pthread.c revision fcd00ebbdf3e7f4e1e7782a65ae10fb0fc03a1aa
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28#include <sys/types.h>
29#include <unistd.h>
30#include <signal.h>
31#include <stdint.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <errno.h>
35#include <sys/atomics.h>
36#include <bionic_tls.h>
37#include <sys/mman.h>
38#include <pthread.h>
39#include <time.h>
40#include "pthread_internal.h"
41#include "thread_private.h"
42#include <limits.h>
43#include <memory.h>
44#include <assert.h>
45#include <malloc.h>
46#include <linux/futex.h>
47#include <cutils/atomic-inline.h>
48
49extern int  __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
50extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
51extern void _exit_thread(int  retCode);
52extern int  __set_errno(int);
53
54#define  __likely(cond)    __builtin_expect(!!(cond), 1)
55#define  __unlikely(cond)  __builtin_expect(!!(cond), 0)
56
57void _thread_created_hook(pid_t thread_id) __attribute__((noinline));
58
59#define PTHREAD_ATTR_FLAG_DETACHED      0x00000001
60#define PTHREAD_ATTR_FLAG_USER_STACK    0x00000002
61
62#define DEFAULT_STACKSIZE (1024 * 1024)
63#define STACKBASE 0x10000000
64
65static uint8_t * gStackBase = (uint8_t *)STACKBASE;
66
67static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
68
69
70static const pthread_attr_t gDefaultPthreadAttr = {
71    .flags = 0,
72    .stack_base = NULL,
73    .stack_size = DEFAULT_STACKSIZE,
74    .guard_size = PAGE_SIZE,
75    .sched_policy = SCHED_NORMAL,
76    .sched_priority = 0
77};
78
79#define  INIT_THREADS  1
80
81static pthread_internal_t*  gThreadList = NULL;
82static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
83static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
84
85
86/* we simply malloc/free the internal pthread_internal_t structures. we may
87 * want to use a different allocation scheme in the future, but this one should
88 * be largely enough
89 */
90static pthread_internal_t*
91_pthread_internal_alloc(void)
92{
93    pthread_internal_t*   thread;
94
95    thread = calloc( sizeof(*thread), 1 );
96    if (thread)
97        thread->intern = 1;
98
99    return thread;
100}
101
102static void
103_pthread_internal_free( pthread_internal_t*  thread )
104{
105    if (thread && thread->intern) {
106        thread->intern = 0;  /* just in case */
107        free (thread);
108    }
109}
110
111
112static void
113_pthread_internal_remove_locked( pthread_internal_t*  thread )
114{
115    thread->next->pref = thread->pref;
116    thread->pref[0]    = thread->next;
117}
118
119static void
120_pthread_internal_remove( pthread_internal_t*  thread )
121{
122    pthread_mutex_lock(&gThreadListLock);
123    _pthread_internal_remove_locked(thread);
124    pthread_mutex_unlock(&gThreadListLock);
125}
126
127static void
128_pthread_internal_add( pthread_internal_t*  thread )
129{
130    pthread_mutex_lock(&gThreadListLock);
131    thread->pref = &gThreadList;
132    thread->next = thread->pref[0];
133    if (thread->next)
134        thread->next->pref = &thread->next;
135    thread->pref[0] = thread;
136    pthread_mutex_unlock(&gThreadListLock);
137}
138
139pthread_internal_t*
140__get_thread(void)
141{
142    void**  tls = (void**)__get_tls();
143
144    return  (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
145}
146
147
148void*
149__get_stack_base(int  *p_stack_size)
150{
151    pthread_internal_t*  thread = __get_thread();
152
153    *p_stack_size = thread->attr.stack_size;
154    return thread->attr.stack_base;
155}
156
157
158void  __init_tls(void**  tls, void*  thread)
159{
160    int  nn;
161
162    ((pthread_internal_t*)thread)->tls = tls;
163
164    // slot 0 must point to the tls area, this is required by the implementation
165    // of the x86 Linux kernel thread-local-storage
166    tls[TLS_SLOT_SELF]      = (void*)tls;
167    tls[TLS_SLOT_THREAD_ID] = thread;
168    for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
169       tls[nn] = 0;
170
171    __set_tls( (void*)tls );
172}
173
174
175/*
176 * This trampoline is called from the assembly clone() function
177 */
178void __thread_entry(int (*func)(void*), void *arg, void **tls)
179{
180    int retValue;
181    pthread_internal_t * thrInfo;
182
183    // Wait for our creating thread to release us. This lets it have time to
184    // notify gdb about this thread before it starts doing anything.
