1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <assert.h>
30#include <errno.h>
31#include <fcntl.h>
32#include <limits.h>
33#include <malloc.h>
34#include <memory.h>
35#include <pthread.h>
36#include <signal.h>
37#include <stdint.h>
38#include <stdio.h>
39#include <stdlib.h>
40#include <sys/atomics.h>
41#include <sys/mman.h>
42#include <sys/prctl.h>
43#include <sys/stat.h>
44#include <sys/types.h>
45#include <time.h>
46#include <unistd.h>
47
48#include "bionic_atomic_inline.h"
49#include "bionic_futex.h"
50#include "bionic_pthread.h"
51#include "bionic_tls.h"
52#include "pthread_internal.h"
53#include "thread_private.h"
54
55extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
56extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
57
58extern int  __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
59extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
60extern void _exit_thread(int  retCode);
61extern int  __set_errno(int);
62
63int  __futex_wake_ex(volatile void *ftx, int pshared, int val)
64{
65    return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
66}
67
68int  __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
69{
70    return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
71}
72
73#define  __likely(cond)    __builtin_expect(!!(cond), 1)
74#define  __unlikely(cond)  __builtin_expect(!!(cond), 0)
75
76#ifdef __i386__
77#define ATTRIBUTES __attribute__((noinline)) __attribute__((fastcall))
78#else
79#define ATTRIBUTES __attribute__((noinline))
80#endif
81
82void ATTRIBUTES _thread_created_hook(pid_t thread_id);
83
84static const int kPthreadInitFailed = 1;
85
86#define PTHREAD_ATTR_FLAG_DETACHED      0x00000001
87#define PTHREAD_ATTR_FLAG_USER_STACK    0x00000002
88
89#define DEFAULT_STACKSIZE (1024 * 1024)
90
91static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
92
93
94static const pthread_attr_t gDefaultPthreadAttr = {
95    .flags = 0,
96    .stack_base = NULL,
97    .stack_size = DEFAULT_STACKSIZE,
98    .guard_size = PAGE_SIZE,
99    .sched_policy = SCHED_NORMAL,
100    .sched_priority = 0
101};
102
103static pthread_internal_t* gThreadList = NULL;
104static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
105static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
106
107
108static void
109_pthread_internal_free(pthread_internal_t* thread)
110{
111    if (thread != NULL) {
112        free(thread);
113    }
114}
115
116
117static void
118_pthread_internal_remove_locked( pthread_internal_t*  thread )
119{
120    thread->next->prev = thread->prev;
121    thread->prev[0]    = thread->next;
122}
123
124static void
125_pthread_internal_remove( pthread_internal_t*  thread )
126{
127    pthread_mutex_lock(&gThreadListLock);
128    _pthread_internal_remove_locked(thread);
129    pthread_mutex_unlock(&gThreadListLock);
130}
131
132__LIBC_ABI_PRIVATE__ void
133_pthread_internal_add(pthread_internal_t* thread)
134{
135    pthread_mutex_lock(&gThreadListLock);
136
137    thread->prev = &gThreadList;
138    thread->next = *(thread->prev);
139    if (thread->next != NULL) {
140        thread->next->prev = &thread->next;
141    }
142    *(thread->prev) = thread;
143
144    pthread_mutex_unlock(&gThreadListLock);
145}
146
147__LIBC_ABI_PRIVATE__ pthread_internal_t*
148__get_thread(void)
149{
150    void**  tls = (void**)__get_tls();
151
152    return  (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
153}
154
155
156void*
157__get_stack_base(int  *p_stack_size)
158{
159    pthread_internal_t*  thread = __get_thread();
160
161    *p_stack_size = thread->attr.stack_size;
162    return thread->attr.stack_base;
163}
164
165
166void  __init_tls(void**  tls, void*  thread)
167{
168    int  nn;
169
170    ((pthread_internal_t*)thread)->tls = tls;
171
172    // slot 0 must point to the tls area, this is required by the implementation
173    // of the x86 Linux kernel thread-local-storage
174    tls[TLS_SLOT_SELF]      = (void*)tls;
175    tls[TLS_SLOT_THREAD_ID] = thread;
176    for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
177       tls[nn] = 0;
178
179    __set_tls( (void*)tls );
180}
181
182
183/*
184 * This trampoline is called from the assembly _pthread_clone() function.
185 */
186void __thread_entry(int (*func)(void*), void *arg, void **tls)
187{
188    // Wait for our creating thread to release us. This lets it have time to
189    // notify gdb about this thread before we start doing anything.
190    //
191    // This also provides the memory barrier needed to ensure that all memory
192    // accesses previously made by the creating thread are visible to us.
193    pthread_mutex_t* start_mutex = (pthread_mutex_t*) &tls[TLS_SLOT_SELF];
194    pthread_mutex_lock(start_mutex);
195    pthread_mutex_destroy(start_mutex);
196
197    pthread_internal_t* thread = (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
198    __init_tls(tls, thread);
199
200    if ((thread->internal_flags & kPthreadInitFailed) != 0) {
201        pthread_exit(NULL);
202    }
203
204    int result = func(arg);
205    pthread_exit((void*) result);
206}
207
208#include <private/logd.h>
209
210__LIBC_ABI_PRIVATE__
211int _init_thread(pthread_internal_t* thread, pid_t kernel_id, pthread_attr_t* attr,
212                 void* stack_base, bool add_to_thread_list)
213{
214    int error = 0;
215
216    if (attr == NULL) {
217        thread->attr = gDefaultPthreadAttr;
218    } else {
219        thread->attr = *attr;
220    }
221    thread->attr.stack_base = stack_base;
222    thread->kernel_id       = kernel_id;
223
224    // Make a note of whether the user supplied this stack (so we know whether or not to free it).
225    if (attr->stack_base == stack_base) {
226        thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
227    }
228
229    // Set the scheduling policy/priority of the thread.
230    if (thread->attr.sched_policy != SCHED_NORMAL) {
231        struct sched_param param;
232        param.sched_priority = thread->attr.sched_priority;
233        if (sched_setscheduler(kernel_id, thread->attr.sched_policy, &param) == -1) {
234            // For back compat reasons, we just warn about possible invalid sched_policy
235            const char* msg = "pthread_create sched_setscheduler call failed: %s\n";
236            __libc_android_log_print(ANDROID_LOG_WARN, "libc", msg, strerror(errno));
237        }
238    }
239
240    pthread_cond_init(&thread->join_cond, NULL);
241    thread->join_count = 0;
242    thread->cleanup_stack = NULL;
243
244    if (add_to_thread_list) {
245        _pthread_internal_add(thread);
246    }
247
248    return error;
249}
250
251static void *mkstack(size_t size, size_t guard_size)
252{
253    pthread_mutex_lock(&mmap_lock);
254
255    int prot = PROT_READ | PROT_WRITE;
256    int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
257    void* stack = mmap(NULL, size, prot, flags, -1, 0);
258    if (stack == MAP_FAILED) {
259        stack = NULL;
260        goto done;
261    }
262
263    if (mprotect(stack, guard_size, PROT_NONE) == -1) {
264        munmap(stack, size);
265        stack = NULL;
266        goto done;
267    }
268
269done:
270    pthread_mutex_unlock(&mmap_lock);
271    return stack;
272}
273
274/*
275 * Create a new thread. The thread's stack is laid out like so:
276 *
277 * +---------------------------+
278 * |     pthread_internal_t    |
279 * +---------------------------+
280 * |                           |
281 * |          TLS area         |
282 * |                           |
283 * +---------------------------+
284 * |                           |
285 * .                           .
286 * .         stack area        .
287 * .                           .
288 * |                           |
289 * +---------------------------+
290 * |         guard page        |
291 * +---------------------------+
292 *
293 *  note that TLS[0] must be a pointer to itself, this is required
294 *  by the thread-local storage implementation of the x86 Linux
295 *  kernel, where the TLS pointer is read by reading fs:[0]
296 */
297int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
298                   void *(*start_routine)(void *), void * arg)
299{
300    int old_errno = errno;
301
302    /* this will inform the rest of the C library that at least one thread
303     * was created. this will enforce certain functions to acquire/release
304     * locks (e.g. atexit()) to protect shared global structures.
305     *
306     * this works because pthread_create() is not called by the C library
307     * initialization routine that sets up the main thread's data structures.
