the broadcast/signal thread to wait
471    // for all the waiting thread(s) to wake up and be released from
472    // the semaphore.
473    HANDLE              waitersDone;
474
475    // This mutex wouldn't be necessary if we required that the caller
476    // lock the external mutex before calling signal() and broadcast().
477    // I'm trying to mimic pthread semantics though.
478    HANDLE              internalMutex;
479
480    // Keeps track of whether we were broadcasting or signaling.  This
481    // allows us to optimize the code if we're just signaling.
482    bool                wasBroadcast;
483
484    status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
485    {
486        // Increment the wait count, avoiding race conditions.
487        EnterCriticalSection(&condState->waitersCountLock);
488        condState->waitersCount++;
489        //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
490        //    condState->waitersCount, getThreadId());
491        LeaveCriticalSection(&condState->waitersCountLock);
492
493        DWORD timeout = INFINITE;
494        if (abstime) {
495            nsecs_t reltime = *abstime - systemTime();
496            if (reltime < 0)
497                reltime = 0;
498            timeout = reltime/1000000;
499        }
500
501        // Atomically release the external mutex and wait on the semaphore.
502        DWORD res =
503            SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
504
505        //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
506
507        // Reacquire lock to avoid race conditions.
508        EnterCriticalSection(&condState->waitersCountLock);
509
510        // No longer waiting.
511        condState->waitersCount--;
512
513        // Check to see if we're the last waiter after a broadcast.
514        bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
515
516        //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
517        //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
518
519        LeaveCriticalSection(&condState->waitersCountLock);
520
521        // If we're the last waiter thread during this particular broadcast
522        // then signal broadcast() that we're all awake.  It'll drop the
523        // internal mutex.
524        if (lastWaiter) {
525            // Atomically signal the "waitersDone" event and wait until we
526            // can acquire the internal mutex.  We want to do this in one step
527            // because it ensures that everybody is in the mutex FIFO before
528            // any thread has a chance to run.  Without it, another thread
529            // could wake up, do work, and hop back in ahead of us.
530            SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
531                INFINITE, FALSE);
532        } else {
533            // Grab the internal mutex.
534            WaitForSingleObject(condState->internalMutex, INFINITE);
535        }
536
537        // Release the internal and grab the external.
538        ReleaseMutex(condState->internalMutex);
539        WaitForSingleObject(hMutex, INFINITE);
540
541        return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
542    }
543} WinCondition;
544
545/*
546 * Constructor.  Set up the WinCondition stuff.
547 */
548Condition::Condition()
549{
550    WinCondition* condState = new WinCondition;
551
552    condState->waitersCount = 0;
553    condState->wasBroadcast = false;
554    // semaphore: no security, initial value of 0
555    condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
556    InitializeCriticalSection(&condState->waitersCountLock);
557    // auto-reset event, not signaled initially
558    condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
559    // used so we don't have to lock external mutex on signal/broadcast
560    condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
561
562    mState = condState;
563}
564
565/*
566 * Destructor.  Free Windows resources as well as our allocated storage.
567 */
568Condition::~Condition()
569{
570    WinCondition* condState = (WinCondition*) mState;
571    if (condState != NULL) {
572        CloseHandle(condState->sema);
573        CloseHandle(condState->waitersDone);
574        delete condState;
575    }
576}
577
578
579status_t Condition::wait(Mutex& mutex)
580{
581    WinCondition* condState = (WinCondition*) mState;
582    HANDLE hMutex = (HANDLE) mutex.mState;
583
584    return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
585}
586
587status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
588{
589    WinCondition* condState = (WinCondition*) mState;
590    HANDLE hMutex = (HANDLE) mutex.mState;
591    nsecs_t absTime = systemTime()+reltime;
592
593    return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
594}
595
596/*
597 * Signal the condition variable, allowing one thread to continue.
598 */
599void Condition::signal()
600{
601    WinCondition* condState = (WinCondition*) mState;
602
603    // Lock the internal mutex.  This ensures that we don't clash with
604    // broadcast().
605    WaitForSingleObject(condState->internalMutex, INFINITE);
606
607    EnterCriticalSection(&condState->waitersCountLock);
608    bool haveWaiters = (condState->waitersCount > 0);
609    LeaveCriticalSection(&condState->waitersCountLock);
610
611    // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
612    // down a notch.
613    if (haveWaiters)
614        ReleaseSemaphore(condState->sema, 1, 0);
615
616    // Release internal mutex.
617    ReleaseMutex(condState->internalMutex);
618}
619
620/*
621 * Signal the condition variable, allowing all threads to continue.
622 *
623 * First we have to wake up all threads waiting on the semaphore, then
624 * we wait until all of the threads have actually been woken before
625 * releasing the internal mutex.  This ensures that all threads are woken.
626 */
627void Condition::broadcast()
628{
629    WinCondition* condState = (WinCondition*) mState;
630
631    // Lock the internal mutex.  This keeps the guys we're waking up
632    // from getting too far.
633    WaitForSingleObject(condState->internalMutex, INFINITE);
634
635    EnterCriticalSection(&condState->waitersCountLock);
636    bool haveWaiters = false;
637
638    if (condState->waitersCount > 0) {
639        haveWaiters = true;
640        condState->wasBroadcast = true;
641    }
642
643    if (haveWaiters) {
644        // Wake up all the waiters.
645        ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
646
647        LeaveCriticalSection(&condState->waitersCountLock);
648
649        // Wait for all awakened threads to acquire the counting semaphore.
650        // The last guy who was waiting sets this.
