pthread.c revision 1a78fbb5c8228e4aea2a516818828b76044310f2
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28#include <sys/types.h>
29#include <unistd.h>
30#include <signal.h>
31#include <stdint.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <errno.h>
35#include <sys/atomics.h>
36#include <bionic_tls.h>
37#include <sys/mman.h>
38#include <pthread.h>
39#include <time.h>
40#include "pthread_internal.h"
41#include "thread_private.h"
42#include <limits.h>
43#include <memory.h>
44#include <assert.h>
45#include <malloc.h>
46#include <bionic_futex.h>
47#include <bionic_atomic_inline.h>
48#include <sys/prctl.h>
49#include <sys/stat.h>
50#include <fcntl.h>
51#include <stdio.h>
52#include <bionic_pthread.h>
53
54extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
55extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
56
57extern int  __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
58extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
59extern void _exit_thread(int  retCode);
60extern int  __set_errno(int);
61
62int  __futex_wake_ex(volatile void *ftx, int pshared, int val)
63{
64    return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
65}
66
67int  __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
68{
69    return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
70}
71
72#define  __likely(cond)    __builtin_expect(!!(cond), 1)
73#define  __unlikely(cond)  __builtin_expect(!!(cond), 0)
74
75#ifdef __i386__
76#define ATTRIBUTES __attribute__((noinline)) __attribute__((fastcall))
77#else
78#define ATTRIBUTES __attribute__((noinline))
79#endif
80
81void ATTRIBUTES _thread_created_hook(pid_t thread_id);
82
83#define PTHREAD_ATTR_FLAG_DETACHED      0x00000001
84#define PTHREAD_ATTR_FLAG_USER_STACK    0x00000002
85
86#define DEFAULT_STACKSIZE (1024 * 1024)
87
88static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
89
90
91static const pthread_attr_t gDefaultPthreadAttr = {
92    .flags = 0,
93    .stack_base = NULL,
94    .stack_size = DEFAULT_STACKSIZE,
95    .guard_size = PAGE_SIZE,
96    .sched_policy = SCHED_NORMAL,
97    .sched_priority = 0
98};
99
100#define  INIT_THREADS  1
101
102static pthread_internal_t*  gThreadList = NULL;
103static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
104static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
105
106
107/* we simply malloc/free the internal pthread_internal_t structures. we may
108 * want to use a different allocation scheme in the future, but this one should
109 * be largely enough
110 */
111static pthread_internal_t*
112_pthread_internal_alloc(void)
113{
114    pthread_internal_t*   thread;
115
116    thread = calloc( sizeof(*thread), 1 );
117    if (thread)
118        thread->intern = 1;
119
120    return thread;
121}
122
123static void
124_pthread_internal_free( pthread_internal_t*  thread )
125{
126    if (thread && thread->intern) {
127        thread->intern = 0;  /* just in case */
128        free (thread);
129    }
130}
131
132
133static void
134_pthread_internal_remove_locked( pthread_internal_t*  thread )
135{
136    thread->next->pref = thread->pref;
137    thread->pref[0]    = thread->next;
138}
139
140static void
141_pthread_internal_remove( pthread_internal_t*  thread )
142{
143    pthread_mutex_lock(&gThreadListLock);
144    _pthread_internal_remove_locked(thread);
145    pthread_mutex_unlock(&gThreadListLock);
146}
147
148__LIBC_ABI_PRIVATE__ void
149_pthread_internal_add( pthread_internal_t*  thread )
150{
151    pthread_mutex_lock(&gThreadListLock);
152    thread->pref = &gThreadList;
153    thread->next = thread->pref[0];
154    if (thread->next)
155        thread->next->pref = &thread->next;
156    thread->pref[0] = thread;
157    pthread_mutex_unlock(&gThreadListLock);
158}
159
160__LIBC_ABI_PRIVATE__ pthread_internal_t*
161__get_thread(void)
162{
163    void**  tls = (void**)__get_tls();
164
165    return  (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
166}
167
168
169void*
170__get_stack_base(int  *p_stack_size)
171{
172    pthread_internal_t*  thread = __get_thread();
173
174    *p_stack_size = thread->attr.stack_size;
175    return thread->attr.stack_base;
176}
177
178
179void  __init_tls(void**  tls, void*  thread)
180{
181    int  nn;
182
183    ((pthread_internal_t*)thread)->tls = tls;
184
185    // slot 0 must point to the tls area, this is required by the implementation
186    // of the x86 Linux kernel thread-local-storage
187    tls[TLS_SLOT_SELF]      = (void*)tls;
188    tls[TLS_SLOT_THREAD_ID] = thread;
189    for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
190       tls[nn] = 0;
191
192    __set_tls( (void*)tls );
193}
194
195
196/*
197 * This trampoline is called from the assembly clone() function
198 */
199void __thread_entry(int (*func)(void*), void *arg, void **tls)
200{
201    int retValue;
202    pthread_internal_t * thrInfo;
203
204    // Wait for our creating thread to release us. This lets it have time to
205    // notify gdb about this thread before it starts doing anything.
206    //
207    // This also provides the memory barrier needed to ensure that all memory
208    // accesses previously made by the creating thread are visible to us.
209    pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
210    pthread_mutex_lock(start_mutex);
211    pthread_mutex_destroy(start_mutex);
212
213    thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
214
215    __init_tls( tls, thrInfo );
216
217    pthread_exit( (void*)func(arg) );
218}
219
220__LIBC_ABI_PRIVATE__
221void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
222{
223    if (attr == NULL) {
224        thread->attr = gDefaultPthreadAttr;
225    } else {
226        thread->attr = *attr;
227    }
228    thread->attr.stack_base = stack_base;
229    thread->kernel_id       = kernel_id;
230
231    // set the scheduling policy/priority of the thread
232    if (thread->attr.sched_policy != SCHED_NORMAL) {
233        struct sched_param param;
234        param.sched_priority = thread->attr.sched_priority;
235        sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
236    }
237
238    pthread_cond_init(&thread->join_cond, NULL);
239    thread->join_count = 0;
240
241    thread->cleanup_stack = NULL;
242}
243
244
245/* XXX stacks not reclaimed if thread spawn fails */
246/* XXX stacks address spaces should be reused if available again */
247
248static void *mkstack(size_t size, size_t guard_size)
249{
250    void * stack;
251
252    pthread_mutex_lock(&mmap_lock);
253
254    stack = mmap(NULL, size,
255                 PROT_READ | PROT_WRITE,
256                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
257                 -1, 0);
258
259    if(stack == MAP_FAILED) {
260        stack = NULL;
261        goto done;
262    }
263
264    if(mprotect(stack, guard_size, PROT_NONE)){
265        munmap(stack, size);
266        stack = NULL;
267        goto done;
268    }
269
270done:
271    pthread_mutex_unlock(&mmap_lock);
272    return stack;
273}
274
275/*
276 * Create a new thread. The thread's stack is laid out like so:
277 *
278 * +---------------------------+
279 * |     pthread_internal_t    |
280 * +---------------------------+
281 * |                           |
282 * |          TLS area         |
283 * |                           |
284 * +---------------------------+
285 * |                           |
286 * .                           .
287 * .         stack area        .
288 * .                           .
289 * |                           |
290 * +---------------------------+
291 * |         guard page        |
292 * +---------------------------+
293 *
294 *  note that TLS[0] must be a pointer to itself, this is required
295 *  by the thread-local storage implementation of the x86 Linux
296 *  kernel, where the TLS pointer is read by reading fs:[0]
297 */
298int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
299                   void *(*start_routine)(void *), void * arg)
300{
301    char*   stack;
302    void**  tls;
303    int tid;
304    pthread_mutex_t * start_mutex;
305    pthread_internal_t * thread;
306    int                  madestack = 0;
307    int     old_errno = errno;
308
309    /* this will inform the rest of the C library that at least one thread
310     * was created. this will enforce certain functions to acquire/release
311     * locks (e.g. atexit()) to protect shared global structures.
312     *
313     * this works because pthread_create() is not called by the C library
314     * initialization routine that sets up the main thread's data structures.
315     */
316    __isthreaded = 1;
317
318    thread = _pthread_internal_alloc();
319    if (thread == NULL)
320        return ENOMEM;
321
322    if (attr == NULL) {
323        attr = &gDefaultPthreadAttr;
324    }
325
326    // make sure the stack is PAGE_SIZE aligned
327    size_t stackSize = (attr->stack_size +
328                        (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
329
330    if (!attr->stack_base) {
331        stack = mkstack(stackSize, attr->guard_size);
332        if(stack == NULL) {
333            _pthread_internal_free(thread);
334            return ENOMEM;
335        }
336        madestack = 1;
337    } else {
338        stack = attr->stack_base;
339    }
340
341    // Make room for TLS
342    tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
343
344    // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
345    // it from doing anything until after we notify the debugger about it
346    //
347    // This also provides the memory barrier we need to ensure that all
348    // memory accesses previously performed by this thread are visible to
349    // the new thread.