308     */
309    __isthreaded = 1;
310
311    pthread_internal_t* thread = calloc(sizeof(*thread), 1);
312    if (thread == NULL) {
313        return ENOMEM;
314    }
315
316    if (attr == NULL) {
317        attr = &gDefaultPthreadAttr;
318    }
319
320    // make sure the stack is PAGE_SIZE aligned
321    size_t stack_size = (attr->stack_size + (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
322    uint8_t* stack = attr->stack_base;
323    if (stack == NULL) {
324        stack = mkstack(stack_size, attr->guard_size);
325        if (stack == NULL) {
326            _pthread_internal_free(thread);
327            return ENOMEM;
328        }
329    }
330
331    // Make room for TLS
332    void** tls = (void**)(stack + stack_size - BIONIC_TLS_SLOTS*sizeof(void*));
333
334    // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
335    // it from doing anything until after we notify the debugger about it
336    //
337    // This also provides the memory barrier we need to ensure that all
338    // memory accesses previously performed by this thread are visible to
339    // the new thread.
340    pthread_mutex_t* start_mutex = (pthread_mutex_t*) &tls[TLS_SLOT_SELF];
341    pthread_mutex_init(start_mutex, NULL);
342    pthread_mutex_lock(start_mutex);
343
344    tls[TLS_SLOT_THREAD_ID] = thread;
345
346    int flags = CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND |
347                CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED;
348    int tid = __pthread_clone((int(*)(void*))start_routine, tls, flags, arg);
349
350    if (tid < 0) {
351        int clone_errno = errno;
352        pthread_mutex_unlock(start_mutex);
353        if (stack != attr->stack_base) {
354            munmap(stack, stack_size);
355        }
356        _pthread_internal_free(thread);
357        errno = old_errno;
358        return clone_errno;
359    }
360
361    int init_errno = _init_thread(thread, tid, (pthread_attr_t*) attr, stack, true);
362    if (init_errno != 0) {
363        // Mark the thread detached and let its __thread_entry run to
364        // completion. (It'll just exit immediately, cleaning up its resources.)
365        thread->internal_flags |= kPthreadInitFailed;
366        thread->attr.flags |= PTHREAD_ATTR_FLAG_DETACHED;
367        pthread_mutex_unlock(start_mutex);
368        errno = old_errno;
369        return init_errno;
370    }
371
372    // Notify any debuggers about the new thread.
373    pthread_mutex_lock(&gDebuggerNotificationLock);
374    _thread_created_hook(tid);
375    pthread_mutex_unlock(&gDebuggerNotificationLock);
376
377    // Publish the pthread_t and let the thread run.
378    *thread_out = (pthread_t) thread;
379    pthread_mutex_unlock(start_mutex);
380
381    return 0;
382}
383
384
385int pthread_attr_init(pthread_attr_t * attr)
386{
387    *attr = gDefaultPthreadAttr;
388    return 0;
389}
390
391int pthread_attr_destroy(pthread_attr_t * attr)
392{
393    memset(attr, 0x42, sizeof(pthread_attr_t));
394    return 0;
395}
396
397int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
398{
399    if (state == PTHREAD_CREATE_DETACHED) {
400        attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
401    } else if (state == PTHREAD_CREATE_JOINABLE) {
402        attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
403    } else {
404        return EINVAL;
405    }
406    return 0;
407}
408
409int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
410{
411    *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
412           ? PTHREAD_CREATE_DETACHED
413           : PTHREAD_CREATE_JOINABLE;
414    return 0;
415}
416
417int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
418{
419    attr->sched_policy = policy;
420    return 0;
421}
422
423int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
424{
425    *policy = attr->sched_policy;
426    return 0;
427}
428
429int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
430{
431    attr->sched_priority = param->sched_priority;
432    return 0;
433}
434
435int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
436{
437    param->sched_priority = attr->sched_priority;
438    return 0;
439}
440
441int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
442{
443    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
444        return EINVAL;
445    }
446    attr->stack_size = stack_size;
447    return 0;
448}
449
450int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
451{
452    *stack_size = attr->stack_size;
453    return 0;
454}
455
456int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
457{
458#if 1
459    // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
460    return ENOSYS;
461#else
462    if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
463        return EINVAL;
464    }
465    attr->stack_base = stack_addr;
466    return 0;
467#endif
468}
469
470int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
471{
472    *stack_addr = (char*)attr->stack_base + attr->stack_size;
473    return 0;
474}
475
476int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
477{
478    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
479        return EINVAL;
480    }
481    if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
482        return EINVAL;
483    }
484    attr->stack_base = stack_base;
485    attr->stack_size = stack_size;
486    return 0;
487}
488
489int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
490{
491    *stack_base = attr->stack_base;
492    *stack_size = attr->stack_size;
493    return 0;
494}
495
496int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
497{
498    if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
499        return EINVAL;
500    }
501
502    attr->guard_size = guard_size;
503    return 0;
504}
505
506int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
507{
508    *guard_size = attr->guard_size;
509    return 0;
510}
511
512int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
513{
514    pthread_internal_t * thread = (pthread_internal_t *)thid;
515    *attr = thread->attr;
516    return 0;
517}
518
519int pthread_attr_setscope(pthread_attr_t *attr, int  scope)
520{
521    if (scope == PTHREAD_SCOPE_SYSTEM)
522        return 0;
523    if (scope == PTHREAD_SCOPE_PROCESS)
524        return ENOTSUP;
525
526    return EINVAL;
527}
528
529int pthread_attr_getscope(pthread_attr_t const *attr)
530{
531    return PTHREAD_SCOPE_SYSTEM;
532}
533
534
535/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
536 *         and thread cancelation
537 */
538
539void __pthread_cleanup_push( __pthread_cleanup_t*      c,
540                             __pthread_cleanup_func_t  routine,
541                             void*                     arg )
542{
543    pthread_internal_t*  thread = __get_thread();
544
545    c->__cleanup_routine  = routine;
546    c->__cleanup_arg      = arg;
547    c->__cleanup_prev     = thread->cleanup_stack;
548    thread->cleanup_stack = c;
549}
550
551void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
552{
553    pthread_internal_t*  thread = __get_thread();
554
555    thread->cleanup_stack = c->__cleanup_prev;
556    if (execute)
557        c->__cleanup_routine(c->__cleanup_arg);
558}
559
560/* used by pthread_exit() to clean all TLS keys of the current thread */
561static void pthread_key_clean_all(void);
562
563void pthread_exit(void * retval)
564{
565    pthread_internal_t*  thread     = __get_thread();
566    void*                stack_base = thread->attr.stack_base;
567    int                  stack_size = thread->attr.stack_size;
568    int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
569    sigset_t mask;
570
571    // call the cleanup handlers first
572    while (thread->cleanup_stack) {
573        __pthread_cleanup_t*  c = thread->cleanup_stack;
574        thread->cleanup_stack   = c->__cleanup_prev;
575        c->__cleanup_routine(c->__cleanup_arg);
576    }
577
578    // call the TLS destructors, it is important to do that before removing this
579    // thread from the global list. this will ensure that if someone else deletes
580    // a TLS key, the corresponding value will be set to NULL in this thread's TLS
581    // space (see pthread_key_delete)
582    pthread_key_clean_all();
583
584    // if the thread is detached, destroy the pthread_internal_t
585    // otherwise, keep it in memory and signal any joiners
586    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
587        _pthread_internal_remove(thread);
588        _pthread_internal_free(thread);
589    } else {
590        pthread_mutex_lock(&gThreadListLock);
591
592       /* make sure that the thread struct doesn't have stale pointers to a stack that
593        * will be unmapped after the exit call below.
594        */
595        if (!user_stack) {
596            thread->attr.stack_base = NULL;
597            thread->attr.stack_size = 0;
598            thread->tls = NULL;
599        }
600
601       /* the join_count field is used to store the number of threads waiting for
602        * the termination of this thread with pthread_join(),
603        *
604        * if it is positive we need to signal the waiters, and we do not touch
605        * the count (it will be decremented by the waiters, the last one will
606        * also remove/free the thread structure
607        *
608        * if it is zero, we set the count value to -1 to indicate that the
609        * thread is in 'zombie' state: it has stopped executing, and its stack
610        * is gone (as well as its TLS area). when another thread calls pthread_join()
611        * on it, it will immediately free the thread and return.
