1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/SurfaceTextureClient.h>
43
44#include <ui/GraphicBufferAllocator.h>
45#include <ui/PixelFormat.h>
46#include <ui/UiConfig.h>
47
48#include <utils/misc.h>
49#include <utils/String8.h>
50#include <utils/String16.h>
51#include <utils/StopWatch.h>
52#include <utils/Trace.h>
53
54#include <private/android_filesystem_config.h>
55
56#include "clz.h"
57#include "DdmConnection.h"
58#include "DisplayDevice.h"
59#include "Client.h"
60#include "EventThread.h"
61#include "GLExtensions.h"
62#include "Layer.h"
63#include "LayerDim.h"
64#include "LayerScreenshot.h"
65#include "SurfaceFlinger.h"
66
67#include "DisplayHardware/FramebufferSurface.h"
68#include "DisplayHardware/GraphicBufferAlloc.h"
69#include "DisplayHardware/HWComposer.h"
70
71
72#define EGL_VERSION_HW_ANDROID  0x3143
73
74#define DISPLAY_COUNT       1
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransactionPending(false),
90        mAnimTransactionPending(false),
91        mLayersRemoved(false),
92        mRepaintEverything(0),
93        mBootTime(systemTime()),
94        mVisibleRegionsDirty(false),
95        mHwWorkListDirty(false),
96        mDebugRegion(0),
97        mDebugDDMS(0),
98        mDebugDisableHWC(0),
99        mDebugDisableTransformHint(0),
100        mDebugInSwapBuffers(0),
101        mLastSwapBufferTime(0),
102        mDebugInTransaction(0),
103        mLastTransactionTime(0),
104        mBootFinished(false)
105{
106    ALOGI("SurfaceFlinger is starting");
107
108    // debugging stuff...
109    char value[PROPERTY_VALUE_MAX];
110
111    property_get("debug.sf.showupdates", value, "0");
112    mDebugRegion = atoi(value);
113
114    property_get("debug.sf.ddms", value, "0");
115    mDebugDDMS = atoi(value);
116    if (mDebugDDMS) {
117        if (!startDdmConnection()) {
118            // start failed, and DDMS debugging not enabled
119            mDebugDDMS = 0;
120        }
121    }
122    ALOGI_IF(mDebugRegion, "showupdates enabled");
123    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
124}
125
126void SurfaceFlinger::onFirstRef()
127{
128    mEventQueue.init(this);
129
130    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
131
132    // Wait for the main thread to be done with its initialization
133    mReadyToRunBarrier.wait();
134}
135
136
137SurfaceFlinger::~SurfaceFlinger()
138{
139    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
140    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
141    eglTerminate(display);
142}
143
144void SurfaceFlinger::binderDied(const wp<IBinder>& who)
145{
146    // the window manager died on us. prepare its eulogy.
147
148    // restore initial conditions (default device unblank, etc)
149    initializeDisplays();
150
151    // restart the boot-animation
152    startBootAnim();
153}
154
155sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
156{
157    sp<ISurfaceComposerClient> bclient;
158    sp<Client> client(new Client(this));
159    status_t err = client->initCheck();
160    if (err == NO_ERROR) {
161        bclient = client;
162    }
163    return bclient;
164}
165
166sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
167        bool secure)
168{
169    class DisplayToken : public BBinder {
170        sp<SurfaceFlinger> flinger;
171        virtual ~DisplayToken() {
172             // no more references, this display must be terminated
173             Mutex::Autolock _l(flinger->mStateLock);
174             flinger->mCurrentState.displays.removeItem(this);
175             flinger->setTransactionFlags(eDisplayTransactionNeeded);
176         }
177     public:
178        DisplayToken(const sp<SurfaceFlinger>& flinger)
179            : flinger(flinger) {
180        }
181    };
182
183    sp<BBinder> token = new DisplayToken(this);
184
185    Mutex::Autolock _l(mStateLock);
186    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
187    info.displayName = displayName;
188    info.isSecure = secure;
189    mCurrentState.displays.add(token, info);
190
191    return token;
192}
193
194sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
195    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
196        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
197        return NULL;
198    }
199    return mDefaultDisplays[id];
200}
201
202sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
203{
204    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
205    return gba;
206}
207
208void SurfaceFlinger::bootFinished()
209{
210    const nsecs_t now = systemTime();
211    const nsecs_t duration = now - mBootTime;
212    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
213    mBootFinished = true;
214
215    // wait patiently for the window manager death
216    const String16 name("window");
217    sp<IBinder> window(defaultServiceManager()->getService(name));
218    if (window != 0) {
219        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
220    }
221
222    // stop boot animation
223    // formerly we would just kill the process, but we now ask it to exit so it
224    // can choose where to stop the animation.
225    property_set("service.bootanim.exit", "1");
226}
227
228void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
229    class MessageDestroyGLTexture : public MessageBase {
230        GLuint texture;
231    public:
232        MessageDestroyGLTexture(GLuint texture)
233            : texture(texture) {
234        }
235        virtual bool handler() {
236            glDeleteTextures(1, &texture);
237            return true;
238        }
239    };
240    postMessageAsync(new MessageDestroyGLTexture(texture));
241}
242
243status_t SurfaceFlinger::selectConfigForAttribute(
244        EGLDisplay dpy,
245        EGLint const* attrs,
246        EGLint attribute, EGLint wanted,
247        EGLConfig* outConfig)
248{
249    EGLConfig config = NULL;
250    EGLint numConfigs = -1, n=0;
251    eglGetConfigs(dpy, NULL, 0, &numConfigs);
252    EGLConfig* const configs = new EGLConfig[numConfigs];
253    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
254
255    if (n) {
256        if (attribute != EGL_NONE) {
257            for (int i=0 ; i<n ; i++) {
258                EGLint value = 0;
259                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
260                if (wanted == value) {
261                    *outConfig = configs[i];
262                    delete [] configs;
263                    return NO_ERROR;
264                }
265            }
266        } else {
267            // just pick the first one
268            *outConfig = configs[0];
269            delete [] configs;
270            return NO_ERROR;
271        }
272    }
273    delete [] configs;
274    return NAME_NOT_FOUND;
275}
276
277class EGLAttributeVector {
278    struct Attribute;
279    class Adder;
280    friend class Adder;
281    KeyedVector<Attribute, EGLint> mList;
282    struct Attribute {
283        Attribute() {};
284        Attribute(EGLint v) : v(v) { }
285        EGLint v;
286        bool operator < (const Attribute& other) const {
287            // this places EGL_NONE at the end
288            EGLint lhs(v);
289            EGLint rhs(other.v);
290            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
291            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
292            return lhs < rhs;
293        }
294    };
295    class Adder {
296        friend class EGLAttributeVector;
297        EGLAttributeVector& v;
298        EGLint attribute;
299        Adder(EGLAttributeVector& v, EGLint attribute)
300            : v(v), attribute(attribute) {
301        }
302    public:
303        void operator = (EGLint value) {
304            if (attribute != EGL_NONE) {
305                v.mList.add(attribute, value);
306            }
307        }
308        operator EGLint () const { return v.mList[attribute]; }
309    };
310public:
311    EGLAttributeVector() {
312        mList.add(EGL_NONE, EGL_NONE);
313    }
314    void remove(EGLint attribute) {
315        if (attribute != EGL_NONE) {
316            mList.removeItem(attribute);
317        }
318    }
319    Adder operator [] (EGLint attribute) {
320        return Adder(*this, attribute);
321    }
322    EGLint operator [] (EGLint attribute) const {
323       return mList[attribute];
324    }
325    // cast-operator to (EGLint const*)
326    operator EGLint const* () const { return &mList.keyAt(0).v; }
327};
328
329EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
330    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
331    // it is to be used with WIFI displays
332    EGLConfig config;
333    EGLint dummy;
334    status_t err;
335
336    EGLAttributeVector attribs;
337    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
338    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
339    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
340    attribs[EGL_RED_SIZE]                   = 8;
341    attribs[EGL_GREEN_SIZE]                 = 8;
342    attribs[EGL_BLUE_SIZE]                  = 8;
343
344    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
345    if (!err)
346        goto success;
347
348    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
349    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
350    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
351    err = selectConfigForAttribute(display, attribs,
352            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
353    if (!err)
354        goto success;
355
356    // maybe we failed because of EGL_RECORDABLE_ANDROID
357    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
358    attribs.remove(EGL_RECORDABLE_ANDROID);
359    err = selectConfigForAttribute(display, attribs,
360            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
361    if (!err)
362        goto success;
363
364    // allow less than 24-bit color; the non-gpu-accelerated emulator only
365    // supports 16-bit color
366    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
367    attribs.remove(EGL_RED_SIZE);
368    attribs.remove(EGL_GREEN_SIZE);
369    attribs.remove(EGL_BLUE_SIZE);
370    err = selectConfigForAttribute(display, attribs,
371            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
372    if (!err)
373        goto success;
374
375    // this EGL is too lame for Android
376    ALOGE("no suitable EGLConfig found, giving up");
377
378    return 0;
379
380success:
381    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
382        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
383    return config;
384}
385
386EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
387    // Also create our EGLContext
388    EGLint contextAttributes[] = {
389#ifdef EGL_IMG_context_priority
390#ifdef HAS_CONTEXT_PRIORITY
391#warning "using EGL_IMG_context_priority"
392            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
393#endif
394#endif
395            EGL_NONE, EGL_NONE
396    };
397    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
398    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
399    return ctxt;
400}
401
402void SurfaceFlinger::initializeGL(EGLDisplay display) {
403    GLExtensions& extensions(GLExtensions::getInstance());
404    extensions.initWithGLStrings(
405            glGetString(GL_VENDOR),
406            glGetString(GL_RENDERER),
407            glGetString(GL_VERSION),
408            glGetString(GL_EXTENSIONS),
409            eglQueryString(display, EGL_VENDOR),
410            eglQueryString(display, EGL_VERSION),
411            eglQueryString(display, EGL_EXTENSIONS));
412
413    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
414    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
415
416    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
417    glPixelStorei(GL_PACK_ALIGNMENT, 4);
418    glEnableClientState(GL_VERTEX_ARRAY);
419    glShadeModel(GL_FLAT);
420    glDisable(GL_DITHER);
421    glDisable(GL_CULL_FACE);
422
423    struct pack565 {
424        inline uint16_t operator() (int r, int g, int b) const {
425            return (r<<11)|(g<<5)|b;
426        }
427    } pack565;
428
429    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
430    glGenTextures(1, &mProtectedTexName);
431    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
432    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
433    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
434    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
435    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
436    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
437            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
438
439    // print some debugging info
440    EGLint r,g,b,a;
441    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
442    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
443    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
444    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
445    ALOGI("EGL informations:");
446    ALOGI("vendor    : %s", extensions.getEglVendor());
447    ALOGI("version   : %s", extensions.getEglVersion());
448    ALOGI("extensions: %s", extensions.getEglExtension());
449    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
450    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
451    ALOGI("OpenGL ES informations:");
452    ALOGI("vendor    : %s", extensions.getVendor());
453    ALOGI("renderer  : %s", extensions.getRenderer());
454    ALOGI("version   : %s", extensions.getVersion());
455    ALOGI("extensions: %s", extensions.getExtension());
456    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
457    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
458}
459
460status_t SurfaceFlinger::readyToRun()
461{
462    ALOGI(  "SurfaceFlinger's main thread ready to run. "
463            "Initializing graphics H/W...");
464
465    // initialize EGL for the default display
466    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
467    eglInitialize(mEGLDisplay, NULL, NULL);
468
469    // Initialize the H/W composer object.  There may or may not be an
470    // actual hardware composer underneath.