350    start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
351    pthread_mutex_init(start_mutex, NULL);
352    pthread_mutex_lock(start_mutex);
353
354    tls[TLS_SLOT_THREAD_ID] = thread;
355
356    tid = __pthread_clone((int(*)(void*))start_routine, tls,
357                CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
358                | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
359                arg);
360
361    if(tid < 0) {
362        int  result;
363        if (madestack)
364            munmap(stack, stackSize);
365        _pthread_internal_free(thread);
366        result = errno;
367        errno = old_errno;
368        return result;
369    }
370
371    _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
372
373    _pthread_internal_add(thread);
374
375    if (!madestack)
376        thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
377
378    // Notify any debuggers about the new thread
379    pthread_mutex_lock(&gDebuggerNotificationLock);
380    _thread_created_hook(tid);
381    pthread_mutex_unlock(&gDebuggerNotificationLock);
382
383    // Let the thread do it's thing
384    pthread_mutex_unlock(start_mutex);
385
386    *thread_out = (pthread_t)thread;
387    return 0;
388}
389
390
391int pthread_attr_init(pthread_attr_t * attr)
392{
393    *attr = gDefaultPthreadAttr;
394    return 0;
395}
396
397int pthread_attr_destroy(pthread_attr_t * attr)
398{
399    memset(attr, 0x42, sizeof(pthread_attr_t));
400    return 0;
401}
402
403int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
404{
405    if (state == PTHREAD_CREATE_DETACHED) {
406        attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
407    } else if (state == PTHREAD_CREATE_JOINABLE) {
408        attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
409    } else {
410        return EINVAL;
411    }
412    return 0;
413}
414
415int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
416{
417    *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
418           ? PTHREAD_CREATE_DETACHED
419           : PTHREAD_CREATE_JOINABLE;
420    return 0;
421}
422
423int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
424{
425    attr->sched_policy = policy;
426    return 0;
427}
428
429int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
430{
431    *policy = attr->sched_policy;
432    return 0;
433}
434
435int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
436{
437    attr->sched_priority = param->sched_priority;
438    return 0;
439}
440
441int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
442{
443    param->sched_priority = attr->sched_priority;
444    return 0;
445}
446
447int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
448{
449    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
450        return EINVAL;
451    }
452    attr->stack_size = stack_size;
453    return 0;
454}
455
456int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
457{
458    *stack_size = attr->stack_size;
459    return 0;
460}
461
462int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
463{
464#if 1
465    // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
466    return ENOSYS;
467#else
468    if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
469        return EINVAL;
470    }
471    attr->stack_base = stack_addr;
472    return 0;
473#endif
474}
475
476int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
477{
478    *stack_addr = (char*)attr->stack_base + attr->stack_size;
479    return 0;
480}
481
482int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
483{
484    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
485        return EINVAL;
486    }
487    if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
488        return EINVAL;
489    }
490    attr->stack_base = stack_base;
491    attr->stack_size = stack_size;
492    return 0;
493}
494
495int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
496{
497    *stack_base = attr->stack_base;
498    *stack_size = attr->stack_size;
499    return 0;
500}
501
502int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
503{
504    if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
505        return EINVAL;
506    }
507
508    attr->guard_size = guard_size;
509    return 0;
510}
511
512int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
513{
514    *guard_size = attr->guard_size;
515    return 0;
516}
517
518int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
519{
520    pthread_internal_t * thread = (pthread_internal_t *)thid;
521    *attr = thread->attr;
522    return 0;
523}
524
525int pthread_attr_setscope(pthread_attr_t *attr, int  scope)
526{
527    if (scope == PTHREAD_SCOPE_SYSTEM)
528        return 0;
529    if (scope == PTHREAD_SCOPE_PROCESS)
530        return ENOTSUP;
531
532    return EINVAL;
533}
534
535int pthread_attr_getscope(pthread_attr_t const *attr)
536{
537    return PTHREAD_SCOPE_SYSTEM;
538}
539
540
541/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
542 *         and thread cancelation
543 */
544
545void __pthread_cleanup_push( __pthread_cleanup_t*      c,
546                             __pthread_cleanup_func_t  routine,
547                             void*                     arg )
548{
549    pthread_internal_t*  thread = __get_thread();
550
551    c->__cleanup_routine  = routine;
552    c->__cleanup_arg      = arg;
553    c->__cleanup_prev     = thread->cleanup_stack;
554    thread->cleanup_stack = c;
555}
556
557void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
558{
559    pthread_internal_t*  thread = __get_thread();
560
561    thread->cleanup_stack = c->__cleanup_prev;
562    if (execute)
563        c->__cleanup_routine(c->__cleanup_arg);
564}
565
566/* used by pthread_exit() to clean all TLS keys of the current thread */
567static void pthread_key_clean_all(void);
568
569void pthread_exit(void * retval)
570{
571    pthread_internal_t*  thread     = __get_thread();
572    void*                stack_base = thread->attr.stack_base;
573    int                  stack_size = thread->attr.stack_size;
574    int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
575    sigset_t mask;
576
577    // call the cleanup handlers first
578    while (thread->cleanup_stack) {
579        __pthread_cleanup_t*  c = thread->cleanup_stack;
580        thread->cleanup_stack   = c->__cleanup_prev;
581        c->__cleanup_routine(c->__cleanup_arg);
582    }
583
584    // call the TLS destructors, it is important to do that before removing this
585    // thread from the global list. this will ensure that if someone else deletes
586    // a TLS key, the corresponding value will be set to NULL in this thread's TLS
587    // space (see pthread_key_delete)
588    pthread_key_clean_all();
589
590    // if the thread is detached, destroy the pthread_internal_t
591    // otherwise, keep it in memory and signal any joiners
592    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
593        _pthread_internal_remove(thread);
594        _pthread_internal_free(thread);
595    } else {
596       /* the join_count field is used to store the number of threads waiting for
597        * the termination of this thread with pthread_join(),
598        *
599        * if it is positive we need to signal the waiters, and we do not touch
600        * the count (it will be decremented by the waiters, the last one will
601        * also remove/free the thread structure
602        *
603        * if it is zero, we set the count value to -1 to indicate that the
604        * thread is in 'zombie' state: it has stopped executing, and its stack
605        * is gone (as well as its TLS area). when another thread calls pthread_join()
606        * on it, it will immediately free the thread and return.
607        */
608        pthread_mutex_lock(&gThreadListLock);
609        thread->return_value = retval;
610        if (thread->join_count > 0) {
611            pthread_cond_broadcast(&thread->join_cond);
612        } else {
613            thread->join_count = -1;  /* zombie thread */
614        }
615        pthread_mutex_unlock(&gThreadListLock);
616    }
617
618    sigfillset(&mask);
619    sigdelset(&mask, SIGSEGV);
620    (void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
621
622    // destroy the thread stack
623    if (user_stack)
624        _exit_thread((int)retval);
625    else
626        _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
627}
628
629int pthread_join(pthread_t thid, void ** ret_val)
630{
631    pthread_internal_t*  thread = (pthread_internal_t*)thid;
632    int                  count;
633
634    // check that the thread still exists and is not detached
635    pthread_mutex_lock(&gThreadListLock);
636
637    for (thread = gThreadList; thread != NULL; thread = thread->next)
638        if (thread == (pthread_internal_t*)thid)
639            goto FoundIt;
640
641    pthread_mutex_unlock(&gThreadListLock);
642    return ESRCH;
643
644FoundIt:
645    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
646        pthread_mutex_unlock(&gThreadListLock);
647        return EINVAL;
648    }
649
650   /* wait for thread death when needed
651    *
652    * if the 'join_count' is negative, this is a 'zombie' thread that
653    * is already dead and without stack/TLS
654    *
655    * otherwise, we need to increment 'join-count' and wait to be signaled
656    */
657   count = thread->join_count;
658    if (count >= 0) {
659        thread->join_count += 1;
660        pthread_cond_wait( &thread->join_cond, &gThreadListLock );
661        count = --thread->join_count;
662    }
663    if (ret_val)
664        *ret_val = thread->return_value;
665
666    /* remove thread descriptor when we're the last joiner or when the
667     * thread was already a zombie.
