1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.AbstractQueue;
10import java.util.Collection;
11import java.util.Iterator;
12import java.util.NoSuchElementException;
13import java.util.Queue;
14import java.util.concurrent.TimeUnit;
15import java.util.concurrent.locks.LockSupport;
16
17// BEGIN android-note
18// removed link to collections framework docs
19// END android-note
20
21/**
22 * An unbounded {@link TransferQueue} based on linked nodes.
23 * This queue orders elements FIFO (first-in-first-out) with respect
24 * to any given producer.  The <em>head</em> of the queue is that
25 * element that has been on the queue the longest time for some
26 * producer.  The <em>tail</em> of the queue is that element that has
27 * been on the queue the shortest time for some producer.
28 *
29 * <p>Beware that, unlike in most collections, the {@code size} method
30 * is <em>NOT</em> a constant-time operation. Because of the
31 * asynchronous nature of these queues, determining the current number
32 * of elements requires a traversal of the elements, and so may report
33 * inaccurate results if this collection is modified during traversal.
34 * Additionally, the bulk operations {@code addAll},
35 * {@code removeAll}, {@code retainAll}, {@code containsAll},
36 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
37 * to be performed atomically. For example, an iterator operating
38 * concurrently with an {@code addAll} operation might view only some
39 * of the added elements.
40 *
41 * <p>This class and its iterator implement all of the
42 * <em>optional</em> methods of the {@link Collection} and {@link
43 * Iterator} interfaces.
44 *
45 * <p>Memory consistency effects: As with other concurrent
46 * collections, actions in a thread prior to placing an object into a
47 * {@code LinkedTransferQueue}
48 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
49 * actions subsequent to the access or removal of that element from
50 * the {@code LinkedTransferQueue} in another thread.
51 *
52 * @since 1.7
53 * @hide
54 * @author Doug Lea
55 * @param <E> the type of elements held in this collection
56 */
57public class LinkedTransferQueue<E> extends AbstractQueue<E>
58    implements TransferQueue<E>, java.io.Serializable {
59    private static final long serialVersionUID = -3223113410248163686L;
60
61    /*
62     * *** Overview of Dual Queues with Slack ***
63     *
64     * Dual Queues, introduced by Scherer and Scott
65     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
66     * (linked) queues in which nodes may represent either data or
67     * requests.  When a thread tries to enqueue a data node, but
68     * encounters a request node, it instead "matches" and removes it;
69     * and vice versa for enqueuing requests. Blocking Dual Queues
70     * arrange that threads enqueuing unmatched requests block until
71     * other threads provide the match. Dual Synchronous Queues (see
72     * Scherer, Lea, & Scott
73     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
74     * additionally arrange that threads enqueuing unmatched data also
75     * block.  Dual Transfer Queues support all of these modes, as
76     * dictated by callers.
77     *
78     * A FIFO dual queue may be implemented using a variation of the
79     * Michael & Scott (M&S) lock-free queue algorithm
80     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
81     * It maintains two pointer fields, "head", pointing to a
82     * (matched) node that in turn points to the first actual
83     * (unmatched) queue node (or null if empty); and "tail" that
84     * points to the last node on the queue (or again null if
85     * empty). For example, here is a possible queue with four data
86     * elements:
87     *
88     *  head                tail
89     *    |                   |
90     *    v                   v
91     *    M -> U -> U -> U -> U
92     *
93     * The M&S queue algorithm is known to be prone to scalability and
94     * overhead limitations when maintaining (via CAS) these head and
95     * tail pointers. This has led to the development of
96     * contention-reducing variants such as elimination arrays (see
97     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
98     * optimistic back pointers (see Ladan-Mozes & Shavit
99     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
100     * However, the nature of dual queues enables a simpler tactic for
101     * improving M&S-style implementations when dual-ness is needed.
102     *
103     * In a dual queue, each node must atomically maintain its match
104     * status. While there are other possible variants, we implement
105     * this here as: for a data-mode node, matching entails CASing an
106     * "item" field from a non-null data value to null upon match, and
107     * vice-versa for request nodes, CASing from null to a data
108     * value. (Note that the linearization properties of this style of
109     * queue are easy to verify -- elements are made available by
110     * linking, and unavailable by matching.) Compared to plain M&S
111     * queues, this property of dual queues requires one additional
112     * successful atomic operation per enq/deq pair. But it also
113     * enables lower cost variants of queue maintenance mechanics. (A
114     * variation of this idea applies even for non-dual queues that
115     * support deletion of interior elements, such as
116     * j.u.c.ConcurrentLinkedQueue.)
117     *
118     * Once a node is matched, its match status can never again
119     * change.  We may thus arrange that the linked list of them
120     * contain a prefix of zero or more matched nodes, followed by a
121     * suffix of zero or more unmatched nodes. (Note that we allow
122     * both the prefix and suffix to be zero length, which in turn
123     * means that we do not use a dummy header.)  If we were not
124     * concerned with either time or space efficiency, we could
125     * correctly perform enqueue and dequeue operations by traversing
126     * from a pointer to the initial node; CASing the item of the
127     * first unmatched node on match and CASing the next field of the
128     * trailing node on appends. (Plus some special-casing when
129     * initially empty).  While this would be a terrible idea in
130     * itself, it does have the benefit of not requiring ANY atomic
131     * updates on head/tail fields.
132     *
133     * We introduce here an approach that lies between the extremes of
134     * never versus always updating queue (head and tail) pointers.
135     * This offers a tradeoff between sometimes requiring extra
136     * traversal steps to locate the first and/or last unmatched
137     * nodes, versus the reduced overhead and contention of fewer
138     * updates to queue pointers. For example, a possible snapshot of
139     * a queue is:
140     *
141     *  head           tail
142     *    |              |
143     *    v              v
144     *    M -> M -> U -> U -> U -> U
145     *
146     * The best value for this "slack" (the targeted maximum distance
147     * between the value of "head" and the first unmatched node, and
148     * similarly for "tail") is an empirical matter. We have found
149     * that using very small constants in the range of 1-3 work best
150     * over a range of platforms. Larger values introduce increasing
151     * costs of cache misses and risks of long traversal chains, while
152     * smaller values increase CAS contention and overhead.