612        */
613        thread->return_value = retval;
614        if (thread->join_count > 0) {
615            pthread_cond_broadcast(&thread->join_cond);
616        } else {
617            thread->join_count = -1;  /* zombie thread */
618        }
619        pthread_mutex_unlock(&gThreadListLock);
620    }
621
622    sigfillset(&mask);
623    sigdelset(&mask, SIGSEGV);
624    (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
625
626    // destroy the thread stack
627    if (user_stack)
628        _exit_thread((int)retval);
629    else
630        _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
631}
632
633int pthread_join(pthread_t thid, void ** ret_val)
634{
635    pthread_internal_t*  thread = (pthread_internal_t*)thid;
636    int                  count;
637
638    // check that the thread still exists and is not detached
639    pthread_mutex_lock(&gThreadListLock);
640
641    for (thread = gThreadList; thread != NULL; thread = thread->next)
642        if (thread == (pthread_internal_t*)thid)
643            goto FoundIt;
644
645    pthread_mutex_unlock(&gThreadListLock);
646    return ESRCH;
647
648FoundIt:
649    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
650        pthread_mutex_unlock(&gThreadListLock);
651        return EINVAL;
652    }
653
654   /* wait for thread death when needed
655    *
656    * if the 'join_count' is negative, this is a 'zombie' thread that
657    * is already dead and without stack/TLS
658    *
659    * otherwise, we need to increment 'join-count' and wait to be signaled
660    */
661   count = thread->join_count;
662    if (count >= 0) {
663        thread->join_count += 1;
664        pthread_cond_wait( &thread->join_cond, &gThreadListLock );
665        count = --thread->join_count;
666    }
667    if (ret_val)
668        *ret_val = thread->return_value;
669
670    /* remove thread descriptor when we're the last joiner or when the
671     * thread was already a zombie.
672     */
673    if (count <= 0) {
674        _pthread_internal_remove_locked(thread);
675        _pthread_internal_free(thread);
676    }
677    pthread_mutex_unlock(&gThreadListLock);
678    return 0;
679}
680
681int  pthread_detach( pthread_t  thid )
682{
683    pthread_internal_t*  thread;
684    int                  result = 0;
685    int                  flags;
686
687    pthread_mutex_lock(&gThreadListLock);
688    for (thread = gThreadList; thread != NULL; thread = thread->next)
689        if (thread == (pthread_internal_t*)thid)
690            goto FoundIt;
691
692    result = ESRCH;
693    goto Exit;
694
695FoundIt:
696    do {
697        flags = thread->attr.flags;
698
699        if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
700            /* thread is not joinable ! */
701            result = EINVAL;
702            goto Exit;
703        }
704    }
705    while ( __bionic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
706                              (volatile int*)&thread->attr.flags ) != 0 );
707Exit:
708    pthread_mutex_unlock(&gThreadListLock);
709    return result;
710}
711
712pthread_t pthread_self(void)
713{
714    return (pthread_t)__get_thread();
715}
716
717int pthread_equal(pthread_t one, pthread_t two)
718{
719    return (one == two ? 1 : 0);
720}
721
722int pthread_getschedparam(pthread_t thid, int * policy,
723                          struct sched_param * param)
724{
725    int  old_errno = errno;
726
727    pthread_internal_t * thread = (pthread_internal_t *)thid;
728    int err = sched_getparam(thread->kernel_id, param);
729    if (!err) {
730        *policy = sched_getscheduler(thread->kernel_id);
731    } else {
732        err = errno;
733        errno = old_errno;
734    }
735    return err;
736}
737
738int pthread_setschedparam(pthread_t thid, int policy,
739                          struct sched_param const * param)
740{
741    pthread_internal_t * thread = (pthread_internal_t *)thid;
742    int                  old_errno = errno;
743    int                  ret;
744
745    ret = sched_setscheduler(thread->kernel_id, policy, param);
746    if (ret < 0) {
747        ret = errno;
748        errno = old_errno;
749    }
750    return ret;
751}
752
753
754/* a mutex is implemented as a 32-bit integer holding the following fields
755 *
756 * bits:     name     description
757 * 31-16     tid      owner thread's kernel id (recursive and errorcheck only)
758 * 15-14     type     mutex type
759 * 13        shared   process-shared flag
760 * 12-2      counter  counter of recursive mutexes
761 * 1-0       state    lock state (0, 1 or 2)
762 */
763
764/* Convenience macro, creates a mask of 'bits' bits that starts from
765 * the 'shift'-th least significant bit in a 32-bit word.
766 *
767 * Examples: FIELD_MASK(0,4)  -> 0xf
768 *           FIELD_MASK(16,9) -> 0x1ff0000
769 */
770#define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
771
772/* This one is used to create a bit pattern from a given field value */
773#define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
774
775/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
776#define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
777
778/* Mutex state:
779 *
780 * 0 for unlocked
781 * 1 for locked, no waiters
782 * 2 for locked, maybe waiters
783 */
784#define  MUTEX_STATE_SHIFT      0
785#define  MUTEX_STATE_LEN        2
786
787#define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
788#define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
789#define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
790
791#define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
792#define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
793#define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
794
795#define  MUTEX_STATE_FROM_BITS(v)    FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
796#define  MUTEX_STATE_TO_BITS(v)      FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
797
798#define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
799#define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
800#define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
801
802/* return true iff the mutex if locked with no waiters */
803#define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
804
805/* return true iff the mutex if locked with maybe waiters */
806#define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
807
808/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
809#define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
810
811/* Mutex counter:
812 *
813 * We need to check for overflow before incrementing, and we also need to
814 * detect when the counter is 0
815 */
816#define  MUTEX_COUNTER_SHIFT         2
817#define  MUTEX_COUNTER_LEN           11
818#define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
819
820#define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
821#define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
822
823/* Used to increment the counter directly after overflow has been checked */
824#define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
825
826/* Returns true iff the counter is 0 */
827#define  MUTEX_COUNTER_BITS_ARE_ZERO(v)  (((v) & MUTEX_COUNTER_MASK) == 0)
828
829/* Mutex shared bit flag
830 *
831 * This flag is set to indicate that the mutex is shared among processes.
832 * This changes the futex opcode we use for futex wait/wake operations
833 * (non-shared operations are much faster).
834 */
835#define  MUTEX_SHARED_SHIFT    13
836#define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
837
838/* Mutex type:
839 *
840 * We support normal, recursive and errorcheck mutexes.
841 *
842 * The constants defined here *cannot* be changed because they must match
843 * the C library ABI which defines the following initialization values in
844 * <pthread.h>:
845 *
846 *   __PTHREAD_MUTEX_INIT_VALUE
847 *   __PTHREAD_RECURSIVE_MUTEX_VALUE
848 *   __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
849 */
850#define  MUTEX_TYPE_SHIFT      14
851#define  MUTEX_TYPE_LEN        2
852#define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
853
854#define  MUTEX_TYPE_NORMAL          0  /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
855#define  MUTEX_TYPE_RECURSIVE       1
856#define  MUTEX_TYPE_ERRORCHECK      2
857
858#define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
859
860#define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
861#define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
862#define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
863
864/* Mutex owner field:
865 *
866 * This is only used for recursive and errorcheck mutexes. It holds the
867 * kernel TID of the owning thread. Note that this works because the Linux
868 * kernel _only_ uses 16-bit values for thread ids.
869 *
870 * More specifically, it will wrap to 10000 when it reaches over 32768 for
871 * application processes. You can check this by running the following inside
872 * an adb shell session:
873 *
874    OLDPID=$$;
875    while true; do
876    NEWPID=$(sh -c 'echo $$')
877    if [ "$NEWPID" -gt 32768 ]; then
878        echo "AARGH: new PID $NEWPID is too high!"
879        exit 1
880    fi
881    if [ "$NEWPID" -lt "$OLDPID" ]; then
882        echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
883    else
884        echo -n "$NEWPID!"
885    fi
886    OLDPID=$NEWPID
887    done
888
889 * Note that you can run the same example on a desktop Linux system,
890 * the wrapping will also happen at 32768, but will go back to 300 instead.
891 */
892#define  MUTEX_OWNER_SHIFT     16
893#define  MUTEX_OWNER_LEN       16
894
895#define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
896#define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
897
898/* Convenience macros.
899 *
900 * These are used to form or modify the bit pattern of a given mutex value
901 */
902
903
904
905/* a mutex attribute holds the following fields
906 *
907 * bits:     name       description
908 * 0-3       type       type of mutex
909 * 4         shared     process-shared flag
910 */
911#define  MUTEXATTR_TYPE_MASK   0x000f
912#define  MUTEXATTR_SHARED_MASK 0x0010
913
914
915int pthread_mutexattr_init(pthread_mutexattr_t *attr)
916{
917    if (attr) {
918        *attr = PTHREAD_MUTEX_DEFAULT;
919        return 0;
920    } else {
921        return EINVAL;
922    }
923}
924
925int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
926{
927    if (attr) {
928        *attr = -1;
929        return 0;
930    } else {
931        return EINVAL;
932    }
933}
934
935int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
936{
937    if (attr) {
938        int  atype = (*attr & MUTEXATTR_TYPE_MASK);
939
940         if (atype >= PTHREAD_MUTEX_NORMAL &&
941             atype <= PTHREAD_MUTEX_ERRORCHECK) {
942            *type = atype;
943            return 0;
944        }
945    }
946    return EINVAL;
947}
948
949int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
950{
951    if (attr && type >= PTHREAD_MUTEX_NORMAL &&
952                type <= PTHREAD_MUTEX_ERRORCHECK ) {
953        *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
954        return 0;
955    }
956    return EINVAL;
957}
958
959/* process-shared mutexes are not supported at the moment */
960
961int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
962{
963    if (!attr)
964        return EINVAL;
965
966    switch (pshared) {
967    case PTHREAD_PROCESS_PRIVATE:
968        *attr &= ~MUTEXATTR_SHARED_MASK;
969        return 0;
970
971    case PTHREAD_PROCESS_SHARED:
972        /* our current implementation of pthread actually supports shared
973         * mutexes but won't cleanup if a process dies with the mutex held.