471    mHwc = new HWComposer(this,
472            *static_cast<HWComposer::EventHandler *>(this));
473
474    // initialize the config and context
475    EGLint format = mHwc->getVisualID();
476    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
477    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
478
479    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
480            "couldn't create EGLContext");
481
482    // initialize our non-virtual displays
483    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
484        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
485        mDefaultDisplays[i] = new BBinder();
486        wp<IBinder> token = mDefaultDisplays[i];
487
488        // set-up the displays that are already connected
489        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
490            // All non-virtual displays are currently considered secure.
491            bool isSecure = true;
492            mCurrentState.displays.add(token, DisplayDeviceState(type));
493            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
494            sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
495                        static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
496            sp<DisplayDevice> hw = new DisplayDevice(this,
497                    type, isSecure, token, stc, fbs, mEGLConfig);
498            if (i > DisplayDevice::DISPLAY_PRIMARY) {
499                // FIXME: currently we don't get blank/unblank requests
500                // for displays other than the main display, so we always
501                // assume a connected display is unblanked.
502                ALOGD("marking display %d as acquired/unblanked", i);
503                hw->acquireScreen();
504            }
505            mDisplays.add(token, hw);
506        }
507    }
508
509    //  we need a GL context current in a few places, when initializing
510    //  OpenGL ES (see below), or creating a layer,
511    //  or when a texture is (asynchronously) destroyed, and for that
512    //  we need a valid surface, so it's convenient to use the main display
513    //  for that.
514    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
515
516    //  initialize OpenGL ES
517    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
518    initializeGL(mEGLDisplay);
519
520    // start the EventThread
521    mEventThread = new EventThread(this);
522    mEventQueue.setEventThread(mEventThread);
523
524    // initialize our drawing state
525    mDrawingState = mCurrentState;
526
527
528    // We're now ready to accept clients...
529    mReadyToRunBarrier.open();
530
531    // set initial conditions (e.g. unblank default device)
532    initializeDisplays();
533
534    // start boot animation
535    startBootAnim();
536
537    return NO_ERROR;
538}
539
540int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
541    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
542            type : mHwc->allocateDisplayId();
543}
544
545void SurfaceFlinger::startBootAnim() {
546    // start boot animation
547    property_set("service.bootanim.exit", "0");
548    property_set("ctl.start", "bootanim");
549}
550
551uint32_t SurfaceFlinger::getMaxTextureSize() const {
552    return mMaxTextureSize;
553}
554
555uint32_t SurfaceFlinger::getMaxViewportDims() const {
556    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
557            mMaxViewportDims[0] : mMaxViewportDims[1];
558}
559
560// ----------------------------------------------------------------------------
561
562bool SurfaceFlinger::authenticateSurfaceTexture(
563        const sp<ISurfaceTexture>& surfaceTexture) const {
564    Mutex::Autolock _l(mStateLock);
565    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
566
567    // Check the visible layer list for the ISurface
568    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
569    size_t count = currentLayers.size();
570    for (size_t i=0 ; i<count ; i++) {
571        const sp<LayerBase>& layer(currentLayers[i]);
572        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
573        if (lbc != NULL) {
574            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
575            if (lbcBinder == surfaceTextureBinder) {
576                return true;
577            }
578        }
579    }
580
581    // Check the layers in the purgatory.  This check is here so that if a
582    // SurfaceTexture gets destroyed before all the clients are done using it,
583    // the error will not be reported as "surface XYZ is not authenticated", but
584    // will instead fail later on when the client tries to use the surface,
585    // which should be reported as "surface XYZ returned an -ENODEV".  The
586    // purgatorized layers are no less authentic than the visible ones, so this
587    // should not cause any harm.
588    size_t purgatorySize =  mLayerPurgatory.size();
589    for (size_t i=0 ; i<purgatorySize ; i++) {
590        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
591        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
592        if (lbc != NULL) {
593            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
594            if (lbcBinder == surfaceTextureBinder) {
595                return true;
596            }
597        }
598    }
599
600    return false;
601}
602
603status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
604    int32_t type = BAD_VALUE;
605    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
606        if (display == mDefaultDisplays[i]) {
607            type = i;
608            break;
609        }
610    }
611
612    if (type < 0) {
613        return type;
614    }
615
616    const HWComposer& hwc(getHwComposer());
617    if (!hwc.isConnected(type)) {
618        return NAME_NOT_FOUND;
619    }
620
621    float xdpi = hwc.getDpiX(type);
622    float ydpi = hwc.getDpiY(type);
623
624    // TODO: Not sure if display density should handled by SF any longer
625    class Density {
626        static int getDensityFromProperty(char const* propName) {
627            char property[PROPERTY_VALUE_MAX];
628            int density = 0;
629            if (property_get(propName, property, NULL) > 0) {
630                density = atoi(property);
631            }
632            return density;
633        }
634    public:
635        static int getEmuDensity() {
636            return getDensityFromProperty("qemu.sf.lcd_density"); }
637        static int getBuildDensity()  {
638            return getDensityFromProperty("ro.sf.lcd_density"); }
639    };
640
641    if (type == DisplayDevice::DISPLAY_PRIMARY) {
642        // The density of the device is provided by a build property
643        float density = Density::getBuildDensity() / 160.0f;
644        if (density == 0) {
645            // the build doesn't provide a density -- this is wrong!
646            // use xdpi instead
647            ALOGE("ro.sf.lcd_density must be defined as a build property");
648            density = xdpi / 160.0f;
649        }
650        if (Density::getEmuDensity()) {
651            // if "qemu.sf.lcd_density" is specified, it overrides everything
652            xdpi = ydpi = density = Density::getEmuDensity();
653            density /= 160.0f;
654        }
655        info->density = density;
656
657        // TODO: this needs to go away (currently needed only by webkit)
658        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
659        info->orientation = hw->getOrientation();
660        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
661    } else {
662        // TODO: where should this value come from?
663        static const int TV_DENSITY = 213;
664        info->density = TV_DENSITY / 160.0f;
665        info->orientation = 0;
666    }
667
668    info->w = hwc.getWidth(type);
669    info->h = hwc.getHeight(type);
670    info->xdpi = xdpi;
671    info->ydpi = ydpi;
672    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
673
674    // All non-virtual displays are currently considered secure.
675    info->secure = true;
676
677    return NO_ERROR;
678}
679
680// ----------------------------------------------------------------------------
681
682sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
683    return mEventThread->createEventConnection();
684}
685
686// ----------------------------------------------------------------------------
687
688void SurfaceFlinger::waitForEvent() {
689    mEventQueue.waitMessage();
690}
691
692void SurfaceFlinger::signalTransaction() {
693    mEventQueue.invalidate();
694}
695
696void SurfaceFlinger::signalLayerUpdate() {
697    mEventQueue.invalidate();
698}
699
700void SurfaceFlinger::signalRefresh() {
701    mEventQueue.refresh();
702}
703
704status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
705        nsecs_t reltime, uint32_t flags) {
706    return mEventQueue.postMessage(msg, reltime);
707}
708
709status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
710        nsecs_t reltime, uint32_t flags) {
711    status_t res = mEventQueue.postMessage(msg, reltime);
712    if (res == NO_ERROR) {
713        msg->wait();
714    }
715    return res;
716}
717
718bool SurfaceFlinger::threadLoop() {
719    waitForEvent();
720    return true;
721}
722
723void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
724    if (mEventThread == NULL) {
725        // This is a temporary workaround for b/7145521.  A non-null pointer
726        // does not mean EventThread has finished initializing, so this
727        // is not a correct fix.
728        ALOGW("WARNING: EventThread not started, ignoring vsync");
729        return;
730    }
731    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
732        // we should only receive DisplayDevice::DisplayType from the vsync callback
733        mEventThread->onVSyncReceived(type, timestamp);
734    }
735}
736
737void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
738    if (mEventThread == NULL) {
739        // This is a temporary workaround for b/7145521.  A non-null pointer
740        // does not mean EventThread has finished initializing, so this
741        // is not a correct fix.
742        ALOGW("WARNING: EventThread not started, ignoring hotplug");
743        return;
744    }
745
746    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
747        Mutex::Autolock _l(mStateLock);
748        if (connected == false) {
749            mCurrentState.displays.removeItem(mDefaultDisplays[type]);
750        } else {
751            DisplayDeviceState info((DisplayDevice::DisplayType)type);
752            mCurrentState.displays.add(mDefaultDisplays[type], info);
753        }
754        setTransactionFlags(eDisplayTransactionNeeded);
755
756        // Defer EventThread notification until SF has updated mDisplays.