153     *
154     * Dual queues with slack differ from plain M&S dual queues by
155     * virtue of only sometimes updating head or tail pointers when
156     * matching, appending, or even traversing nodes; in order to
157     * maintain a targeted slack.  The idea of "sometimes" may be
158     * operationalized in several ways. The simplest is to use a
159     * per-operation counter incremented on each traversal step, and
160     * to try (via CAS) to update the associated queue pointer
161     * whenever the count exceeds a threshold. Another, that requires
162     * more overhead, is to use random number generators to update
163     * with a given probability per traversal step.
164     *
165     * In any strategy along these lines, because CASes updating
166     * fields may fail, the actual slack may exceed targeted
167     * slack. However, they may be retried at any time to maintain
168     * targets.  Even when using very small slack values, this
169     * approach works well for dual queues because it allows all
170     * operations up to the point of matching or appending an item
171     * (hence potentially allowing progress by another thread) to be
172     * read-only, thus not introducing any further contention. As
173     * described below, we implement this by performing slack
174     * maintenance retries only after these points.
175     *
176     * As an accompaniment to such techniques, traversal overhead can
177     * be further reduced without increasing contention of head
178     * pointer updates: Threads may sometimes shortcut the "next" link
179     * path from the current "head" node to be closer to the currently
180     * known first unmatched node, and similarly for tail. Again, this
181     * may be triggered with using thresholds or randomization.
182     *
183     * These ideas must be further extended to avoid unbounded amounts
184     * of costly-to-reclaim garbage caused by the sequential "next"
185     * links of nodes starting at old forgotten head nodes: As first
186     * described in detail by Boehm
187     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
188     * delays noticing that any arbitrarily old node has become
189     * garbage, all newer dead nodes will also be unreclaimed.
190     * (Similar issues arise in non-GC environments.)  To cope with
191     * this in our implementation, upon CASing to advance the head
192     * pointer, we set the "next" link of the previous head to point
193     * only to itself; thus limiting the length of connected dead lists.
194     * (We also take similar care to wipe out possibly garbage
195     * retaining values held in other Node fields.)  However, doing so
196     * adds some further complexity to traversal: If any "next"
197     * pointer links to itself, it indicates that the current thread
198     * has lagged behind a head-update, and so the traversal must
199     * continue from the "head".  Traversals trying to find the
200     * current tail starting from "tail" may also encounter
201     * self-links, in which case they also continue at "head".
202     *
203     * It is tempting in slack-based scheme to not even use CAS for
204     * updates (similarly to Ladan-Mozes & Shavit). However, this
205     * cannot be done for head updates under the above link-forgetting
206     * mechanics because an update may leave head at a detached node.
207     * And while direct writes are possible for tail updates, they
208     * increase the risk of long retraversals, and hence long garbage
209     * chains, which can be much more costly than is worthwhile
210     * considering that the cost difference of performing a CAS vs
211     * write is smaller when they are not triggered on each operation
212     * (especially considering that writes and CASes equally require
213     * additional GC bookkeeping ("write barriers") that are sometimes
214     * more costly than the writes themselves because of contention).
215     *
216     * *** Overview of implementation ***
217     *
218     * We use a threshold-based approach to updates, with a slack
219     * threshold of two -- that is, we update head/tail when the
220     * current pointer appears to be two or more steps away from the
221     * first/last node. The slack value is hard-wired: a path greater
222     * than one is naturally implemented by checking equality of
223     * traversal pointers except when the list has only one element,
224     * in which case we keep slack threshold at one. Avoiding tracking
225     * explicit counts across method calls slightly simplifies an
226     * already-messy implementation. Using randomization would
227     * probably work better if there were a low-quality dirt-cheap
228     * per-thread one available, but even ThreadLocalRandom is too
229     * heavy for these purposes.
230     *
231     * With such a small slack threshold value, it is not worthwhile
232     * to augment this with path short-circuiting (i.e., unsplicing
233     * interior nodes) except in the case of cancellation/removal (see
234     * below).
235     *
236     * We allow both the head and tail fields to be null before any
237     * nodes are enqueued; initializing upon first append.  This
238     * simplifies some other logic, as well as providing more
239     * efficient explicit control paths instead of letting JVMs insert
240     * implicit NullPointerExceptions when they are null.  While not
241     * currently fully implemented, we also leave open the possibility
242     * of re-nulling these fields when empty (which is complicated to
243     * arrange, for little benefit.)
244     *
245     * All enqueue/dequeue operations are handled by the single method
246     * "xfer" with parameters indicating whether to act as some form
247     * of offer, put, poll, take, or transfer (each possibly with
248     * timeout). The relative complexity of using one monolithic
249     * method outweighs the code bulk and maintenance problems of
250     * using separate methods for each case.
251     *
252     * Operation consists of up to three phases. The first is
253     * implemented within method xfer, the second in tryAppend, and
254     * the third in method awaitMatch.
255     *
256     * 1. Try to match an existing node
257     *
258     *    Starting at head, skip already-matched nodes until finding
259     *    an unmatched node of opposite mode, if one exists, in which
260     *    case matching it and returning, also if necessary updating
261     *    head to one past the matched node (or the node itself if the
262     *    list has no other unmatched nodes). If the CAS misses, then
263     *    a loop retries advancing head by two steps until either
264     *    success or the slack is at most two. By requiring that each
265     *    attempt advances head by two (if applicable), we ensure that
266     *    the slack does not grow without bound. Traversals also check
267     *    if the initial head is now off-list, in which case they
268     *    start at the new head.
269     *
270     *    If no candidates are found and the call was untimed
271     *    poll/offer, (argument "how" is NOW) return.