974         * Nevertheless, it's better than nothing. Shared mutexes are used
975         * by surfaceflinger and audioflinger.
976         */
977        *attr |= MUTEXATTR_SHARED_MASK;
978        return 0;
979    }
980    return EINVAL;
981}
982
983int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
984{
985    if (!attr || !pshared)
986        return EINVAL;
987
988    *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
989                                               : PTHREAD_PROCESS_PRIVATE;
990    return 0;
991}
992
993int pthread_mutex_init(pthread_mutex_t *mutex,
994                       const pthread_mutexattr_t *attr)
995{
996    int value = 0;
997
998    if (mutex == NULL)
999        return EINVAL;
1000
1001    if (__likely(attr == NULL)) {
1002        mutex->value = MUTEX_TYPE_BITS_NORMAL;
1003        return 0;
1004    }
1005
1006    if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
1007        value |= MUTEX_SHARED_MASK;
1008
1009    switch (*attr & MUTEXATTR_TYPE_MASK) {
1010    case PTHREAD_MUTEX_NORMAL:
1011        value |= MUTEX_TYPE_BITS_NORMAL;
1012        break;
1013    case PTHREAD_MUTEX_RECURSIVE:
1014        value |= MUTEX_TYPE_BITS_RECURSIVE;
1015        break;
1016    case PTHREAD_MUTEX_ERRORCHECK:
1017        value |= MUTEX_TYPE_BITS_ERRORCHECK;
1018        break;
1019    default:
1020        return EINVAL;
1021    }
1022
1023    mutex->value = value;
1024    return 0;
1025}
1026
1027
1028/*
1029 * Lock a non-recursive mutex.
1030 *
1031 * As noted above, there are three states:
1032 *   0 (unlocked, no contention)
1033 *   1 (locked, no contention)
1034 *   2 (locked, contention)
1035 *
1036 * Non-recursive mutexes don't use the thread-id or counter fields, and the
1037 * "type" value is zero, so the only bits that will be set are the ones in
1038 * the lock state field.
1039 */
1040static __inline__ void
1041_normal_lock(pthread_mutex_t*  mutex, int shared)
1042{
1043    /* convenience shortcuts */
1044    const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
1045    const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1046    /*
1047     * The common case is an unlocked mutex, so we begin by trying to
1048     * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
1049     * __bionic_cmpxchg() returns 0 if it made the swap successfully.
1050     * If the result is nonzero, this lock is already held by another thread.
1051     */
1052    if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
1053        const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1054        /*
1055         * We want to go to sleep until the mutex is available, which
1056         * requires promoting it to state 2 (CONTENDED). We need to
1057         * swap in the new state value and then wait until somebody wakes us up.
1058         *
1059         * __bionic_swap() returns the previous value.  We swap 2 in and
1060         * see if we got zero back; if so, we have acquired the lock.  If
1061         * not, another thread still holds the lock and we wait again.
1062         *
1063         * The second argument to the __futex_wait() call is compared
1064         * against the current value.  If it doesn't match, __futex_wait()
1065         * returns immediately (otherwise, it sleeps for a time specified
1066         * by the third argument; 0 means sleep forever).  This ensures
1067         * that the mutex is in state 2 when we go to sleep on it, which
1068         * guarantees a wake-up call.
1069         */
1070        while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
1071            __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
1072    }
1073    ANDROID_MEMBAR_FULL();
1074}
1075
1076/*
1077 * Release a non-recursive mutex.  The caller is responsible for determining
1078 * that we are in fact the owner of this lock.
1079 */
1080static __inline__ void
1081_normal_unlock(pthread_mutex_t*  mutex, int shared)
1082{
1083    ANDROID_MEMBAR_FULL();
1084
1085    /*
1086     * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
1087     * to release the lock.  __bionic_atomic_dec() returns the previous value;
1088     * if it wasn't 1 we have to do some additional work.
1089     */
1090    if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
1091        /*
1092         * Start by releasing the lock.  The decrement changed it from
1093         * "contended lock" to "uncontended lock", which means we still
1094         * hold it, and anybody who tries to sneak in will push it back
1095         * to state 2.
1096         *
1097         * Once we set it to zero the lock is up for grabs.  We follow
1098         * this with a __futex_wake() to ensure that one of the waiting
1099         * threads has a chance to grab it.
1100         *
1101         * This doesn't cause a race with the swap/wait pair in
1102         * _normal_lock(), because the __futex_wait() call there will
1103         * return immediately if the mutex value isn't 2.
1104         */
1105        mutex->value = shared;
1106
1107        /*
1108         * Wake up one waiting thread.  We don't know which thread will be
1109         * woken or when it'll start executing -- futexes make no guarantees
1110         * here.  There may not even be a thread waiting.
1111         *
1112         * The newly-woken thread will replace the 0 we just set above
1113         * with 2, which means that when it eventually releases the mutex
1114         * it will also call FUTEX_WAKE.  This results in one extra wake
1115         * call whenever a lock is contended, but lets us avoid forgetting
1116         * anyone without requiring us to track the number of sleepers.
1117         *
1118         * It's possible for another thread to sneak in and grab the lock
1119         * between the zero assignment above and the wake call below.  If
1120         * the new thread is "slow" and holds the lock for a while, we'll
1121         * wake up a sleeper, which will swap in a 2 and then go back to
1122         * sleep since the lock is still held.  If the new thread is "fast",
1123         * running to completion before we call wake, the thread we
1124         * eventually wake will find an unlocked mutex and will execute.
1125         * Either way we have correct behavior and nobody is orphaned on
1126         * the wait queue.
1127         */
1128        __futex_wake_ex(&mutex->value, shared, 1);
1129    }
1130}
1131
1132/* This common inlined function is used to increment the counter of an
1133 * errorcheck or recursive mutex.
1134 *
1135 * For errorcheck mutexes, it will return EDEADLK
1136 * If the counter overflows, it will return EAGAIN
1137 * Otherwise, it atomically increments the counter and returns 0
1138 * after providing an acquire barrier.
1139 *
1140 * mtype is the current mutex type
1141 * mvalue is the current mutex value (already loaded)
1142 * mutex pointers to the mutex.
1143 */
1144static __inline__ __attribute__((always_inline)) int
1145_recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
1146{
1147    if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
1148        /* trying to re-lock a mutex we already acquired */
1149        return EDEADLK;
1150    }
1151
1152    /* Detect recursive lock overflow and return EAGAIN.
1153     * This is safe because only the owner thread can modify the
1154     * counter bits in the mutex value.
1155     */
1156    if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
1157        return EAGAIN;
1158    }
1159
1160    /* We own the mutex, but other threads are able to change
1161     * the lower bits (e.g. promoting it to "contended"), so we
1162     * need to use an atomic cmpxchg loop to update the counter.
1163     */
1164    for (;;) {
1165        /* increment counter, overflow was already checked */
1166        int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
1167        if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1168            /* mutex is still locked, not need for a memory barrier */
1169            return 0;
1170        }
1171        /* the value was changed, this happens when another thread changes
1172         * the lower state bits from 1 to 2 to indicate contention. This
1173         * cannot change the counter, so simply reload and try again.
1174         */
1175        mvalue = mutex->value;
1176    }
1177}
1178
1179__LIBC_HIDDEN__
1180int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
1181{
1182    int mvalue, mtype, tid, new_lock_type, shared;
1183
1184    if (__unlikely(mutex == NULL))
1185        return EINVAL;
1186
1187    mvalue = mutex->value;
1188    mtype = (mvalue & MUTEX_TYPE_MASK);
1189    shared = (mvalue & MUTEX_SHARED_MASK);
1190
1191    /* Handle normal case first */
1192    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
1193        _normal_lock(mutex, shared);
1194        return 0;
1195    }
1196
1197    /* Do we already own this recursive or error-check mutex ? */
1198    tid = __get_thread()->kernel_id;
1199    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1200        return _recursive_increment(mutex, mvalue, mtype);
1201
1202    /* Add in shared state to avoid extra 'or' operations below */
1203    mtype |= shared;
1204
1205    /* First, if the mutex is unlocked, try to quickly acquire it.