185    pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
186    pthread_mutex_lock(start_mutex);
187    pthread_mutex_destroy(start_mutex);
188
189    thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
190
191    __init_tls( tls, thrInfo );
192
193    pthread_exit( (void*)func(arg) );
194}
195
196void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
197{
198    if (attr == NULL) {
199        thread->attr = gDefaultPthreadAttr;
200    } else {
201        thread->attr = *attr;
202    }
203    thread->attr.stack_base = stack_base;
204    thread->kernel_id       = kernel_id;
205
206    // set the scheduling policy/priority of the thread
207    if (thread->attr.sched_policy != SCHED_NORMAL) {
208        struct sched_param param;
209        param.sched_priority = thread->attr.sched_priority;
210        sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
211    }
212
213    pthread_cond_init(&thread->join_cond, NULL);
214    thread->join_count = 0;
215
216    thread->cleanup_stack = NULL;
217
218    _pthread_internal_add(thread);
219}
220
221
222/* XXX stacks not reclaimed if thread spawn fails */
223/* XXX stacks address spaces should be reused if available again */
224
225static void *mkstack(size_t size, size_t guard_size)
226{
227    void * stack;
228
229    pthread_mutex_lock(&mmap_lock);
230
231    stack = mmap((void *)gStackBase, size,
232                 PROT_READ | PROT_WRITE,
233                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
234                 -1, 0);
235
236    if(stack == MAP_FAILED) {
237        stack = NULL;
238        goto done;
239    }
240
241    if(mprotect(stack, guard_size, PROT_NONE)){
242        munmap(stack, size);
243        stack = NULL;
244        goto done;
245    }
246
247done:
248    pthread_mutex_unlock(&mmap_lock);
249    return stack;
250}
251
252/*
253 * Create a new thread. The thread's stack is layed out like so:
254 *
255 * +---------------------------+
256 * |     pthread_internal_t    |
257 * +---------------------------+
258 * |                           |
259 * |          TLS area         |
260 * |                           |
261 * +---------------------------+
262 * |                           |
263 * .                           .
264 * .         stack area        .
265 * .                           .
266 * |                           |
267 * +---------------------------+
268 * |         guard page        |
269 * +---------------------------+
270 *
271 *  note that TLS[0] must be a pointer to itself, this is required
272 *  by the thread-local storage implementation of the x86 Linux
273 *  kernel, where the TLS pointer is read by reading fs:[0]
274 */
275int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
276                   void *(*start_routine)(void *), void * arg)
277{
278    char*   stack;
279    void**  tls;
280    int tid;
281    pthread_mutex_t * start_mutex;
282    pthread_internal_t * thread;
283    int                  madestack = 0;
284    int     old_errno = errno;
285
286    /* this will inform the rest of the C library that at least one thread
287     * was created. this will enforce certain functions to acquire/release
288     * locks (e.g. atexit()) to protect shared global structures.
289     *
290     * this works because pthread_create() is not called by the C library
291     * initialization routine that sets up the main thread's data structures.
292     */
293    __isthreaded = 1;
294
295    thread = _pthread_internal_alloc();
296    if (thread == NULL)
297        return ENOMEM;
298
299    if (attr == NULL) {
300        attr = &gDefaultPthreadAttr;
301    }
302
303    // make sure the stack is PAGE_SIZE aligned
304    size_t stackSize = (attr->stack_size +
305                        (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
306
307    if (!attr->stack_base) {
308        stack = mkstack(stackSize, attr->guard_size);
309        if(stack == NULL) {
310            _pthread_internal_free(thread);
311            return ENOMEM;
312        }
313        madestack = 1;
314    } else {
315        stack = attr->stack_base;
316    }
317
318    // Make room for TLS
319    tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
320
321    // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
322    // it from doing anything until after we notify the debugger about it
323    start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
324    pthread_mutex_init(start_mutex, NULL);
325    pthread_mutex_lock(start_mutex);
326
327    tls[TLS_SLOT_THREAD_ID] = thread;
328
329    tid = __pthread_clone((int(*)(void*))start_routine, tls,
330                CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
331                | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
332                arg);
333
334    if(tid < 0) {
335        int  result;
336        if (madestack)
337            munmap(stack, stackSize);
338        _pthread_internal_free(thread);
339        result = errno;
340        errno = old_errno;
341        return result;
342    }
343
344    _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
345
346    if (!madestack)
347        thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
348
349    // Notify any debuggers about the new thread
350    pthread_mutex_lock(&gDebuggerNotificationLock);
351    _thread_created_hook(tid);
352    pthread_mutex_unlock(&gDebuggerNotificationLock);
353
354    // Let the thread do it's thing
355    pthread_mutex_unlock(start_mutex);
356
357    *thread_out = (pthread_t)thread;
358    return 0;
359}
360
361
362int pthread_attr_init(pthread_attr_t * attr)
363{
364    *attr = gDefaultPthreadAttr;
365    return 0;
366}
367
368int pthread_attr_destroy(pthread_attr_t * attr)
369{
370    memset(attr, 0x42, sizeof(pthread_attr_t));
371    return 0;
372}
373
374int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
375{
376    if (state == PTHREAD_CREATE_DETACHED) {
377        attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
378    } else if (state == PTHREAD_CREATE_JOINABLE) {
379        attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
380    } else {
381        return EINVAL;
382    }
383    return 0;
384}
385
386int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
387{
388    *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
389           ? PTHREAD_CREATE_DETACHED
390           : PTHREAD_CREATE_JOINABLE;
391    return 0;
392}
393
394int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
395{
396    attr->sched_policy = policy;
397    return 0;
398}
399
400int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
401{
402    *policy = attr->sched_policy;
403    return 0;
404}
405
406int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
407{
408    attr->sched_priority = param->sched_priority;
409    return 0;
410}
411
412int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
413{
414    param->sched_priority = attr->sched_priority;
415    return 0;
416}