757    }
758}
759
760void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
761    getHwComposer().eventControl(disp, event, enabled);
762}
763
764void SurfaceFlinger::onMessageReceived(int32_t what) {
765    ATRACE_CALL();
766    switch (what) {
767    case MessageQueue::INVALIDATE:
768        handleMessageTransaction();
769        handleMessageInvalidate();
770        signalRefresh();
771        break;
772    case MessageQueue::REFRESH:
773        handleMessageRefresh();
774        break;
775    }
776}
777
778void SurfaceFlinger::handleMessageTransaction() {
779    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
780    if (transactionFlags) {
781        handleTransaction(transactionFlags);
782    }
783}
784
785void SurfaceFlinger::handleMessageInvalidate() {
786    ATRACE_CALL();
787    handlePageFlip();
788}
789
790void SurfaceFlinger::handleMessageRefresh() {
791    ATRACE_CALL();
792    preComposition();
793    rebuildLayerStacks();
794    setUpHWComposer();
795    doDebugFlashRegions();
796    doComposition();
797    postComposition();
798}
799
800void SurfaceFlinger::doDebugFlashRegions()
801{
802    // is debugging enabled
803    if (CC_LIKELY(!mDebugRegion))
804        return;
805
806    const bool repaintEverything = mRepaintEverything;
807    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
808        const sp<DisplayDevice>& hw(mDisplays[dpy]);
809        if (hw->canDraw()) {
810            // transform the dirty region into this screen's coordinate space
811            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
812            if (!dirtyRegion.isEmpty()) {
813                // redraw the whole screen
814                doComposeSurfaces(hw, Region(hw->bounds()));
815
816                // and draw the dirty region
817                glDisable(GL_TEXTURE_EXTERNAL_OES);
818                glDisable(GL_TEXTURE_2D);
819                glDisable(GL_BLEND);
820                glColor4f(1, 0, 1, 1);
821                const int32_t height = hw->getHeight();
822                Region::const_iterator it = dirtyRegion.begin();
823                Region::const_iterator const end = dirtyRegion.end();
824                while (it != end) {
825                    const Rect& r = *it++;
826                    GLfloat vertices[][2] = {
827                            { r.left,  height - r.top },
828                            { r.left,  height - r.bottom },
829                            { r.right, height - r.bottom },
830                            { r.right, height - r.top }
831                    };
832                    glVertexPointer(2, GL_FLOAT, 0, vertices);
833                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
834                }
835                hw->compositionComplete();
836                hw->swapBuffers(getHwComposer());
837            }
838        }
839    }
840
841    postFramebuffer();
842
843    if (mDebugRegion > 1) {
844        usleep(mDebugRegion * 1000);
845    }
846
847    HWComposer& hwc(getHwComposer());
848    if (hwc.initCheck() == NO_ERROR) {
849        status_t err = hwc.prepare();
850        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
851    }
852}
853
854void SurfaceFlinger::preComposition()
855{
856    bool needExtraInvalidate = false;
857    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
858    const size_t count = currentLayers.size();
859    for (size_t i=0 ; i<count ; i++) {
860        if (currentLayers[i]->onPreComposition()) {
861            needExtraInvalidate = true;
862        }
863    }
864    if (needExtraInvalidate) {
865        signalLayerUpdate();
866    }
867}
868
869void SurfaceFlinger::postComposition()
870{
871    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
872    const size_t count = currentLayers.size();
873    for (size_t i=0 ; i<count ; i++) {
874        currentLayers[i]->onPostComposition();
875    }
876}
877
878void SurfaceFlinger::rebuildLayerStacks() {
879    // rebuild the visible layer list per screen
880    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
881        ATRACE_CALL();
882        mVisibleRegionsDirty = false;
883        invalidateHwcGeometry();
884
885        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
886        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
887            Region opaqueRegion;
888            Region dirtyRegion;
889            Vector< sp<LayerBase> > layersSortedByZ;
890            const sp<DisplayDevice>& hw(mDisplays[dpy]);
891            const Transform& tr(hw->getTransform());
892            const Rect bounds(hw->getBounds());
893            if (hw->canDraw()) {
894                SurfaceFlinger::computeVisibleRegions(currentLayers,
895                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
896
897                const size_t count = currentLayers.size();
898                for (size_t i=0 ; i<count ; i++) {
899                    const sp<LayerBase>& layer(currentLayers[i]);
900                    const Layer::State& s(layer->drawingState());
901                    if (s.layerStack == hw->getLayerStack()) {
902                        Region drawRegion(tr.transform(
903                                layer->visibleNonTransparentRegion));
904                        drawRegion.andSelf(bounds);
905                        if (!drawRegion.isEmpty()) {
906                            layersSortedByZ.add(layer);
907                        }
908                    }
909                }
910            }
911            hw->setVisibleLayersSortedByZ(layersSortedByZ);
912            hw->undefinedRegion.set(bounds);
913            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
914            hw->dirtyRegion.orSelf(dirtyRegion);
915        }
916    }
917}
918
919void SurfaceFlinger::setUpHWComposer() {
920    HWComposer& hwc(getHwComposer());
921    if (hwc.initCheck() == NO_ERROR) {
922        // build the h/w work list
923        if (CC_UNLIKELY(mHwWorkListDirty)) {
924            mHwWorkListDirty = false;
925            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
926                sp<const DisplayDevice> hw(mDisplays[dpy]);
927                const int32_t id = hw->getHwcDisplayId();
928                if (id >= 0) {
929                    const Vector< sp<LayerBase> >& currentLayers(
930                        hw->getVisibleLayersSortedByZ());
931                    const size_t count = currentLayers.size();
932                    if (hwc.createWorkList(id, count) == NO_ERROR) {
933                        HWComposer::LayerListIterator cur = hwc.begin(id);
934                        const HWComposer::LayerListIterator end = hwc.end(id);
935                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
936                            const sp<LayerBase>& layer(currentLayers[i]);
937                            layer->setGeometry(hw, *cur);
938                            if (mDebugDisableHWC || mDebugRegion) {
939                                cur->setSkip(true);
940                            }
941                        }
942                    }
943                }
944            }
945        }
946
947        // set the per-frame data
948        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
949            sp<const DisplayDevice> hw(mDisplays[dpy]);
950            const int32_t id = hw->getHwcDisplayId();
951            if (id >= 0) {
952                const Vector< sp<LayerBase> >& currentLayers(
953                    hw->getVisibleLayersSortedByZ());
954                const size_t count = currentLayers.size();
955                HWComposer::LayerListIterator cur = hwc.begin(id);
956                const HWComposer::LayerListIterator end = hwc.end(id);
957                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
958                    /*
959                     * update the per-frame h/w composer data for each layer
960                     * and build the transparent region of the FB
961                     */
962                    const sp<LayerBase>& layer(currentLayers[i]);
963                    layer->setPerFrameData(hw, *cur);
964                }
965            }
966        }
967
968        status_t err = hwc.prepare();
969        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
970    }
971}
972
973void SurfaceFlinger::doComposition() {
974    ATRACE_CALL();
975    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
976    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
977        const sp<DisplayDevice>& hw(mDisplays[dpy]);
978        if (hw->canDraw()) {
979            // transform the dirty region into this screen's coordinate space
980            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
981
982            // repaint the framebuffer (if needed)
983            doDisplayComposition(hw, dirtyRegion);
984
985            hw->dirtyRegion.clear();
986            hw->flip(hw->swapRegion);
987            hw->swapRegion.clear();
988        }
989        // inform the h/w that we're done compositing
990        hw->compositionComplete();
991    }
992    postFramebuffer();
993}
994
995void SurfaceFlinger::postFramebuffer()
996{
997    ATRACE_CALL();
998
999    const nsecs_t now = systemTime();
1000    mDebugInSwapBuffers = now;
1001
1002    HWComposer& hwc(getHwComposer());
1003    if (hwc.initCheck() == NO_ERROR) {
1004        if (!hwc.supportsFramebufferTarget()) {
1005            // EGL spec says:
1006            //   "surface must be bound to the calling thread's current context,
1007            //    for the current rendering API."
1008            DisplayDevice::makeCurrent(mEGLDisplay,
1009                    getDefaultDisplayDevice(), mEGLContext);
1010        }
1011        hwc.commit();
1012    }
1013
1014    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1015        sp<const DisplayDevice> hw(mDisplays[dpy]);
1016        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
1017        hw->onSwapBuffersCompleted(hwc);
1018        const size_t count = currentLayers.size();
1019        int32_t id = hw->getHwcDisplayId();
1020        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1021            HWComposer::LayerListIterator cur = hwc.begin(id);
1022            const HWComposer::LayerListIterator end = hwc.end(id);
1023            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1024                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1025            }
1026        } else {
1027            for (size_t i = 0; i < count; i++) {
1028                currentLayers[i]->onLayerDisplayed(hw, NULL);
1029            }
1030        }
1031    }
1032
1033    mLastSwapBufferTime = systemTime() - now;
1034    mDebugInSwapBuffers = 0;
1035}
1036
1037void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1038{
1039    ATRACE_CALL();
1040
1041    Mutex::Autolock _l(mStateLock);
1042    const nsecs_t now = systemTime();
1043    mDebugInTransaction = now;
1044
1045    // Here we're guaranteed that some transaction flags are set
1046    // so we can call handleTransactionLocked() unconditionally.
1047    // We call getTransactionFlags(), which will also clear the flags,
1048    // with mStateLock held to guarantee that mCurrentState won't change
1049    // until the transaction is committed.
1050
1051    transactionFlags = getTransactionFlags(eTransactionMask);
1052    handleTransactionLocked(transactionFlags);
1053
1054    mLastTransactionTime = systemTime() - now;
1055    mDebugInTransaction = 0;
1056    invalidateHwcGeometry();
1057    // here the transaction has been committed
1058}
1059
1060void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1061{
1062    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1063    const size_t count = currentLayers.size();
1064
1065    /*
1066     * Traversal of the children
1067     * (perform the transaction for each of them if needed)
1068     */
1069
1070    if (transactionFlags & eTraversalNeeded) {
1071        for (size_t i=0 ; i<count ; i++) {
1072            const sp<LayerBase>& layer(currentLayers[i]);
1073            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1074            if (!trFlags) continue;
1075
1076            const uint32_t flags = layer->doTransaction(0);
1077            if (flags & Layer::eVisibleRegion)
1078                mVisibleRegionsDirty = true;
1079        }
1080    }
1081
1082    /*
1083     * Perform display own transactions if needed
1084     */
1085
1086    if (transactionFlags & eDisplayTransactionNeeded) {
1087        // here we take advantage of Vector's copy-on-write semantics to
1088        // improve performance by skipping the transaction entirely when
1089        // know that the lists are identical
1090        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1091        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1092        if (!curr.isIdenticalTo(draw)) {
1093            mVisibleRegionsDirty = true;
1094            const size_t cc = curr.size();
1095                  size_t dc = draw.size();
1096
1097            // find the displays that were removed
1098            // (ie: in drawing state but not in current state)
1099            // also handle displays that changed
1100            // (ie: displays that are in both lists)
1101            for (size_t i=0 ; i<dc ; i++) {
1102                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1103                if (j < 0) {
1104                    // in drawing state but not in current state
1105                    if (!draw[i].isMainDisplay()) {
1106                        // Call makeCurrent() on the primary display so we can
1107                        // be sure that nothing associated with this display
1108                        // is current.
1109                        const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1110                        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1111                        mDisplays.removeItem(draw.keyAt(i));
1112                        getHwComposer().disconnectDisplay(draw[i].type);
1113                        mEventThread->onHotplugReceived(draw[i].type, false);
1114                    } else {
1115                        ALOGW("trying to remove the main display");
1116                    }
1117                } else {
1118                    // this display is in both lists. see if something changed.
1119                    const DisplayDeviceState& state(curr[j]);
1120                    const wp<IBinder>& display(curr.keyAt(j));
1121                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1122                        // changing the surface is like destroying and
1123                        // recreating the DisplayDevice, so we just remove it
1124                        // from the drawing state, so that it get re-added
1125                        // below.
1126                        mDisplays.removeItem(display);
1127                        mDrawingState.displays.removeItemsAt(i);
1128                        dc--; i--;
1129                        // at this point we must loop to the next item
1130                        continue;
1131                    }
1132
1133                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1134                    if (disp != NULL) {
1135                        if (state.layerStack != draw[i].layerStack) {
1136                            disp->setLayerStack(state.layerStack);
1137                        }
1138                        if ((state.orientation != draw[i].orientation)
1139                                || (state.viewport != draw[i].viewport)
1140                                || (state.frame != draw[i].frame))
1141                        {
1142                            disp->setProjection(state.orientation,
1143                                    state.viewport, state.frame);
1144                        }
1145                    }
1146                }
1147            }
1148
1149            // find displays that were added
1150            // (ie: in current state but not in drawing state)
1151            for (size_t i=0 ; i<cc ; i++) {
1152                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1153                    const DisplayDeviceState& state(curr[i]);
1154                    bool isSecure = false;
1155
1156                    sp<FramebufferSurface> fbs;
1157                    sp<SurfaceTextureClient> stc;
1158                    if (!state.isVirtualDisplay()) {
1159
1160                        ALOGE_IF(state.surface!=NULL,
1161                                "adding a supported display, but rendering "
1162                                "surface is provided (%p), ignoring it",
1163                                state.surface.get());
1164
1165                        // All non-virtual displays are currently considered
1166                        // secure.