1206     * In the optimistic case where this works, set the state to 1 to
1207     * indicate locked with no contention */
1208    if (mvalue == mtype) {
1209        int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1210        if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
1211            ANDROID_MEMBAR_FULL();
1212            return 0;
1213        }
1214        /* argh, the value changed, reload before entering the loop */
1215        mvalue = mutex->value;
1216    }
1217
1218    for (;;) {
1219        int newval;
1220
1221        /* if the mutex is unlocked, its value should be 'mtype' and
1222         * we try to acquire it by setting its owner and state atomically.
1223         * NOTE: We put the state to 2 since we _know_ there is contention
1224         * when we are in this loop. This ensures all waiters will be
1225         * unlocked.
1226         */
1227        if (mvalue == mtype) {
1228            newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1229            /* TODO: Change this to __bionic_cmpxchg_acquire when we
1230             *        implement it to get rid of the explicit memory
1231             *        barrier below.
1232             */
1233            if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1234                mvalue = mutex->value;
1235                continue;
1236            }
1237            ANDROID_MEMBAR_FULL();
1238            return 0;
1239        }
1240
1241        /* the mutex is already locked by another thread, if its state is 1
1242         * we will change it to 2 to indicate contention. */
1243        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1244            newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
1245            if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1246                mvalue = mutex->value;
1247                continue;
1248            }
1249            mvalue = newval;
1250        }
1251
1252        /* wait until the mutex is unlocked */
1253        __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
1254
1255        mvalue = mutex->value;
1256    }
1257    /* NOTREACHED */
1258}
1259
1260int pthread_mutex_lock(pthread_mutex_t *mutex)
1261{
1262    int err = pthread_mutex_lock_impl(mutex);
1263#ifdef PTHREAD_DEBUG
1264    if (PTHREAD_DEBUG_ENABLED) {
1265        if (!err) {
1266            pthread_debug_mutex_lock_check(mutex);
1267        }
1268    }
1269#endif
1270    return err;
1271}
1272
1273__LIBC_HIDDEN__
1274int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
1275{
1276    int mvalue, mtype, tid, oldv, shared;
1277
1278    if (__unlikely(mutex == NULL))
1279        return EINVAL;
1280
1281    mvalue = mutex->value;
1282    mtype  = (mvalue & MUTEX_TYPE_MASK);
1283    shared = (mvalue & MUTEX_SHARED_MASK);
1284
1285    /* Handle common case first */
1286    if (__likely(mtype == MUTEX_TYPE_BITS_NORMAL)) {
1287        _normal_unlock(mutex, shared);
1288        return 0;
1289    }
1290
1291    /* Do we already own this recursive or error-check mutex ? */
1292    tid = __get_thread()->kernel_id;
1293    if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
1294        return EPERM;
1295
1296    /* If the counter is > 0, we can simply decrement it atomically.
1297     * Since other threads can mutate the lower state bits (and only the
1298     * lower state bits), use a cmpxchg to do it.
1299     */
1300    if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
1301        for (;;) {
1302            int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
1303            if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1304                /* success: we still own the mutex, so no memory barrier */
1305                return 0;
1306            }
1307            /* the value changed, so reload and loop */
1308            mvalue = mutex->value;
1309        }
1310    }
1311
1312    /* the counter is 0, so we're going to unlock the mutex by resetting
1313     * its value to 'unlocked'. We need to perform a swap in order
1314     * to read the current state, which will be 2 if there are waiters
1315     * to awake.
1316     *
1317     * TODO: Change this to __bionic_swap_release when we implement it
1318     *        to get rid of the explicit memory barrier below.
1319     */
1320    ANDROID_MEMBAR_FULL();  /* RELEASE BARRIER */
1321    mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
1322
1323    /* Wake one waiting thread, if any */
1324    if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1325        __futex_wake_ex(&mutex->value, shared, 1);
1326    }
1327    return 0;
1328}
1329
1330int pthread_mutex_unlock(pthread_mutex_t *mutex)
1331{
1332#ifdef PTHREAD_DEBUG
1333    if (PTHREAD_DEBUG_ENABLED) {
1334        pthread_debug_mutex_unlock_check(mutex);
1335    }
1336#endif
1337    return pthread_mutex_unlock_impl(mutex);
1338}
1339
1340__LIBC_HIDDEN__
1341int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
1342{
1343    int mvalue, mtype, tid, oldv, shared;
1344
1345    if (__unlikely(mutex == NULL))
1346        return EINVAL;
1347
1348    mvalue = mutex->value;
1349    mtype  = (mvalue & MUTEX_TYPE_MASK);
1350    shared = (mvalue & MUTEX_SHARED_MASK);
1351
1352    /* Handle common case first */
1353    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1354    {
1355        if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
1356                             shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
1357                             &mutex->value) == 0) {
1358            ANDROID_MEMBAR_FULL();
1359            return 0;
1360        }
1361
1362        return EBUSY;
1363    }
1364
1365    /* Do we already own this recursive or error-check mutex ? */
1366    tid = __get_thread()->kernel_id;
1367    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1368        return _recursive_increment(mutex, mvalue, mtype);
1369
1370    /* Same as pthread_mutex_lock, except that we don't want to wait, and
1371     * the only operation that can succeed is a single cmpxchg to acquire the
1372     * lock if it is released / not owned by anyone. No need for a complex loop.
1373     */
1374    mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
1375    mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1376
1377    if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1378        ANDROID_MEMBAR_FULL();
1379        return 0;
1380    }
1381
1382    return EBUSY;
1383}
1384
1385int pthread_mutex_trylock(pthread_mutex_t *mutex)
1386{
1387    int err = pthread_mutex_trylock_impl(mutex);
1388#ifdef PTHREAD_DEBUG
1389    if (PTHREAD_DEBUG_ENABLED) {
1390        if (!err) {
1391            pthread_debug_mutex_lock_check(mutex);
1392        }
1393    }
1394#endif
1395    return err;
1396}
1397
1398/* initialize 'ts' with the difference between 'abstime' and the current time
1399 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1400 */
1401static int
1402__timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
1403{
1404    clock_gettime(clock, ts);
1405    ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
1406    ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1407    if (ts->tv_nsec < 0) {
1408        ts->tv_sec--;
1409        ts->tv_nsec += 1000000000;
1410    }
1411    if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1412        return -1;
1413
1414    return 0;
1415}
1416
1417/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1418 * milliseconds.
1419 */
1420static void
1421__timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
1422{
1423    clock_gettime(clock, abstime);
1424    abstime->tv_sec  += msecs/1000;
1425    abstime->tv_nsec += (msecs%1000)*1000000;
1426    if (abstime->tv_nsec >= 1000000000) {
1427        abstime->tv_sec++;
1428        abstime->tv_nsec -= 1000000000;
1429    }
1430}
1431
1432__LIBC_HIDDEN__
1433int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
1434{
1435    clockid_t        clock = CLOCK_MONOTONIC;
1436    struct timespec  abstime;
1437    struct timespec  ts;
1438    int               mvalue, mtype, tid, oldv, new_lock_type, shared;
1439
1440    /* compute absolute expiration time */
1441    __timespec_to_relative_msec(&abstime, msecs, clock);
1442
1443    if (__unlikely(mutex == NULL))
1444        return EINVAL;
1445
1446    mvalue = mutex->value;
1447    mtype  = (mvalue & MUTEX_TYPE_MASK);
1448    shared = (mvalue & MUTEX_SHARED_MASK);
1449
1450    /* Handle common case first */
1451    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1452    {
1453        const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
1454        const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1455        const int locked_contended   = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1456
1457        /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
1458        if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
1459            ANDROID_MEMBAR_FULL();
1460            return 0;
1461        }
1462
1463        /* loop while needed */
1464        while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
1465            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1466                return EBUSY;
1467
1468            __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
1469        }
1470        ANDROID_MEMBAR_FULL();
1471        return 0;
1472    }
1473
1474    /* Do we already own this recursive or error-check mutex ? */
1475    tid = __get_thread()->kernel_id;
1476    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1477        return _recursive_increment(mutex, mvalue, mtype);
1478
1479    /* the following implements the same loop than pthread_mutex_lock_impl
1480     * but adds checks to ensure that the operation never exceeds the
1481     * absolute expiration time.