417
418int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
419{
420    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
421        return EINVAL;
422    }
423    attr->stack_size = stack_size;
424    return 0;
425}
426
427int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
428{
429    *stack_size = attr->stack_size;
430    return 0;
431}
432
433int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
434{
435#if 1
436    // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
437    return ENOSYS;
438#else
439    if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
440        return EINVAL;
441    }
442    attr->stack_base = stack_addr;
443    return 0;
444#endif
445}
446
447int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
448{
449    *stack_addr = (char*)attr->stack_base + attr->stack_size;
450    return 0;
451}
452
453int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
454{
455    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
456        return EINVAL;
457    }
458    if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
459        return EINVAL;
460    }
461    attr->stack_base = stack_base;
462    attr->stack_size = stack_size;
463    return 0;
464}
465
466int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
467{
468    *stack_base = attr->stack_base;
469    *stack_size = attr->stack_size;
470    return 0;
471}
472
473int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
474{
475    if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
476        return EINVAL;
477    }
478
479    attr->guard_size = guard_size;
480    return 0;
481}
482
483int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
484{
485    *guard_size = attr->guard_size;
486    return 0;
487}
488
489int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
490{
491    pthread_internal_t * thread = (pthread_internal_t *)thid;
492    *attr = thread->attr;
493    return 0;
494}
495
496int pthread_attr_setscope(pthread_attr_t *attr, int  scope)
497{
498    if (scope == PTHREAD_SCOPE_SYSTEM)
499        return 0;
500    if (scope == PTHREAD_SCOPE_PROCESS)
501        return ENOTSUP;
502
503    return EINVAL;
504}
505
506int pthread_attr_getscope(pthread_attr_t const *attr)
507{
508    return PTHREAD_SCOPE_SYSTEM;
509}
510
511
512/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
513 *         and thread cancelation
514 */
515
516void __pthread_cleanup_push( __pthread_cleanup_t*      c,
517                             __pthread_cleanup_func_t  routine,
518                             void*                     arg )
519{
520    pthread_internal_t*  thread = __get_thread();
521
522    c->__cleanup_routine  = routine;
523    c->__cleanup_arg      = arg;
524    c->__cleanup_prev     = thread->cleanup_stack;
525    thread->cleanup_stack = c;
526}
527
528void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
529{
530    pthread_internal_t*  thread = __get_thread();
531
532    thread->cleanup_stack = c->__cleanup_prev;
533    if (execute)
534        c->__cleanup_routine(c->__cleanup_arg);
535}
536
537/* used by pthread_exit() to clean all TLS keys of the current thread */
538static void pthread_key_clean_all(void);
539
540void pthread_exit(void * retval)
541{
542    pthread_internal_t*  thread     = __get_thread();
543    void*                stack_base = thread->attr.stack_base;
544    int                  stack_size = thread->attr.stack_size;
545    int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
546
547    // call the cleanup handlers first
548    while (thread->cleanup_stack) {
549        __pthread_cleanup_t*  c = thread->cleanup_stack;
550        thread->cleanup_stack   = c->__cleanup_prev;
551        c->__cleanup_routine(c->__cleanup_arg);
552    }
553
554    // call the TLS destructors, it is important to do that before removing this
555    // thread from the global list. this will ensure that if someone else deletes
556    // a TLS key, the corresponding value will be set to NULL in this thread's TLS
557    // space (see pthread_key_delete)
558    pthread_key_clean_all();
559
560    // if the thread is detached, destroy the pthread_internal_t
561    // otherwise, keep it in memory and signal any joiners
562    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
563        _pthread_internal_remove(thread);
564        _pthread_internal_free(thread);
565    } else {
566       /* the join_count field is used to store the number of threads waiting for
567        * the termination of this thread with pthread_join(),
568        *
569        * if it is positive we need to signal the waiters, and we do not touch
570        * the count (it will be decremented by the waiters, the last one will
571        * also remove/free the thread structure
572        *
573        * if it is zero, we set the count value to -1 to indicate that the
574        * thread is in 'zombie' state: it has stopped executing, and its stack
575        * is gone (as well as its TLS area). when another thread calls pthread_join()
576        * on it, it will immediately free the thread and return.
577        */
578        pthread_mutex_lock(&gThreadListLock);
579        thread->return_value = retval;
580        if (thread->join_count > 0) {
581            pthread_cond_broadcast(&thread->join_cond);
582        } else {
583            thread->join_count = -1;  /* zombie thread */
584        }
585        pthread_mutex_unlock(&gThreadListLock);
586    }
587
588    // destroy the thread stack
589    if (user_stack)
590        _exit_thread((int)retval);
591    else
592        _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
593}
594
595int pthread_join(pthread_t thid, void ** ret_val)
596{
597    pthread_internal_t*  thread = (pthread_internal_t*)thid;
598    int                  count;
599
600    // check that the thread still exists and is not detached
601    pthread_mutex_lock(&gThreadListLock);
602
603    for (thread = gThreadList; thread != NULL; thread = thread->next)
604        if (thread == (pthread_internal_t*)thid)
605            goto FoundIt;
606
607    pthread_mutex_unlock(&gThreadListLock);
608    return ESRCH;
609
610FoundIt:
611    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
612        pthread_mutex_unlock(&gThreadListLock);
613        return EINVAL;
614    }
615
616   /* wait for thread death when needed
617    *
618    * if the 'join_count' is negative, this is a 'zombie' thread that
619    * is already dead and without stack/TLS
620    *
621    * otherwise, we need to increment 'join-count' and wait to be signaled
622    */
623   count = thread->join_count;
624    if (count >= 0) {
625        thread->join_count += 1;
626        pthread_cond_wait( &thread->join_cond, &gThreadListLock );
627        count = --thread->join_count;
628    }
629    if (ret_val)
630        *ret_val = thread->return_value;
631
632    /* remove thread descriptor when we're the last joiner or when the
633     * thread was already a zombie.