1167                        isSecure = true;
1168
1169                        // for supported (by hwc) displays we provide our
1170                        // own rendering surface
1171                        fbs = new FramebufferSurface(*mHwc, state.type);
1172                        stc = new SurfaceTextureClient(
1173                                static_cast< sp<ISurfaceTexture> >(
1174                                        fbs->getBufferQueue()));
1175                    } else {
1176                        if (state.surface != NULL) {
1177                            stc = new SurfaceTextureClient(state.surface);
1178                        }
1179                        isSecure = state.isSecure;
1180                    }
1181
1182                    const wp<IBinder>& display(curr.keyAt(i));
1183                    if (stc != NULL) {
1184                        sp<DisplayDevice> hw = new DisplayDevice(this,
1185                                state.type, isSecure, display, stc, fbs,
1186                                mEGLConfig);
1187                        hw->setLayerStack(state.layerStack);
1188                        hw->setProjection(state.orientation,
1189                                state.viewport, state.frame);
1190                        hw->setDisplayName(state.displayName);
1191                        mDisplays.add(display, hw);
1192                        mEventThread->onHotplugReceived(state.type, true);
1193                    }
1194                }
1195            }
1196        }
1197    }
1198
1199    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1200        // The transform hint might have changed for some layers
1201        // (either because a display has changed, or because a layer
1202        // as changed).
1203        //
1204        // Walk through all the layers in currentLayers,
1205        // and update their transform hint.
1206        //
1207        // If a layer is visible only on a single display, then that
1208        // display is used to calculate the hint, otherwise we use the
1209        // default display.
1210        //
1211        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1212        // the hint is set before we acquire a buffer from the surface texture.
1213        //
1214        // NOTE: layer transactions have taken place already, so we use their
1215        // drawing state. However, SurfaceFlinger's own transaction has not
1216        // happened yet, so we must use the current state layer list
1217        // (soon to become the drawing state list).
1218        //
1219        sp<const DisplayDevice> disp;
1220        uint32_t currentlayerStack = 0;
1221        for (size_t i=0; i<count; i++) {
1222            // NOTE: we rely on the fact that layers are sorted by
1223            // layerStack first (so we don't have to traverse the list
1224            // of displays for every layer).
1225            const sp<LayerBase>& layerBase(currentLayers[i]);
1226            uint32_t layerStack = layerBase->drawingState().layerStack;
1227            if (i==0 || currentlayerStack != layerStack) {
1228                currentlayerStack = layerStack;
1229                // figure out if this layerstack is mirrored
1230                // (more than one display) if so, pick the default display,
1231                // if not, pick the only display it's on.
1232                disp.clear();
1233                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1234                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1235                    if (hw->getLayerStack() == currentlayerStack) {
1236                        if (disp == NULL) {
1237                            disp = hw;
1238                        } else {
1239                            disp = getDefaultDisplayDevice();
1240                            break;
1241                        }
1242                    }
1243                }
1244            }
1245            if (disp != NULL) {
1246                // presumably this means this layer is using a layerStack
1247                // that is not visible on any display
1248                layerBase->updateTransformHint(disp);
1249            }
1250        }
1251    }
1252
1253
1254    /*
1255     * Perform our own transaction if needed
1256     */
1257
1258    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1259    if (currentLayers.size() > previousLayers.size()) {
1260        // layers have been added
1261        mVisibleRegionsDirty = true;
1262    }
1263
1264    // some layers might have been removed, so
1265    // we need to update the regions they're exposing.
1266    if (mLayersRemoved) {
1267        mLayersRemoved = false;
1268        mVisibleRegionsDirty = true;
1269        const size_t count = previousLayers.size();
1270        for (size_t i=0 ; i<count ; i++) {
1271            const sp<LayerBase>& layer(previousLayers[i]);
1272            if (currentLayers.indexOf(layer) < 0) {
1273                // this layer is not visible anymore
1274                // TODO: we could traverse the tree from front to back and
1275                //       compute the actual visible region
1276                // TODO: we could cache the transformed region
1277                const Layer::State& s(layer->drawingState());
1278                Region visibleReg = s.transform.transform(
1279                        Region(Rect(s.active.w, s.active.h)));
1280                invalidateLayerStack(s.layerStack, visibleReg);
1281            }
1282        }
1283    }
1284
1285    commitTransaction();
1286}
1287
1288void SurfaceFlinger::commitTransaction()
1289{
1290    if (!mLayersPendingRemoval.isEmpty()) {
1291        // Notify removed layers now that they can't be drawn from
1292        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1293            mLayersPendingRemoval[i]->onRemoved();
1294        }
1295        mLayersPendingRemoval.clear();
1296    }
1297
1298    mDrawingState = mCurrentState;
1299    mTransactionPending = false;
1300    mAnimTransactionPending = false;
1301    mTransactionCV.broadcast();
1302}
1303
1304void SurfaceFlinger::computeVisibleRegions(
1305        const LayerVector& currentLayers, uint32_t layerStack,
1306        Region& outDirtyRegion, Region& outOpaqueRegion)
1307{
1308    ATRACE_CALL();
1309
1310    Region aboveOpaqueLayers;
1311    Region aboveCoveredLayers;
1312    Region dirty;
1313
1314    outDirtyRegion.clear();
1315
1316    size_t i = currentLayers.size();
1317    while (i--) {
1318        const sp<LayerBase>& layer = currentLayers[i];
1319
1320        // start with the whole surface at its current location
1321        const Layer::State& s(layer->drawingState());
1322
1323        // only consider the layers on the given later stack
1324        if (s.layerStack != layerStack)
1325            continue;
1326
1327        /*
1328         * opaqueRegion: area of a surface that is fully opaque.
1329         */
1330        Region opaqueRegion;
1331
1332        /*
1333         * visibleRegion: area of a surface that is visible on screen
1334         * and not fully transparent. This is essentially the layer's
1335         * footprint minus the opaque regions above it.
1336         * Areas covered by a translucent surface are considered visible.
1337         */
1338        Region visibleRegion;
1339
1340        /*
1341         * coveredRegion: area of a surface that is covered by all
1342         * visible regions above it (which includes the translucent areas).
1343         */
1344        Region coveredRegion;
1345
1346        /*
1347         * transparentRegion: area of a surface that is hinted to be completely
1348         * transparent. This is only used to tell when the layer has no visible
1349         * non-transparent regions and can be removed from the layer list. It
1350         * does not affect the visibleRegion of this layer or any layers
1351         * beneath it. The hint may not be correct if apps don't respect the
1352         * SurfaceView restrictions (which, sadly, some don't).
1353         */
1354        Region transparentRegion;
1355
1356
1357        // handle hidden surfaces by setting the visible region to empty
1358        if (CC_LIKELY(layer->isVisible())) {
1359            const bool translucent = !layer->isOpaque();
1360            Rect bounds(layer->computeBounds());
1361            visibleRegion.set(bounds);
1362            if (!visibleRegion.isEmpty()) {
1363                // Remove the transparent area from the visible region
1364                if (translucent) {
1365                    const Transform tr(s.transform);
1366                    if (tr.transformed()) {
1367                        if (tr.preserveRects()) {
1368                            // transform the transparent region
1369                            transparentRegion = tr.transform(s.transparentRegion);
1370                        } else {
1371                            // transformation too complex, can't do the
1372                            // transparent region optimization.
1373                            transparentRegion.clear();
1374                        }
1375                    } else {
1376                        transparentRegion = s.transparentRegion;
1377                    }
1378                }
1379
1380                // compute the opaque region
1381                const int32_t layerOrientation = s.transform.getOrientation();
1382                if (s.alpha==255 && !translucent &&
1383                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1384                    // the opaque region is the layer's footprint
1385                    opaqueRegion = visibleRegion;
1386                }
1387            }
1388        }
1389
1390        // Clip the covered region to the visible region
1391        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1392
1393        // Update aboveCoveredLayers for next (lower) layer
1394        aboveCoveredLayers.orSelf(visibleRegion);
1395
1396        // subtract the opaque region covered by the layers above us
1397        visibleRegion.subtractSelf(aboveOpaqueLayers);
1398
1399        // compute this layer's dirty region
1400        if (layer->contentDirty) {
1401            // we need to invalidate the whole region
1402            dirty = visibleRegion;
1403            // as well, as the old visible region
1404            dirty.orSelf(layer->visibleRegion);
1405            layer->contentDirty = false;
1406        } else {
1407            /* compute the exposed region:
1408             *   the exposed region consists of two components:
1409             *   1) what's VISIBLE now and was COVERED before
1410             *   2) what's EXPOSED now less what was EXPOSED before
1411             *
1412             * note that (1) is conservative, we start with the whole
1413             * visible region but only keep what used to be covered by
1414             * something -- which mean it may have been exposed.
1415             *
1416             * (2) handles areas that were not covered by anything but got
1417             * exposed because of a resize.
1418             */
1419            const Region newExposed = visibleRegion - coveredRegion;
1420            const Region oldVisibleRegion = layer->visibleRegion;
1421            const Region oldCoveredRegion = layer->coveredRegion;
1422            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1423            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1424        }
1425        dirty.subtractSelf(aboveOpaqueLayers);
1426
1427        // accumulate to the screen dirty region
1428        outDirtyRegion.orSelf(dirty);
1429
1430        // Update aboveOpaqueLayers for next (lower) layer
1431        aboveOpaqueLayers.orSelf(opaqueRegion);
1432
1433        // Store the visible region in screen space
1434        layer->setVisibleRegion(visibleRegion);
1435        layer->setCoveredRegion(coveredRegion);
1436        layer->setVisibleNonTransparentRegion(
1437                visibleRegion.subtract(transparentRegion));
1438    }
1439
1440    outOpaqueRegion = aboveOpaqueLayers;
1441}
1442
1443void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1444        const Region& dirty) {
1445    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1446        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1447        if (hw->getLayerStack() == layerStack) {
1448            hw->dirtyRegion.orSelf(dirty);
1449        }
1450    }
1451}
1452
1453void SurfaceFlinger::handlePageFlip()
1454{
1455    Region dirtyRegion;
1456
1457    bool visibleRegions = false;
1458    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1459    const size_t count = currentLayers.size();
1460    for (size_t i=0 ; i<count ; i++) {
1461        const sp<LayerBase>& layer(currentLayers[i]);
1462        const Region dirty(layer->latchBuffer(visibleRegions));
1463        const Layer::State& s(layer->drawingState());
1464        invalidateLayerStack(s.layerStack, dirty);
1465    }
1466
1467    mVisibleRegionsDirty |= visibleRegions;
1468}
1469
1470void SurfaceFlinger::invalidateHwcGeometry()
1471{
1472    mHwWorkListDirty = true;
1473}
1474
1475
1476void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1477        const Region& inDirtyRegion)
1478{
1479    Region dirtyRegion(inDirtyRegion);
1480
1481    // compute the invalid region
1482    hw->swapRegion.orSelf(dirtyRegion);
1483
1484    uint32_t flags = hw->getFlags();
1485    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1486        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1487        // takes a rectangle, we must make sure to update that whole
1488        // rectangle in that case
1489        dirtyRegion.set(hw->swapRegion.bounds());
1490    } else {
1491        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1492            // We need to redraw the rectangle that will be updated
1493            // (pushed to the framebuffer).
