pthread.c revision e5cc1f386b167b9f7bfdebc7219e89aa9b71e4b2
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28#include <sys/types.h>
29#include <unistd.h>
30#include <signal.h>
31#include <stdint.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <errno.h>
35#include <sys/atomics.h>
36#include <bionic_tls.h>
37#include <sys/mman.h>
38#include <pthread.h>
39#include <time.h>
40#include "pthread_internal.h"
41#include "thread_private.h"
42#include <limits.h>
43#include <memory.h>
44#include <assert.h>
45#include <malloc.h>
46
47extern int  __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
48extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
49extern void _exit_thread(int  retCode);
50extern int  __set_errno(int);
51
52void _thread_created_hook(pid_t thread_id) __attribute__((noinline));
53
54#define PTHREAD_ATTR_FLAG_DETACHED      0x00000001
55#define PTHREAD_ATTR_FLAG_USER_STACK    0x00000002
56
57#define DEFAULT_STACKSIZE (1024 * 1024)
58#define STACKBASE 0x10000000
59
60static uint8_t * gStackBase = (uint8_t *)STACKBASE;
61
62static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
63
64
65static const pthread_attr_t gDefaultPthreadAttr = {
66    .flags = 0,
67    .stack_base = NULL,
68    .stack_size = DEFAULT_STACKSIZE,
69    .guard_size = PAGE_SIZE,
70    .sched_policy = SCHED_NORMAL,
71    .sched_priority = 0
72};
73
74#define  INIT_THREADS  1
75
76static pthread_internal_t*  gThreadList = NULL;
77static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
78static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
79
80
81/* we simply malloc/free the internal pthread_internal_t structures. we may
82 * want to use a different allocation scheme in the future, but this one should
83 * be largely enough
84 */
85static pthread_internal_t*
86_pthread_internal_alloc(void)
87{
88    pthread_internal_t*   thread;
89
90    thread = calloc( sizeof(*thread), 1 );
91    if (thread)
92        thread->intern = 1;
93
94    return thread;
95}
96
97static void
98_pthread_internal_free( pthread_internal_t*  thread )
99{
100    if (thread && thread->intern) {
101        thread->intern = 0;  /* just in case */
102        free (thread);
103    }
104}
105
106
107static void
108_pthread_internal_remove_locked( pthread_internal_t*  thread )
109{
110    thread->next->pref = thread->pref;
111    thread->pref[0]    = thread->next;
112}
113
114static void
115_pthread_internal_remove( pthread_internal_t*  thread )
116{
117    pthread_mutex_lock(&gThreadListLock);
118    _pthread_internal_remove_locked(thread);
119    pthread_mutex_unlock(&gThreadListLock);
120}
121
122static void
123_pthread_internal_add( pthread_internal_t*  thread )
124{
125    pthread_mutex_lock(&gThreadListLock);
126    thread->pref = &gThreadList;
127    thread->next = thread->pref[0];
128    if (thread->next)
129        thread->next->pref = &thread->next;
130    thread->pref[0] = thread;
131    pthread_mutex_unlock(&gThreadListLock);
132}
133
134pthread_internal_t*
135__get_thread(void)
136{
137    void**  tls = (void**)__get_tls();
138
139    return  (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
140}
141
142
143void*
144__get_stack_base(int  *p_stack_size)
145{
146    pthread_internal_t*  thread = __get_thread();
147
148    *p_stack_size = thread->attr.stack_size;
149    return thread->attr.stack_base;
150}
151
152
153void  __init_tls(void**  tls, void*  thread)
154{
155    int  nn;
156
157    ((pthread_internal_t*)thread)->tls = tls;
158
159    // slot 0 must point to the tls area, this is required by the implementation
160    // of the x86 Linux kernel thread-local-storage
161    tls[TLS_SLOT_SELF]      = (void*)tls;
162    tls[TLS_SLOT_THREAD_ID] = thread;
163    for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
164       tls[nn] = 0;
165
166    __set_tls( (void*)tls );
167}
168
169
170/*
171 * This trampoline is called from the assembly clone() function
172 */
173void __thread_entry(int (*func)(void*), void *arg, void **tls)
174{
175    int retValue;
176    pthread_internal_t * thrInfo;
177
178    // Wait for our creating thread to release us. This lets it have time to
179    // notify gdb about this thread before it starts doing anything.
180    pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
181    pthread_mutex_lock(start_mutex);
182    pthread_mutex_destroy(start_mutex);
183
184    thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
185
186    __init_tls( tls, thrInfo );
187
188    pthread_exit( (void*)func(arg) );
189}
190
191void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
192{
193    if (attr == NULL) {
194        thread->attr = gDefaultPthreadAttr;
195    } else {
196        thread->attr = *attr;
197    }
198    thread->attr.stack_base = stack_base;
199    thread->kernel_id       = kernel_id;
200
201    // set the scheduling policy/priority of the thread
202    if (thread->attr.sched_policy != SCHED_NORMAL) {
203        struct sched_param param;
204        param.sched_priority = thread->attr.sched_priority;
205        sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
206    }
207
208    pthread_cond_init(&thread->join_cond, NULL);
209    thread->join_count = 0;
210
211    thread->cleanup_stack = NULL;
212
213    _pthread_internal_add(thread);
214}
215
216
217/* XXX stacks not reclaimed if thread spawn fails */
218/* XXX stacks address spaces should be reused if available again */
219
220static void *mkstack(size_t size, size_t guard_size)
221{
222    void * stack;
223
224    pthread_mutex_lock(&mmap_lock);
225
226    stack = mmap((void *)gStackBase, size,
227                 PROT_READ | PROT_WRITE,
228                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
229                 -1, 0);
230
231    if(stack == MAP_FAILED) {
232        stack = NULL;
233        goto done;
234    }
235
236    if(mprotect(stack, guard_size, PROT_NONE)){
237        munmap(stack, size);
238        stack = NULL;
239        goto done;
240    }
241
242done:
243    pthread_mutex_unlock(&mmap_lock);
244    return stack;
245}
246
247/*
248 * Create a new thread. The thread's stack is layed out like so:
249 *
250 * +---------------------------+
251 * |     pthread_internal_t    |
252 * +---------------------------+
253 * |                           |
254 * |          TLS area         |
255 * |                           |
256 * +---------------------------+
257 * |                           |
258 * .                           .