634     */
635    if (count <= 0) {
636        _pthread_internal_remove_locked(thread);
637        _pthread_internal_free(thread);
638    }
639    pthread_mutex_unlock(&gThreadListLock);
640    return 0;
641}
642
643int  pthread_detach( pthread_t  thid )
644{
645    pthread_internal_t*  thread;
646    int                  result = 0;
647    int                  flags;
648
649    pthread_mutex_lock(&gThreadListLock);
650    for (thread = gThreadList; thread != NULL; thread = thread->next)
651        if (thread == (pthread_internal_t*)thid)
652            goto FoundIt;
653
654    result = ESRCH;
655    goto Exit;
656
657FoundIt:
658    do {
659        flags = thread->attr.flags;
660
661        if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
662            /* thread is not joinable ! */
663            result = EINVAL;
664            goto Exit;
665        }
666    }
667    while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
668                              (volatile int*)&thread->attr.flags ) != 0 );
669Exit:
670    pthread_mutex_unlock(&gThreadListLock);
671    return result;
672}
673
674pthread_t pthread_self(void)
675{
676    return (pthread_t)__get_thread();
677}
678
679int pthread_equal(pthread_t one, pthread_t two)
680{
681    return (one == two ? 1 : 0);
682}
683
684int pthread_getschedparam(pthread_t thid, int * policy,
685                          struct sched_param * param)
686{
687    int  old_errno = errno;
688
689    pthread_internal_t * thread = (pthread_internal_t *)thid;
690    int err = sched_getparam(thread->kernel_id, param);
691    if (!err) {
692        *policy = sched_getscheduler(thread->kernel_id);
693    } else {
694        err = errno;
695        errno = old_errno;
696    }
697    return err;
698}
699
700int pthread_setschedparam(pthread_t thid, int policy,
701                          struct sched_param const * param)
702{
703    pthread_internal_t * thread = (pthread_internal_t *)thid;
704    int                  old_errno = errno;
705    int                  ret;
706
707    ret = sched_setscheduler(thread->kernel_id, policy, param);
708    if (ret < 0) {
709        ret = errno;
710        errno = old_errno;
711    }
712    return ret;
713}
714
715
716int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout);
717int __futex_wake(volatile void *ftx, int count);
718
719int __futex_syscall3(volatile void *ftx, int op, int val);
720int __futex_syscall4(volatile void *ftx, int op, int val, const struct timespec *timeout);
721
722#ifndef FUTEX_PRIVATE_FLAG
723#define FUTEX_PRIVATE_FLAG  128
724#endif
725
726#ifndef FUTEX_WAIT_PRIVATE
727#define FUTEX_WAIT_PRIVATE  (FUTEX_WAIT|FUTEX_PRIVATE_FLAG)
728#endif
729
730#ifndef FUTEX_WAKE_PRIVATE
731#define FUTEX_WAKE_PRIVATE  (FUTEX_WAKE|FUTEX_PRIVATE_FLAG)
732#endif
733
734// mutex lock states
735//
736// 0: unlocked
737// 1: locked, no waiters
738// 2: locked, maybe waiters
739
740/* a mutex is implemented as a 32-bit integer holding the following fields
741 *
742 * bits:     name     description
743 * 31-16     tid      owner thread's kernel id (recursive and errorcheck only)
744 * 15-14     type     mutex type
745 * 13        shared   process-shared flag
746 * 12-2      counter  counter of recursive mutexes
747 * 1-0       state    lock state (0, 1 or 2)
748 */
749
750
751#define  MUTEX_OWNER(m)  (((m)->value >> 16) & 0xffff)
752#define  MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
753
754#define  MUTEX_TYPE_MASK       0xc000
755#define  MUTEX_TYPE_NORMAL     0x0000
756#define  MUTEX_TYPE_RECURSIVE  0x4000
757#define  MUTEX_TYPE_ERRORCHECK 0x8000
758
759#define  MUTEX_COUNTER_SHIFT  2
760#define  MUTEX_COUNTER_MASK   0x1ffc
761#define  MUTEX_SHARED_MASK    0x2000
762
763/* a mutex attribute holds the following fields
764 *
765 * bits:     name       description
766 * 0-3       type       type of mutex
767 * 4         shared     process-shared flag
768 */
769#define  MUTEXATTR_TYPE_MASK   0x000f
770#define  MUTEXATTR_SHARED_MASK 0x0010
771
772
773int pthread_mutexattr_init(pthread_mutexattr_t *attr)
774{
775    if (attr) {
776        *attr = PTHREAD_MUTEX_DEFAULT;
777        return 0;
778    } else {
779        return EINVAL;
780    }
781}
782
783int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
784{
785    if (attr) {
786        *attr = -1;
787        return 0;
788    } else {
789        return EINVAL;
790    }
791}
792
793int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
794{
795    if (attr) {
796        int  atype = (*attr & MUTEXATTR_TYPE_MASK);
797
798         if (atype >= PTHREAD_MUTEX_NORMAL &&
799             atype <= PTHREAD_MUTEX_ERRORCHECK) {
800            *type = atype;
801            return 0;
802        }
803    }
804    return EINVAL;
805}
806
807int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
808{
809    if (attr && type >= PTHREAD_MUTEX_NORMAL &&
810                type <= PTHREAD_MUTEX_ERRORCHECK ) {
811        *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
812        return 0;
813    }
814    return EINVAL;
815}
816
817/* process-shared mutexes are not supported at the moment */
818
819int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
820{
821    if (!attr)
822        return EINVAL;
823
824    switch (pshared) {
825    case PTHREAD_PROCESS_PRIVATE:
826        *attr &= ~MUTEXATTR_SHARED_MASK;
827        return 0;
828
829    case PTHREAD_PROCESS_SHARED:
830        /* our current implementation of pthread actually supports shared
831         * mutexes but won't cleanup if a process dies with the mutex held.