1494            // This is needed because PARTIAL_UPDATES only takes one
1495            // rectangle instead of a region (see DisplayDevice::flip())
1496            dirtyRegion.set(hw->swapRegion.bounds());
1497        } else {
1498            // we need to redraw everything (the whole screen)
1499            dirtyRegion.set(hw->bounds());
1500            hw->swapRegion = dirtyRegion;
1501        }
1502    }
1503
1504    doComposeSurfaces(hw, dirtyRegion);
1505
1506    // update the swap region and clear the dirty region
1507    hw->swapRegion.orSelf(dirtyRegion);
1508
1509    // swap buffers (presentation)
1510    hw->swapBuffers(getHwComposer());
1511}
1512
1513void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1514{
1515    const int32_t id = hw->getHwcDisplayId();
1516    HWComposer& hwc(getHwComposer());
1517    HWComposer::LayerListIterator cur = hwc.begin(id);
1518    const HWComposer::LayerListIterator end = hwc.end(id);
1519
1520    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1521    if (hasGlesComposition) {
1522        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1523
1524        // set the frame buffer
1525        glMatrixMode(GL_MODELVIEW);
1526        glLoadIdentity();
1527
1528        // Never touch the framebuffer if we don't have any framebuffer layers
1529        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1530        if (hasHwcComposition) {
1531            // when using overlays, we assume a fully transparent framebuffer
1532            // NOTE: we could reduce how much we need to clear, for instance
1533            // remove where there are opaque FB layers. however, on some
1534            // GPUs doing a "clean slate" glClear might be more efficient.
1535            // We'll revisit later if needed.
1536            glClearColor(0, 0, 0, 0);
1537            glClear(GL_COLOR_BUFFER_BIT);
1538        } else {
1539            const Region region(hw->undefinedRegion.intersect(dirty));
1540            // screen is already cleared here
1541            if (!region.isEmpty()) {
1542                // can happen with SurfaceView
1543                drawWormhole(hw, region);
1544            }
1545        }
1546
1547        if (hw->getDisplayType() >= DisplayDevice::DISPLAY_EXTERNAL) {
1548            // TODO: just to be on the safe side, we don't set the
1549            // scissor on the main display. It should never be needed
1550            // anyways (though in theory it could since the API allows it).
1551            const Rect& bounds(hw->getBounds());
1552            const Transform& tr(hw->getTransform());
1553            const Rect scissor(tr.transform(hw->getViewport()));
1554            if (scissor != bounds) {
1555                // scissor doesn't match the screen's dimensions, so we
1556                // need to clear everything outside of it and enable
1557                // the GL scissor so we don't draw anything where we shouldn't
1558                const GLint height = hw->getHeight();
1559                glScissor(scissor.left, height - scissor.bottom,
1560                        scissor.getWidth(), scissor.getHeight());
1561                // clear everything unscissored
1562                glClearColor(0, 0, 0, 0);
1563                glClear(GL_COLOR_BUFFER_BIT);
1564                // enable scissor for this frame
1565                glEnable(GL_SCISSOR_TEST);
1566            }
1567        }
1568    }
1569
1570    /*
1571     * and then, render the layers targeted at the framebuffer
1572     */
1573
1574    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1575    const size_t count = layers.size();
1576    const Transform& tr = hw->getTransform();
1577    if (cur != end) {
1578        // we're using h/w composer
1579        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1580            const sp<LayerBase>& layer(layers[i]);
1581            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1582            if (!clip.isEmpty()) {
1583                switch (cur->getCompositionType()) {
1584                    case HWC_OVERLAY: {
1585                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1586                                && i
1587                                && layer->isOpaque()
1588                                && hasGlesComposition) {
1589                            // never clear the very first layer since we're
1590                            // guaranteed the FB is already cleared
1591                            layer->clearWithOpenGL(hw, clip);
1592                        }
1593                        break;
1594                    }
1595                    case HWC_FRAMEBUFFER: {
1596                        layer->draw(hw, clip);
1597                        break;
1598                    }
1599                    case HWC_FRAMEBUFFER_TARGET: {
1600                        // this should not happen as the iterator shouldn't
1601                        // let us get there.
1602                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1603                        break;
1604                    }
1605                }
1606            }
1607            layer->setAcquireFence(hw, *cur);
1608        }
1609    } else {
1610        // we're not using h/w composer
1611        for (size_t i=0 ; i<count ; ++i) {
1612            const sp<LayerBase>& layer(layers[i]);
1613            const Region clip(dirty.intersect(
1614                    tr.transform(layer->visibleRegion)));
1615            if (!clip.isEmpty()) {
1616                layer->draw(hw, clip);
1617            }
1618        }
1619    }
1620
1621    // disable scissor at the end of the frame
1622    glDisable(GL_SCISSOR_TEST);
1623}
1624
1625void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1626        const Region& region) const
1627{
1628    glDisable(GL_TEXTURE_EXTERNAL_OES);
1629    glDisable(GL_TEXTURE_2D);
1630    glDisable(GL_BLEND);
1631    glColor4f(0,0,0,0);
1632
1633    const int32_t height = hw->getHeight();
1634    Region::const_iterator it = region.begin();
1635    Region::const_iterator const end = region.end();
1636    while (it != end) {
1637        const Rect& r = *it++;
1638        GLfloat vertices[][2] = {
1639                { r.left,  height - r.top },
1640                { r.left,  height - r.bottom },
1641                { r.right, height - r.bottom },
1642                { r.right, height - r.top }
1643        };
1644        glVertexPointer(2, GL_FLOAT, 0, vertices);
1645        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1646    }
1647}
1648
1649ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1650        const sp<LayerBaseClient>& lbc)
1651{
1652    // attach this layer to the client
1653    size_t name = client->attachLayer(lbc);
1654
1655    // add this layer to the current state list
1656    Mutex::Autolock _l(mStateLock);
1657    mCurrentState.layersSortedByZ.add(lbc);
1658
1659    return ssize_t(name);
1660}
1661
1662status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1663{
1664    Mutex::Autolock _l(mStateLock);
1665    status_t err = purgatorizeLayer_l(layer);
1666    if (err == NO_ERROR)
1667        setTransactionFlags(eTransactionNeeded);
1668    return err;
1669}
1670
1671status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1672{
1673    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1674    if (index >= 0) {
1675        mLayersRemoved = true;
1676        return NO_ERROR;
1677    }
1678    return status_t(index);
1679}
1680
1681status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1682{
1683    // First add the layer to the purgatory list, which makes sure it won't
1684    // go away, then remove it from the main list (through a transaction).
1685    ssize_t err = removeLayer_l(layerBase);
1686    if (err >= 0) {
1687        mLayerPurgatory.add(layerBase);
1688    }
1689
1690    mLayersPendingRemoval.push(layerBase);
1691
1692    // it's possible that we don't find a layer, because it might
1693    // have been destroyed already -- this is not technically an error
1694    // from the user because there is a race between Client::destroySurface(),
1695    // ~Client() and ~ISurface().
1696    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1697}
1698
1699uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1700{
1701    return android_atomic_release_load(&mTransactionFlags);
1702}
1703
1704uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1705{
1706    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1707}
1708
1709uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1710{
1711    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1712    if ((old & flags)==0) { // wake the server up
1713        signalTransaction();
1714    }
1715    return old;
1716}
1717
1718void SurfaceFlinger::setTransactionState(
1719        const Vector<ComposerState>& state,
1720        const Vector<DisplayState>& displays,
1721        uint32_t flags)
1722{
1723    ATRACE_CALL();
1724    Mutex::Autolock _l(mStateLock);
1725    uint32_t transactionFlags = 0;
1726
1727    if (flags & eAnimation) {
1728        // For window updates that are part of an animation we must wait for
1729        // previous animation "frames" to be handled.
1730        while (mAnimTransactionPending) {
1731            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1732            if (CC_UNLIKELY(err != NO_ERROR)) {
1733                // just in case something goes wrong in SF, return to the
1734                // caller after a few seconds.
1735                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1736                        "waiting for previous animation frame");
1737                mAnimTransactionPending = false;
1738                break;
1739            }
1740        }
1741    }
1742
1743    size_t count = displays.size();
1744    for (size_t i=0 ; i<count ; i++) {
1745        const DisplayState& s(displays[i]);
1746        transactionFlags |= setDisplayStateLocked(s);
1747    }
1748
1749    count = state.size();
1750    for (size_t i=0 ; i<count ; i++) {
1751        const ComposerState& s(state[i]);
1752        // Here we need to check that the interface we're given is indeed
1753        // one of our own. A malicious client could give us a NULL
1754        // IInterface, or one of its own or even one of our own but a
1755        // different type. All these situations would cause us to crash.
1756        //
1757        // NOTE: it would be better to use RTTI as we could directly check
1758        // that we have a Client*. however, RTTI is disabled in Android.
1759        if (s.client != NULL) {
1760            sp<IBinder> binder = s.client->asBinder();
1761            if (binder != NULL) {
1762                String16 desc(binder->getInterfaceDescriptor());
1763                if (desc == ISurfaceComposerClient::descriptor) {
1764                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1765                    transactionFlags |= setClientStateLocked(client, s.state);
1766                }
1767            }
1768        }
1769    }
1770
1771    if (transactionFlags) {
1772        // this triggers the transaction
1773        setTransactionFlags(transactionFlags);
1774
1775        // if this is a synchronous transaction, wait for it to take effect
1776        // before returning.
1777        if (flags & eSynchronous) {
1778            mTransactionPending = true;
1779        }
1780        if (flags & eAnimation) {
1781            mAnimTransactionPending = true;
1782        }
1783        while (mTransactionPending) {
1784            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1785            if (CC_UNLIKELY(err != NO_ERROR)) {
1786                // just in case something goes wrong in SF, return to the
1787                // called after a few seconds.