259 * .         stack area        .
260 * .                           .
261 * |                           |
262 * +---------------------------+
263 * |         guard page        |
264 * +---------------------------+
265 *
266 *  note that TLS[0] must be a pointer to itself, this is required
267 *  by the thread-local storage implementation of the x86 Linux
268 *  kernel, where the TLS pointer is read by reading fs:[0]
269 */
270int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
271                   void *(*start_routine)(void *), void * arg)
272{
273    char*   stack;
274    void**  tls;
275    int tid;
276    pthread_mutex_t * start_mutex;
277    pthread_internal_t * thread;
278    int                  madestack = 0;
279    int     old_errno = errno;
280
281    /* this will inform the rest of the C library that at least one thread
282     * was created. this will enforce certain functions to acquire/release
283     * locks (e.g. atexit()) to protect shared global structures.
284     *
285     * this works because pthread_create() is not called by the C library
286     * initialization routine that sets up the main thread's data structures.
287     */
288    __isthreaded = 1;
289
290    thread = _pthread_internal_alloc();
291    if (thread == NULL)
292        return ENOMEM;
293
294    if (attr == NULL) {
295        attr = &gDefaultPthreadAttr;
296    }
297
298    // make sure the stack is PAGE_SIZE aligned
299    size_t stackSize = (attr->stack_size +
300                        (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
301
302    if (!attr->stack_base) {
303        stack = mkstack(stackSize, attr->guard_size);
304        if(stack == NULL) {
305            _pthread_internal_free(thread);
306            return ENOMEM;
307        }
308        madestack = 1;
309    } else {
310        stack = attr->stack_base;
311    }
312
313    // Make room for TLS
314    tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
315
316    // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
317    // it from doing anything until after we notify the debugger about it
318    start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
319    pthread_mutex_init(start_mutex, NULL);
320    pthread_mutex_lock(start_mutex);
321
322    tls[TLS_SLOT_THREAD_ID] = thread;
323
324    tid = __pthread_clone((int(*)(void*))start_routine, tls,
325                CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
326                | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
327                arg);
328
329    if(tid < 0) {
330        int  result;
331        if (madestack)
332            munmap(stack, stackSize);
333        _pthread_internal_free(thread);
334        result = errno;
335        errno = old_errno;
336        return result;
337    }
338
339    _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
340
341    if (!madestack)
342        thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
343
344    // Notify any debuggers about the new thread
345    pthread_mutex_lock(&gDebuggerNotificationLock);
346    _thread_created_hook(tid);
347    pthread_mutex_unlock(&gDebuggerNotificationLock);
348
349    // Let the thread do it's thing
350    pthread_mutex_unlock(start_mutex);
351
352    *thread_out = (pthread_t)thread;
353    return 0;
354}
355
356
357int pthread_attr_init(pthread_attr_t * attr)
358{
359    *attr = gDefaultPthreadAttr;
360    return 0;
361}
362
363int pthread_attr_destroy(pthread_attr_t * attr)
364{
365    memset(attr, 0x42, sizeof(pthread_attr_t));
366    return 0;
367}
368
369int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
370{
371    if (state == PTHREAD_CREATE_DETACHED) {
372        attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
373    } else if (state == PTHREAD_CREATE_JOINABLE) {
374        attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
375    } else {
376        return EINVAL;
377    }
378    return 0;
379}
380
381int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
382{
383    *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
384           ? PTHREAD_CREATE_DETACHED
385           : PTHREAD_CREATE_JOINABLE;
386    return 0;
387}
388
389int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
390{
391    attr->sched_policy = policy;
392    return 0;
393}
394
395int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
396{
397    *policy = attr->sched_policy;
398    return 0;
399}
400
401int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
402{
403    attr->sched_priority = param->sched_priority;
404    return 0;
405}
406
407int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
408{
409    param->sched_priority = attr->sched_priority;
410    return 0;
411}
412
413int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
414{
415    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
416        return EINVAL;
417    }
418    attr->stack_size = stack_size;
419    return 0;
420}
421
422int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
423{
424    *stack_size = attr->stack_size;
425    return 0;
426}
427
428int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
429{
430#if 1
431    // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
432    return ENOSYS;
433#else
434    if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
435        return EINVAL;
436    }
437    attr->stack_base = stack_addr;
438    return 0;
439#endif
440}
441
442int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
443{
444    *stack_addr = attr->stack_base + attr->stack_size;
445    return 0;
446}
447
448int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
449{
450    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