272     *
273     * 2. Try to append a new node (method tryAppend)
274     *
275     *    Starting at current tail pointer, find the actual last node
276     *    and try to append a new node (or if head was null, establish
277     *    the first node). Nodes can be appended only if their
278     *    predecessors are either already matched or are of the same
279     *    mode. If we detect otherwise, then a new node with opposite
280     *    mode must have been appended during traversal, so we must
281     *    restart at phase 1. The traversal and update steps are
282     *    otherwise similar to phase 1: Retrying upon CAS misses and
283     *    checking for staleness.  In particular, if a self-link is
284     *    encountered, then we can safely jump to a node on the list
285     *    by continuing the traversal at current head.
286     *
287     *    On successful append, if the call was ASYNC, return.
288     *
289     * 3. Await match or cancellation (method awaitMatch)
290     *
291     *    Wait for another thread to match node; instead cancelling if
292     *    the current thread was interrupted or the wait timed out. On
293     *    multiprocessors, we use front-of-queue spinning: If a node
294     *    appears to be the first unmatched node in the queue, it
295     *    spins a bit before blocking. In either case, before blocking
296     *    it tries to unsplice any nodes between the current "head"
297     *    and the first unmatched node.
298     *
299     *    Front-of-queue spinning vastly improves performance of
300     *    heavily contended queues. And so long as it is relatively
301     *    brief and "quiet", spinning does not much impact performance
302     *    of less-contended queues.  During spins threads check their
303     *    interrupt status and generate a thread-local random number
304     *    to decide to occasionally perform a Thread.yield. While
305     *    yield has underdefined specs, we assume that it might help,
306     *    and will not hurt, in limiting impact of spinning on busy
307     *    systems.  We also use smaller (1/2) spins for nodes that are
308     *    not known to be front but whose predecessors have not
309     *    blocked -- these "chained" spins avoid artifacts of
310     *    front-of-queue rules which otherwise lead to alternating
311     *    nodes spinning vs blocking. Further, front threads that
312     *    represent phase changes (from data to request node or vice
313     *    versa) compared to their predecessors receive additional
314     *    chained spins, reflecting longer paths typically required to
315     *    unblock threads during phase changes.
316     *
317     *
318     * ** Unlinking removed interior nodes **
319     *
320     * In addition to minimizing garbage retention via self-linking
321     * described above, we also unlink removed interior nodes. These
322     * may arise due to timed out or interrupted waits, or calls to
323     * remove(x) or Iterator.remove.  Normally, given a node that was
324     * at one time known to be the predecessor of some node s that is
325     * to be removed, we can unsplice s by CASing the next field of
326     * its predecessor if it still points to s (otherwise s must
327     * already have been removed or is now offlist). But there are two
328     * situations in which we cannot guarantee to make node s
329     * unreachable in this way: (1) If s is the trailing node of list
330     * (i.e., with null next), then it is pinned as the target node
331     * for appends, so can only be removed later after other nodes are
332     * appended. (2) We cannot necessarily unlink s given a
333     * predecessor node that is matched (including the case of being
334     * cancelled): the predecessor may already be unspliced, in which
335     * case some previous reachable node may still point to s.
336     * (For further explanation see Herlihy & Shavit "The Art of
337     * Multiprocessor Programming" chapter 9).  Although, in both
338     * cases, we can rule out the need for further action if either s
339     * or its predecessor are (or can be made to be) at, or fall off
340     * from, the head of list.
341     *
342     * Without taking these into account, it would be possible for an
343     * unbounded number of supposedly removed nodes to remain
344     * reachable.  Situations leading to such buildup are uncommon but
345     * can occur in practice; for example when a series of short timed
346     * calls to poll repeatedly time out but never otherwise fall off
347     * the list because of an untimed call to take at the front of the
348     * queue.
349     *
350     * When these cases arise, rather than always retraversing the
351     * entire list to find an actual predecessor to unlink (which
352     * won't help for case (1) anyway), we record a conservative
353     * estimate of possible unsplice failures (in "sweepVotes").
354     * We trigger a full sweep when the estimate exceeds a threshold
355     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
356     * removal failures to tolerate before sweeping through, unlinking
357     * cancelled nodes that were not unlinked upon initial removal.
358     * We perform sweeps by the thread hitting threshold (rather than
359     * background threads or by spreading work to other threads)
360     * because in the main contexts in which removal occurs, the
361     * caller is already timed-out, cancelled, or performing a
362     * potentially O(n) operation (e.g. remove(x)), none of which are
363     * time-critical enough to warrant the overhead that alternatives
364     * would impose on other threads.
365     *
366     * Because the sweepVotes estimate is conservative, and because
367     * nodes become unlinked "naturally" as they fall off the head of
368     * the queue, and because we allow votes to accumulate even while
369     * sweeps are in progress, there are typically significantly fewer
370     * such nodes than estimated.  Choice of a threshold value
371     * balances the likelihood of wasted effort and contention, versus
372     * providing a worst-case bound on retention of interior nodes in
373     * quiescent queues. The value defined below was chosen
374     * empirically to balance these under various timeout scenarios.
375     *
376     * Note that we cannot self-link unlinked interior nodes during
377     * sweeps. However, the associated garbage chains terminate when
378     * some successor ultimately falls off the head of the list and is
379     * self-linked.
380     */
381
382    /** True if on multiprocessor */
383    private static final boolean MP =
384        Runtime.getRuntime().availableProcessors() > 1;
385
386    /**
387     * The number of times to spin (with randomly interspersed calls
388     * to Thread.yield) on multiprocessor before blocking when a node
389     * is apparently the first waiter in the queue.  See above for
390     * explanation. Must be a power of two. The value is empirically
391     * derived -- it works pretty well across a variety of processors,
392     * numbers of CPUs, and OSes.