832         * Nevertheless, it's better than nothing. Shared mutexes are used
833         * by surfaceflinger and audioflinger.
834         */
835        *attr |= MUTEXATTR_SHARED_MASK;
836        return 0;
837    }
838    return EINVAL;
839}
840
841int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
842{
843    if (!attr || !pshared)
844        return EINVAL;
845
846    *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
847                                               : PTHREAD_PROCESS_PRIVATE;
848    return 0;
849}
850
851int pthread_mutex_init(pthread_mutex_t *mutex,
852                       const pthread_mutexattr_t *attr)
853{
854    int value = 0;
855
856    if (mutex == NULL)
857        return EINVAL;
858
859    if (__likely(attr == NULL)) {
860        mutex->value = MUTEX_TYPE_NORMAL;
861        return 0;
862    }
863
864    if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
865        value |= MUTEX_SHARED_MASK;
866
867    switch (*attr & MUTEXATTR_TYPE_MASK) {
868    case PTHREAD_MUTEX_NORMAL:
869        value |= MUTEX_TYPE_NORMAL;
870        break;
871    case PTHREAD_MUTEX_RECURSIVE:
872        value |= MUTEX_TYPE_RECURSIVE;
873        break;
874    case PTHREAD_MUTEX_ERRORCHECK:
875        value |= MUTEX_TYPE_ERRORCHECK;
876        break;
877    default:
878        return EINVAL;
879    }
880
881    mutex->value = value;
882    return 0;
883}
884
885int pthread_mutex_destroy(pthread_mutex_t *mutex)
886{
887    if (__unlikely(mutex == NULL))
888        return EINVAL;
889
890    mutex->value = 0xdead10cc;
891    return 0;
892}
893
894
895/*
896 * Lock a non-recursive mutex.
897 *
898 * As noted above, there are three states:
899 *   0 (unlocked, no contention)
900 *   1 (locked, no contention)
901 *   2 (locked, contention)
902 *
903 * Non-recursive mutexes don't use the thread-id or counter fields, and the
904 * "type" value is zero, so the only bits that will be set are the ones in
905 * the lock state field.
906 */
907static __inline__ void
908_normal_lock(pthread_mutex_t*  mutex)
909{
910    /* We need to preserve the shared flag during operations */
911    int  shared = mutex->value & MUTEX_SHARED_MASK;
912    /*
913     * The common case is an unlocked mutex, so we begin by trying to
914     * change the lock's state from 0 to 1.  __atomic_cmpxchg() returns 0
915     * if it made the swap successfully.  If the result is nonzero, this
916     * lock is already held by another thread.
917     */
918    if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value ) != 0) {
919        /*
920         * We want to go to sleep until the mutex is available, which
921         * requires promoting it to state 2.  We need to swap in the new
922         * state value and then wait until somebody wakes us up.
923         *
924         * __atomic_swap() returns the previous value.  We swap 2 in and
925         * see if we got zero back; if so, we have acquired the lock.  If
926         * not, another thread still holds the lock and we wait again.
927         *
928         * The second argument to the __futex_wait() call is compared
929         * against the current value.  If it doesn't match, __futex_wait()
930         * returns immediately (otherwise, it sleeps for a time specified
931         * by the third argument; 0 means sleep forever).  This ensures
932         * that the mutex is in state 2 when we go to sleep on it, which
933         * guarantees a wake-up call.
934         */
935        int  wait_op = shared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE;
936
937        while (__atomic_swap(shared|2, &mutex->value ) != (shared|0))
938            __futex_syscall4(&mutex->value, wait_op, shared|2, 0);
939    }
940    ANDROID_MEMBAR_FULL();
941}
942
943/*
944 * Release a non-recursive mutex.  The caller is responsible for determining
945 * that we are in fact the owner of this lock.
946 */
947static __inline__ void
948_normal_unlock(pthread_mutex_t*  mutex)
949{
950    ANDROID_MEMBAR_FULL();
951
952    /* We need to preserve the shared flag during operations */
953    int  shared = mutex->value & MUTEX_SHARED_MASK;
954
955    /*
956     * The mutex state will be 1 or (rarely) 2.  We use an atomic decrement
957     * to release the lock.  __atomic_dec() returns the previous value;
958     * if it wasn't 1 we have to do some additional work.
959     */
960    if (__atomic_dec(&mutex->value) != (shared|1)) {
961        int  wake_op = shared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE;
962        /*
963         * Start by releasing the lock.  The decrement changed it from
964         * "contended lock" to "uncontended lock", which means we still
965         * hold it, and anybody who tries to sneak in will push it back
966         * to state 2.
967         *
968         * Once we set it to zero the lock is up for grabs.  We follow
969         * this with a __futex_wake() to ensure that one of the waiting
970         * threads has a chance to grab it.
971         *
972         * This doesn't cause a race with the swap/wait pair in
973         * _normal_lock(), because the __futex_wait() call there will
974         * return immediately if the mutex value isn't 2.
975         */
976        mutex->value = shared;
977
978        /*
979         * Wake up one waiting thread.  We don't know which thread will be
980         * woken or when it'll start executing -- futexes make no guarantees
981         * here.  There may not even be a thread waiting.
982         *
983         * The newly-woken thread will replace the 0 we just set above
984         * with 2, which means that when it eventually releases the mutex
985         * it will also call FUTEX_WAKE.  This results in one extra wake
986         * call whenever a lock is contended, but lets us avoid forgetting
987         * anyone without requiring us to track the number of sleepers.