1482     */
1483    mtype |= shared;
1484
1485    /* first try a quick lock */
1486    if (mvalue == mtype) {
1487        mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1488        if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1489            ANDROID_MEMBAR_FULL();
1490            return 0;
1491        }
1492        mvalue = mutex->value;
1493    }
1494
1495    for (;;) {
1496        struct timespec ts;
1497
1498        /* if the value is 'unlocked', try to acquire it directly */
1499        /* NOTE: put state to 2 since we know there is contention */
1500        if (mvalue == mtype) /* unlocked */ {
1501            mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1502            if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
1503                ANDROID_MEMBAR_FULL();
1504                return 0;
1505            }
1506            /* the value changed before we could lock it. We need to check
1507             * the time to avoid livelocks, reload the value, then loop again. */
1508            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1509                return EBUSY;
1510
1511            mvalue = mutex->value;
1512            continue;
1513        }
1514
1515        /* The value is locked. If 'uncontended', try to switch its state
1516         * to 'contented' to ensure we get woken up later. */
1517        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1518            int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
1519            if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
1520                /* this failed because the value changed, reload it */
1521                mvalue = mutex->value;
1522            } else {
1523                /* this succeeded, update mvalue */
1524                mvalue = newval;
1525            }
1526        }
1527
1528        /* check time and update 'ts' */
1529        if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1530            return EBUSY;
1531
1532        /* Only wait to be woken up if the state is '2', otherwise we'll
1533         * simply loop right now. This can happen when the second cmpxchg
1534         * in our loop failed because the mutex was unlocked by another
1535         * thread.
1536         */
1537        if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1538            if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
1539                return EBUSY;
1540            }
1541            mvalue = mutex->value;
1542        }
1543    }
1544    /* NOTREACHED */
1545}
1546
1547int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1548{
1549    int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
1550#ifdef PTHREAD_DEBUG
1551    if (PTHREAD_DEBUG_ENABLED) {
1552        if (!err) {
1553            pthread_debug_mutex_lock_check(mutex);
1554        }
1555    }
1556#endif
1557    return err;
1558}
1559
1560int pthread_mutex_destroy(pthread_mutex_t *mutex)
1561{
1562    int ret;
1563
1564    /* use trylock to ensure that the mutex value is
1565     * valid and is not already locked. */
1566    ret = pthread_mutex_trylock_impl(mutex);
1567    if (ret != 0)
1568        return ret;
1569
1570    mutex->value = 0xdead10cc;
1571    return 0;
1572}
1573
1574
1575
1576int pthread_condattr_init(pthread_condattr_t *attr)
1577{
1578    if (attr == NULL)
1579        return EINVAL;
1580
1581    *attr = PTHREAD_PROCESS_PRIVATE;
1582    return 0;
1583}
1584
1585int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
1586{
1587    if (attr == NULL || pshared == NULL)
1588        return EINVAL;
1589
1590    *pshared = *attr;
1591    return 0;
1592}
1593
1594int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1595{
1596    if (attr == NULL)
1597        return EINVAL;
1598
1599    if (pshared != PTHREAD_PROCESS_SHARED &&
1600        pshared != PTHREAD_PROCESS_PRIVATE)
1601        return EINVAL;
1602
1603    *attr = pshared;
1604    return 0;
1605}
1606
1607int pthread_condattr_destroy(pthread_condattr_t *attr)
1608{
1609    if (attr == NULL)
1610        return EINVAL;
1611
1612    *attr = 0xdeada11d;
1613    return 0;
1614}
1615
1616/* We use one bit in condition variable values as the 'shared' flag
1617 * The rest is a counter.
1618 */
1619#define COND_SHARED_MASK        0x0001
1620#define COND_COUNTER_INCREMENT  0x0002
1621#define COND_COUNTER_MASK       (~COND_SHARED_MASK)
1622
1623#define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0)
1624
1625/* XXX *technically* there is a race condition that could allow
1626 * XXX a signal to be missed.  If thread A is preempted in _wait()
1627 * XXX after unlocking the mutex and before waiting, and if other
1628 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1629 * XXX before thread A is scheduled again and calls futex_wait(),
1630 * XXX then the signal will be lost.
1631 */
1632
1633int pthread_cond_init(pthread_cond_t *cond,
1634                      const pthread_condattr_t *attr)
1635{
1636    if (cond == NULL)
1637        return EINVAL;
1638
1639    cond->value = 0;
1640
1641    if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1642        cond->value |= COND_SHARED_MASK;
1643
1644    return 0;
1645}
1646
1647int pthread_cond_destroy(pthread_cond_t *cond)
1648{
1649    if (cond == NULL)
1650        return EINVAL;
1651
1652    cond->value = 0xdeadc04d;
1653    return 0;
1654}
1655
1656/* This function is used by pthread_cond_broadcast and
1657 * pthread_cond_signal to atomically decrement the counter
1658 * then wake-up 'counter' threads.
1659 */
1660static int
1661__pthread_cond_pulse(pthread_cond_t *cond, int  counter)
1662{
1663    long flags;
1664
1665    if (__unlikely(cond == NULL))
1666        return EINVAL;
1667
1668    flags = (cond->value & ~COND_COUNTER_MASK);
1669    for (;;) {
1670        long oldval = cond->value;
1671        long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1672                      | flags;
1673        if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
1674            break;
1675    }
1676
1677    /*
1678     * Ensure that all memory accesses previously made by this thread are
1679     * visible to the woken thread(s).  On the other side, the "wait"
1680     * code will issue any necessary barriers when locking the mutex.
1681     *
1682     * This may not strictly be necessary -- if the caller follows
1683     * recommended practice and holds the mutex before signaling the cond
1684     * var, the mutex ops will provide correct semantics.  If they don't
1685     * hold the mutex, they're subject to race conditions anyway.
1686     */
1687    ANDROID_MEMBAR_FULL();
1688
1689    __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1690    return 0;
1691}
1692
1693int pthread_cond_broadcast(pthread_cond_t *cond)
1694{
1695    return __pthread_cond_pulse(cond, INT_MAX);
1696}
1697
1698int pthread_cond_signal(pthread_cond_t *cond)
1699{
1700    return __pthread_cond_pulse(cond, 1);
1701}
1702
1703int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1704{
1705    return pthread_cond_timedwait(cond, mutex, NULL);
1706}
1707
1708int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1709                                      pthread_mutex_t * mutex,
1710                                      const struct timespec *reltime)
1711{
1712    int  status;
1713    int  oldvalue = cond->value;
1714
1715    pthread_mutex_unlock(mutex);
1716    status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1717    pthread_mutex_lock(mutex);
1718
1719    if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1720    return 0;
1721}
1722
1723int __pthread_cond_timedwait(pthread_cond_t *cond,
1724                             pthread_mutex_t * mutex,
1725                             const struct timespec *abstime,
1726                             clockid_t clock)
1727{
1728    struct timespec ts;
1729    struct timespec * tsp;
1730
1731    if (abstime != NULL) {
1732        if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1733            return ETIMEDOUT;
1734        tsp = &ts;
1735    } else {
1736        tsp = NULL;
1737    }
1738
1739    return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1740}
1741
1742int pthread_cond_timedwait(pthread_cond_t *cond,
1743                           pthread_mutex_t * mutex,
1744                           const struct timespec *abstime)
1745{
1746    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1747}
1748
1749
1750/* this one exists only for backward binary compatibility */
1751int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1752                                     pthread_mutex_t * mutex,
1753                                     const struct timespec *abstime)
1754{
1755    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1756}
1757
1758int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1759                                     pthread_mutex_t * mutex,
1760                                     const struct timespec *abstime)
1761{
1762    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1763}
1764
1765int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1766                                      pthread_mutex_t * mutex,
1767                                      const struct timespec *reltime)
1768{
1769    return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1770}
1771
1772int pthread_cond_timeout_np(pthread_cond_t *cond,
1773                            pthread_mutex_t * mutex,
1774                            unsigned msecs)
1775{
1776    struct timespec ts;
1777
1778    ts.tv_sec = msecs / 1000;
1779    ts.tv_nsec = (msecs % 1000) * 1000000;
1780
1781    return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1782}
1783
1784
1785
1786/* A technical note regarding our thread-local-storage (TLS) implementation:
1787 *
1788 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1789 * though the first TLSMAP_START keys are reserved for Bionic to hold
1790 * special thread-specific variables like errno or a pointer to
1791 * the current thread's descriptor.
1792 *
1793 * while stored in the TLS area, these entries cannot be accessed through
1794 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1795 *
1796 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1797 * to greatly simplify and speedup some OpenGL-related operations. though the
1798 * initialy value will be NULL on all threads.
1799 *
1800 * you can use pthread_getspecific()/setspecific() on these, and in theory
1801 * you could also call pthread_key_delete() as well, though this would
1802 * probably break some apps.