393     */
394    private static final int FRONT_SPINS   = 1 << 7;
395
396    /**
397     * The number of times to spin before blocking when a node is
398     * preceded by another node that is apparently spinning.  Also
399     * serves as an increment to FRONT_SPINS on phase changes, and as
400     * base average frequency for yielding during spins. Must be a
401     * power of two.
402     */
403    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
404
405    /**
406     * The maximum number of estimated removal failures (sweepVotes)
407     * to tolerate before sweeping through the queue unlinking
408     * cancelled nodes that were not unlinked upon initial
409     * removal. See above for explanation. The value must be at least
410     * two to avoid useless sweeps when removing trailing nodes.
411     */
412    static final int SWEEP_THRESHOLD = 32;
413
414    /**
415     * Queue nodes. Uses Object, not E, for items to allow forgetting
416     * them after use.  Relies heavily on Unsafe mechanics to minimize
417     * unnecessary ordering constraints: Writes that are intrinsically
418     * ordered wrt other accesses or CASes use simple relaxed forms.
419     */
420    static final class Node {
421        final boolean isData;   // false if this is a request node
422        volatile Object item;   // initially non-null if isData; CASed to match
423        volatile Node next;
424        volatile Thread waiter; // null until waiting
425
426        // CAS methods for fields
427        final boolean casNext(Node cmp, Node val) {
428            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
429        }
430
431        final boolean casItem(Object cmp, Object val) {
432            // assert cmp == null || cmp.getClass() != Node.class;
433            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
434        }
435
436        /**
437         * Constructs a new node.  Uses relaxed write because item can
438         * only be seen after publication via casNext.
439         */
440        Node(Object item, boolean isData) {
441            UNSAFE.putObject(this, itemOffset, item); // relaxed write
442            this.isData = isData;
443        }
444
445        /**
446         * Links node to itself to avoid garbage retention.  Called
447         * only after CASing head field, so uses relaxed write.
448         */
449        final void forgetNext() {
450            UNSAFE.putObject(this, nextOffset, this);
451        }
452
453        /**
454         * Sets item to self and waiter to null, to avoid garbage
455         * retention after matching or cancelling. Uses relaxed writes
456         * because order is already constrained in the only calling
457         * contexts: item is forgotten only after volatile/atomic
458         * mechanics that extract items.  Similarly, clearing waiter
459         * follows either CAS or return from park (if ever parked;
460         * else we don't care).
461         */
462        final void forgetContents() {
463            UNSAFE.putObject(this, itemOffset, this);
464            UNSAFE.putObject(this, waiterOffset, null);
465        }
466
467        /**
468         * Returns true if this node has been matched, including the
469         * case of artificial matches due to cancellation.
470         */
471        final boolean isMatched() {
472            Object x = item;
473            return (x == this) || ((x == null) == isData);
474        }
475
476        /**
477         * Returns true if this is an unmatched request node.
478         */
479        final boolean isUnmatchedRequest() {
480            return !isData && item == null;
481        }
482
483        /**
484         * Returns true if a node with the given mode cannot be
485         * appended to this node because this node is unmatched and
486         * has opposite data mode.
487         */
488        final boolean cannotPrecede(boolean haveData) {
489            boolean d = isData;
490            Object x;
491            return d != haveData && (x = item) != this && (x != null) == d;
492        }
493
494        /**
495         * Tries to artificially match a data node -- used by remove.
496         */
497        final boolean tryMatchData() {
498            // assert isData;
499            Object x = item;
500            if (x != null && x != this && casItem(x, null)) {
501                LockSupport.unpark(waiter);
502                return true;
503            }
504            return false;
505        }
506
507        private static final long serialVersionUID = -3375979862319811754L;
508
509        // Unsafe mechanics
510        private static final sun.misc.Unsafe UNSAFE;
511        private static final long itemOffset;
512        private static final long nextOffset;
513        private static final long waiterOffset;
514        static {
515            try {
516                UNSAFE = sun.misc.Unsafe.getUnsafe();
517                Class<?> k = Node.class;
518                itemOffset = UNSAFE.objectFieldOffset
519                    (k.getDeclaredField("item"));
520                nextOffset = UNSAFE.objectFieldOffset
521                    (k.getDeclaredField("next"));
522                waiterOffset = UNSAFE.objectFieldOffset
523                    (k.getDeclaredField("waiter"));
524            } catch (Exception e) {
525                throw new Error(e);
526            }
527        }
528    }
529
530    /** head of the queue; null until first enqueue */
531    transient volatile Node head;
532
533    /** tail of the queue; null until first append */
534    private transient volatile Node tail;
535
536    /** The number of apparent failures to unsplice removed nodes */
537    private transient volatile int sweepVotes;
538
539    // CAS methods for fields
540    private boolean casTail(Node cmp, Node val) {
541        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
542    }
543
544    private boolean casHead(Node cmp, Node val) {
545        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
546    }
547
548    private boolean casSweepVotes(int cmp, int val) {
549        return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
550    }
551
552    /*
553     * Possible values for "how" argument in xfer method.
554     */
555    private static final int NOW   = 0; // for untimed poll, tryTransfer
556    private static final int ASYNC = 1; // for offer, put, add
557    private static final int SYNC  = 2; // for transfer, take
558    private static final int TIMED = 3; // for timed poll, tryTransfer
559
560    @SuppressWarnings("unchecked")
561    static <E> E cast(Object item) {
562        // assert item == null || item.getClass() != Node.class;
563        return (E) item;
564    }
565
566    /**
567     * Implements all queuing methods. See above for explanation.