451        return EINVAL;
452    }
453    if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
454        return EINVAL;
455    }
456    attr->stack_base = stack_base;
457    attr->stack_size = stack_size;
458    return 0;
459}
460
461int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
462{
463    *stack_base = attr->stack_base;
464    *stack_size = attr->stack_size;
465    return 0;
466}
467
468int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
469{
470    if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
471        return EINVAL;
472    }
473
474    attr->guard_size = guard_size;
475    return 0;
476}
477
478int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
479{
480    *guard_size = attr->guard_size;
481    return 0;
482}
483
484int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
485{
486    pthread_internal_t * thread = (pthread_internal_t *)thid;
487    *attr = thread->attr;
488    return 0;
489}
490
491
492/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
493 *         and thread cancelation
494 */
495
496void __pthread_cleanup_push( __pthread_cleanup_t*      c,
497                             __pthread_cleanup_func_t  routine,
498                             void*                     arg )
499{
500    pthread_internal_t*  thread = __get_thread();
501
502    c->__cleanup_routine  = routine;
503    c->__cleanup_arg      = arg;
504    c->__cleanup_prev     = thread->cleanup_stack;
505    thread->cleanup_stack = c;
506}
507
508void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
509{
510    pthread_internal_t*  thread = __get_thread();
511
512    thread->cleanup_stack = c->__cleanup_prev;
513    if (execute)
514        c->__cleanup_routine(c->__cleanup_arg);
515}
516
517/* used by pthread_exit() to clean all TLS keys of the current thread */
518static void pthread_key_clean_all(void);
519
520void pthread_exit(void * retval)
521{
522    pthread_internal_t*  thread     = __get_thread();
523    void*                stack_base = thread->attr.stack_base;
524    int                  stack_size = thread->attr.stack_size;
525    int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
526
527    // call the cleanup handlers first
528    while (thread->cleanup_stack) {
529        __pthread_cleanup_t*  c = thread->cleanup_stack;
530        thread->cleanup_stack   = c->__cleanup_prev;
531        c->__cleanup_routine(c->__cleanup_arg);
532    }
533
534    // call the TLS destructors, it is important to do that before removing this
535    // thread from the global list. this will ensure that if someone else deletes
536    // a TLS key, the corresponding value will be set to NULL in this thread's TLS
537    // space (see pthread_key_delete)
538    pthread_key_clean_all();
539
540    // if the thread is detached, destroy the pthread_internal_t
541    // otherwise, keep it in memory and signal any joiners
542    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
543        _pthread_internal_remove(thread);
544        _pthread_internal_free(thread);
545    } else {
546       /* the join_count field is used to store the number of threads waiting for
547        * the termination of this thread with pthread_join(),
548        *
549        * if it is positive we need to signal the waiters, and we do not touch
550        * the count (it will be decremented by the waiters, the last one will
551        * also remove/free the thread structure
552        *
553        * if it is zero, we set the count value to -1 to indicate that the
554        * thread is in 'zombie' state: it has stopped executing, and its stack
555        * is gone (as well as its TLS area). when another thread calls pthread_join()
556        * on it, it will immediately free the thread and return.
557        */
558        pthread_mutex_lock(&gThreadListLock);
559        thread->return_value = retval;
560        if (thread->join_count > 0) {
561            pthread_cond_broadcast(&thread->join_cond);
562        } else {
563            thread->join_count = -1;  /* zombie thread */
564        }
565        pthread_mutex_unlock(&gThreadListLock);
566    }
567
568    // destroy the thread stack
569    if (user_stack)
570        _exit_thread((int)retval);
571    else
572        _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
573}
574
575int pthread_join(pthread_t thid, void ** ret_val)
576{
577    pthread_internal_t*  thread = (pthread_internal_t*)thid;
578    int                  count;
579
580    // check that the thread still exists and is not detached
581    pthread_mutex_lock(&gThreadListLock);
582
583    for (thread = gThreadList; thread != NULL; thread = thread->next)
584        if (thread == (pthread_internal_t*)thid)
585            break;
586
587    if (!thread) {
588        pthread_mutex_unlock(&gThreadListLock);
589        return ESRCH;
590    }
591
592    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
593        pthread_mutex_unlock(&gThreadListLock);
594        return EINVAL;
595    }
596
597   /* wait for thread death when needed
598    *
599    * if the 'join_count' is negative, this is a 'zombie' thread that
600    * is already dead and without stack/TLS
601    *
602    * otherwise, we need to increment 'join-count' and wait to be signaled
603    */
604   count = thread->join_count;
605    if (count >= 0) {
606        thread->join_count += 1;
607        pthread_cond_wait( &thread->join_cond, &gThreadListLock );
608        count = --thread->join_count;
609    }
610    if (ret_val)
611        *ret_val = thread->return_value;
612
613    /* remove thread descriptor when we're the last joiner or when the
614     * thread was already a zombie.