988         *
989         * It's possible for another thread to sneak in and grab the lock
990         * between the zero assignment above and the wake call below.  If
991         * the new thread is "slow" and holds the lock for a while, we'll
992         * wake up a sleeper, which will swap in a 2 and then go back to
993         * sleep since the lock is still held.  If the new thread is "fast",
994         * running to completion before we call wake, the thread we
995         * eventually wake will find an unlocked mutex and will execute.
996         * Either way we have correct behavior and nobody is orphaned on
997         * the wait queue.
998         */
999        __futex_syscall3(&mutex->value, wake_op, 1);
1000    }
1001}
1002
1003static pthread_mutex_t  __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
1004
1005static void
1006_recursive_lock(void)
1007{
1008    _normal_lock(&__recursive_lock);
1009}
1010
1011static void
1012_recursive_unlock(void)
1013{
1014    _normal_unlock(&__recursive_lock );
1015}
1016
1017int pthread_mutex_lock(pthread_mutex_t *mutex)
1018{
1019    int mtype, tid, new_lock_type, shared, wait_op;
1020
1021    if (__unlikely(mutex == NULL))
1022        return EINVAL;
1023
1024    mtype = (mutex->value & MUTEX_TYPE_MASK);
1025    shared = (mutex->value & MUTEX_SHARED_MASK);
1026
1027    /* Handle normal case first */
1028    if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
1029        _normal_lock(mutex);
1030        return 0;
1031    }
1032
1033    /* Do we already own this recursive or error-check mutex ? */
1034    tid = __get_thread()->kernel_id;
1035    if ( tid == MUTEX_OWNER(mutex) )
1036    {
1037        int  oldv, counter;
1038
1039        if (mtype == MUTEX_TYPE_ERRORCHECK) {
1040            /* trying to re-lock a mutex we already acquired */
1041            return EDEADLK;
1042        }
1043        /*
1044         * We own the mutex, but other threads are able to change
1045         * the contents (e.g. promoting it to "contended"), so we
1046         * need to hold the global lock.
1047         */
1048        _recursive_lock();
1049        oldv         = mutex->value;
1050        counter      = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1051        mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1052        _recursive_unlock();
1053        return 0;
1054    }
1055
1056    /* We don't own the mutex, so try to get it.
1057     *
1058     * First, we try to change its state from 0 to 1, if this
1059     * doesn't work, try to change it to state 2.
1060     */
1061    new_lock_type = 1;
1062
1063    /* compute futex wait opcode and restore shared flag in mtype */
1064    wait_op = shared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE;
1065    mtype  |= shared;
1066
1067    for (;;) {
1068        int  oldv;
1069
1070        _recursive_lock();
1071        oldv = mutex->value;
1072        if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1073            mutex->value = ((tid << 16) | mtype | new_lock_type);
1074        } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1075            oldv ^= 3;
1076            mutex->value = oldv;
1077        }
1078        _recursive_unlock();
1079
1080        if (oldv == mtype)
1081            break;
1082
1083        /*
1084         * The lock was held, possibly contended by others.  From
1085         * now on, if we manage to acquire the lock, we have to
1086         * assume that others are still contending for it so that
1087         * we'll wake them when we unlock it.
1088         */
1089        new_lock_type = 2;
1090
1091        __futex_syscall4(&mutex->value, wait_op, oldv, NULL);
1092    }
1093    return 0;
1094}
1095
1096
1097int pthread_mutex_unlock(pthread_mutex_t *mutex)
1098{
1099    int mtype, tid, oldv, shared;
1100
1101    if (__unlikely(mutex == NULL))
1102        return EINVAL;
1103
1104    mtype  = (mutex->value & MUTEX_TYPE_MASK);
1105    shared = (mutex->value & MUTEX_SHARED_MASK);
1106
1107    /* Handle common case first */
1108    if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
1109        _normal_unlock(mutex);
1110        return 0;
1111    }
1112
1113    /* Do we already own this recursive or error-check mutex ? */
1114    tid = __get_thread()->kernel_id;
1115    if ( tid != MUTEX_OWNER(mutex) )
1116        return EPERM;
1117
1118    /* We do, decrement counter or release the mutex if it is 0 */
1119    _recursive_lock();
1120    oldv = mutex->value;
1121    if (oldv & MUTEX_COUNTER_MASK) {
1122        mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
1123        oldv = 0;
1124    } else {
1125        mutex->value = shared | mtype;
1126    }
1127    _recursive_unlock();
1128
1129    /* Wake one waiting thread, if any */
1130    if ((oldv & 3) == 2) {
1131        int wake_op = shared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE;
1132        __futex_syscall3(&mutex->value, wake_op, 1);
1133    }
1134    return 0;
1135}
1136
1137
1138int pthread_mutex_trylock(pthread_mutex_t *mutex)
1139{
1140    int mtype, tid, oldv, shared;
1141
1142    if (__unlikely(mutex == NULL))
1143        return EINVAL;
1144
1145    mtype  = (mutex->value & MUTEX_TYPE_MASK);
1146    shared = (mutex->value & MUTEX_SHARED_MASK);
1147
1148    /* Handle common case first */
1149    if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1150    {
1151        if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
1152            ANDROID_MEMBAR_FULL();
1153            return 0;
1154        }
1155
1156        return EBUSY;
1157    }
1158
1159    /* Do we already own this recursive or error-check mutex ? */
1160    tid = __get_thread()->kernel_id;
1161    if ( tid == MUTEX_OWNER(mutex) )
1162    {
1163        int counter;
1164
1165        if (mtype == MUTEX_TYPE_ERRORCHECK) {
1166            /* already locked by ourselves */
1167            return EDEADLK;
1168        }
1169
1170        _recursive_lock();
1171        oldv = mutex->value;
1172        counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1173        mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1174        _recursive_unlock();
1175        return 0;
1176    }
1177
1178    /* Restore sharing bit in mtype */
1179    mtype |= shared;
1180
1181    /* Try to lock it, just once. */
1182    _recursive_lock();
1183    oldv = mutex->value;
1184    if (oldv == mtype)  /* uncontended released lock => state 1 */
1185        mutex->value = ((tid << 16) | mtype | 1);
1186    _recursive_unlock();
1187
1188    if (oldv != mtype)
1189        return EBUSY;
1190
1191    return 0;
1192}
1193
1194
1195/* initialize 'ts' with the difference between 'abstime' and the current time
1196 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1197 */
1198static int
1199__timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
1200{
1201    clock_gettime(clock, ts);
1202    ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
1203    ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1204    if (ts->tv_nsec < 0) {
1205        ts->tv_sec--;
1206        ts->tv_nsec += 1000000000;
1207    }
1208    if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1209        return -1;
1210
1211    return 0;
1212}
1213
1214/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1215 * milliseconds.