568     *
569     * @param e the item or null for take
570     * @param haveData true if this is a put, else a take
571     * @param how NOW, ASYNC, SYNC, or TIMED
572     * @param nanos timeout in nanosecs, used only if mode is TIMED
573     * @return an item if matched, else e
574     * @throws NullPointerException if haveData mode but e is null
575     */
576    private E xfer(E e, boolean haveData, int how, long nanos) {
577        if (haveData && (e == null))
578            throw new NullPointerException();
579        Node s = null;                        // the node to append, if needed
580
581        retry:
582        for (;;) {                            // restart on append race
583
584            for (Node h = head, p = h; p != null;) { // find & match first node
585                boolean isData = p.isData;
586                Object item = p.item;
587                if (item != p && (item != null) == isData) { // unmatched
588                    if (isData == haveData)   // can't match
589                        break;
590                    if (p.casItem(item, e)) { // match
591                        for (Node q = p; q != h;) {
592                            Node n = q.next;  // update by 2 unless singleton
593                            if (head == h && casHead(h, n == null ? q : n)) {
594                                h.forgetNext();
595                                break;
596                            }                 // advance and retry
597                            if ((h = head)   == null ||
598                                (q = h.next) == null || !q.isMatched())
599                                break;        // unless slack < 2
600                        }
601                        LockSupport.unpark(p.waiter);
602                        return LinkedTransferQueue.<E>cast(item);
603                    }
604                }
605                Node n = p.next;
606                p = (p != n) ? n : (h = head); // Use head if p offlist
607            }
608
609            if (how != NOW) {                 // No matches available
610                if (s == null)
611                    s = new Node(e, haveData);
612                Node pred = tryAppend(s, haveData);
613                if (pred == null)
614                    continue retry;           // lost race vs opposite mode
615                if (how != ASYNC)
616                    return awaitMatch(s, pred, e, (how == TIMED), nanos);
617            }
618            return e; // not waiting
619        }
620    }
621
622    /**
623     * Tries to append node s as tail.
624     *
625     * @param s the node to append
626     * @param haveData true if appending in data mode
627     * @return null on failure due to losing race with append in
628     * different mode, else s's predecessor, or s itself if no
629     * predecessor
630     */
631    private Node tryAppend(Node s, boolean haveData) {
632        for (Node t = tail, p = t;;) {        // move p to last node and append
633            Node n, u;                        // temps for reads of next & tail
634            if (p == null && (p = head) == null) {
635                if (casHead(null, s))
636                    return s;                 // initialize
637            }
638            else if (p.cannotPrecede(haveData))
639                return null;                  // lost race vs opposite mode
640            else if ((n = p.next) != null)    // not last; keep traversing
641                p = p != t && t != (u = tail) ? (t = u) : // stale tail
642                    (p != n) ? n : null;      // restart if off list
643            else if (!p.casNext(null, s))
644                p = p.next;                   // re-read on CAS failure
645            else {
646                if (p != t) {                 // update if slack now >= 2
647                    while ((tail != t || !casTail(t, s)) &&
648                           (t = tail)   != null &&
649                           (s = t.next) != null && // advance and retry
650                           (s = s.next) != null && s != t);
651                }
652                return p;
653            }
654        }
655    }
656
657    /**
658     * Spins/yields/blocks until node s is matched or caller gives up.
659     *
660     * @param s the waiting node
661     * @param pred the predecessor of s, or s itself if it has no
662     * predecessor, or null if unknown (the null case does not occur
663     * in any current calls but may in possible future extensions)
664     * @param e the comparison value for checking match
665     * @param timed if true, wait only until timeout elapses
666     * @param nanos timeout in nanosecs, used only if timed is true
667     * @return matched item, or e if unmatched on interrupt or timeout
668     */
669    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
670        long lastTime = timed ? System.nanoTime() : 0L;
671        Thread w = Thread.currentThread();
672        int spins = -1; // initialized after first item and cancel checks
673        ThreadLocalRandom randomYields = null; // bound if needed
674
675        for (;;) {
676            Object item = s.item;
677            if (item != e) {                  // matched
678                // assert item != s;
679                s.forgetContents();           // avoid garbage
680                return LinkedTransferQueue.<E>cast(item);
681            }
682            if ((w.isInterrupted() || (timed && nanos <= 0)) &&
683                    s.casItem(e, s)) {        // cancel
684                unsplice(pred, s);
685                return e;
686            }
687
688            if (spins < 0) {                  // establish spins at/near front
689                if ((spins = spinsFor(pred, s.isData)) > 0)
690                    randomYields = ThreadLocalRandom.current();
691            }
692            else if (spins > 0) {             // spin
693                --spins;
694                if (randomYields.nextInt(CHAINED_SPINS) == 0)
695                    Thread.yield();           // occasionally yield
696            }
697            else if (s.waiter == null) {
698                s.waiter = w;                 // request unpark then recheck
699            }
700            else if (timed) {
701                long now = System.nanoTime();
702                if ((nanos -= now - lastTime) > 0)
703                    LockSupport.parkNanos(this, nanos);
704                lastTime = now;
705            }
706            else {
707                LockSupport.park(this);
708            }
709        }
710    }
711
712    /**
713     * Returns spin/yield value for a node with given predecessor and
714     * data mode. See above for explanation.
715     */
716    private static int spinsFor(Node pred, boolean haveData) {
717        if (MP && pred != null) {
718            if (pred.isData != haveData)      // phase change
719                return FRONT_SPINS + CHAINED_SPINS;
720            if (pred.isMatched())             // probably at front
721                return FRONT_SPINS;
722            if (pred.waiter == null)          // pred apparently spinning
723                return CHAINED_SPINS;
724        }
725        return 0;
726    }
727
728    /* -------------- Traversal methods -------------- */
729
730    /**
731     * Returns the successor of p, or the head node if p.next has been
732     * linked to self, which will only be true if traversing with a
733     * stale pointer that is now off the list.
734     */
735    final Node succ(Node p) {
736        Node next = p.next;
737        return (p == next) ? head : next;
738    }
739
740    /**
741     * Returns the first unmatched node of the given mode, or null if
742     * none.  Used by methods isEmpty, hasWaitingConsumer.
743     */
744    private Node firstOfMode(boolean isData) {
745        for (Node p = head; p != null; p = succ(p)) {
746            if (!p.isMatched())
747                return (p.isData == isData) ? p : null;
748        }
749        return null;
750    }
751
752    /**
753     * Returns the item in the first unmatched node with isData; or
754     * null if none.  Used by peek.