668     */
669    if (count <= 0) {
670        _pthread_internal_remove_locked(thread);
671        _pthread_internal_free(thread);
672    }
673    pthread_mutex_unlock(&gThreadListLock);
674    return 0;
675}
676
677int  pthread_detach( pthread_t  thid )
678{
679    pthread_internal_t*  thread;
680    int                  result = 0;
681    int                  flags;
682
683    pthread_mutex_lock(&gThreadListLock);
684    for (thread = gThreadList; thread != NULL; thread = thread->next)
685        if (thread == (pthread_internal_t*)thid)
686            goto FoundIt;
687
688    result = ESRCH;
689    goto Exit;
690
691FoundIt:
692    do {
693        flags = thread->attr.flags;
694
695        if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
696            /* thread is not joinable ! */
697            result = EINVAL;
698            goto Exit;
699        }
700    }
701    while ( __bionic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
702                              (volatile int*)&thread->attr.flags ) != 0 );
703Exit:
704    pthread_mutex_unlock(&gThreadListLock);
705    return result;
706}
707
708pthread_t pthread_self(void)
709{
710    return (pthread_t)__get_thread();
711}
712
713int pthread_equal(pthread_t one, pthread_t two)
714{
715    return (one == two ? 1 : 0);
716}
717
718int pthread_getschedparam(pthread_t thid, int * policy,
719                          struct sched_param * param)
720{
721    int  old_errno = errno;
722
723    pthread_internal_t * thread = (pthread_internal_t *)thid;
724    int err = sched_getparam(thread->kernel_id, param);
725    if (!err) {
726        *policy = sched_getscheduler(thread->kernel_id);
727    } else {
728        err = errno;
729        errno = old_errno;
730    }
731    return err;
732}
733
734int pthread_setschedparam(pthread_t thid, int policy,
735                          struct sched_param const * param)
736{
737    pthread_internal_t * thread = (pthread_internal_t *)thid;
738    int                  old_errno = errno;
739    int                  ret;
740
741    ret = sched_setscheduler(thread->kernel_id, policy, param);
742    if (ret < 0) {
743        ret = errno;
744        errno = old_errno;
745    }
746    return ret;
747}
748
749
750/* a mutex is implemented as a 32-bit integer holding the following fields
751 *
752 * bits:     name     description
753 * 31-16     tid      owner thread's kernel id (recursive and errorcheck only)
754 * 15-14     type     mutex type
755 * 13        shared   process-shared flag
756 * 12-2      counter  counter of recursive mutexes
757 * 1-0       state    lock state (0, 1 or 2)
758 */
759
760/* Convenience macro, creates a mask of 'bits' bits that starts from
761 * the 'shift'-th least significant bit in a 32-bit word.
762 *
763 * Examples: FIELD_MASK(0,4)  -> 0xf
764 *           FIELD_MASK(16,9) -> 0x1ff0000
765 */
766#define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
767
768/* This one is used to create a bit pattern from a given field value */
769#define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
770
771/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
772#define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
773
774/* Mutex state:
775 *
776 * 0 for unlocked
777 * 1 for locked, no waiters
778 * 2 for locked, maybe waiters
779 */
780#define  MUTEX_STATE_SHIFT      0
781#define  MUTEX_STATE_LEN        2
782
783#define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
784#define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
785#define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
786
787#define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
788#define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
789#define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
790
791#define  MUTEX_STATE_FROM_BITS(v)    FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
792#define  MUTEX_STATE_TO_BITS(v)      FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
793
794#define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
795#define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
796#define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
797
798/* return true iff the mutex if locked with no waiters */
799#define  MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
800
801/* return true iff the mutex if locked with maybe waiters */
802#define  MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
803
804/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
805#define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
806
807/* Mutex counter:
808 *
809 * We need to check for overflow before incrementing, and we also need to
810 * detect when the counter is 0
811 */
812#define  MUTEX_COUNTER_SHIFT         2
813#define  MUTEX_COUNTER_LEN           11
814#define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
815
816#define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
817#define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
818
819/* Used to increment the counter directly after overflow has been checked */
820#define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
821
822/* Returns true iff the counter is 0 */
823#define  MUTEX_COUNTER_BITS_ARE_ZERO(v)  (((v) & MUTEX_COUNTER_MASK) == 0)
824
825/* Mutex shared bit flag
826 *
827 * This flag is set to indicate that the mutex is shared among processes.
828 * This changes the futex opcode we use for futex wait/wake operations
829 * (non-shared operations are much faster).
830 */
831#define  MUTEX_SHARED_SHIFT    13
832#define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
833
834/* Mutex type:
835 *
836 * We support normal, recursive and errorcheck mutexes.
837 *
838 * The constants defined here *cannot* be changed because they must match
839 * the C library ABI which defines the following initialization values in
840 * <pthread.h>:
841 *
842 *   __PTHREAD_MUTEX_INIT_VALUE
843 *   __PTHREAD_RECURSIVE_MUTEX_VALUE
844 *   __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
845 */
846#define  MUTEX_TYPE_SHIFT      14
847#define  MUTEX_TYPE_LEN        2
848#define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
849
850#define  MUTEX_TYPE_NORMAL          0  /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
851#define  MUTEX_TYPE_RECURSIVE       1
852#define  MUTEX_TYPE_ERRORCHECK      2
853
854#define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
855
856#define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
857#define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
858#define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
859
860/* Mutex owner field:
861 *
862 * This is only used for recursive and errorcheck mutexes. It holds the
863 * kernel TID of the owning thread. Note that this works because the Linux
864 * kernel _only_ uses 16-bit values for thread ids.
865 *
866 * More specifically, it will wrap to 10000 when it reaches over 32768 for
867 * application processes. You can check this by running the following inside
868 * an adb shell session:
869 *
870    OLDPID=$$;
871    while true; do
872    NEWPID=$(sh -c 'echo $$')
873    if [ "$NEWPID" -gt 32768 ]; then
874        echo "AARGH: new PID $NEWPID is too high!"
875        exit 1
876    fi
877    if [ "$NEWPID" -lt "$OLDPID" ]; then
878        echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
879    else
880        echo -n "$NEWPID!"
881    fi
882    OLDPID=$NEWPID
883    done
884
885 * Note that you can run the same example on a desktop Linux system,
886 * the wrapping will also happen at 32768, but will go back to 300 instead.
887 */
888#define  MUTEX_OWNER_SHIFT     16
889#define  MUTEX_OWNER_LEN       16
890
891#define  MUTEX_OWNER_FROM_BITS(v)    FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
892#define  MUTEX_OWNER_TO_BITS(v)      FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
893
894/* Convenience macros.
895 *
896 * These are used to form or modify the bit pattern of a given mutex value
897 */
898
899
900
901/* a mutex attribute holds the following fields
902 *
903 * bits:     name       description
904 * 0-3       type       type of mutex
905 * 4         shared     process-shared flag
906 */
907#define  MUTEXATTR_TYPE_MASK   0x000f
908#define  MUTEXATTR_SHARED_MASK 0x0010
909
910
911int pthread_mutexattr_init(pthread_mutexattr_t *attr)
912{
913    if (attr) {
914        *attr = PTHREAD_MUTEX_DEFAULT;
915        return 0;
916    } else {
917        return EINVAL;
918    }
919}
920
921int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
922{
923    if (attr) {
924        *attr = -1;
925        return 0;
926    } else {
927        return EINVAL;
928    }
929}
930
931int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
932{
933    if (attr) {
934        int  atype = (*attr & MUTEXATTR_TYPE_MASK);
935
936         if (atype >= PTHREAD_MUTEX_NORMAL &&
937             atype <= PTHREAD_MUTEX_ERRORCHECK) {
938            *type = atype;
939            return 0;
940        }
941    }
942    return EINVAL;
943}
944
945int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
946{
947    if (attr && type >= PTHREAD_MUTEX_NORMAL &&
948                type <= PTHREAD_MUTEX_ERRORCHECK ) {
949        *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
950        return 0;
951    }
952    return EINVAL;
953}
954
955/* process-shared mutexes are not supported at the moment */
956
957int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
958{
959    if (!attr)
960        return EINVAL;
961
962    switch (pshared) {
963    case PTHREAD_PROCESS_PRIVATE:
964        *attr &= ~MUTEXATTR_SHARED_MASK;
965        return 0;
966
967    case PTHREAD_PROCESS_SHARED:
968        /* our current implementation of pthread actually supports shared
969         * mutexes but won't cleanup if a process dies with the mutex held.