1803 *
1804 * The 'tlsmap_t' type defined below implements a shared global map of
1805 * currently created/allocated TLS keys and the destructors associated
1806 * with them. You should use tlsmap_lock/unlock to access it to avoid
1807 * any race condition.
1808 *
1809 * the global TLS map simply contains a bitmap of allocated keys, and
1810 * an array of destructors.
1811 *
1812 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1813 * pointers. the TLS area of the main thread is stack-allocated in
1814 * __libc_init_common, while the TLS area of other threads is placed at
1815 * the top of their stack in pthread_create.
1816 *
1817 * when pthread_key_create() is called, it finds the first free key in the
1818 * bitmap, then set it to 1, saving the destructor altogether
1819 *
1820 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1821 * and its destructor, and will also clear the key data in the TLS area of
1822 * all created threads. As mandated by Posix, it is the responsability of
1823 * the caller of pthread_key_delete() to properly reclaim the objects that
1824 * were pointed to by these data fields (either before or after the call).
1825 *
1826 */
1827
1828/* TLS Map implementation
1829 */
1830
1831#define TLSMAP_START      (TLS_SLOT_MAX_WELL_KNOWN+1)
1832#define TLSMAP_SIZE       BIONIC_TLS_SLOTS
1833#define TLSMAP_BITS       32
1834#define TLSMAP_WORDS      ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1835#define TLSMAP_WORD(m,k)  (m)->map[(k)/TLSMAP_BITS]
1836#define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
1837
1838/* this macro is used to quickly check that a key belongs to a reasonable range */
1839#define TLSMAP_VALIDATE_KEY(key)  \
1840    ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1841
1842/* the type of tls key destructor functions */
1843typedef void (*tls_dtor_t)(void*);
1844
1845typedef struct {
1846    int         init;                  /* see comment in tlsmap_lock() */
1847    uint32_t    map[TLSMAP_WORDS];     /* bitmap of allocated keys */
1848    tls_dtor_t  dtors[TLSMAP_SIZE];    /* key destructors */
1849} tlsmap_t;
1850
1851static pthread_mutex_t  _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1852static tlsmap_t         _tlsmap;
1853
1854/* lock the global TLS map lock and return a handle to it */
1855static __inline__ tlsmap_t* tlsmap_lock(void)
1856{
1857    tlsmap_t*   m = &_tlsmap;
1858
1859    pthread_mutex_lock(&_tlsmap_lock);
1860    /* we need to initialize the first entry of the 'map' array
1861     * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1862     * when declaring _tlsmap is a bit awkward and is going to
1863     * produce warnings, so do it the first time we use the map
1864     * instead
1865     */
1866    if (__unlikely(!m->init)) {
1867        TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1868        m->init          = 1;
1869    }
1870    return m;
1871}
1872
1873/* unlock the global TLS map */
1874static __inline__ void tlsmap_unlock(tlsmap_t*  m)
1875{
1876    pthread_mutex_unlock(&_tlsmap_lock);
1877    (void)m;  /* a good compiler is a happy compiler */
1878}
1879
1880/* test to see wether a key is allocated */
1881static __inline__ int tlsmap_test(tlsmap_t*  m, int  key)
1882{
1883    return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1884}
1885
1886/* set the destructor and bit flag on a newly allocated key */
1887static __inline__ void tlsmap_set(tlsmap_t*  m, int  key, tls_dtor_t  dtor)
1888{
1889    TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1890    m->dtors[key]       = dtor;
1891}
1892
1893/* clear the destructor and bit flag on an existing key */
1894static __inline__ void  tlsmap_clear(tlsmap_t*  m, int  key)
1895{
1896    TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1897    m->dtors[key]       = NULL;
1898}
1899
1900/* allocate a new TLS key, return -1 if no room left */
1901static int tlsmap_alloc(tlsmap_t*  m, tls_dtor_t  dtor)
1902{
1903    int  key;
1904
1905    for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1906        if ( !tlsmap_test(m, key) ) {
1907            tlsmap_set(m, key, dtor);
1908            return key;
1909        }
1910    }
1911    return -1;
1912}
1913
1914
1915int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1916{
1917    uint32_t   err = ENOMEM;
1918    tlsmap_t*  map = tlsmap_lock();
1919    int        k   = tlsmap_alloc(map, destructor_function);
1920
1921    if (k >= 0) {
1922        *key = k;
1923        err  = 0;
1924    }
1925    tlsmap_unlock(map);
1926    return err;
1927}
1928
1929
1930/* This deletes a pthread_key_t. note that the standard mandates that this does
1931 * not call the destructor of non-NULL key values. Instead, it is the
1932 * responsibility of the caller to properly dispose of the corresponding data
1933 * and resources, using any means it finds suitable.
1934 *
1935 * On the other hand, this function will clear the corresponding key data
1936 * values in all known threads. this prevents later (invalid) calls to
1937 * pthread_getspecific() to receive invalid/stale values.
1938 */
1939int pthread_key_delete(pthread_key_t key)
1940{
1941    uint32_t             err;
1942    pthread_internal_t*  thr;
1943    tlsmap_t*            map;
1944
1945    if (!TLSMAP_VALIDATE_KEY(key)) {
1946        return EINVAL;
1947    }
1948
1949    map = tlsmap_lock();
1950
1951    if (!tlsmap_test(map, key)) {
1952        err = EINVAL;
1953        goto err1;
1954    }
1955
1956    /* clear value in all threads */
1957    pthread_mutex_lock(&gThreadListLock);
1958    for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1959        /* avoid zombie threads with a negative 'join_count'. these are really
1960         * already dead and don't have a TLS area anymore.
1961         *
1962         * similarly, it is possible to have thr->tls == NULL for threads that
1963         * were just recently created through pthread_create() but whose
1964         * startup trampoline (__thread_entry) hasn't been run yet by the
1965         * scheduler. thr->tls will also be NULL after it's stack has been
1966         * unmapped but before the ongoing pthread_join() is finished.
1967         * so check for this too.
1968         */
1969        if (thr->join_count < 0 || !thr->tls)
1970            continue;
1971
1972        thr->tls[key] = NULL;
1973    }
1974    tlsmap_clear(map, key);
1975
1976    pthread_mutex_unlock(&gThreadListLock);
1977    err = 0;
1978
1979err1:
1980    tlsmap_unlock(map);
1981    return err;
1982}
1983
1984
1985int pthread_setspecific(pthread_key_t key, const void *ptr)
1986{
1987    int        err = EINVAL;
1988    tlsmap_t*  map;
1989
1990    if (TLSMAP_VALIDATE_KEY(key)) {
1991        /* check that we're trying to set data for an allocated key */
1992        map = tlsmap_lock();
1993        if (tlsmap_test(map, key)) {
1994            ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1995            err = 0;
1996        }
1997        tlsmap_unlock(map);
1998    }
1999    return err;
2000}
2001
2002void * pthread_getspecific(pthread_key_t key)
2003{
2004    if (!TLSMAP_VALIDATE_KEY(key)) {
2005        return NULL;
2006    }
2007
2008    /* for performance reason, we do not lock/unlock the global TLS map
2009     * to check that the key is properly allocated. if the key was not
2010     * allocated, the value read from the TLS should always be NULL
2011     * due to pthread_key_delete() clearing the values for all threads.
2012     */
2013    return (void *)(((unsigned *)__get_tls())[key]);
2014}
2015
2016/* Posix mandates that this be defined in <limits.h> but we don't have
2017 * it just yet.
2018 */
2019#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
2020#  define PTHREAD_DESTRUCTOR_ITERATIONS  4
2021#endif
2022
2023/* this function is called from pthread_exit() to remove all TLS key data
2024 * from this thread's TLS area. this must call the destructor of all keys
2025 * that have a non-NULL data value (and a non-NULL destructor).
2026 *
2027 * because destructors can do funky things like deleting/creating other
2028 * keys, we need to implement this in a loop
2029 */
2030static void pthread_key_clean_all(void)
2031{
2032    tlsmap_t*    map;
2033    void**       tls = (void**)__get_tls();
2034    int          rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
2035
2036    map = tlsmap_lock();
2037
2038    for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
2039    {
2040        int  kk, count = 0;
2041
2042        for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
2043            if ( tlsmap_test(map, kk) )
2044            {
2045                void*       data = tls[kk];
2046                tls_dtor_t  dtor = map->dtors[kk];
2047
2048                if (data != NULL && dtor != NULL)
2049                {
2050                   /* we need to clear the key data now, this will prevent the
2051                    * destructor (or a later one) from seeing the old value if
2052                    * it calls pthread_getspecific() for some odd reason
2053                    *
2054                    * we do not do this if 'dtor == NULL' just in case another
2055                    * destructor function might be responsible for manually
2056                    * releasing the corresponding data.