615     */
616    if (count <= 0) {
617        _pthread_internal_remove_locked(thread);
618        _pthread_internal_free(thread);
619    }
620    pthread_mutex_unlock(&gThreadListLock);
621    return 0;
622}
623
624int  pthread_detach( pthread_t  thid )
625{
626    pthread_internal_t*  thread;
627    int                  result = 0;
628    int                  flags;
629
630    pthread_mutex_lock(&gThreadListLock);
631    for (thread = gThreadList; thread != NULL; thread = thread->next)
632        if (thread == (pthread_internal_t*)thid)
633            goto FoundIt;
634
635    result = ESRCH;
636    goto Exit;
637
638FoundIt:
639    do {
640        flags = thread->attr.flags;
641
642        if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
643            /* thread is not joinable ! */
644            result = EINVAL;
645            goto Exit;
646        }
647    }
648    while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
649                              (volatile int*)&thread->attr.flags ) != 0 );
650Exit:
651    pthread_mutex_unlock(&gThreadListLock);
652    return result;
653}
654
655pthread_t pthread_self(void)
656{
657    return (pthread_t)__get_thread();
658}
659
660int pthread_equal(pthread_t one, pthread_t two)
661{
662    return (one == two ? 1 : 0);
663}
664
665int pthread_getschedparam(pthread_t thid, int * policy,
666                          struct sched_param * param)
667{
668    int  old_errno = errno;
669
670    pthread_internal_t * thread = (pthread_internal_t *)thid;
671    int err = sched_getparam(thread->kernel_id, param);
672    if (!err) {
673        *policy = sched_getscheduler(thread->kernel_id);
674    } else {
675        err = errno;
676        errno = old_errno;
677    }
678    return err;
679}
680
681int pthread_setschedparam(pthread_t thid, int policy,
682                          struct sched_param const * param)
683{
684    pthread_internal_t * thread = (pthread_internal_t *)thid;
685    int                  old_errno = errno;
686    int                  ret;
687
688    ret = sched_setscheduler(thread->kernel_id, policy, param);
689    if (ret < 0) {
690        ret = errno;
691        errno = old_errno;
692    }
693    return ret;
694}
695
696
697int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout);
698int __futex_wake(volatile void *ftx, int count);
699
700// mutex lock states
701//
702// 0: unlocked
703// 1: locked, no waiters
704// 2: locked, maybe waiters
705
706/* a mutex is implemented as a 32-bit integer holding the following fields
707 *
708 * bits:     name     description
709 * 31-16     tid      owner thread's kernel id (recursive and errorcheck only)
710 * 15-14     type     mutex type
711 * 13-2      counter  counter of recursive mutexes
712 * 1-0       state    lock state (0, 1 or 2)
713 */
714
715
716#define  MUTEX_OWNER(m)  (((m)->value >> 16) & 0xffff)
717#define  MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
718
719#define  MUTEX_TYPE_MASK       0xc000
720#define  MUTEX_TYPE_NORMAL     0x0000
721#define  MUTEX_TYPE_RECURSIVE  0x4000
722#define  MUTEX_TYPE_ERRORCHECK 0x8000
723
724#define  MUTEX_COUNTER_SHIFT  2
725#define  MUTEX_COUNTER_MASK   0x3ffc
726
727
728
729
730int pthread_mutexattr_init(pthread_mutexattr_t *attr)
731{
732    if (attr) {
733        *attr = PTHREAD_MUTEX_DEFAULT;
734        return 0;
735    } else {
736        return EINVAL;
737    }
738}
739
740int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
741{
742    if (attr) {
743        *attr = -1;
744        return 0;
745    } else {
746        return EINVAL;
747    }
748}
749
750int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
751{
752    if (attr && *attr >= PTHREAD_MUTEX_NORMAL &&
753                *attr <= PTHREAD_MUTEX_ERRORCHECK ) {
754        *type = *attr;
755        return 0;
756    }
757    return EINVAL;
758}
759
760int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
761{
762    if (attr && type >= PTHREAD_MUTEX_NORMAL &&
763                type <= PTHREAD_MUTEX_ERRORCHECK ) {
764        *attr = type;
765        return 0;
766    }
767    return EINVAL;
768}
769
770/* process-shared mutexes are not supported at the moment */
771
772int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
773{
774    if (!attr)
775        return EINVAL;
776
777    return (pshared == PTHREAD_PROCESS_PRIVATE) ? 0 : ENOTSUP;
778}
779
780int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
781{
782    if (!attr)
783        return EINVAL;
784
785    *pshared = PTHREAD_PROCESS_PRIVATE;
786    return 0;
787}
788
789int pthread_mutex_init(pthread_mutex_t *mutex,
790                       const pthread_mutexattr_t *attr)
791{
792    if ( mutex ) {
793        if (attr == NULL) {
794            mutex->value = MUTEX_TYPE_NORMAL;
795            return 0;
796        }
797        switch ( *attr ) {
798        case PTHREAD_MUTEX_NORMAL:
799            mutex->value = MUTEX_TYPE_NORMAL;
800            return 0;
801
802        case PTHREAD_MUTEX_RECURSIVE:
803            mutex->value = MUTEX_TYPE_RECURSIVE;
804            return 0;
805
806        case PTHREAD_MUTEX_ERRORCHECK:
807            mutex->value = MUTEX_TYPE_ERRORCHECK;
808            return 0;
809        }
810    }
811    return EINVAL;
812}
813
814int pthread_mutex_destroy(pthread_mutex_t *mutex)
815{
816    mutex->value = 0xdead10cc;
817    return 0;
818}
819
820
821/*
822 * Lock a non-recursive mutex.
823 *
824 * As noted above, there are three states:
825 *   0 (unlocked, no contention)
826 *   1 (locked, no contention)
827 *   2 (locked, contention)
828 *
829 * Non-recursive mutexes don't use the thread-id or counter fields, and the
830 * "type" value is zero, so the only bits that will be set are the ones in
831 * the lock state field.
832 */
833static __inline__ void
834_normal_lock(pthread_mutex_t*  mutex)
835{
836    /*
837     * The common case is an unlocked mutex, so we begin by trying to
838     * change the lock's state from 0 to 1.  __atomic_cmpxchg() returns 0
839     * if it made the swap successfully.  If the result is nonzero, this
840     * lock is already held by another thread.
841     */
842    if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) {
843        /*
844         * We want to go to sleep until the mutex is available, which
845         * requires promoting it to state 2.  We need to swap in the new
846         * state value and then wait until somebody wakes us up.
847         *
848         * __atomic_swap() returns the previous value.  We swap 2 in and
849         * see if we got zero back; if so, we have acquired the lock.  If
850         * not, another thread still holds the lock and we wait again.
851         *
852         * The second argument to the __futex_wait() call is compared
853         * against the current value.  If it doesn't match, __futex_wait()
854         * returns immediately (otherwise, it sleeps for a time specified
855         * by the third argument; 0 means sleep forever).  This ensures
856         * that the mutex is in state 2 when we go to sleep on it, which
857         * guarantees a wake-up call.