970         * Nevertheless, it's better than nothing. Shared mutexes are used
971         * by surfaceflinger and audioflinger.
972         */
973        *attr |= MUTEXATTR_SHARED_MASK;
974        return 0;
975    }
976    return EINVAL;
977}
978
979int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
980{
981    if (!attr || !pshared)
982        return EINVAL;
983
984    *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
985                                               : PTHREAD_PROCESS_PRIVATE;
986    return 0;
987}
988
989int pthread_mutex_init(pthread_mutex_t *mutex,
990                       const pthread_mutexattr_t *attr)
991{
992    int value = 0;
993
994    if (mutex == NULL)
995        return EINVAL;
996
997    if (__likely(attr == NULL)) {
998        mutex->value = MUTEX_TYPE_BITS_NORMAL;
999        return 0;
1000    }
1001
1002    if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
1003        value |= MUTEX_SHARED_MASK;
1004
1005    switch (*attr & MUTEXATTR_TYPE_MASK) {
1006    case PTHREAD_MUTEX_NORMAL:
1007        value |= MUTEX_TYPE_BITS_NORMAL;
1008        break;
1009    case PTHREAD_MUTEX_RECURSIVE:
1010        value |= MUTEX_TYPE_BITS_RECURSIVE;
1011        break;
1012    case PTHREAD_MUTEX_ERRORCHECK:
1013        value |= MUTEX_TYPE_BITS_ERRORCHECK;
1014        break;
1015    default:
1016        return EINVAL;
1017    }
1018
1019    mutex->value = value;
1020    return 0;
1021}
1022
1023
1024/*
1025 * Lock a non-recursive mutex.
1026 *
1027 * As noted above, there are three states:
1028 *   0 (unlocked, no contention)
1029 *   1 (locked, no contention)
1030 *   2 (locked, contention)
1031 *
1032 * Non-recursive mutexes don't use the thread-id or counter fields, and the
1033 * "type" value is zero, so the only bits that will be set are the ones in
1034 * the lock state field.
1035 */
1036static __inline__ void
1037_normal_lock(pthread_mutex_t*  mutex, int shared)
1038{
1039    /* convenience shortcuts */
1040    const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
1041    const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1042    /*
1043     * The common case is an unlocked mutex, so we begin by trying to
1044     * change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
1045     * __bionic_cmpxchg() returns 0 if it made the swap successfully.
1046     * If the result is nonzero, this lock is already held by another thread.
1047     */
1048    if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
1049        const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1050        /*
1051         * We want to go to sleep until the mutex is available, which
1052         * requires promoting it to state 2 (CONTENDED). We need to
1053         * swap in the new state value and then wait until somebody wakes us up.
1054         *
1055         * __bionic_swap() returns the previous value.  We swap 2 in and
1056         * see if we got zero back; if so, we have acquired the lock.  If
1057         * not, another thread still holds the lock and we wait again.
1058         *
1059         * The second argument to the __futex_wait() call is compared
1060         * against the current value.  If it doesn't match, __futex_wait()
1061         * returns immediately (otherwise, it sleeps for a time specified
1062         * by the third argument; 0 means sleep forever).  This ensures
1063         * that the mutex is in state 2 when we go to sleep on it, which
1064         * guarantees a wake-up call.
1065         */
1066        while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
1067            __futex_wait_ex(&mutex->value, shared, locked_contended, 0);
1068    }
1069    ANDROID_MEMBAR_FULL();
1070}
1071
1072/*
1073 * Release a non-recursive mutex.  The caller is responsible for determining
1074 * that we are in fact the owner of this lock.
1075 */
1076static __inline__ void
1077_normal_unlock(pthread_mutex_t*  mutex, int shared)
1078{
1079    ANDROID_MEMBAR_FULL();
1080
1081    /*
1082     * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
1083     * to release the lock.  __bionic_atomic_dec() returns the previous value;
1084     * if it wasn't 1 we have to do some additional work.
1085     */
1086    if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
1087        /*
1088         * Start by releasing the lock.  The decrement changed it from
1089         * "contended lock" to "uncontended lock", which means we still
1090         * hold it, and anybody who tries to sneak in will push it back
1091         * to state 2.
1092         *
1093         * Once we set it to zero the lock is up for grabs.  We follow
1094         * this with a __futex_wake() to ensure that one of the waiting
1095         * threads has a chance to grab it.
1096         *
1097         * This doesn't cause a race with the swap/wait pair in
1098         * _normal_lock(), because the __futex_wait() call there will
1099         * return immediately if the mutex value isn't 2.
1100         */
1101        mutex->value = shared;
1102
1103        /*
1104         * Wake up one waiting thread.  We don't know which thread will be
1105         * woken or when it'll start executing -- futexes make no guarantees
1106         * here.  There may not even be a thread waiting.
1107         *
1108         * The newly-woken thread will replace the 0 we just set above
1109         * with 2, which means that when it eventually releases the mutex
1110         * it will also call FUTEX_WAKE.  This results in one extra wake
1111         * call whenever a lock is contended, but lets us avoid forgetting
1112         * anyone without requiring us to track the number of sleepers.
1113         *
1114         * It's possible for another thread to sneak in and grab the lock
1115         * between the zero assignment above and the wake call below.  If
1116         * the new thread is "slow" and holds the lock for a while, we'll
1117         * wake up a sleeper, which will swap in a 2 and then go back to
1118         * sleep since the lock is still held.  If the new thread is "fast",
1119         * running to completion before we call wake, the thread we
1120         * eventually wake will find an unlocked mutex and will execute.
1121         * Either way we have correct behavior and nobody is orphaned on
1122         * the wait queue.
1123         */
1124        __futex_wake_ex(&mutex->value, shared, 1);
1125    }
1126}
1127
1128/* This common inlined function is used to increment the counter of an
1129 * errorcheck or recursive mutex.
1130 *
1131 * For errorcheck mutexes, it will return EDEADLK
1132 * If the counter overflows, it will return EAGAIN
1133 * Otherwise, it atomically increments the counter and returns 0
1134 * after providing an acquire barrier.
1135 *
1136 * mtype is the current mutex type
1137 * mvalue is the current mutex value (already loaded)
1138 * mutex pointers to the mutex.
1139 */
1140static __inline__ __attribute__((always_inline)) int
1141_recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
1142{
1143    if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
1144        /* trying to re-lock a mutex we already acquired */
1145        return EDEADLK;
1146    }
1147
1148    /* Detect recursive lock overflow and return EAGAIN.
1149     * This is safe because only the owner thread can modify the
1150     * counter bits in the mutex value.
1151     */
1152    if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
1153        return EAGAIN;
1154    }
1155
1156    /* We own the mutex, but other threads are able to change
1157     * the lower bits (e.g. promoting it to "contended"), so we
1158     * need to use an atomic cmpxchg loop to update the counter.
1159     */
1160    for (;;) {
1161        /* increment counter, overflow was already checked */
1162        int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
1163        if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1164            /* mutex is still locked, not need for a memory barrier */
1165            return 0;
1166        }
1167        /* the value was changed, this happens when another thread changes
1168         * the lower state bits from 1 to 2 to indicate contention. This
1169         * cannot change the counter, so simply reload and try again.
1170         */
1171        mvalue = mutex->value;
1172    }
1173}
1174
1175__LIBC_HIDDEN__
1176int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
1177{
1178    int mvalue, mtype, tid, new_lock_type, shared;
1179
1180    if (__unlikely(mutex == NULL))
1181        return EINVAL;
1182
1183    mvalue = mutex->value;
1184    mtype = (mvalue & MUTEX_TYPE_MASK);
1185    shared = (mvalue & MUTEX_SHARED_MASK);
1186
1187    /* Handle normal case first */
1188    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
1189        _normal_lock(mutex, shared);
1190        return 0;
1191    }
1192
1193    /* Do we already own this recursive or error-check mutex ? */
1194    tid = __get_thread()->kernel_id;
1195    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1196        return _recursive_increment(mutex, mvalue, mtype);
1197
1198    /* Add in shared state to avoid extra 'or' operations below */
1199    mtype |= shared;
1200
1201    /* First, if the mutex is unlocked, try to quickly acquire it.
1202     * In the optimistic case where this works, set the state to 1 to
1203     * indicate locked with no contention */
1204    if (mvalue == mtype) {
1205        int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1206        if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
1207            ANDROID_MEMBAR_FULL();
1208            return 0;
1209        }
1210        /* argh, the value changed, reload before entering the loop */
1211        mvalue = mutex->value;
1212    }
1213
1214    for (;;) {
1215        int newval;
1216
1217        /* if the mutex is unlocked, its value should be 'mtype' and
1218         * we try to acquire it by setting its owner and state atomically.