755     */
756    private E firstDataItem() {
757        for (Node p = head; p != null; p = succ(p)) {
758            Object item = p.item;
759            if (p.isData) {
760                if (item != null && item != p)
761                    return LinkedTransferQueue.<E>cast(item);
762            }
763            else if (item == null)
764                return null;
765        }
766        return null;
767    }
768
769    /**
770     * Traverses and counts unmatched nodes of the given mode.
771     * Used by methods size and getWaitingConsumerCount.
772     */
773    private int countOfMode(boolean data) {
774        int count = 0;
775        for (Node p = head; p != null; ) {
776            if (!p.isMatched()) {
777                if (p.isData != data)
778                    return 0;
779                if (++count == Integer.MAX_VALUE) // saturated
780                    break;
781            }
782            Node n = p.next;
783            if (n != p)
784                p = n;
785            else {
786                count = 0;
787                p = head;
788            }
789        }
790        return count;
791    }
792
793    final class Itr implements Iterator<E> {
794        private Node nextNode;   // next node to return item for
795        private E nextItem;      // the corresponding item
796        private Node lastRet;    // last returned node, to support remove
797        private Node lastPred;   // predecessor to unlink lastRet
798
799        /**
800         * Moves to next node after prev, or first node if prev null.
801         */
802        private void advance(Node prev) {
803            /*
804             * To track and avoid buildup of deleted nodes in the face
805             * of calls to both Queue.remove and Itr.remove, we must
806             * include variants of unsplice and sweep upon each
807             * advance: Upon Itr.remove, we may need to catch up links
808             * from lastPred, and upon other removes, we might need to
809             * skip ahead from stale nodes and unsplice deleted ones
810             * found while advancing.
811             */
812
813            Node r, b; // reset lastPred upon possible deletion of lastRet
814            if ((r = lastRet) != null && !r.isMatched())
815                lastPred = r;    // next lastPred is old lastRet
816            else if ((b = lastPred) == null || b.isMatched())
817                lastPred = null; // at start of list
818            else {
819                Node s, n;       // help with removal of lastPred.next
820                while ((s = b.next) != null &&
821                       s != b && s.isMatched() &&
822                       (n = s.next) != null && n != s)
823                    b.casNext(s, n);
824            }
825
826            this.lastRet = prev;
827
828            for (Node p = prev, s, n;;) {
829                s = (p == null) ? head : p.next;
830                if (s == null)
831                    break;
832                else if (s == p) {
833                    p = null;
834                    continue;
835                }
836                Object item = s.item;
837                if (s.isData) {
838                    if (item != null && item != s) {
839                        nextItem = LinkedTransferQueue.<E>cast(item);
840                        nextNode = s;
841                        return;
842                    }
843                }
844                else if (item == null)
845                    break;
846                // assert s.isMatched();
847                if (p == null)
848                    p = s;
849                else if ((n = s.next) == null)
850                    break;
851                else if (s == n)
852                    p = null;
853                else
854                    p.casNext(s, n);
855            }
856            nextNode = null;
857            nextItem = null;
858        }
859
860        Itr() {
861            advance(null);
862        }
863
864        public final boolean hasNext() {
865            return nextNode != null;
866        }
867
868        public final E next() {
869            Node p = nextNode;
870            if (p == null) throw new NoSuchElementException();
871            E e = nextItem;
872            advance(p);
873            return e;
874        }
875
876        public final void remove() {
877            final Node lastRet = this.lastRet;
878            if (lastRet == null)
879                throw new IllegalStateException();
880            this.lastRet = null;
881            if (lastRet.tryMatchData())
882                unsplice(lastPred, lastRet);
883        }
884    }
885
886    /* -------------- Removal methods -------------- */
887
888    /**
889     * Unsplices (now or later) the given deleted/cancelled node with
890     * the given predecessor.
891     *
892     * @param pred a node that was at one time known to be the
893     * predecessor of s, or null or s itself if s is/was at head
894     * @param s the node to be unspliced
895     */
896    final void unsplice(Node pred, Node s) {
897        s.forgetContents(); // forget unneeded fields
898        /*
899         * See above for rationale. Briefly: if pred still points to
900         * s, try to unlink s.  If s cannot be unlinked, because it is
901         * trailing node or pred might be unlinked, and neither pred
902         * nor s are head or offlist, add to sweepVotes, and if enough
903         * votes have accumulated, sweep.
904         */
905        if (pred != null && pred != s && pred.next == s) {
906            Node n = s.next;
907            if (n == null ||
908                (n != s && pred.casNext(s, n) && pred.isMatched())) {
909                for (;;) {               // check if at, or could be, head
910                    Node h = head;
911                    if (h == pred || h == s || h == null)
912                        return;          // at head or list empty
913                    if (!h.isMatched())
914                        break;
915                    Node hn = h.next;
916                    if (hn == null)
917                        return;          // now empty
918                    if (hn != h && casHead(h, hn))
919                        h.forgetNext();  // advance head
920                }
921                if (pred.next != pred && s.next != s) { // recheck if offlist
922                    for (;;) {           // sweep now if enough votes
923                        int v = sweepVotes;
924                        if (v < SWEEP_THRESHOLD) {
925                            if (casSweepVotes(v, v + 1))
926                                break;
927                        }
928                        else if (casSweepVotes(v, 0)) {
929                            sweep();
930                            break;
931                        }
932                    }
933                }
934            }
935        }
936    }
937
938    /**
939     * Unlinks matched (typically cancelled) nodes encountered in a
940     * traversal from head.