858         */
859        while (__atomic_swap(2, &mutex->value ) != 0)
860            __futex_wait(&mutex->value, 2, 0);
861    }
862}
863
864/*
865 * Release a non-recursive mutex.  The caller is responsible for determining
866 * that we are in fact the owner of this lock.
867 */
868static __inline__ void
869_normal_unlock(pthread_mutex_t*  mutex)
870{
871    /*
872     * The mutex value will be 1 or (rarely) 2.  We use an atomic decrement
873     * to release the lock.  __atomic_dec() returns the previous value;
874     * if it wasn't 1 we have to do some additional work.
875     */
876    if (__atomic_dec(&mutex->value) != 1) {
877        /*
878         * Start by releasing the lock.  The decrement changed it from
879         * "contended lock" to "uncontended lock", which means we still
880         * hold it, and anybody who tries to sneak in will push it back
881         * to state 2.
882         *
883         * Once we set it to zero the lock is up for grabs.  We follow
884         * this with a __futex_wake() to ensure that one of the waiting
885         * threads has a chance to grab it.
886         *
887         * This doesn't cause a race with the swap/wait pair in
888         * _normal_lock(), because the __futex_wait() call there will
889         * return immediately if the mutex value isn't 2.
890         */
891        mutex->value = 0;
892
893        /*
894         * Wake up one waiting thread.  We don't know which thread will be
895         * woken or when it'll start executing -- futexes make no guarantees
896         * here.  There may not even be a thread waiting.
897         *
898         * The newly-woken thread will replace the 0 we just set above
899         * with 2, which means that when it eventually releases the mutex
900         * it will also call FUTEX_WAKE.  This results in one extra wake
901         * call whenever a lock is contended, but lets us avoid forgetting
902         * anyone without requiring us to track the number of sleepers.
903         *
904         * It's possible for another thread to sneak in and grab the lock
905         * between the zero assignment above and the wake call below.  If
906         * the new thread is "slow" and holds the lock for a while, we'll
907         * wake up a sleeper, which will swap in a 2 and then go back to
908         * sleep since the lock is still held.  If the new thread is "fast",
909         * running to completion before we call wake, the thread we
910         * eventually wake will find an unlocked mutex and will execute.
911         * Either way we have correct behavior and nobody is orphaned on
912         * the wait queue.
913         */
914        __futex_wake(&mutex->value, 1);
915    }
916}
917
918static pthread_mutex_t  __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
919
920static void
921_recursive_lock(void)
922{
923    _normal_lock( &__recursive_lock);
924}
925
926static void
927_recursive_unlock(void)
928{
929    _normal_unlock( &__recursive_lock );
930}
931
932#define  __likely(cond)    __builtin_expect(!!(cond), 1)
933#define  __unlikely(cond)  __builtin_expect(!!(cond), 0)
934
935int pthread_mutex_lock(pthread_mutex_t *mutex)
936{
937    if (__likely(mutex != NULL))
938    {
939        int  mtype = (mutex->value & MUTEX_TYPE_MASK);
940
941        if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
942            _normal_lock(mutex);
943        }
944        else
945        {
946            int  tid = __get_thread()->kernel_id;
947
948            if ( tid == MUTEX_OWNER(mutex) )
949            {
950                int  oldv, counter;
951
952                if (mtype == MUTEX_TYPE_ERRORCHECK) {
953                    /* trying to re-lock a mutex we already acquired */
954                    return EDEADLK;
955                }
956                /*
957                 * We own the mutex, but other threads are able to change
958                 * the contents (e.g. promoting it to "contended"), so we
959                 * need to hold the global lock.
960                 */
961                _recursive_lock();
962                oldv         = mutex->value;
963                counter      = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
964                mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
965                _recursive_unlock();
966            }
967            else
968            {
969                /*
970                 * If the new lock is available immediately, we grab it in
971                 * the "uncontended" state.
972                 */
973                int new_lock_type = 1;
974
975                for (;;) {
976                    int  oldv;
977
978                    _recursive_lock();
979                    oldv = mutex->value;
980                    if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
981                        mutex->value = ((tid << 16) | mtype | new_lock_type);
982                    } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
983                        oldv ^= 3;
984                        mutex->value = oldv;
985                    }
986                    _recursive_unlock();
987
988                    if (oldv == mtype)
989                        break;
990
991                    /*
992                     * The lock was held, possibly contended by others.  From
993                     * now on, if we manage to acquire the lock, we have to
994                     * assume that others are still contending for it so that
995                     * we'll wake them when we unlock it.