1219         * NOTE: We put the state to 2 since we _know_ there is contention
1220         * when we are in this loop. This ensures all waiters will be
1221         * unlocked.
1222         */
1223        if (mvalue == mtype) {
1224            newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1225            /* TODO: Change this to __bionic_cmpxchg_acquire when we
1226             *        implement it to get rid of the explicit memory
1227             *        barrier below.
1228             */
1229            if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1230                mvalue = mutex->value;
1231                continue;
1232            }
1233            ANDROID_MEMBAR_FULL();
1234            return 0;
1235        }
1236
1237        /* the mutex is already locked by another thread, if its state is 1
1238         * we will change it to 2 to indicate contention. */
1239        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1240            newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
1241            if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
1242                mvalue = mutex->value;
1243                continue;
1244            }
1245            mvalue = newval;
1246        }
1247
1248        /* wait until the mutex is unlocked */
1249        __futex_wait_ex(&mutex->value, shared, mvalue, NULL);
1250
1251        mvalue = mutex->value;
1252    }
1253    /* NOTREACHED */
1254}
1255
1256int pthread_mutex_lock(pthread_mutex_t *mutex)
1257{
1258    int err = pthread_mutex_lock_impl(mutex);
1259#ifdef PTHREAD_DEBUG
1260    if (PTHREAD_DEBUG_ENABLED) {
1261        if (!err) {
1262            pthread_debug_mutex_lock_check(mutex);
1263        }
1264    }
1265#endif
1266    return err;
1267}
1268
1269__LIBC_HIDDEN__
1270int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
1271{
1272    int mvalue, mtype, tid, oldv, shared;
1273
1274    if (__unlikely(mutex == NULL))
1275        return EINVAL;
1276
1277    mvalue = mutex->value;
1278    mtype  = (mvalue & MUTEX_TYPE_MASK);
1279    shared = (mvalue & MUTEX_SHARED_MASK);
1280
1281    /* Handle common case first */
1282    if (__likely(mtype == MUTEX_TYPE_BITS_NORMAL)) {
1283        _normal_unlock(mutex, shared);
1284        return 0;
1285    }
1286
1287    /* Do we already own this recursive or error-check mutex ? */
1288    tid = __get_thread()->kernel_id;
1289    if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
1290        return EPERM;
1291
1292    /* If the counter is > 0, we can simply decrement it atomically.
1293     * Since other threads can mutate the lower state bits (and only the
1294     * lower state bits), use a cmpxchg to do it.
1295     */
1296    if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
1297        for (;;) {
1298            int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
1299            if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
1300                /* success: we still own the mutex, so no memory barrier */
1301                return 0;
1302            }
1303            /* the value changed, so reload and loop */
1304            mvalue = mutex->value;
1305        }
1306    }
1307
1308    /* the counter is 0, so we're going to unlock the mutex by resetting
1309     * its value to 'unlocked'. We need to perform a swap in order
1310     * to read the current state, which will be 2 if there are waiters
1311     * to awake.
1312     *
1313     * TODO: Change this to __bionic_swap_release when we implement it
1314     *        to get rid of the explicit memory barrier below.
1315     */
1316    ANDROID_MEMBAR_FULL();  /* RELEASE BARRIER */
1317    mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
1318
1319    /* Wake one waiting thread, if any */
1320    if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1321        __futex_wake_ex(&mutex->value, shared, 1);
1322    }
1323    return 0;
1324}
1325
1326int pthread_mutex_unlock(pthread_mutex_t *mutex)
1327{
1328#ifdef PTHREAD_DEBUG
1329    if (PTHREAD_DEBUG_ENABLED) {
1330        pthread_debug_mutex_unlock_check(mutex);
1331    }
1332#endif
1333    return pthread_mutex_unlock_impl(mutex);
1334}
1335
1336__LIBC_HIDDEN__
1337int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
1338{
1339    int mvalue, mtype, tid, oldv, shared;
1340
1341    if (__unlikely(mutex == NULL))
1342        return EINVAL;
1343
1344    mvalue = mutex->value;
1345    mtype  = (mvalue & MUTEX_TYPE_MASK);
1346    shared = (mvalue & MUTEX_SHARED_MASK);
1347
1348    /* Handle common case first */
1349    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1350    {
1351        if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
1352                             shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
1353                             &mutex->value) == 0) {
1354            ANDROID_MEMBAR_FULL();
1355            return 0;
1356        }
1357
1358        return EBUSY;
1359    }
1360
1361    /* Do we already own this recursive or error-check mutex ? */
1362    tid = __get_thread()->kernel_id;
1363    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1364        return _recursive_increment(mutex, mvalue, mtype);
1365
1366    /* Same as pthread_mutex_lock, except that we don't want to wait, and
1367     * the only operation that can succeed is a single cmpxchg to acquire the
1368     * lock if it is released / not owned by anyone. No need for a complex loop.
1369     */
1370    mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
1371    mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1372
1373    if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1374        ANDROID_MEMBAR_FULL();
1375        return 0;
1376    }
1377
1378    return EBUSY;
1379}
1380
1381int pthread_mutex_trylock(pthread_mutex_t *mutex)
1382{
1383    int err = pthread_mutex_trylock_impl(mutex);
1384#ifdef PTHREAD_DEBUG
1385    if (PTHREAD_DEBUG_ENABLED) {
1386        if (!err) {
1387            pthread_debug_mutex_lock_check(mutex);
1388        }
1389    }
1390#endif
1391    return err;
1392}
1393
1394/* initialize 'ts' with the difference between 'abstime' and the current time
1395 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1396 */
1397static int
1398__timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
1399{
1400    clock_gettime(clock, ts);
1401    ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
1402    ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1403    if (ts->tv_nsec < 0) {
1404        ts->tv_sec--;
1405        ts->tv_nsec += 1000000000;
1406    }
1407    if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1408        return -1;
1409
1410    return 0;
1411}
1412
1413/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1414 * milliseconds.
1415 */
1416static void
1417__timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
1418{
1419    clock_gettime(clock, abstime);
1420    abstime->tv_sec  += msecs/1000;
1421    abstime->tv_nsec += (msecs%1000)*1000000;
1422    if (abstime->tv_nsec >= 1000000000) {
1423        abstime->tv_sec++;
1424        abstime->tv_nsec -= 1000000000;
1425    }
1426}
1427
1428__LIBC_HIDDEN__
1429int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
1430{
1431    clockid_t        clock = CLOCK_MONOTONIC;
1432    struct timespec  abstime;
1433    struct timespec  ts;
1434    int               mvalue, mtype, tid, oldv, new_lock_type, shared;
1435
1436    /* compute absolute expiration time */
1437    __timespec_to_relative_msec(&abstime, msecs, clock);
1438
1439    if (__unlikely(mutex == NULL))
1440        return EINVAL;
1441
1442    mvalue = mutex->value;
1443    mtype  = (mvalue & MUTEX_TYPE_MASK);
1444    shared = (mvalue & MUTEX_SHARED_MASK);
1445
1446    /* Handle common case first */
1447    if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
1448    {
1449        const int unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
1450        const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1451        const int locked_contended   = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1452
1453        /* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
1454        if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
1455            ANDROID_MEMBAR_FULL();
1456            return 0;
1457        }
1458
1459        /* loop while needed */
1460        while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
1461            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1462                return EBUSY;
1463
1464            __futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
1465        }
1466        ANDROID_MEMBAR_FULL();
1467        return 0;
1468    }
1469
1470    /* Do we already own this recursive or error-check mutex ? */
1471    tid = __get_thread()->kernel_id;
1472    if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
1473        return _recursive_increment(mutex, mvalue, mtype);
1474
1475    /* the following implements the same loop than pthread_mutex_lock_impl
1476     * but adds checks to ensure that the operation never exceeds the
1477     * absolute expiration time.