1216 */
1217static void
1218__timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
1219{
1220    clock_gettime(clock, abstime);
1221    abstime->tv_sec  += msecs/1000;
1222    abstime->tv_nsec += (msecs%1000)*1000000;
1223    if (abstime->tv_nsec >= 1000000000) {
1224        abstime->tv_sec++;
1225        abstime->tv_nsec -= 1000000000;
1226    }
1227}
1228
1229int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1230{
1231    clockid_t        clock = CLOCK_MONOTONIC;
1232    struct timespec  abstime;
1233    struct timespec  ts;
1234    int              mtype, tid, oldv, new_lock_type, shared, wait_op;
1235
1236    /* compute absolute expiration time */
1237    __timespec_to_relative_msec(&abstime, msecs, clock);
1238
1239    if (__unlikely(mutex == NULL))
1240        return EINVAL;
1241
1242    mtype  = (mutex->value & MUTEX_TYPE_MASK);
1243    shared = (mutex->value & MUTEX_SHARED_MASK);
1244
1245    /* Handle common case first */
1246    if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1247    {
1248        int  wait_op = shared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE;
1249
1250        /* fast path for uncontended lock */
1251        if (__atomic_cmpxchg(shared|0, shared|1, &mutex->value) == 0) {
1252            ANDROID_MEMBAR_FULL();
1253            return 0;
1254        }
1255
1256        /* loop while needed */
1257        while (__atomic_swap(shared|2, &mutex->value) != (shared|0)) {
1258            if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1259                return EBUSY;
1260
1261            __futex_syscall4(&mutex->value, wait_op, shared|2, &ts);
1262        }
1263        ANDROID_MEMBAR_FULL();
1264        return 0;
1265    }
1266
1267    /* Do we already own this recursive or error-check mutex ? */
1268    tid = __get_thread()->kernel_id;
1269    if ( tid == MUTEX_OWNER(mutex) )
1270    {
1271        int  oldv, counter;
1272
1273        if (mtype == MUTEX_TYPE_ERRORCHECK) {
1274            /* already locked by ourselves */
1275            return EDEADLK;
1276        }
1277
1278        _recursive_lock();
1279        oldv = mutex->value;
1280        counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1281        mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1282        _recursive_unlock();
1283        return 0;
1284    }
1285
1286    /* We don't own the mutex, so try to get it.
1287     *
1288     * First, we try to change its state from 0 to 1, if this
1289     * doesn't work, try to change it to state 2.
1290     */
1291    new_lock_type = 1;
1292
1293    /* Compute wait op and restore sharing bit in mtype */
1294    wait_op = shared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE;
1295    mtype  |= shared;
1296
1297    for (;;) {
1298        int  oldv;
1299        struct timespec  ts;
1300
1301        _recursive_lock();
1302        oldv = mutex->value;
1303        if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1304            mutex->value = ((tid << 16) | mtype | new_lock_type);
1305        } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1306            oldv ^= 3;
1307            mutex->value = oldv;
1308        }
1309        _recursive_unlock();
1310
1311        if (oldv == mtype)
1312            break;
1313
1314        /*
1315         * The lock was held, possibly contended by others.  From
1316         * now on, if we manage to acquire the lock, we have to
1317         * assume that others are still contending for it so that
1318         * we'll wake them when we unlock it.
1319         */
1320        new_lock_type = 2;
1321
1322        if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1323            return EBUSY;
1324
1325        __futex_syscall4(&mutex->value, wait_op, oldv, &ts);
1326    }
1327    return 0;
1328}
1329
1330int pthread_condattr_init(pthread_condattr_t *attr)
1331{
1332    if (attr == NULL)
1333        return EINVAL;
1334
1335    *attr = PTHREAD_PROCESS_PRIVATE;
1336    return 0;
1337}
1338
1339int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
1340{
1341    if (attr == NULL || pshared == NULL)
1342        return EINVAL;
1343
1344    *pshared = *attr;
1345    return 0;
1346}
1347
1348int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
1349{
1350    if (attr == NULL)
1351        return EINVAL;
1352
1353    if (pshared != PTHREAD_PROCESS_SHARED &&
1354        pshared != PTHREAD_PROCESS_PRIVATE)
1355        return EINVAL;
1356
1357    *attr = pshared;
1358    return 0;
1359}
1360
1361int pthread_condattr_destroy(pthread_condattr_t *attr)
1362{
1363    if (attr == NULL)
1364        return EINVAL;
1365
1366    *attr = 0xdeada11d;
1367    return 0;
1368}
1369
1370/* We use one bit in condition variable values as the 'shared' flag
1371 * The rest is a counter.