1788                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1789                mTransactionPending = false;
1790                break;
1791            }
1792        }
1793    }
1794}
1795
1796uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1797{
1798    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1799    if (dpyIdx < 0)
1800        return 0;
1801
1802    uint32_t flags = 0;
1803    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1804    if (disp.isValid()) {
1805        const uint32_t what = s.what;
1806        if (what & DisplayState::eSurfaceChanged) {
1807            if (disp.surface->asBinder() != s.surface->asBinder()) {
1808                disp.surface = s.surface;
1809                flags |= eDisplayTransactionNeeded;
1810            }
1811        }
1812        if (what & DisplayState::eLayerStackChanged) {
1813            if (disp.layerStack != s.layerStack) {
1814                disp.layerStack = s.layerStack;
1815                flags |= eDisplayTransactionNeeded;
1816            }
1817        }
1818        if (what & DisplayState::eDisplayProjectionChanged) {
1819            if (disp.orientation != s.orientation) {
1820                disp.orientation = s.orientation;
1821                flags |= eDisplayTransactionNeeded;
1822            }
1823            if (disp.frame != s.frame) {
1824                disp.frame = s.frame;
1825                flags |= eDisplayTransactionNeeded;
1826            }
1827            if (disp.viewport != s.viewport) {
1828                disp.viewport = s.viewport;
1829                flags |= eDisplayTransactionNeeded;
1830            }
1831        }
1832    }
1833    return flags;
1834}
1835
1836uint32_t SurfaceFlinger::setClientStateLocked(
1837        const sp<Client>& client,
1838        const layer_state_t& s)
1839{
1840    uint32_t flags = 0;
1841    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1842    if (layer != 0) {
1843        const uint32_t what = s.what;
1844        if (what & layer_state_t::ePositionChanged) {
1845            if (layer->setPosition(s.x, s.y))
1846                flags |= eTraversalNeeded;
1847        }
1848        if (what & layer_state_t::eLayerChanged) {
1849            // NOTE: index needs to be calculated before we update the state
1850            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1851            if (layer->setLayer(s.z)) {
1852                mCurrentState.layersSortedByZ.removeAt(idx);
1853                mCurrentState.layersSortedByZ.add(layer);
1854                // we need traversal (state changed)
1855                // AND transaction (list changed)
1856                flags |= eTransactionNeeded|eTraversalNeeded;
1857            }
1858        }
1859        if (what & layer_state_t::eSizeChanged) {
1860            if (layer->setSize(s.w, s.h)) {
1861                flags |= eTraversalNeeded;
1862            }
1863        }
1864        if (what & layer_state_t::eAlphaChanged) {
1865            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1866                flags |= eTraversalNeeded;
1867        }
1868        if (what & layer_state_t::eMatrixChanged) {
1869            if (layer->setMatrix(s.matrix))
1870                flags |= eTraversalNeeded;
1871        }
1872        if (what & layer_state_t::eTransparentRegionChanged) {
1873            if (layer->setTransparentRegionHint(s.transparentRegion))
1874                flags |= eTraversalNeeded;
1875        }
1876        if (what & layer_state_t::eVisibilityChanged) {
1877            if (layer->setFlags(s.flags, s.mask))
1878                flags |= eTraversalNeeded;
1879        }
1880        if (what & layer_state_t::eCropChanged) {
1881            if (layer->setCrop(s.crop))
1882                flags |= eTraversalNeeded;
1883        }
1884        if (what & layer_state_t::eLayerStackChanged) {
1885            // NOTE: index needs to be calculated before we update the state
1886            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1887            if (layer->setLayerStack(s.layerStack)) {
1888                mCurrentState.layersSortedByZ.removeAt(idx);
1889                mCurrentState.layersSortedByZ.add(layer);
1890                // we need traversal (state changed)
1891                // AND transaction (list changed)
1892                flags |= eTransactionNeeded|eTraversalNeeded;
1893            }
1894        }
1895    }
1896    return flags;
1897}
1898
1899sp<ISurface> SurfaceFlinger::createLayer(
1900        ISurfaceComposerClient::surface_data_t* params,
1901        const String8& name,
1902        const sp<Client>& client,
1903       uint32_t w, uint32_t h, PixelFormat format,
1904        uint32_t flags)
1905{
1906    sp<LayerBaseClient> layer;
1907    sp<ISurface> surfaceHandle;
1908
1909    if (int32_t(w|h) < 0) {
1910        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1911                int(w), int(h));
1912        return surfaceHandle;
1913    }
1914
1915    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1916    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1917        case ISurfaceComposerClient::eFXSurfaceNormal:
1918            layer = createNormalLayer(client, w, h, flags, format);
1919            break;
1920        case ISurfaceComposerClient::eFXSurfaceBlur:
1921        case ISurfaceComposerClient::eFXSurfaceDim:
1922            layer = createDimLayer(client, w, h, flags);
1923            break;
1924        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1925            layer = createScreenshotLayer(client, w, h, flags);
1926            break;
1927    }
1928
1929    if (layer != 0) {
1930        layer->initStates(w, h, flags);
1931        layer->setName(name);
1932        ssize_t token = addClientLayer(client, layer);
1933        surfaceHandle = layer->getSurface();
1934        if (surfaceHandle != 0) {
1935            params->token = token;
1936            params->identity = layer->getIdentity();
1937        }
1938        setTransactionFlags(eTransactionNeeded);
1939    }
1940
1941    return surfaceHandle;
1942}
1943
1944sp<Layer> SurfaceFlinger::createNormalLayer(
1945        const sp<Client>& client,
1946        uint32_t w, uint32_t h, uint32_t flags,
1947        PixelFormat& format)
1948{
1949    // initialize the surfaces
1950    switch (format) {
1951    case PIXEL_FORMAT_TRANSPARENT:
1952    case PIXEL_FORMAT_TRANSLUCENT:
1953        format = PIXEL_FORMAT_RGBA_8888;
1954        break;
1955    case PIXEL_FORMAT_OPAQUE:
1956#ifdef NO_RGBX_8888
1957        format = PIXEL_FORMAT_RGB_565;
1958#else
1959        format = PIXEL_FORMAT_RGBX_8888;
1960#endif
1961        break;
1962    }
1963
1964#ifdef NO_RGBX_8888
1965    if (format == PIXEL_FORMAT_RGBX_8888)
1966        format = PIXEL_FORMAT_RGBA_8888;
1967#endif
1968
1969    sp<Layer> layer = new Layer(this, client);
1970    status_t err = layer->setBuffers(w, h, format, flags);
1971    if (CC_LIKELY(err != NO_ERROR)) {
1972        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1973        layer.clear();
1974    }
1975    return layer;
1976}
1977
1978sp<LayerDim> SurfaceFlinger::createDimLayer(
1979        const sp<Client>& client,
1980        uint32_t w, uint32_t h, uint32_t flags)
1981{
1982    sp<LayerDim> layer = new LayerDim(this, client);
1983    return layer;
1984}
1985
1986sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1987        const sp<Client>& client,
1988        uint32_t w, uint32_t h, uint32_t flags)
1989{
1990    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1991    return layer;
1992}
1993
1994status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1995{
1996    /*
1997     * called by the window manager, when a surface should be marked for
1998     * destruction.
1999     *
2000     * The surface is removed from the current and drawing lists, but placed
2001     * in the purgatory queue, so it's not destroyed right-away (we need
2002     * to wait for all client's references to go away first).
2003     */
2004
2005    status_t err = NAME_NOT_FOUND;
2006    Mutex::Autolock _l(mStateLock);
2007    sp<LayerBaseClient> layer = client->getLayerUser(sid);
2008
2009    if (layer != 0) {
2010        err = purgatorizeLayer_l(layer);
2011        if (err == NO_ERROR) {
2012            setTransactionFlags(eTransactionNeeded);
2013        }
2014    }
2015    return err;
2016}
2017
2018status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
2019{
2020    // called by ~ISurface() when all references are gone
2021    status_t err = NO_ERROR;
2022    sp<LayerBaseClient> l(layer.promote());
2023    if (l != NULL) {
2024        Mutex::Autolock _l(mStateLock);
2025        err = removeLayer_l(l);
2026        if (err == NAME_NOT_FOUND) {
2027            // The surface wasn't in the current list, which means it was
2028            // removed already, which means it is in the purgatory,
2029            // and need to be removed from there.
2030            ssize_t idx = mLayerPurgatory.remove(l);
2031            ALOGE_IF(idx < 0,
2032                    "layer=%p is not in the purgatory list", l.get());
2033        }
2034        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2035                "error removing layer=%p (%s)", l.get(), strerror(-err));
2036    }
2037    return err;
2038}
2039
2040// ---------------------------------------------------------------------------
2041
2042void SurfaceFlinger::onInitializeDisplays() {
2043    // reset screen orientation
2044    Vector<ComposerState> state;
2045    Vector<DisplayState> displays;
2046    DisplayState d;
2047    d.what = DisplayState::eDisplayProjectionChanged;
2048    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
2049    d.orientation = DisplayState::eOrientationDefault;
2050    d.frame.makeInvalid();
2051    d.viewport.makeInvalid();
2052    displays.add(d);
2053    setTransactionState(state, displays, 0);
2054    onScreenAcquired(getDefaultDisplayDevice());
2055}
2056
2057void SurfaceFlinger::initializeDisplays() {
2058    class MessageScreenInitialized : public MessageBase {
2059        SurfaceFlinger* flinger;
2060    public:
2061        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2062        virtual bool handler() {
2063            flinger->onInitializeDisplays();
2064            return true;
2065        }
2066    };
2067    sp<MessageBase> msg = new MessageScreenInitialized(this);
2068    postMessageAsync(msg);  // we may be called from main thread, use async message
2069}
2070
2071
2072void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2073    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2074    if (hw->isScreenAcquired()) {
2075        // this is expected, e.g. when power manager wakes up during boot
2076        ALOGD(" screen was previously acquired");
2077        return;
2078    }
2079
2080    hw->acquireScreen();
2081    int32_t type = hw->getDisplayType();
2082    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2083        // built-in display, tell the HWC
2084        getHwComposer().acquire(type);
2085
2086        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2087            // FIXME: eventthread only knows about the main display right now
2088            mEventThread->onScreenAcquired();
2089        }
2090    }
2091    mVisibleRegionsDirty = true;
2092    repaintEverything();
2093}
2094
2095void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2096    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2097    if (!hw->isScreenAcquired()) {
2098        ALOGD(" screen was previously released");
2099        return;
2100    }
2101
2102    hw->releaseScreen();
2103    int32_t type = hw->getDisplayType();
2104    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2105        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2106            // FIXME: eventthread only knows about the main display right now
2107            mEventThread->onScreenReleased();
2108        }
2109
2110        // built-in display, tell the HWC
2111        getHwComposer().release(type);
2112    }
2113    mVisibleRegionsDirty = true;
2114    // from this point on, SF will stop drawing on this display
2115}
2116
2117void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2118    class MessageScreenAcquired : public MessageBase {
2119        SurfaceFlinger& mFlinger;
2120        sp<IBinder> mDisplay;
2121    public:
2122        MessageScreenAcquired(SurfaceFlinger& flinger,
2123                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2124        virtual bool handler() {
2125            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2126            if (hw == NULL) {
2127                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2128            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2129                ALOGW("Attempt to unblank virtual display");
2130            } else {
2131                mFlinger.onScreenAcquired(hw);
2132            }
2133            return true;
2134        }
2135    };
2136    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2137    postMessageSync(msg);
2138}
2139
2140void SurfaceFlinger::blank(const sp<IBinder>& display) {
2141    class MessageScreenReleased : public MessageBase {
2142        SurfaceFlinger& mFlinger;
2143        sp<IBinder> mDisplay;
2144    public:
2145        MessageScreenReleased(SurfaceFlinger& flinger,
2146                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2147        virtual bool handler() {
2148            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2149            if (hw == NULL) {
2150                ALOGE("Attempt to blank null display %p", mDisplay.get());
2151            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2152                ALOGW("Attempt to blank virtual display");
2153            } else {
2154                mFlinger.onScreenReleased(hw);
2155            }
2156            return true;
2157        }
2158    };
2159    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2160    postMessageSync(msg);
2161}
2162
2163// ---------------------------------------------------------------------------
2164
2165status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2166{
2167    const size_t SIZE = 4096;
2168    char buffer[SIZE];
2169    String8 result;
2170
2171    if (!PermissionCache::checkCallingPermission(sDump)) {
2172        snprintf(buffer, SIZE, "Permission Denial: "
2173                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2174                IPCThreadState::self()->getCallingPid(),
2175                IPCThreadState::self()->getCallingUid());
2176        result.append(buffer);
2177    } else {
2178        // Try to get the main lock, but don't insist if we can't
2179        // (this would indicate SF is stuck, but we want to be able to
2180        // print something in dumpsys).