1478     */
1479    mtype |= shared;
1480
1481    /* first try a quick lock */
1482    if (mvalue == mtype) {
1483        mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
1484        if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
1485            ANDROID_MEMBAR_FULL();
1486            return 0;
1487        }
1488        mvalue = mutex->value;
1489    }
1490
1491    for (;;) {
1492        struct timespec ts;
1493
1494        /* if the value is 'unlocked', try to acquire it directly */
1495        /* NOTE: put state to 2 since we know there is contention */
1496        if (mvalue == mtype) /* unlocked */ {
1497            mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
1498            if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
1499                ANDROID_MEMBAR_FULL();
1500                return 0;
1501            }
1502            /* the value changed before we could lock it. We need to check
1503             * the time to avoid livelocks, reload the value, then loop again. */
1504            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1505                return EBUSY;
1506
1507            mvalue = mutex->value;
1508            continue;
1509        }
1510
1511        /* The value is locked. If 'uncontended', try to switch its state
1512         * to 'contented' to ensure we get woken up later. */
1513        if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
1514            int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
1515            if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
1516                /* this failed because the value changed, reload it */
1517                mvalue = mutex->value;
1518            } else {
1519                /* this succeeded, update mvalue */
1520                mvalue = newval;
1521            }
1522        }
1523
1524        /* check time and update 'ts' */
1525        if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1526            return EBUSY;
1527
1528        /* Only wait to be woken up if the state is '2', otherwise we'll
1529         * simply loop right now. This can happen when the second cmpxchg
1530         * in our loop failed because the mutex was unlocked by another
1531         * thread.
1532         */
1533        if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
1534            if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
1535                return EBUSY;
1536            }
1537            mvalue = mutex->value;
1538        }
1539    }
1540    /* NOTREACHED */
1541}
1542
1543int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1544{
1545    int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
1546#ifdef PTHREAD_DEBUG
1547    if (PTHREAD_DEBUG_ENABLED) {
1548        if (!err) {
1549            pthread_debug_mutex_lock_check(mutex);
1550        }
1551    }
1552#endif
1553    return err;
1554}
1555
1556int pthread_mutex_destroy(pthread_mutex_t *mutex)
1557{
1558    int ret;
1559
1560    /* use trylock to ensure that the mutex value is
1561     * valid and is not already locked. */
1562    ret = pthread_mutex_trylock_impl(mutex);
1563    if (ret != 0)
1564        return ret;
1565
1566    mutex->value = 0xdead10cc;
1567    return 0;
1568}
1569
1570
1571
1572int pthread_condattr_init(pthread_condattr_t *attr)
1573{
1574    if (attr == NULL)
1575        return EINVAL;
1576
1577    *attr = PTHREAD_PROCESS_PRIVATE;
1578    return 0;
1579}
1580
1581int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
1582{
1583    if (attr == NULL || pshared == NULL)
1584        return EINVAL;
1585
1586    *pshared = *attr;
1587    return 0;
1588}
1589
1590int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1591{
1592    if (attr == NULL)
1593        return EINVAL;
1594
1595    if (pshared != PTHREAD_PROCESS_SHARED &&
1596        pshared != PTHREAD_PROCESS_PRIVATE)
1597        return EINVAL;
1598
1599    *attr = pshared;
1600    return 0;
1601}
1602
1603int pthread_condattr_destroy(pthread_condattr_t *attr)
1604{
1605    if (attr == NULL)
1606        return EINVAL;
1607
1608    *attr = 0xdeada11d;
1609    return 0;
1610}
1611
1612/* We use one bit in condition variable values as the 'shared' flag
1613 * The rest is a counter.
1614 */
1615#define COND_SHARED_MASK        0x0001
1616#define COND_COUNTER_INCREMENT  0x0002
1617#define COND_COUNTER_MASK       (~COND_SHARED_MASK)
1618
1619#define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0)
1620
1621/* XXX *technically* there is a race condition that could allow
1622 * XXX a signal to be missed.  If thread A is preempted in _wait()
1623 * XXX after unlocking the mutex and before waiting, and if other
1624 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1625 * XXX before thread A is scheduled again and calls futex_wait(),
1626 * XXX then the signal will be lost.
1627 */
1628
1629int pthread_cond_init(pthread_cond_t *cond,
1630                      const pthread_condattr_t *attr)
1631{
1632    if (cond == NULL)
1633        return EINVAL;
1634
1635    cond->value = 0;
1636
1637    if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1638        cond->value |= COND_SHARED_MASK;
1639
1640    return 0;
1641}
1642
1643int pthread_cond_destroy(pthread_cond_t *cond)
1644{
1645    if (cond == NULL)
1646        return EINVAL;
1647
1648    cond->value = 0xdeadc04d;
1649    return 0;
1650}
1651
1652/* This function is used by pthread_cond_broadcast and
1653 * pthread_cond_signal to atomically decrement the counter
1654 * then wake-up 'counter' threads.
1655 */
1656static int
1657__pthread_cond_pulse(pthread_cond_t *cond, int  counter)
1658{
1659    long flags;
1660
1661    if (__unlikely(cond == NULL))
1662        return EINVAL;
1663
1664    flags = (cond->value & ~COND_COUNTER_MASK);
1665    for (;;) {
1666        long oldval = cond->value;
1667        long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1668                      | flags;
1669        if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
1670            break;
1671    }
1672
1673    /*
1674     * Ensure that all memory accesses previously made by this thread are
1675     * visible to the woken thread(s).  On the other side, the "wait"
1676     * code will issue any necessary barriers when locking the mutex.
1677     *
1678     * This may not strictly be necessary -- if the caller follows
1679     * recommended practice and holds the mutex before signaling the cond
1680     * var, the mutex ops will provide correct semantics.  If they don't
1681     * hold the mutex, they're subject to race conditions anyway.
1682     */
1683    ANDROID_MEMBAR_FULL();
1684
1685    __futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
1686    return 0;
1687}
1688
1689int pthread_cond_broadcast(pthread_cond_t *cond)
1690{
1691    return __pthread_cond_pulse(cond, INT_MAX);
1692}
1693
1694int pthread_cond_signal(pthread_cond_t *cond)
1695{
1696    return __pthread_cond_pulse(cond, 1);
1697}
1698
1699int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1700{
1701    return pthread_cond_timedwait(cond, mutex, NULL);
1702}
1703
1704int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1705                                      pthread_mutex_t * mutex,
1706                                      const struct timespec *reltime)
1707{
1708    int  status;
1709    int  oldvalue = cond->value;
1710
1711    pthread_mutex_unlock(mutex);
1712    status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
1713    pthread_mutex_lock(mutex);
1714
1715    if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1716    return 0;
1717}
1718
1719int __pthread_cond_timedwait(pthread_cond_t *cond,
1720                             pthread_mutex_t * mutex,
1721                             const struct timespec *abstime,
1722                             clockid_t clock)
1723{
1724    struct timespec ts;
1725    struct timespec * tsp;
1726
1727    if (abstime != NULL) {
1728        if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1729            return ETIMEDOUT;
1730        tsp = &ts;
1731    } else {
1732        tsp = NULL;
1733    }
1734
1735    return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1736}
1737
1738int pthread_cond_timedwait(pthread_cond_t *cond,
1739                           pthread_mutex_t * mutex,
1740                           const struct timespec *abstime)
1741{
1742    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1743}
1744
1745
1746/* this one exists only for backward binary compatibility */
1747int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1748                                     pthread_mutex_t * mutex,
1749                                     const struct timespec *abstime)
1750{
1751    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1752}
1753
1754int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1755                                     pthread_mutex_t * mutex,
1756                                     const struct timespec *abstime)
1757{
1758    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1759}
1760
1761int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1762                                      pthread_mutex_t * mutex,
1763                                      const struct timespec *reltime)
1764{
1765    return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1766}
1767
1768int pthread_cond_timeout_np(pthread_cond_t *cond,
1769                            pthread_mutex_t * mutex,
1770                            unsigned msecs)
1771{
1772    struct timespec ts;
1773
1774    ts.tv_sec = msecs / 1000;
1775    ts.tv_nsec = (msecs % 1000) * 1000000;
1776
1777    return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1778}
1779
1780
1781
1782/* A technical note regarding our thread-local-storage (TLS) implementation:
1783 *
1784 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1785 * though the first TLSMAP_START keys are reserved for Bionic to hold
1786 * special thread-specific variables like errno or a pointer to
1787 * the current thread's descriptor.
1788 *
1789 * while stored in the TLS area, these entries cannot be accessed through
1790 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1791 *
1792 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1793 * to greatly simplify and speedup some OpenGL-related operations. though the
1794 * initialy value will be NULL on all threads.
1795 *
1796 * you can use pthread_getspecific()/setspecific() on these, and in theory
1797 * you could also call pthread_key_delete() as well, though this would
1798 * probably break some apps.
1799 *
1800 * The 'tlsmap_t' type defined below implements a shared global map of
1801 * currently created/allocated TLS keys and the destructors associated
1802 * with them. You should use tlsmap_lock/unlock to access it to avoid
1803 * any race condition.