941     */
942    private void sweep() {
943        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
944            if (!s.isMatched())
945                // Unmatched nodes are never self-linked
946                p = s;
947            else if ((n = s.next) == null) // trailing node is pinned
948                break;
949            else if (s == n)    // stale
950                // No need to also check for p == s, since that implies s == n
951                p = head;
952            else
953                p.casNext(s, n);
954        }
955    }
956
957    /**
958     * Main implementation of remove(Object)
959     */
960    private boolean findAndRemove(Object e) {
961        if (e != null) {
962            for (Node pred = null, p = head; p != null; ) {
963                Object item = p.item;
964                if (p.isData) {
965                    if (item != null && item != p && e.equals(item) &&
966                        p.tryMatchData()) {
967                        unsplice(pred, p);
968                        return true;
969                    }
970                }
971                else if (item == null)
972                    break;
973                pred = p;
974                if ((p = p.next) == pred) { // stale
975                    pred = null;
976                    p = head;
977                }
978            }
979        }
980        return false;
981    }
982
983
984    /**
985     * Creates an initially empty {@code LinkedTransferQueue}.
986     */
987    public LinkedTransferQueue() {
988    }
989
990    /**
991     * Creates a {@code LinkedTransferQueue}
992     * initially containing the elements of the given collection,
993     * added in traversal order of the collection's iterator.
994     *
995     * @param c the collection of elements to initially contain
996     * @throws NullPointerException if the specified collection or any
997     *         of its elements are null
998     */
999    public LinkedTransferQueue(Collection<? extends E> c) {
1000        this();
1001        addAll(c);
1002    }
1003
1004    /**
1005     * Inserts the specified element at the tail of this queue.
1006     * As the queue is unbounded, this method will never block.
1007     *
1008     * @throws NullPointerException if the specified element is null
1009     */
1010    public void put(E e) {
1011        xfer(e, true, ASYNC, 0);
1012    }
1013
1014    /**
1015     * Inserts the specified element at the tail of this queue.
1016     * As the queue is unbounded, this method will never block or
1017     * return {@code false}.
1018     *
1019     * @return {@code true} (as specified by
1020     *  {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1021     *  BlockingQueue.offer})
1022     * @throws NullPointerException if the specified element is null
1023     */
1024    public boolean offer(E e, long timeout, TimeUnit unit) {
1025        xfer(e, true, ASYNC, 0);
1026        return true;
1027    }
1028
1029    /**
1030     * Inserts the specified element at the tail of this queue.
1031     * As the queue is unbounded, this method will never return {@code false}.
1032     *
1033     * @return {@code true} (as specified by {@link Queue#offer})
1034     * @throws NullPointerException if the specified element is null
1035     */
1036    public boolean offer(E e) {
1037        xfer(e, true, ASYNC, 0);
1038        return true;
1039    }
1040
1041    /**
1042     * Inserts the specified element at the tail of this queue.
1043     * As the queue is unbounded, this method will never throw
1044     * {@link IllegalStateException} or return {@code false}.
1045     *
1046     * @return {@code true} (as specified by {@link Collection#add})
1047     * @throws NullPointerException if the specified element is null
1048     */
1049    public boolean add(E e) {
1050        xfer(e, true, ASYNC, 0);
1051        return true;
1052    }
1053
1054    /**
1055     * Transfers the element to a waiting consumer immediately, if possible.
1056     *
1057     * <p>More precisely, transfers the specified element immediately
1058     * if there exists a consumer already waiting to receive it (in
1059     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1060     * otherwise returning {@code false} without enqueuing the element.
1061     *
1062     * @throws NullPointerException if the specified element is null
1063     */
1064    public boolean tryTransfer(E e) {
1065        return xfer(e, true, NOW, 0) == null;
1066    }
1067
1068    /**
1069     * Transfers the element to a consumer, waiting if necessary to do so.
1070     *
1071     * <p>More precisely, transfers the specified element immediately
1072     * if there exists a consumer already waiting to receive it (in
1073     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1074     * else inserts the specified element at the tail of this queue
1075     * and waits until the element is received by a consumer.
1076     *
1077     * @throws NullPointerException if the specified element is null
1078     */
1079    public void transfer(E e) throws InterruptedException {
1080        if (xfer(e, true, SYNC, 0) != null) {
1081            Thread.interrupted(); // failure possible only due to interrupt
1082            throw new InterruptedException();
1083        }
1084    }
1085
1086    /**
1087     * Transfers the element to a consumer if it is possible to do so
1088     * before the timeout elapses.
1089     *
1090     * <p>More precisely, transfers the specified element immediately
1091     * if there exists a consumer already waiting to receive it (in
1092     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1093     * else inserts the specified element at the tail of this queue
1094     * and waits until the element is received by a consumer,
1095     * returning {@code false} if the specified wait time elapses
1096     * before the element can be transferred.
1097     *
1098     * @throws NullPointerException if the specified element is null
1099     */
1100    public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1101        throws InterruptedException {
1102        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1103            return true;
1104        if (!Thread.interrupted())
1105            return false;
1106        throw new InterruptedException();
1107    }
1108
1109    public E take() throws InterruptedException {
1110        E e = xfer(null, false, SYNC, 0);
1111        if (e != null)
1112            return e;
1113        Thread.interrupted();
1114        throw new InterruptedException();
1115    }
1116
1117    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1118        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1119        if (e != null || !Thread.interrupted())
1120            return e;
1121        throw new InterruptedException();
1122    }
1123
1124    public E poll() {
1125        return xfer(null, false, NOW, 0);
1126    }
1127
1128    /**
1129     * @throws NullPointerException     {@inheritDoc}
1130     * @throws IllegalArgumentException {@inheritDoc}
1131     */
1132    public int drainTo(Collection<? super E> c) {
1133        if (c == null)
1134            throw new NullPointerException();
1135        if (c == this)
1136            throw new IllegalArgumentException();
1137        int n = 0;
1138        for (E e; (e = poll()) != null;) {
1139            c.add(e);
1140            ++n;
1141        }
1142        return n;
1143    }
1144
1145    /**
1146     * @throws NullPointerException     {@inheritDoc}
1147     * @throws IllegalArgumentException {@inheritDoc}
1148     */
1149    public int drainTo(Collection<? super E> c, int maxElements) {
1150        if (c == null)
1151            throw new NullPointerException();
1152        if (c == this)
1153            throw new IllegalArgumentException();
1154        int n = 0;
1155        for (E e; n < maxElements && (e = poll()) != null;) {
1156            c.add(e);
1157            ++n;
1158        }
1159        return n;
1160    }
1161
1162    /**
1163     * Returns an iterator over the elements in this queue in proper sequence.
