/* * Copyright (C) 2011 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.math; import static com.google.common.base.Preconditions.checkArgument; import java.math.BigInteger; import com.google.common.annotations.VisibleForTesting; /** * Utilities for {@code double} primitives. Some of these are exposed in JDK 6, * but we can't depend on them there. * * @author Louis Wasserman */ final class DoubleUtils { // TODO(user): replace with appropriate calls when we move to JDK 6 private DoubleUtils() { } static double next(double x, boolean up) { // Math.nextAfter is JDK 6. if (x == 0.0) { return up ? Double.MIN_VALUE : -Double.MIN_VALUE; } long bits = Double.doubleToRawLongBits(x); if ((x < 0.0) == up) { bits--; } else { bits++; } return Double.longBitsToDouble(bits); } // The mask for the significand, according to the {@link // Double#doubleToRawLongBits(double)} spec. static final long SIGNIFICAND_MASK = 0x000fffffffffffffL; // The mask for the exponent, according to the {@link // Double#doubleToRawLongBits(double)} spec. static final long EXPONENT_MASK = 0x7ff0000000000000L; // The mask for the sign, according to the {@link // Double#doubleToRawLongBits(double)} spec. static final long SIGN_MASK = 0x8000000000000000L; static final int SIGNIFICAND_BITS = 52; static final int EXPONENT_BIAS = 1023; static final int MIN_DOUBLE_EXPONENT = -1022; static final int MAX_DOUBLE_EXPONENT = 1023; /** * The implicit 1 bit that is omitted in significands of normal doubles. */ static final long IMPLICIT_BIT = SIGNIFICAND_MASK + 1; @VisibleForTesting static int getExponent(double d) { // TODO: replace with Math.getExponent in JDK 6 long bits = Double.doubleToRawLongBits(d); int exponent = (int) ((bits & EXPONENT_MASK) >> SIGNIFICAND_BITS); exponent -= EXPONENT_BIAS; return exponent; } /** * Returns {@code d * 2^scale}. */ static strictfp double scalb(double d, int scale) { // TODO: replace with Math.scalb in JDK 6 int exponent = getExponent(d); switch (exponent) { case MAX_DOUBLE_EXPONENT + 1: // NaN, infinity return d; case MIN_DOUBLE_EXPONENT - 1: return d * StrictMath.pow(2.0, scale); default: int newExponent = exponent + scale; if (MIN_DOUBLE_EXPONENT <= newExponent & newExponent <= MAX_DOUBLE_EXPONENT) { long bits = Double.doubleToRawLongBits(d); bits &= ~EXPONENT_MASK; bits |= ((long) (newExponent + EXPONENT_BIAS)) << SIGNIFICAND_BITS; return Double.longBitsToDouble(bits); } return d * StrictMath.pow(2.0, scale); } } static long getSignificand(double d) { checkArgument(isFinite(d), "not a normal value"); int exponent = getExponent(d); long bits = Double.doubleToRawLongBits(d); bits &= SIGNIFICAND_MASK; return (exponent == MIN_DOUBLE_EXPONENT - 1) ? bits << 1 : bits | IMPLICIT_BIT; } static boolean isFinite(double d) { return getExponent(d) <= MAX_DOUBLE_EXPONENT; } static boolean isNormal(double d) { return getExponent(d) >= MIN_DOUBLE_EXPONENT; } /* * Returns x scaled by a power of 2 such that it is in the range [1, 2). Assumes x is positive, * normal, and finite. */ static double scaleNormalize(double x) { long significand = Double.doubleToRawLongBits(x) & SIGNIFICAND_MASK; return Double.longBitsToDouble(significand | ONE_BITS); } static double bigToDouble(BigInteger x) { // This is an extremely fast implementation of BigInteger.doubleValue(). JDK patch pending. BigInteger absX = x.abs(); int exponent = absX.bitLength() - 1; // exponent == floor(log2(abs(x))) if (exponent < Long.SIZE - 1) { return x.longValue(); } else if (exponent > MAX_DOUBLE_EXPONENT) { return x.signum() * Double.POSITIVE_INFINITY; } /* * We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit" one bit. To make * rounding easier, we pick out the top SIGNIFICAND_BITS + 2 bits, so we have one to help us * round up or down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2 bits, and * signifFloor the top SIGNIFICAND_BITS + 1. * * It helps to consider the real number signif = absX * 2^(SIGNIFICAND_BITS - exponent). */ int shift = exponent - SIGNIFICAND_BITS - 1; long twiceSignifFloor = absX.shiftRight(shift).longValue(); long signifFloor = twiceSignifFloor >> 1; signifFloor &= SIGNIFICAND_MASK; // remove the implied bit /* * We round up if either the fractional part of signif is strictly greater than 0.5 (which is * true if the 0.5 bit is set and any lower bit is set), or if the fractional part of signif is * >= 0.5 and signifFloor is odd (which is true if both the 0.5 bit and the 1 bit are set). */ boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || absX.getLowestSetBit() < shift); long signifRounded = increment ? signifFloor + 1 : signifFloor; long bits = (long) ((exponent + EXPONENT_BIAS)) << SIGNIFICAND_BITS; bits += signifRounded; /* * If signifRounded == 2^53, we'd need to set all of the significand bits to zero and add 1 to * the exponent. This is exactly the behavior we get from just adding signifRounded to bits * directly. If the exponent is MAX_DOUBLE_EXPONENT, we round up (correctly) to * Double.POSITIVE_INFINITY. */ bits |= x.signum() & SIGN_MASK; return Double.longBitsToDouble(bits); } private static final long ONE_BITS = Double.doubleToRawLongBits(1.0); }