996                     */
997                    new_lock_type = 2;
998
999                    __futex_wait( &mutex->value, oldv, 0 );
1000                }
1001            }
1002        }
1003        return 0;
1004    }
1005    return EINVAL;
1006}
1007
1008
1009int pthread_mutex_unlock(pthread_mutex_t *mutex)
1010{
1011    if (__likely(mutex != NULL))
1012    {
1013        int  mtype = (mutex->value & MUTEX_TYPE_MASK);
1014
1015        if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
1016            _normal_unlock(mutex);
1017        }
1018        else
1019        {
1020            int  tid = __get_thread()->kernel_id;
1021
1022            if ( tid == MUTEX_OWNER(mutex) )
1023            {
1024                int  oldv;
1025
1026                _recursive_lock();
1027                oldv = mutex->value;
1028                if (oldv & MUTEX_COUNTER_MASK) {
1029                    mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
1030                    oldv = 0;
1031                } else {
1032                    mutex->value = mtype;
1033                }
1034                _recursive_unlock();
1035
1036                if ((oldv & 3) == 2)
1037                    __futex_wake( &mutex->value, 1 );
1038            }
1039            else {
1040                /* trying to unlock a lock we do not own */
1041                return EPERM;
1042            }
1043        }
1044        return 0;
1045    }
1046    return EINVAL;
1047}
1048
1049
1050int pthread_mutex_trylock(pthread_mutex_t *mutex)
1051{
1052    if (__likely(mutex != NULL))
1053    {
1054        int  mtype = (mutex->value & MUTEX_TYPE_MASK);
1055
1056        if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1057        {
1058            if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
1059                return 0;
1060
1061            return EBUSY;
1062        }
1063        else
1064        {
1065            int  tid = __get_thread()->kernel_id;
1066            int  oldv;
1067
1068            if ( tid == MUTEX_OWNER(mutex) )
1069            {
1070                int  oldv, counter;
1071
1072                if (mtype == MUTEX_TYPE_ERRORCHECK) {
1073                    /* already locked by ourselves */
1074                    return EDEADLK;
1075                }
1076
1077                _recursive_lock();
1078                oldv = mutex->value;
1079                counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1080                mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1081                _recursive_unlock();
1082                return 0;
1083            }
1084
1085            /* try to lock it */
1086            _recursive_lock();
1087            oldv = mutex->value;
1088            if (oldv == mtype)  /* uncontended released lock => state 1 */
1089                mutex->value = ((tid << 16) | mtype | 1);
1090            _recursive_unlock();
1091
1092            if (oldv != mtype)
1093                return EBUSY;
1094
1095            return 0;
1096        }
1097    }
1098    return EINVAL;
1099}
1100
1101
1102/* XXX *technically* there is a race condition that could allow
1103 * XXX a signal to be missed.  If thread A is preempted in _wait()
1104 * XXX after unlocking the mutex and before waiting, and if other
1105 * XXX threads call signal or broadcast UINT_MAX times (exactly),
1106 * XXX before thread A is scheduled again and calls futex_wait(),
1107 * XXX then the signal will be lost.
1108 */
1109
1110int pthread_cond_init(pthread_cond_t *cond,
1111                      const pthread_condattr_t *attr)
1112{
1113    cond->value = 0;
1114    return 0;
1115}
1116
1117int pthread_cond_destroy(pthread_cond_t *cond)
1118{
1119    cond->value = 0xdeadc04d;
1120    return 0;
1121}
1122
1123int pthread_cond_broadcast(pthread_cond_t *cond)
1124{
1125    __atomic_dec(&cond->value);
1126    __futex_wake(&cond->value, INT_MAX);
1127    return 0;
1128}
1129
1130int pthread_cond_signal(pthread_cond_t *cond)
1131{
1132    __atomic_dec(&cond->value);
1133    __futex_wake(&cond->value, 1);
1134    return 0;
1135}
1136
1137int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1138{
1139    return pthread_cond_timedwait(cond, mutex, NULL);
1140}
1141
1142int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1143                                      pthread_mutex_t * mutex,
1144                                      const struct timespec *reltime)
1145{
1146    int  status;
1147    int  oldvalue = cond->value;
1148
1149    pthread_mutex_unlock(mutex);
1150    status = __futex_wait(&cond->value, oldvalue, reltime);
1151    pthread_mutex_lock(mutex);
1152
1153    if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1154    return 0;
1155}
1156
1157int __pthread_cond_timedwait(pthread_cond_t *cond,
1158                             pthread_mutex_t * mutex,
1159                             const struct timespec *abstime,
1160                             clockid_t clock)
1161{
1162    struct timespec ts;
1163    struct timespec * tsp;
1164
1165    if (abstime != NULL) {
1166        clock_gettime(clock, &ts);
1167        ts.tv_sec = abstime->tv_sec - ts.tv_sec;
1168        ts.tv_nsec = abstime->tv_nsec - ts.tv_nsec;
1169        if (ts.tv_nsec < 0) {
1170            ts.tv_sec--;
1171            ts.tv_nsec += 1000000000;
1172        }
1173        if((ts.tv_nsec < 0) || (ts.tv_sec < 0)) {
1174            return ETIMEDOUT;
1175        }
1176        tsp = &ts;
1177    } else {
1178        tsp = NULL;
1179    }
1180
1181    return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1182}
1183
1184int pthread_cond_timedwait(pthread_cond_t *cond,
1185                           pthread_mutex_t * mutex,
1186                           const struct timespec *abstime)
1187{
1188    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1189}
1190
1191
1192int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1193                                     pthread_mutex_t * mutex,
1194                                     const struct timespec *abstime)
1195{
1196    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1197}
1198
1199int pthread_cond_timeout_np(pthread_cond_t *cond,
1200                            pthread_mutex_t * mutex,
1201                            unsigned msecs)
1202{
1203    int oldvalue;
1204    struct timespec ts;
1205    int status;
1206
1207    ts.tv_sec = msecs / 1000;
1208    ts.tv_nsec = (msecs % 1000) * 1000000;
1209
1210    oldvalue = cond->value;
1211
1212    pthread_mutex_unlock(mutex);
1213    status = __futex_wait(&cond->value, oldvalue, &ts);
1214    pthread_mutex_lock(mutex);
1215
1216    if(status == (-ETIMEDOUT)) return ETIMEDOUT;
1217
1218    return 0;
1219}
1220
1221
1222
1223/* A technical note regarding our thread-local-storage (TLS) implementation:
1224 *
1225 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1226 * though the first TLSMAP_START keys are reserved for Bionic to hold
1227 * special thread-specific variables like errno or a pointer to
1228 * the current thread's descriptor.