2181        int retry = 3;
2182        while (mStateLock.tryLock()<0 && --retry>=0) {
2183            usleep(1000000);
2184        }
2185        const bool locked(retry >= 0);
2186        if (!locked) {
2187            snprintf(buffer, SIZE,
2188                    "SurfaceFlinger appears to be unresponsive, "
2189                    "dumping anyways (no locks held)\n");
2190            result.append(buffer);
2191        }
2192
2193        bool dumpAll = true;
2194        size_t index = 0;
2195        size_t numArgs = args.size();
2196        if (numArgs) {
2197            if ((index < numArgs) &&
2198                    (args[index] == String16("--list"))) {
2199                index++;
2200                listLayersLocked(args, index, result, buffer, SIZE);
2201                dumpAll = false;
2202            }
2203
2204            if ((index < numArgs) &&
2205                    (args[index] == String16("--latency"))) {
2206                index++;
2207                dumpStatsLocked(args, index, result, buffer, SIZE);
2208                dumpAll = false;
2209            }
2210
2211            if ((index < numArgs) &&
2212                    (args[index] == String16("--latency-clear"))) {
2213                index++;
2214                clearStatsLocked(args, index, result, buffer, SIZE);
2215                dumpAll = false;
2216            }
2217        }
2218
2219        if (dumpAll) {
2220            dumpAllLocked(result, buffer, SIZE);
2221        }
2222
2223        if (locked) {
2224            mStateLock.unlock();
2225        }
2226    }
2227    write(fd, result.string(), result.size());
2228    return NO_ERROR;
2229}
2230
2231void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2232        String8& result, char* buffer, size_t SIZE) const
2233{
2234    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2235    const size_t count = currentLayers.size();
2236    for (size_t i=0 ; i<count ; i++) {
2237        const sp<LayerBase>& layer(currentLayers[i]);
2238        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2239        result.append(buffer);
2240    }
2241}
2242
2243void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2244        String8& result, char* buffer, size_t SIZE) const
2245{
2246    String8 name;
2247    if (index < args.size()) {
2248        name = String8(args[index]);
2249        index++;
2250    }
2251
2252    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2253    const size_t count = currentLayers.size();
2254    for (size_t i=0 ; i<count ; i++) {
2255        const sp<LayerBase>& layer(currentLayers[i]);
2256        if (name.isEmpty()) {
2257            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2258            result.append(buffer);
2259        }
2260        if (name.isEmpty() || (name == layer->getName())) {
2261            layer->dumpStats(result, buffer, SIZE);
2262        }
2263    }
2264}
2265
2266void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2267        String8& result, char* buffer, size_t SIZE) const
2268{
2269    String8 name;
2270    if (index < args.size()) {
2271        name = String8(args[index]);
2272        index++;
2273    }
2274
2275    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2276    const size_t count = currentLayers.size();
2277    for (size_t i=0 ; i<count ; i++) {
2278        const sp<LayerBase>& layer(currentLayers[i]);
2279        if (name.isEmpty() || (name == layer->getName())) {
2280            layer->clearStats();
2281        }
2282    }
2283}
2284
2285/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2286{
2287    static const char* config =
2288            " [sf"
2289#ifdef NO_RGBX_8888
2290            " NO_RGBX_8888"
2291#endif
2292#ifdef HAS_CONTEXT_PRIORITY
2293            " HAS_CONTEXT_PRIORITY"
2294#endif
2295#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2296            " NEVER_DEFAULT_TO_ASYNC_MODE"
2297#endif
2298#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2299            " TARGET_DISABLE_TRIPLE_BUFFERING"
2300#endif
2301            "]";
2302    result.append(config);
2303}
2304
2305void SurfaceFlinger::dumpAllLocked(
2306        String8& result, char* buffer, size_t SIZE) const
2307{
2308    // figure out if we're stuck somewhere
2309    const nsecs_t now = systemTime();
2310    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2311    const nsecs_t inTransaction(mDebugInTransaction);
2312    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2313    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2314
2315    /*
2316     * Dump library configuration.
2317     */
2318    result.append("Build configuration:");
2319    appendSfConfigString(result);
2320    appendUiConfigString(result);
2321    appendGuiConfigString(result);
2322    result.append("\n");
2323
2324    /*
2325     * Dump the visible layer list
2326     */
2327    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2328    const size_t count = currentLayers.size();
2329    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2330    result.append(buffer);
2331    for (size_t i=0 ; i<count ; i++) {
2332        const sp<LayerBase>& layer(currentLayers[i]);
2333        layer->dump(result, buffer, SIZE);
2334    }
2335
2336    /*
2337     * Dump the layers in the purgatory
2338     */
2339
2340    const size_t purgatorySize = mLayerPurgatory.size();
2341    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2342    result.append(buffer);
2343    for (size_t i=0 ; i<purgatorySize ; i++) {
2344        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2345        layer->shortDump(result, buffer, SIZE);
2346    }
2347
2348    /*
2349     * Dump Display state
2350     */
2351
2352    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2353    result.append(buffer);
2354    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2355        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2356        hw->dump(result, buffer, SIZE);
2357    }
2358
2359    /*
2360     * Dump SurfaceFlinger global state
2361     */
2362
2363    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2364    result.append(buffer);
2365
2366    HWComposer& hwc(getHwComposer());
2367    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2368    const GLExtensions& extensions(GLExtensions::getInstance());
2369    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2370            extensions.getVendor(),
2371            extensions.getRenderer(),
2372            extensions.getVersion());
2373    result.append(buffer);
2374
2375    snprintf(buffer, SIZE, "EGL : %s\n",
2376            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2377    result.append(buffer);
2378
2379    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2380    result.append(buffer);
2381
2382    hw->undefinedRegion.dump(result, "undefinedRegion");
2383    snprintf(buffer, SIZE,
2384            "  orientation=%d, canDraw=%d\n",
2385            hw->getOrientation(), hw->canDraw());
2386    result.append(buffer);
2387    snprintf(buffer, SIZE,
2388            "  last eglSwapBuffers() time: %f us\n"
2389            "  last transaction time     : %f us\n"
2390            "  transaction-flags         : %08x\n"
2391            "  refresh-rate              : %f fps\n"
2392            "  x-dpi                     : %f\n"
2393            "  y-dpi                     : %f\n",
2394            mLastSwapBufferTime/1000.0,
2395            mLastTransactionTime/1000.0,
2396            mTransactionFlags,
2397            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2398            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2399            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2400    result.append(buffer);
2401
2402    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2403            inSwapBuffersDuration/1000.0);
2404    result.append(buffer);
2405
2406    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2407            inTransactionDuration/1000.0);
2408    result.append(buffer);
2409
2410    /*
2411     * VSYNC state
2412     */
2413    mEventThread->dump(result, buffer, SIZE);
2414
2415    /*
2416     * Dump HWComposer state
2417     */
2418    snprintf(buffer, SIZE, "h/w composer state:\n");
2419    result.append(buffer);
2420    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2421            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2422                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2423    result.append(buffer);
2424    hwc.dump(result, buffer, SIZE);
2425
2426    /*
2427     * Dump gralloc state
2428     */
2429    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2430    alloc.dump(result);
2431}
2432
2433const Vector< sp<LayerBase> >&
2434SurfaceFlinger::getLayerSortedByZForHwcDisplay(int disp) {
2435    // Note: mStateLock is held here
2436    return getDisplayDevice( getBuiltInDisplay(disp) )->getVisibleLayersSortedByZ();
2437}
2438
2439bool SurfaceFlinger::startDdmConnection()
2440{
2441    void* libddmconnection_dso =
2442            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2443    if (!libddmconnection_dso) {
2444        return false;
2445    }
2446    void (*DdmConnection_start)(const char* name);
2447    DdmConnection_start =
2448            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2449    if (!DdmConnection_start) {
2450        dlclose(libddmconnection_dso);
2451        return false;
2452    }
2453    (*DdmConnection_start)(getServiceName());
2454    return true;
2455}
2456
2457status_t SurfaceFlinger::onTransact(
2458    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2459{
2460    switch (code) {
2461        case CREATE_CONNECTION:
2462        case SET_TRANSACTION_STATE:
2463        case BOOT_FINISHED:
2464        case BLANK:
2465        case UNBLANK:
2466        {
2467            // codes that require permission check
2468            IPCThreadState* ipc = IPCThreadState::self();
2469            const int pid = ipc->getCallingPid();
2470            const int uid = ipc->getCallingUid();
2471            if ((uid != AID_GRAPHICS) &&
2472                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2473                ALOGE("Permission Denial: "
2474                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2475                return PERMISSION_DENIED;
2476            }
2477            break;
2478        }
2479        case CAPTURE_SCREEN:
2480        {
2481            // codes that require permission check
2482            IPCThreadState* ipc = IPCThreadState::self();
2483            const int pid = ipc->getCallingPid();
2484            const int uid = ipc->getCallingUid();
2485            if ((uid != AID_GRAPHICS) &&
2486                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2487                ALOGE("Permission Denial: "
2488                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2489                return PERMISSION_DENIED;
2490            }
2491            break;
2492        }
2493    }
2494
2495    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2496    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2497        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2498        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2499            IPCThreadState* ipc = IPCThreadState::self();
2500            const int pid = ipc->getCallingPid();
2501            const int uid = ipc->getCallingUid();
2502            ALOGE("Permission Denial: "
2503                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2504            return PERMISSION_DENIED;
2505        }
2506        int n;
2507        switch (code) {
2508            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2509            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2510                return NO_ERROR;
2511            case 1002:  // SHOW_UPDATES
2512                n = data.readInt32();
2513                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2514                invalidateHwcGeometry();
2515                repaintEverything();
2516                return NO_ERROR;
2517            case 1004:{ // repaint everything
2518                repaintEverything();
2519                return NO_ERROR;
2520            }
2521            case 1005:{ // force transaction
2522                setTransactionFlags(
2523                        eTransactionNeeded|
2524                        eDisplayTransactionNeeded|
2525                        eTraversalNeeded);
2526                return NO_ERROR;
2527            }
2528            case 1006:{ // send empty update
2529                signalRefresh();
2530                return NO_ERROR;
2531            }
2532            case 1008:  // toggle use of hw composer
2533                n = data.readInt32();
2534                mDebugDisableHWC = n ? 1 : 0;
2535                invalidateHwcGeometry();
2536                repaintEverything();
2537                return NO_ERROR;
2538            case 1009:  // toggle use of transform hint
2539                n = data.readInt32();
2540                mDebugDisableTransformHint = n ? 1 : 0;
2541                invalidateHwcGeometry();
2542                repaintEverything();
2543                return NO_ERROR;
2544            case 1010:  // interrogate.