1164     * The elements will be returned in order from first (head) to last (tail).
1165     *
1166     * <p>The returned iterator is a "weakly consistent" iterator that
1167     * will never throw {@link java.util.ConcurrentModificationException
1168     * ConcurrentModificationException}, and guarantees to traverse
1169     * elements as they existed upon construction of the iterator, and
1170     * may (but is not guaranteed to) reflect any modifications
1171     * subsequent to construction.
1172     *
1173     * @return an iterator over the elements in this queue in proper sequence
1174     */
1175    public Iterator<E> iterator() {
1176        return new Itr();
1177    }
1178
1179    public E peek() {
1180        return firstDataItem();
1181    }
1182
1183    /**
1184     * Returns {@code true} if this queue contains no elements.
1185     *
1186     * @return {@code true} if this queue contains no elements
1187     */
1188    public boolean isEmpty() {
1189        for (Node p = head; p != null; p = succ(p)) {
1190            if (!p.isMatched())
1191                return !p.isData;
1192        }
1193        return true;
1194    }
1195
1196    public boolean hasWaitingConsumer() {
1197        return firstOfMode(false) != null;
1198    }
1199
1200    /**
1201     * Returns the number of elements in this queue.  If this queue
1202     * contains more than {@code Integer.MAX_VALUE} elements, returns
1203     * {@code Integer.MAX_VALUE}.
1204     *
1205     * <p>Beware that, unlike in most collections, this method is
1206     * <em>NOT</em> a constant-time operation. Because of the
1207     * asynchronous nature of these queues, determining the current
1208     * number of elements requires an O(n) traversal.
1209     *
1210     * @return the number of elements in this queue
1211     */
1212    public int size() {
1213        return countOfMode(true);
1214    }
1215
1216    public int getWaitingConsumerCount() {
1217        return countOfMode(false);
1218    }
1219
1220    /**
1221     * Removes a single instance of the specified element from this queue,
1222     * if it is present.  More formally, removes an element {@code e} such
1223     * that {@code o.equals(e)}, if this queue contains one or more such
1224     * elements.
1225     * Returns {@code true} if this queue contained the specified element
1226     * (or equivalently, if this queue changed as a result of the call).
1227     *
1228     * @param o element to be removed from this queue, if present
1229     * @return {@code true} if this queue changed as a result of the call
1230     */
1231    public boolean remove(Object o) {
1232        return findAndRemove(o);
1233    }
1234
1235    /**
1236     * Returns {@code true} if this queue contains the specified element.
1237     * More formally, returns {@code true} if and only if this queue contains
1238     * at least one element {@code e} such that {@code o.equals(e)}.
1239     *
1240     * @param o object to be checked for containment in this queue
1241     * @return {@code true} if this queue contains the specified element
1242     */
1243    public boolean contains(Object o) {
1244        if (o == null) return false;
1245        for (Node p = head; p != null; p = succ(p)) {
1246            Object item = p.item;
1247            if (p.isData) {
1248                if (item != null && item != p && o.equals(item))
1249                    return true;
1250            }
1251            else if (item == null)
1252                break;
1253        }
1254        return false;
1255    }
1256
1257    /**
1258     * Always returns {@code Integer.MAX_VALUE} because a
1259     * {@code LinkedTransferQueue} is not capacity constrained.
1260     *
1261     * @return {@code Integer.MAX_VALUE} (as specified by
1262     *         {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1263     *         BlockingQueue.remainingCapacity})
1264     */
1265    public int remainingCapacity() {
1266        return Integer.MAX_VALUE;
1267    }
1268
1269    /**
1270     * Saves the state to a stream (that is, serializes it).
1271     *
1272     * @serialData All of the elements (each an {@code E}) in
1273     * the proper order, followed by a null
1274     * @param s the stream
1275     */
1276    private void writeObject(java.io.ObjectOutputStream s)
1277        throws java.io.IOException {
1278        s.defaultWriteObject();
1279        for (E e : this)
1280            s.writeObject(e);
1281        // Use trailing null as sentinel
1282        s.writeObject(null);
1283    }
1284
1285    /**
1286     * Reconstitutes the Queue instance from a stream (that is,
1287     * deserializes it).
1288     *
1289     * @param s the stream
1290     */
1291    private void readObject(java.io.ObjectInputStream s)
1292        throws java.io.IOException, ClassNotFoundException {
1293        s.defaultReadObject();
1294        for (;;) {
1295            @SuppressWarnings("unchecked") E item = (E) s.readObject();
1296            if (item == null)
1297                break;
1298            else
1299                offer(item);
1300        }
1301    }
1302
1303    // Unsafe mechanics
1304
1305    private static final sun.misc.Unsafe UNSAFE;
1306    private static final long headOffset;
1307    private static final long tailOffset;
1308    private static final long sweepVotesOffset;
1309    static {
1310        try {
1311            UNSAFE = sun.misc.Unsafe.getUnsafe();
1312            Class<?> k = LinkedTransferQueue.class;
1313            headOffset = UNSAFE.objectFieldOffset
1314                (k.getDeclaredField("head"));
1315            tailOffset = UNSAFE.objectFieldOffset
1316                (k.getDeclaredField("tail"));
1317            sweepVotesOffset = UNSAFE.objectFieldOffset
1318                (k.getDeclaredField("sweepVotes"));
1319        } catch (Exception e) {
1320            throw new Error(e);
1321        }
1322    }
1323}
1324