1229 *
1230 * while stored in the TLS area, these entries cannot be accessed through
1231 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1232 *
1233 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1234 * to greatly simplify and speedup some OpenGL-related operations. though the
1235 * initialy value will be NULL on all threads.
1236 *
1237 * you can use pthread_getspecific()/setspecific() on these, and in theory
1238 * you could also call pthread_key_delete() as well, though this would
1239 * probably break some apps.
1240 *
1241 * The 'tlsmap_t' type defined below implements a shared global map of
1242 * currently created/allocated TLS keys and the destructors associated
1243 * with them. You should use tlsmap_lock/unlock to access it to avoid
1244 * any race condition.
1245 *
1246 * the global TLS map simply contains a bitmap of allocated keys, and
1247 * an array of destructors.
1248 *
1249 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1250 * pointers. the TLS area of the main thread is stack-allocated in
1251 * __libc_init_common, while the TLS area of other threads is placed at
1252 * the top of their stack in pthread_create.
1253 *
1254 * when pthread_key_create() is called, it finds the first free key in the
1255 * bitmap, then set it to 1, saving the destructor altogether
1256 *
1257 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1258 * and its destructor, and will also clear the key data in the TLS area of
1259 * all created threads. As mandated by Posix, it is the responsability of
1260 * the caller of pthread_key_delete() to properly reclaim the objects that
1261 * were pointed to by these data fields (either before or after the call).
1262 *
1263 */
1264
1265/* TLS Map implementation
1266 */
1267
1268#define TLSMAP_START      (TLS_SLOT_MAX_WELL_KNOWN+1)
1269#define TLSMAP_SIZE       BIONIC_TLS_SLOTS
1270#define TLSMAP_BITS       32
1271#define TLSMAP_WORDS      ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1272#define TLSMAP_WORD(m,k)  (m)->map[(k)/TLSMAP_BITS]
1273#define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
1274
1275/* this macro is used to quickly check that a key belongs to a reasonable range */
1276#define TLSMAP_VALIDATE_KEY(key)  \
1277    ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1278
1279/* the type of tls key destructor functions */
1280typedef void (*tls_dtor_t)(void*);
1281
1282typedef struct {
1283    int         init;                  /* see comment in tlsmap_lock() */
1284    uint32_t    map[TLSMAP_WORDS];     /* bitmap of allocated keys */
1285    tls_dtor_t  dtors[TLSMAP_SIZE];    /* key destructors */
1286} tlsmap_t;
1287
1288static pthread_mutex_t  _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1289static tlsmap_t         _tlsmap;
1290
1291/* lock the global TLS map lock and return a handle to it */
1292static __inline__ tlsmap_t* tlsmap_lock(void)
1293{
1294    tlsmap_t*   m = &_tlsmap;
1295
1296    pthread_mutex_lock(&_tlsmap_lock);
1297    /* we need to initialize the first entry of the 'map' array
1298     * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1299     * when declaring _tlsmap is a bit awkward and is going to
1300     * produce warnings, so do it the first time we use the map
1301     * instead
1302     */
1303    if (__unlikely(!m->init)) {
1304        TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1305        m->init          = 1;
1306    }
1307    return m;
1308}
1309
1310/* unlock the global TLS map */
1311static __inline__ void tlsmap_unlock(tlsmap_t*  m)
1312{
1313    pthread_mutex_unlock(&_tlsmap_lock);
1314    (void)m;  /* a good compiler is a happy compiler */
1315}
1316
1317/* test to see wether a key is allocated */
1318static __inline__ int tlsmap_test(tlsmap_t*  m, int  key)
1319{
1320    return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1321}
1322
1323/* set the destructor and bit flag on a newly allocated key */
1324static __inline__ void tlsmap_set(tlsmap_t*  m, int  key, tls_dtor_t  dtor)
1325{
1326    TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1327    m->dtors[key]       = dtor;
1328}
1329
1330/* clear the destructor and bit flag on an existing key */
1331static __inline__ void  tlsmap_clear(tlsmap_t*  m, int  key)
1332{
1333    TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1334    m->dtors[key]       = NULL;
1335}
1336
1337/* allocate a new TLS key, return -1 if no room left */
1338static int tlsmap_alloc(tlsmap_t*  m, tls_dtor_t  dtor)
1339{
1340    int  key;
1341
1342    for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1343        if ( !tlsmap_test(m, key) ) {
1344            tlsmap_set(m, key, dtor);
1345            return key;
1346        }
1347    }
1348    return -1;
1349}
1350
1351
1352int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1353{
1354    uint32_t   err = ENOMEM;
1355    tlsmap_t*  map = tlsmap_lock();
1356    int        k   = tlsmap_alloc(map, destructor_function);
1357
1358    if (k >= 0) {
1359        *key = k;
1360        err  = 0;
1361    }
1362    tlsmap_unlock(map);
1363    return err;
1364}
1365
1366
1367/* This deletes a pthread_key_t. note that the standard mandates that this does
1368 * not call the destructor of non-NULL key values. Instead, it is the
1369 * responsability of the caller to properly dispose of the corresponding data
1370 * and resources, using any mean it finds suitable.
1371 *
1372 * On the other hand, this function will clear the corresponding key data
1373 * values in all known threads. this prevents later (invalid) calls to
1374 * pthread_getspecific() to receive invalid/stale values.
1375 */
1376int pthread_key_delete(pthread_key_t key)
1377{
1378    uint32_t             err;
1379    pthread_internal_t*  thr;
1380    tlsmap_t*            map;
1381
1382    if (!TLSMAP_VALIDATE_KEY(key)) {
1383        return EINVAL;
1384    }
1385
1386    map = tlsmap_lock();
1387
1388    if (!tlsmap_test(map, key)) {
1389        err = EINVAL;
1390        goto err1;
1391    }
1392
1393    /* clear value in all threads */
1394    pthread_mutex_lock(&gThreadListLock);
1395    for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1396        /* avoid zombie threads with a negative 'join_count'. these are really
1397         * already dead and don't have a TLS area anymore.