1804 *
1805 * the global TLS map simply contains a bitmap of allocated keys, and
1806 * an array of destructors.
1807 *
1808 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1809 * pointers. the TLS area of the main thread is stack-allocated in
1810 * __libc_init_common, while the TLS area of other threads is placed at
1811 * the top of their stack in pthread_create.
1812 *
1813 * when pthread_key_create() is called, it finds the first free key in the
1814 * bitmap, then set it to 1, saving the destructor altogether
1815 *
1816 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1817 * and its destructor, and will also clear the key data in the TLS area of
1818 * all created threads. As mandated by Posix, it is the responsability of
1819 * the caller of pthread_key_delete() to properly reclaim the objects that
1820 * were pointed to by these data fields (either before or after the call).
1821 *
1822 */
1823
1824/* TLS Map implementation
1825 */
1826
1827#define TLSMAP_START      (TLS_SLOT_MAX_WELL_KNOWN+1)
1828#define TLSMAP_SIZE       BIONIC_TLS_SLOTS
1829#define TLSMAP_BITS       32
1830#define TLSMAP_WORDS      ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1831#define TLSMAP_WORD(m,k)  (m)->map[(k)/TLSMAP_BITS]
1832#define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
1833
1834/* this macro is used to quickly check that a key belongs to a reasonable range */
1835#define TLSMAP_VALIDATE_KEY(key)  \
1836    ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1837
1838/* the type of tls key destructor functions */
1839typedef void (*tls_dtor_t)(void*);
1840
1841typedef struct {
1842    int         init;                  /* see comment in tlsmap_lock() */
1843    uint32_t    map[TLSMAP_WORDS];     /* bitmap of allocated keys */
1844    tls_dtor_t  dtors[TLSMAP_SIZE];    /* key destructors */
1845} tlsmap_t;
1846
1847static pthread_mutex_t  _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1848static tlsmap_t         _tlsmap;
1849
1850/* lock the global TLS map lock and return a handle to it */
1851static __inline__ tlsmap_t* tlsmap_lock(void)
1852{
1853    tlsmap_t*   m = &_tlsmap;
1854
1855    pthread_mutex_lock(&_tlsmap_lock);
1856    /* we need to initialize the first entry of the 'map' array
1857     * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1858     * when declaring _tlsmap is a bit awkward and is going to
1859     * produce warnings, so do it the first time we use the map
1860     * instead
1861     */
1862    if (__unlikely(!m->init)) {
1863        TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1864        m->init          = 1;
1865    }
1866    return m;
1867}
1868
1869/* unlock the global TLS map */
1870static __inline__ void tlsmap_unlock(tlsmap_t*  m)
1871{
1872    pthread_mutex_unlock(&_tlsmap_lock);
1873    (void)m;  /* a good compiler is a happy compiler */
1874}
1875
1876/* test to see wether a key is allocated */
1877static __inline__ int tlsmap_test(tlsmap_t*  m, int  key)
1878{
1879    return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1880}
1881
1882/* set the destructor and bit flag on a newly allocated key */
1883static __inline__ void tlsmap_set(tlsmap_t*  m, int  key, tls_dtor_t  dtor)
1884{
1885    TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1886    m->dtors[key]       = dtor;
1887}
1888
1889/* clear the destructor and bit flag on an existing key */
1890static __inline__ void  tlsmap_clear(tlsmap_t*  m, int  key)
1891{
1892    TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1893    m->dtors[key]       = NULL;
1894}
1895
1896/* allocate a new TLS key, return -1 if no room left */
1897static int tlsmap_alloc(tlsmap_t*  m, tls_dtor_t  dtor)
1898{
1899    int  key;
1900
1901    for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1902        if ( !tlsmap_test(m, key) ) {
1903            tlsmap_set(m, key, dtor);
1904            return key;
1905        }
1906    }
1907    return -1;
1908}
1909
1910
1911int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1912{
1913    uint32_t   err = ENOMEM;
1914    tlsmap_t*  map = tlsmap_lock();
1915    int        k   = tlsmap_alloc(map, destructor_function);
1916
1917    if (k >= 0) {
1918        *key = k;
1919        err  = 0;
1920    }
1921    tlsmap_unlock(map);
1922    return err;
1923}
1924
1925
1926/* This deletes a pthread_key_t. note that the standard mandates that this does
1927 * not call the destructor of non-NULL key values. Instead, it is the
1928 * responsability of the caller to properly dispose of the corresponding data
1929 * and resources, using any mean it finds suitable.
1930 *
1931 * On the other hand, this function will clear the corresponding key data
1932 * values in all known threads. this prevents later (invalid) calls to
1933 * pthread_getspecific() to receive invalid/stale values.
1934 */
1935int pthread_key_delete(pthread_key_t key)
1936{
1937    uint32_t             err;
1938    pthread_internal_t*  thr;
1939    tlsmap_t*            map;
1940
1941    if (!TLSMAP_VALIDATE_KEY(key)) {
1942        return EINVAL;
1943    }
1944
1945    map = tlsmap_lock();
1946
1947    if (!tlsmap_test(map, key)) {
1948        err = EINVAL;
1949        goto err1;
1950    }
1951
1952    /* clear value in all threads */
1953    pthread_mutex_lock(&gThreadListLock);
1954    for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1955        /* avoid zombie threads with a negative 'join_count'. these are really
1956         * already dead and don't have a TLS area anymore.
1957         *
1958         * similarly, it is possible to have thr->tls == NULL for threads that
1959         * were just recently created through pthread_create() but whose
1960         * startup trampoline (__thread_entry) hasn't been run yet by the
1961         * scheduler. so check for this too.
1962         */
1963        if (thr->join_count < 0 || !thr->tls)
1964            continue;
1965
1966        thr->tls[key] = NULL;
1967    }
1968    tlsmap_clear(map, key);
1969
1970    pthread_mutex_unlock(&gThreadListLock);
1971    err = 0;
1972
1973err1:
1974    tlsmap_unlock(map);
1975    return err;
1976}
1977
1978
1979int pthread_setspecific(pthread_key_t key, const void *ptr)
1980{
1981    int        err = EINVAL;
1982    tlsmap_t*  map;
1983
1984    if (TLSMAP_VALIDATE_KEY(key)) {
1985        /* check that we're trying to set data for an allocated key */
1986        map = tlsmap_lock();
1987        if (tlsmap_test(map, key)) {
1988            ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1989            err = 0;
1990        }
1991        tlsmap_unlock(map);
1992    }
1993    return err;
1994}
1995
1996void * pthread_getspecific(pthread_key_t key)
1997{
1998    if (!TLSMAP_VALIDATE_KEY(key)) {
1999        return NULL;
2000    }
2001
2002    /* for performance reason, we do not lock/unlock the global TLS map
2003     * to check that the key is properly allocated. if the key was not
2004     * allocated, the value read from the TLS should always be NULL
2005     * due to pthread_key_delete() clearing the values for all threads.
2006     */
2007    return (void *)(((unsigned *)__get_tls())[key]);
2008}
2009
2010/* Posix mandates that this be defined in <limits.h> but we don't have
2011 * it just yet.
2012 */
2013#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
2014#  define PTHREAD_DESTRUCTOR_ITERATIONS  4
2015#endif
2016
2017/* this function is called from pthread_exit() to remove all TLS key data
2018 * from this thread's TLS area. this must call the destructor of all keys
2019 * that have a non-NULL data value (and a non-NULL destructor).
2020 *
2021 * because destructors can do funky things like deleting/creating other
2022 * keys, we need to implement this in a loop
2023 */
2024static void pthread_key_clean_all(void)
2025{
2026    tlsmap_t*    map;
2027    void**       tls = (void**)__get_tls();
2028    int          rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
2029
2030    map = tlsmap_lock();
2031
2032    for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
2033    {
2034        int  kk, count = 0;
2035
2036        for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
2037            if ( tlsmap_test(map, kk) )
2038            {
2039                void*       data = tls[kk];
2040                tls_dtor_t  dtor = map->dtors[kk];
2041
2042                if (data != NULL && dtor != NULL)
2043                {
2044                   /* we need to clear the key data now, this will prevent the
2045                    * destructor (or a later one) from seeing the old value if
2046                    * it calls pthread_getspecific() for some odd reason
2047                    *
2048                    * we do not do this if 'dtor == NULL' just in case another
2049                    * destructor function might be responsible for manually
2050                    * releasing the corresponding data.