2057                    */
2058                    tls[kk] = NULL;
2059
2060                   /* because the destructor is free to call pthread_key_create
2061                    * and/or pthread_key_delete, we need to temporarily unlock
2062                    * the TLS map
2063                    */
2064                    tlsmap_unlock(map);
2065                    (*dtor)(data);
2066                    map = tlsmap_lock();
2067
2068                    count += 1;
2069                }
2070            }
2071        }
2072
2073        /* if we didn't call any destructor, there is no need to check the
2074         * TLS data again
2075         */
2076        if (count == 0)
2077            break;
2078    }
2079    tlsmap_unlock(map);
2080}
2081
2082// man says this should be in <linux/unistd.h>, but it isn't
2083extern int tgkill(int tgid, int tid, int sig);
2084
2085int pthread_kill(pthread_t tid, int sig)
2086{
2087    int  ret;
2088    int  old_errno = errno;
2089    pthread_internal_t * thread = (pthread_internal_t *)tid;
2090
2091    ret = tgkill(getpid(), thread->kernel_id, sig);
2092    if (ret < 0) {
2093        ret = errno;
2094        errno = old_errno;
2095    }
2096
2097    return ret;
2098}
2099
2100/* Despite the fact that our kernel headers define sigset_t explicitly
2101 * as a 32-bit integer, the kernel system call really expects a 64-bit
2102 * bitmap for the signal set, or more exactly an array of two-32-bit
2103 * values (see $KERNEL/arch/$ARCH/include/asm/signal.h for details).
2104 *
2105 * Unfortunately, we cannot fix the sigset_t definition without breaking
2106 * the C library ABI, so perform a little runtime translation here.
2107 */
2108typedef union {
2109    sigset_t   bionic;
2110    uint32_t   kernel[2];
2111} kernel_sigset_t;
2112
2113/* this is a private syscall stub */
2114extern int __rt_sigprocmask(int, const kernel_sigset_t *, kernel_sigset_t *, size_t);
2115
2116int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
2117{
2118    /* pthread_sigmask must return the error code, but the syscall
2119     * will set errno instead and return 0/-1
2120     */
2121    int ret, old_errno = errno;
2122
2123    /* We must convert *set into a kernel_sigset_t */
2124    kernel_sigset_t  in_set, *in_set_ptr;
2125    kernel_sigset_t  out_set;
2126
2127    in_set.kernel[0] = in_set.kernel[1] = 0;
2128    out_set.kernel[0] = out_set.kernel[1] = 0;
2129
2130    /* 'in_set_ptr' is the second parameter to __rt_sigprocmask. It must be NULL
2131     * if 'set' is NULL to ensure correct semantics (which in this case would
2132     * be to ignore 'how' and return the current signal set into 'oset'.
2133     */
2134    if (set == NULL) {
2135        in_set_ptr = NULL;
2136    } else {
2137        in_set.bionic = *set;
2138        in_set_ptr = &in_set;
2139    }
2140
2141    ret = __rt_sigprocmask(how, in_set_ptr, &out_set, sizeof(kernel_sigset_t));
2142    if (ret < 0)
2143        ret = errno;
2144
2145    if (oset)
2146        *oset = out_set.bionic;
2147
2148    errno = old_errno;
2149    return ret;
2150}
2151
2152
2153int pthread_getcpuclockid(pthread_t  tid, clockid_t  *clockid)
2154{
2155    const int            CLOCK_IDTYPE_BITS = 3;
2156    pthread_internal_t*  thread = (pthread_internal_t*)tid;
2157
2158    if (!thread)
2159        return ESRCH;
2160
2161    *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
2162    return 0;
2163}
2164
2165
2166/* NOTE: this implementation doesn't support a init function that throws a C++ exception
2167 *       or calls fork()
2168 */
2169int  pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
2170{
2171    static pthread_mutex_t   once_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
2172    volatile pthread_once_t* ocptr = once_control;
2173    pthread_once_t value;
2174
2175    /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
2176     *
2177     *   bit 0 set  -> initialization is under way
2178     *   bit 1 set  -> initialization is complete
2179     */
2180#define ONCE_INITIALIZING           (1 << 0)
2181#define ONCE_COMPLETED              (1 << 1)
2182
2183    /* First check if the once is already initialized. This will be the common
2184    * case and we want to make this as fast as possible. Note that this still
2185    * requires a load_acquire operation here to ensure that all the
2186    * stores performed by the initialization function are observable on
2187    * this CPU after we exit.
2188    */
2189    if (__likely((*ocptr & ONCE_COMPLETED) != 0)) {
2190        ANDROID_MEMBAR_FULL();
2191        return 0;
2192    }
2193
2194    for (;;) {
2195        /* Try to atomically set the INITIALIZING flag.
2196         * This requires a cmpxchg loop, and we may need
2197         * to exit prematurely if we detect that
2198         * COMPLETED is now set.
2199         */
2200        int32_t  oldval, newval;
2201
2202        do {
2203            oldval = *ocptr;
2204            if ((oldval & ONCE_COMPLETED) != 0)
2205                break;
2206
2207            newval = oldval | ONCE_INITIALIZING;
2208        } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
2209
2210        if ((oldval & ONCE_COMPLETED) != 0) {
2211            /* We detected that COMPLETED was set while in our loop */
2212            ANDROID_MEMBAR_FULL();
2213            return 0;
2214        }
2215
2216        if ((oldval & ONCE_INITIALIZING) == 0) {
2217            /* We got there first, we can jump out of the loop to
2218             * handle the initialization */
2219            break;
2220        }
2221
2222        /* Another thread is running the initialization and hasn't completed
2223         * yet, so wait for it, then try again. */
2224        __futex_wait_ex(ocptr, 0, oldval, NULL);
2225    }
2226
2227    /* call the initialization function. */
2228    (*init_routine)();
2229
2230    /* Do a store_release indicating that initialization is complete */
2231    ANDROID_MEMBAR_FULL();
2232    *ocptr = ONCE_COMPLETED;
2233
2234    /* Wake up any waiters, if any */
2235    __futex_wake_ex(ocptr, 0, INT_MAX);
2236
2237    return 0;
2238}
2239
2240/* This value is not exported by kernel headers, so hardcode it here */
2241#define MAX_TASK_COMM_LEN	16
2242#define TASK_COMM_FMT 		"/proc/self/task/%u/comm"
2243
2244int pthread_setname_np(pthread_t thid, const char *thname)
2245{
2246    size_t thname_len;
2247    int saved_errno, ret;
2248
2249    if (thid == 0 || thname == NULL)
2250        return EINVAL;
2251
2252    thname_len = strlen(thname);
2253    if (thname_len >= MAX_TASK_COMM_LEN)
2254        return ERANGE;
2255
2256    saved_errno = errno;
2257    if (thid == pthread_self())
2258    {
2259        ret = prctl(PR_SET_NAME, (unsigned long)thname, 0, 0, 0) ? errno : 0;
2260    }
2261    else
2262    {
2263        /* Have to change another thread's name */
2264        pthread_internal_t *thread = (pthread_internal_t *)thid;
2265        char comm_name[sizeof(TASK_COMM_FMT) + 8];
2266        ssize_t n;
2267        int fd;
2268
2269        snprintf(comm_name, sizeof(comm_name), TASK_COMM_FMT, (unsigned int)thread->kernel_id);
2270        fd = open(comm_name, O_RDWR);
2271        if (fd == -1)
2272        {
2273            ret = errno;
2274            goto exit;
2275        }
2276        n = TEMP_FAILURE_RETRY(write(fd, thname, thname_len));
2277        close(fd);
2278
2279        if (n < 0)
2280            ret = errno;
2281        else if ((size_t)n != thname_len)
2282            ret = EIO;
2283        else
2284            ret = 0;
2285    }
2286exit:
2287    errno = saved_errno;
2288    return ret;
2289}
2290
2291/* Return the kernel thread ID for a pthread.
2292 * This is only defined for implementations where pthread <-> kernel is 1:1, which this is.
2293 * Not the same as pthread_getthreadid_np, which is commonly defined to be opaque.
2294 * Internal, not an NDK API.
2295 */
2296
2297pid_t __pthread_gettid(pthread_t thid)
2298{
2299    pthread_internal_t* thread = (pthread_internal_t*)thid;
2300    return thread->kernel_id;
2301}
2302
2303int __pthread_settid(pthread_t thid, pid_t tid)
2304{
2305    if (thid == 0)
2306        return EINVAL;
2307
2308    pthread_internal_t* thread = (pthread_internal_t*)thid;
2309    thread->kernel_id = tid;
2310
2311    return 0;
2312}
2313