1398         *
1399         * similarly, it is possible to have thr->tls == NULL for threads that
1400         * were just recently created through pthread_create() but whose
1401         * startup trampoline (__thread_entry) hasn't been run yet by the
1402         * scheduler. so check for this too.
1403         */
1404        if (thr->join_count < 0 || !thr->tls)
1405            continue;
1406
1407        thr->tls[key] = NULL;
1408    }
1409    tlsmap_clear(map, key);
1410
1411    pthread_mutex_unlock(&gThreadListLock);
1412    err = 0;
1413
1414err1:
1415    tlsmap_unlock(map);
1416    return err;
1417}
1418
1419
1420int pthread_setspecific(pthread_key_t key, const void *ptr)
1421{
1422    int        err = EINVAL;
1423    tlsmap_t*  map;
1424
1425    if (TLSMAP_VALIDATE_KEY(key)) {
1426        /* check that we're trying to set data for an allocated key */
1427        map = tlsmap_lock();
1428        if (tlsmap_test(map, key)) {
1429            ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1430            err = 0;
1431        }
1432        tlsmap_unlock(map);
1433    }
1434    return err;
1435}
1436
1437void * pthread_getspecific(pthread_key_t key)
1438{
1439    if (!TLSMAP_VALIDATE_KEY(key)) {
1440        return NULL;
1441    }
1442
1443    /* for performance reason, we do not lock/unlock the global TLS map
1444     * to check that the key is properly allocated. if the key was not
1445     * allocated, the value read from the TLS should always be NULL
1446     * due to pthread_key_delete() clearing the values for all threads.
1447     */
1448    return (void *)(((unsigned *)__get_tls())[key]);
1449}
1450
1451/* Posix mandates that this be defined in <limits.h> but we don't have
1452 * it just yet.
1453 */
1454#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
1455#  define PTHREAD_DESTRUCTOR_ITERATIONS  4
1456#endif
1457
1458/* this function is called from pthread_exit() to remove all TLS key data
1459 * from this thread's TLS area. this must call the destructor of all keys
1460 * that have a non-NULL data value (and a non-NULL destructor).
1461 *
1462 * because destructors can do funky things like deleting/creating other
1463 * keys, we need to implement this in a loop
1464 */
1465static void pthread_key_clean_all(void)
1466{
1467    tlsmap_t*    map;
1468    void**       tls = (void**)__get_tls();
1469    int          rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
1470
1471    map = tlsmap_lock();
1472
1473    for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
1474    {
1475        int  kk, count = 0;
1476
1477        for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
1478            if ( tlsmap_test(map, kk) )
1479            {
1480                void*       data = tls[kk];
1481                tls_dtor_t  dtor = map->dtors[kk];
1482
1483                if (data != NULL && dtor != NULL)
1484                {
1485                   /* we need to clear the key data now, this will prevent the
1486                    * destructor (or a later one) from seeing the old value if
1487                    * it calls pthread_getspecific() for some odd reason
1488                    *
1489                    * we do not do this if 'dtor == NULL' just in case another
1490                    * destructor function might be responsible for manually
1491                    * releasing the corresponding data.
1492                    */
1493                    tls[kk] = NULL;
1494
1495                   /* because the destructor is free to call pthread_key_create
1496                    * and/or pthread_key_delete, we need to temporarily unlock
1497                    * the TLS map
1498                    */
1499                    tlsmap_unlock(map);
1500                    (*dtor)(data);
1501                    map = tlsmap_lock();
1502
1503                    count += 1;
1504                }
1505            }
1506        }
1507
1508        /* if we didn't call any destructor, there is no need to check the
1509         * TLS data again
1510         */
1511        if (count == 0)
1512            break;
1513    }
1514    tlsmap_unlock(map);
1515}
1516
1517// man says this should be in <linux/unistd.h>, but it isn't
1518extern int tkill(int tid, int sig);
1519
1520int pthread_kill(pthread_t tid, int sig)
1521{
1522    int  ret;
1523    int  old_errno = errno;
1524    pthread_internal_t * thread = (pthread_internal_t *)tid;
1525
1526    ret = tkill(thread->kernel_id, sig);
1527    if (ret < 0) {
1528        ret = errno;
1529        errno = old_errno;
1530    }
1531
1532    return ret;
1533}
1534
1535extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
1536
1537int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
1538{
1539    return __rt_sigprocmask(how, set, oset, _NSIG / 8);
1540}
1541
1542
1543int pthread_getcpuclockid(pthread_t  tid, clockid_t  *clockid)
1544{
1545    const int            CLOCK_IDTYPE_BITS = 3;
1546    pthread_internal_t*  thread = (pthread_internal_t*)tid;
1547
1548    if (!thread)
1549        return ESRCH;
1550
1551    *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
1552    return 0;
1553}
1554
1555
1556/* NOTE: this implementation doesn't support a init function that throws a C++ exception
1557 *       or calls fork()
1558 */
1559int  pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
1560{
1561    static pthread_mutex_t   once_lock = PTHREAD_MUTEX_INITIALIZER;
1562
1563    if (*once_control == PTHREAD_ONCE_INIT) {
1564        _normal_lock( &once_lock );
1565        if (*once_control == PTHREAD_ONCE_INIT) {
1566            (*init_routine)();
1567            *once_control = ~PTHREAD_ONCE_INIT;
1568        }
1569        _normal_unlock( &once_lock );
1570    }
1571    return 0;
1572}
1573