651        WaitForSingleObject(condState->waitersDone, INFINITE);
652
653        // Reset wasBroadcast.  (No crit section needed because nobody
654        // else can wake up to poke at it.)
655        condState->wasBroadcast = 0;
656    } else {
657        // nothing to do
658        LeaveCriticalSection(&condState->waitersCountLock);
659    }
660
661    // Release internal mutex.
662    ReleaseMutex(condState->internalMutex);
663}
664
665#else
666#error "condition variables not supported on this platform"
667#endif
668
669// ----------------------------------------------------------------------------
670
671/*
672 * This is our thread object!
673 */
674
675Thread::Thread(bool canCallJava)
676    :   mCanCallJava(canCallJava),
677        mThread(thread_id_t(-1)),
678        mLock("Thread::mLock"),
679        mStatus(NO_ERROR),
680        mExitPending(false), mRunning(false)
681#ifdef HAVE_ANDROID_OS
682        , mTid(-1)
683#endif
684{
685}
686
687Thread::~Thread()
688{
689}
690
691status_t Thread::readyToRun()
692{
693    return NO_ERROR;
694}
695
696status_t Thread::run(const char* name, int32_t priority, size_t stack)
697{
698    Mutex::Autolock _l(mLock);
699
700    if (mRunning) {
701        // thread already started
702        return INVALID_OPERATION;
703    }
704
705    // reset status and exitPending to their default value, so we can
706    // try again after an error happened (either below, or in readyToRun())
707    mStatus = NO_ERROR;
708    mExitPending = false;
709    mThread = thread_id_t(-1);
710
711    // hold a strong reference on ourself
712    mHoldSelf = this;
713
714    mRunning = true;
715
716    bool res;
717    if (mCanCallJava) {
718        res = createThreadEtc(_threadLoop,
719                this, name, priority, stack, &mThread);
720    } else {
721        res = androidCreateRawThreadEtc(_threadLoop,
722                this, name, priority, stack, &mThread);
723    }
724
725    if (res == false) {
726        mStatus = UNKNOWN_ERROR;   // something happened!
727        mRunning = false;
728        mThread = thread_id_t(-1);
729        mHoldSelf.clear();  // "this" may have gone away after this.
730
731        return UNKNOWN_ERROR;
732    }
733
734    // Do not refer to mStatus here: The thread is already running (may, in fact
735    // already have exited with a valid mStatus result). The NO_ERROR indication
736    // here merely indicates successfully starting the thread and does not
737    // imply successful termination/execution.
738    return NO_ERROR;
739
740    // Exiting scope of mLock is a memory barrier and allows new thread to run
741}
742
743int Thread::_threadLoop(void* user)
744{
745    Thread* const self = static_cast<Thread*>(user);
746
747    sp<Thread> strong(self->mHoldSelf);
748    wp<Thread> weak(strong);
749    self->mHoldSelf.clear();
750
751#ifdef HAVE_ANDROID_OS
752    // this is very useful for debugging with gdb
753    self->mTid = gettid();
754#endif
755
756    bool first = true;
757
758    do {
759        bool result;
760        if (first) {
761            first = false;
762            self->mStatus = self->readyToRun();
763            result = (self->mStatus == NO_ERROR);
764
765            if (result && !self->exitPending()) {
766                // Binder threads (and maybe others) rely on threadLoop
767                // running at least once after a successful ::readyToRun()
768                // (unless, of course, the thread has already been asked to exit
769                // at that point).
770                // This is because threads are essentially used like this:
771                //   (new ThreadSubclass())->run();
772                // The caller therefore does not retain a strong reference to
773                // the thread and the thread would simply disappear after the
774                // successful ::readyToRun() call instead of entering the
775                // threadLoop at least once.
776                result = self->threadLoop();
777            }
778        } else {
779            result = self->threadLoop();
780        }
781
782        // establish a scope for mLock
783        {
784        Mutex::Autolock _l(self->mLock);
785        if (result == false || self->mExitPending) {
786            self->mExitPending = true;
787            self->mRunning = false;
788            // clear thread ID so that requestExitAndWait() does not exit if
789            // called by a new thread using the same thread ID as this one.
790            self->mThread = thread_id_t(-1);
791            // note that interested observers blocked in requestExitAndWait are
792            // awoken by broadcast, but blocked on mLock until break exits scope
793            self->mThreadExitedCondition.broadcast();
794            break;
795        }
796        }
797
798        // Release our strong reference, to let a chance to the thread
799        // to die a peaceful death.
800        strong.clear();
801        // And immediately, re-acquire a strong reference for the next loop
802        strong = weak.promote();
803    } while(strong != 0);
804
805    return 0;
806}
807
808void Thread::requestExit()
809{
810    Mutex::Autolock _l(mLock);
811    mExitPending = true;
812}
813
814status_t Thread::requestExitAndWait()
815{
816    Mutex::Autolock _l(mLock);
817    if (mThread == getThreadId()) {
818        LOGW(
819        "Thread (this=%p): don't call waitForExit() from this "
820        "Thread object's thread. It's a guaranteed deadlock!",
821        this);
822
823        return WOULD_BLOCK;
824    }
825
826    mExitPending = true;
827
828    while (mRunning == true) {
829        mThreadExitedCondition.wait(mLock);
830    }
831    // This next line is probably not needed any more, but is being left for
832    // historical reference. Note that each interested party will clear flag.
833    mExitPending = false;
834
835    return mStatus;
836}
837
838bool Thread::exitPending() const
839{
840    Mutex::Autolock _l(mLock);
841    return mExitPending;
842}
843
844
845
846};  // namespace android
847