2051                    */
2052                    tls[kk] = NULL;
2053
2054                   /* because the destructor is free to call pthread_key_create
2055                    * and/or pthread_key_delete, we need to temporarily unlock
2056                    * the TLS map
2057                    */
2058                    tlsmap_unlock(map);
2059                    (*dtor)(data);
2060                    map = tlsmap_lock();
2061
2062                    count += 1;
2063                }
2064            }
2065        }
2066
2067        /* if we didn't call any destructor, there is no need to check the
2068         * TLS data again
2069         */
2070        if (count == 0)
2071            break;
2072    }
2073    tlsmap_unlock(map);
2074}
2075
2076// man says this should be in <linux/unistd.h>, but it isn't
2077extern int tgkill(int tgid, int tid, int sig);
2078
2079int pthread_kill(pthread_t tid, int sig)
2080{
2081    int  ret;
2082    int  old_errno = errno;
2083    pthread_internal_t * thread = (pthread_internal_t *)tid;
2084
2085    ret = tgkill(getpid(), thread->kernel_id, sig);
2086    if (ret < 0) {
2087        ret = errno;
2088        errno = old_errno;
2089    }
2090
2091    return ret;
2092}
2093
2094/* Despite the fact that our kernel headers define sigset_t explicitly
2095 * as a 32-bit integer, the kernel system call really expects a 64-bit
2096 * bitmap for the signal set, or more exactly an array of two-32-bit
2097 * values (see $KERNEL/arch/$ARCH/include/asm/signal.h for details).
2098 *
2099 * Unfortunately, we cannot fix the sigset_t definition without breaking
2100 * the C library ABI, so perform a little runtime translation here.
2101 */
2102typedef union {
2103    sigset_t   bionic;
2104    uint32_t   kernel[2];
2105} kernel_sigset_t;
2106
2107/* this is a private syscall stub */
2108extern int __rt_sigprocmask(int, const kernel_sigset_t *, kernel_sigset_t *, size_t);
2109
2110int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
2111{
2112    /* pthread_sigmask must return the error code, but the syscall
2113     * will set errno instead and return 0/-1
2114     */
2115    int ret, old_errno = errno;
2116
2117    /* We must convert *set into a kernel_sigset_t */
2118    kernel_sigset_t  in_set, *in_set_ptr;
2119    kernel_sigset_t  out_set;
2120
2121    in_set.kernel[0] = in_set.kernel[1] = 0;
2122    out_set.kernel[0] = out_set.kernel[1] = 0;
2123
2124    /* 'in_set_ptr' is the second parameter to __rt_sigprocmask. It must be NULL
2125     * if 'set' is NULL to ensure correct semantics (which in this case would
2126     * be to ignore 'how' and return the current signal set into 'oset'.
2127     */
2128    if (set == NULL) {
2129        in_set_ptr = NULL;
2130    } else {
2131        in_set.bionic = *set;
2132        in_set_ptr = &in_set;
2133    }
2134
2135    ret = __rt_sigprocmask(how, in_set_ptr, &out_set, sizeof(kernel_sigset_t));
2136    if (ret < 0)
2137        ret = errno;
2138
2139    if (oset)
2140        *oset = out_set.bionic;
2141
2142    errno = old_errno;
2143    return ret;
2144}
2145
2146
2147int pthread_getcpuclockid(pthread_t  tid, clockid_t  *clockid)
2148{
2149    const int            CLOCK_IDTYPE_BITS = 3;
2150    pthread_internal_t*  thread = (pthread_internal_t*)tid;
2151
2152    if (!thread)
2153        return ESRCH;
2154
2155    *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
2156    return 0;
2157}
2158
2159
2160/* NOTE: this implementation doesn't support a init function that throws a C++ exception
2161 *       or calls fork()
2162 */
2163int  pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
2164{
2165    static pthread_mutex_t   once_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
2166    volatile pthread_once_t* ocptr = once_control;
2167    pthread_once_t value;
2168
2169    /* PTHREAD_ONCE_INIT is 0, we use the following bit flags
2170     *
2171     *   bit 0 set  -> initialization is under way
2172     *   bit 1 set  -> initialization is complete
2173     */
2174#define ONCE_INITIALIZING           (1 << 0)
2175#define ONCE_COMPLETED              (1 << 1)
2176
2177    /* First check if the once is already initialized. This will be the common
2178    * case and we want to make this as fast as possible. Note that this still
2179    * requires a load_acquire operation here to ensure that all the
2180    * stores performed by the initialization function are observable on
2181    * this CPU after we exit.
2182    */
2183    if (__likely((*ocptr & ONCE_COMPLETED) != 0)) {
2184        ANDROID_MEMBAR_FULL();
2185        return 0;
2186    }
2187
2188    for (;;) {
2189        /* Try to atomically set the INITIALIZING flag.
2190         * This requires a cmpxchg loop, and we may need
2191         * to exit prematurely if we detect that
2192         * COMPLETED is now set.
2193         */
2194        int32_t  oldval, newval;
2195
2196        do {
2197            oldval = *ocptr;
2198            if ((oldval & ONCE_COMPLETED) != 0)
2199                break;
2200
2201            newval = oldval | ONCE_INITIALIZING;
2202        } while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
2203
2204        if ((oldval & ONCE_COMPLETED) != 0) {
2205            /* We detected that COMPLETED was set while in our loop */
2206            ANDROID_MEMBAR_FULL();
2207            return 0;
2208        }
2209
2210        if ((oldval & ONCE_INITIALIZING) == 0) {
2211            /* We got there first, we can jump out of the loop to
2212             * handle the initialization */
2213            break;
2214        }
2215
2216        /* Another thread is running the initialization and hasn't completed
2217         * yet, so wait for it, then try again. */
2218        __futex_wait_ex(ocptr, 0, oldval, NULL);
2219    }
2220
2221    /* call the initialization function. */
2222    (*init_routine)();
2223
2224    /* Do a store_release indicating that initialization is complete */
2225    ANDROID_MEMBAR_FULL();
2226    *ocptr = ONCE_COMPLETED;
2227
2228    /* Wake up any waiters, if any */
2229    __futex_wake_ex(ocptr, 0, INT_MAX);
2230
2231    return 0;
2232}
2233
2234/* This value is not exported by kernel headers, so hardcode it here */
2235#define MAX_TASK_COMM_LEN	16
2236#define TASK_COMM_FMT 		"/proc/self/task/%u/comm"
2237
2238int pthread_setname_np(pthread_t thid, const char *thname)
2239{
2240    size_t thname_len;
2241    int saved_errno, ret;
2242
2243    if (thid == 0 || thname == NULL)
2244        return EINVAL;
2245
2246    thname_len = strlen(thname);
2247    if (thname_len >= MAX_TASK_COMM_LEN)
2248        return ERANGE;
2249
2250    saved_errno = errno;
2251    if (thid == pthread_self())
2252    {
2253        ret = prctl(PR_SET_NAME, (unsigned long)thname, 0, 0, 0) ? errno : 0;
2254    }
2255    else
2256    {
2257        /* Have to change another thread's name */
2258        pthread_internal_t *thread = (pthread_internal_t *)thid;
2259        char comm_name[sizeof(TASK_COMM_FMT) + 8];
2260        ssize_t n;
2261        int fd;
2262
2263        snprintf(comm_name, sizeof(comm_name), TASK_COMM_FMT, (unsigned int)thread->kernel_id);
2264        fd = open(comm_name, O_RDWR);
2265        if (fd == -1)
2266        {
2267            ret = errno;
2268            goto exit;
2269        }
2270        n = TEMP_FAILURE_RETRY(write(fd, thname, thname_len));
2271        close(fd);
2272
2273        if (n < 0)
2274            ret = errno;
2275        else if ((size_t)n != thname_len)
2276            ret = EIO;
2277        else
2278            ret = 0;
2279    }
2280exit:
2281    errno = saved_errno;
2282    return ret;
2283}
2284
2285/* Return the kernel thread ID for a pthread.
2286 * This is only defined for implementations where pthread <-> kernel is 1:1, which this is.
2287 * Not the same as pthread_getthreadid_np, which is commonly defined to be opaque.
2288 * Internal, not an NDK API.
2289 */
2290
2291pid_t __pthread_gettid(pthread_t thid)
2292{
2293    pthread_internal_t* thread = (pthread_internal_t*)thid;
2294    return thread->kernel_id;
2295}
2296
2297int __pthread_settid(pthread_t thid, pid_t tid)
2298{
2299    if (thid == 0)
2300        return EINVAL;
2301
2302    pthread_internal_t* thread = (pthread_internal_t*)thid;
2303    thread->kernel_id = tid;
2304
2305    return 0;
2306}
2307