2545                reply->writeInt32(0);
2546                reply->writeInt32(0);
2547                reply->writeInt32(mDebugRegion);
2548                reply->writeInt32(0);
2549                reply->writeInt32(mDebugDisableHWC);
2550                return NO_ERROR;
2551            case 1013: {
2552                Mutex::Autolock _l(mStateLock);
2553                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2554                reply->writeInt32(hw->getPageFlipCount());
2555            }
2556            return NO_ERROR;
2557        }
2558    }
2559    return err;
2560}
2561
2562void SurfaceFlinger::repaintEverything() {
2563    android_atomic_or(1, &mRepaintEverything);
2564    signalTransaction();
2565}
2566
2567// ---------------------------------------------------------------------------
2568
2569status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2570        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2571{
2572    Mutex::Autolock _l(mStateLock);
2573    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2574}
2575
2576status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2577        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2578{
2579    ATRACE_CALL();
2580
2581    if (!GLExtensions::getInstance().haveFramebufferObject())
2582        return INVALID_OPERATION;
2583
2584    // get screen geometry
2585    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2586    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2587    const uint32_t hw_w = hw->getWidth();
2588    const uint32_t hw_h = hw->getHeight();
2589    GLfloat u = 1;
2590    GLfloat v = 1;
2591
2592    // make sure to clear all GL error flags
2593    while ( glGetError() != GL_NO_ERROR ) ;
2594
2595    // create a FBO
2596    GLuint name, tname;
2597    glGenTextures(1, &tname);
2598    glBindTexture(GL_TEXTURE_2D, tname);
2599    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2600    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2601    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2602            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2603    if (glGetError() != GL_NO_ERROR) {
2604        while ( glGetError() != GL_NO_ERROR ) ;
2605        GLint tw = (2 << (31 - clz(hw_w)));
2606        GLint th = (2 << (31 - clz(hw_h)));
2607        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2608                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2609        u = GLfloat(hw_w) / tw;
2610        v = GLfloat(hw_h) / th;
2611    }
2612    glGenFramebuffersOES(1, &name);
2613    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2614    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2615            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2616
2617    DisplayDevice::setViewportAndProjection(hw);
2618
2619    // redraw the screen entirely...
2620    glDisable(GL_TEXTURE_EXTERNAL_OES);
2621    glDisable(GL_TEXTURE_2D);
2622    glClearColor(0,0,0,1);
2623    glClear(GL_COLOR_BUFFER_BIT);
2624    glMatrixMode(GL_MODELVIEW);
2625    glLoadIdentity();
2626    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2627    const size_t count = layers.size();
2628    for (size_t i=0 ; i<count ; ++i) {
2629        const sp<LayerBase>& layer(layers[i]);
2630        layer->draw(hw);
2631    }
2632
2633    hw->compositionComplete();
2634
2635    // back to main framebuffer
2636    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2637    glDeleteFramebuffersOES(1, &name);
2638
2639    *textureName = tname;
2640    *uOut = u;
2641    *vOut = v;
2642    return NO_ERROR;
2643}
2644
2645// ---------------------------------------------------------------------------
2646
2647status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2648        sp<IMemoryHeap>* heap,
2649        uint32_t* w, uint32_t* h, PixelFormat* f,
2650        uint32_t sw, uint32_t sh,
2651        uint32_t minLayerZ, uint32_t maxLayerZ)
2652{
2653    ATRACE_CALL();
2654
2655    status_t result = PERMISSION_DENIED;
2656
2657    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2658        return INVALID_OPERATION;
2659    }
2660
2661    // get screen geometry
2662    sp<const DisplayDevice> hw(getDisplayDevice(display));
2663    const uint32_t hw_w = hw->getWidth();
2664    const uint32_t hw_h = hw->getHeight();
2665
2666    // if we have secure windows on this display, never allow the screen capture
2667    if (hw->getSecureLayerVisible()) {
2668        ALOGW("FB is protected: PERMISSION_DENIED");
2669        return PERMISSION_DENIED;
2670    }
2671
2672    if ((sw > hw_w) || (sh > hw_h)) {
2673        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2674        return BAD_VALUE;
2675    }
2676
2677    sw = (!sw) ? hw_w : sw;
2678    sh = (!sh) ? hw_h : sh;
2679    const size_t size = sw * sh * 4;
2680    const bool filtering = sw != hw_w || sh != hw_h;
2681
2682//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2683//            sw, sh, minLayerZ, maxLayerZ);
2684
2685    // make sure to clear all GL error flags
2686    while ( glGetError() != GL_NO_ERROR ) ;
2687
2688    // create a FBO
2689    GLuint name, tname;
2690    glGenRenderbuffersOES(1, &tname);
2691    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2692    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2693
2694    glGenFramebuffersOES(1, &name);
2695    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2696    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2697            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2698
2699    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2700
2701    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2702
2703        // invert everything, b/c glReadPixel() below will invert the FB
2704        GLint  viewport[4];
2705        glGetIntegerv(GL_VIEWPORT, viewport);
2706        glViewport(0, 0, sw, sh);
2707        glMatrixMode(GL_PROJECTION);
2708        glPushMatrix();
2709        glLoadIdentity();
2710        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2711        glMatrixMode(GL_MODELVIEW);
2712
2713        // redraw the screen entirely...
2714        glClearColor(0,0,0,1);
2715        glClear(GL_COLOR_BUFFER_BIT);
2716
2717        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2718        const size_t count = layers.size();
2719        for (size_t i=0 ; i<count ; ++i) {
2720            const sp<LayerBase>& layer(layers[i]);
2721            const uint32_t z = layer->drawingState().z;
2722            if (z >= minLayerZ && z <= maxLayerZ) {
2723                if (filtering) layer->setFiltering(true);
2724                layer->draw(hw);
2725                if (filtering) layer->setFiltering(false);
2726            }
2727        }
2728
2729        // check for errors and return screen capture
2730        if (glGetError() != GL_NO_ERROR) {
2731            // error while rendering
2732            result = INVALID_OPERATION;
2733        } else {
2734            // allocate shared memory large enough to hold the
2735            // screen capture
2736            sp<MemoryHeapBase> base(
2737                    new MemoryHeapBase(size, 0, "screen-capture") );
2738            void* const ptr = base->getBase();
2739            if (ptr != MAP_FAILED) {
2740                // capture the screen with glReadPixels()
2741                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2742                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2743                if (glGetError() == GL_NO_ERROR) {
2744                    *heap = base;
2745                    *w = sw;
2746                    *h = sh;
2747                    *f = PIXEL_FORMAT_RGBA_8888;
2748                    result = NO_ERROR;
2749                }
2750            } else {
2751                result = NO_MEMORY;
2752            }
2753        }
2754        glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
2755        glMatrixMode(GL_PROJECTION);
2756        glPopMatrix();
2757        glMatrixMode(GL_MODELVIEW);
2758    } else {
2759        result = BAD_VALUE;
2760    }
2761
2762    // release FBO resources
2763    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2764    glDeleteRenderbuffersOES(1, &tname);
2765    glDeleteFramebuffersOES(1, &name);
2766
2767    hw->compositionComplete();
2768
2769//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2770
2771    return result;
2772}
2773
2774
2775status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2776        sp<IMemoryHeap>* heap,
2777        uint32_t* width, uint32_t* height, PixelFormat* format,
2778        uint32_t sw, uint32_t sh,
2779        uint32_t minLayerZ, uint32_t maxLayerZ)
2780{
2781    if (CC_UNLIKELY(display == 0))
2782        return BAD_VALUE;
2783
2784    if (!GLExtensions::getInstance().haveFramebufferObject())
2785        return INVALID_OPERATION;
2786
2787    class MessageCaptureScreen : public MessageBase {
2788        SurfaceFlinger* flinger;
2789        sp<IBinder> display;
2790        sp<IMemoryHeap>* heap;
2791        uint32_t* w;
2792        uint32_t* h;
2793        PixelFormat* f;
2794        uint32_t sw;
2795        uint32_t sh;
2796        uint32_t minLayerZ;
2797        uint32_t maxLayerZ;
2798        status_t result;
2799    public:
2800        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2801                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2802                uint32_t sw, uint32_t sh,
2803                uint32_t minLayerZ, uint32_t maxLayerZ)
2804            : flinger(flinger), display(display),
2805              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2806              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2807              result(PERMISSION_DENIED)
2808        {
2809        }
2810        status_t getResult() const {
2811            return result;
2812        }
2813        virtual bool handler() {
2814            Mutex::Autolock _l(flinger->mStateLock);
2815            result = flinger->captureScreenImplLocked(display,
2816                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2817            return true;
2818        }
2819    };
2820
2821    sp<MessageBase> msg = new MessageCaptureScreen(this,
2822            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2823    status_t res = postMessageSync(msg);
2824    if (res == NO_ERROR) {
2825        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2826    }
2827    return res;
2828}
2829
2830// ---------------------------------------------------------------------------
2831
2832SurfaceFlinger::LayerVector::LayerVector() {
2833}
2834
2835SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2836    : SortedVector<sp<LayerBase> >(rhs) {
2837}
2838
2839int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2840    const void* rhs) const
2841{
2842    // sort layers per layer-stack, then by z-order and finally by sequence
2843    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2844    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2845
2846    uint32_t ls = l->currentState().layerStack;
2847    uint32_t rs = r->currentState().layerStack;
2848    if (ls != rs)
2849        return ls - rs;
2850
2851    uint32_t lz = l->currentState().z;
2852    uint32_t rz = r->currentState().z;
2853    if (lz != rz)
2854        return lz - rz;
2855
2856    return l->sequence - r->sequence;
2857}
2858
2859// ---------------------------------------------------------------------------
2860
2861SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2862    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2863}
2864
2865SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2866    : type(type), layerStack(0), orientation(0) {
2867    viewport.makeInvalid();
2868    frame.makeInvalid();
2869}
2870
2871// ---------------------------------------------------------------------------
2872
2873}; // namespace android
2874