1372 */
1373#define COND_SHARED_MASK        0x0001
1374#define COND_COUNTER_INCREMENT  0x0002
1375#define COND_COUNTER_MASK       (~COND_SHARED_MASK)
1376
1377#define COND_IS_SHARED(c)  (((c)->value & COND_SHARED_MASK) != 0)
1378
1379/* XXX *technically* there is a race condition that could allow
1380 * XXX a signal to be missed.  If thread A is preempted in _wait()
1381 * XXX after unlocking the mutex and before waiting, and if other
1382 * XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
1383 * XXX before thread A is scheduled again and calls futex_wait(),
1384 * XXX then the signal will be lost.
1385 */
1386
1387int pthread_cond_init(pthread_cond_t *cond,
1388                      const pthread_condattr_t *attr)
1389{
1390    if (cond == NULL)
1391        return EINVAL;
1392
1393    cond->value = 0;
1394
1395    if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
1396        cond->value |= COND_SHARED_MASK;
1397
1398    return 0;
1399}
1400
1401int pthread_cond_destroy(pthread_cond_t *cond)
1402{
1403    if (cond == NULL)
1404        return EINVAL;
1405
1406    cond->value = 0xdeadc04d;
1407    return 0;
1408}
1409
1410/* This function is used by pthread_cond_broadcast and
1411 * pthread_cond_signal to atomically decrement the counter
1412 * then wake-up 'counter' threads.
1413 */
1414static int
1415__pthread_cond_pulse(pthread_cond_t *cond, int  counter)
1416{
1417    long flags;
1418    int  wake_op;
1419
1420    if (__unlikely(cond == NULL))
1421        return EINVAL;
1422
1423    flags = (cond->value & ~COND_COUNTER_MASK);
1424    for (;;) {
1425        long oldval = cond->value;
1426        long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
1427                      | flags;
1428        if (__atomic_cmpxchg(oldval, newval, &cond->value) == 0)
1429            break;
1430    }
1431
1432    wake_op = COND_IS_SHARED(cond) ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE;
1433    __futex_syscall3(&cond->value, wake_op, counter);
1434    return 0;
1435}
1436
1437int pthread_cond_broadcast(pthread_cond_t *cond)
1438{
1439    return __pthread_cond_pulse(cond, INT_MAX);
1440}
1441
1442int pthread_cond_signal(pthread_cond_t *cond)
1443{
1444    return __pthread_cond_pulse(cond, 1);
1445}
1446
1447int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1448{
1449    return pthread_cond_timedwait(cond, mutex, NULL);
1450}
1451
1452int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1453                                      pthread_mutex_t * mutex,
1454                                      const struct timespec *reltime)
1455{
1456    int  status;
1457    int  oldvalue = cond->value;
1458    int  wait_op  = COND_IS_SHARED(cond) ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE;
1459
1460    pthread_mutex_unlock(mutex);
1461    status = __futex_syscall4(&cond->value, wait_op, oldvalue, reltime);
1462    pthread_mutex_lock(mutex);
1463
1464    if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1465    return 0;
1466}
1467
1468int __pthread_cond_timedwait(pthread_cond_t *cond,
1469                             pthread_mutex_t * mutex,
1470                             const struct timespec *abstime,
1471                             clockid_t clock)
1472{
1473    struct timespec ts;
1474    struct timespec * tsp;
1475
1476    if (abstime != NULL) {
1477        if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1478            return ETIMEDOUT;
1479        tsp = &ts;
1480    } else {
1481        tsp = NULL;
1482    }
1483
1484    return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1485}
1486
1487int pthread_cond_timedwait(pthread_cond_t *cond,
1488                           pthread_mutex_t * mutex,
1489                           const struct timespec *abstime)
1490{
1491    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1492}
1493
1494
1495/* this one exists only for backward binary compatibility */
1496int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1497                                     pthread_mutex_t * mutex,
1498                                     const struct timespec *abstime)
1499{
1500    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1501}
1502
1503int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1504                                     pthread_mutex_t * mutex,
1505                                     const struct timespec *abstime)
1506{
1507    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1508}
1509
1510int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1511                                      pthread_mutex_t * mutex,
1512                                      const struct timespec *reltime)
1513{
1514    return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1515}
1516
1517int pthread_cond_timeout_np(pthread_cond_t *cond,
1518                            pthread_mutex_t * mutex,
1519                            unsigned msecs)
1520{
1521    struct timespec ts;
1522
1523    ts.tv_sec = msecs / 1000;
1524    ts.tv_nsec = (msecs % 1000) * 1000000;
1525
1526    return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1527}
1528
1529
1530
1531/* A technical note regarding our thread-local-storage (TLS) implementation:
1532 *
1533 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1534 * though the first TLSMAP_START keys are reserved for Bionic to hold
1535 * special thread-specific variables like errno or a pointer to
1536 * the current thread's descriptor.
1537 *
1538 * while stored in the TLS area, these entries cannot be accessed through
1539 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1540 *
1541 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1542 * to greatly simplify and speedup some OpenGL-related operations. though the
1543 * initialy value will be NULL on all threads.
1544 *
1545 * you can use pthread_getspecific()/setspecific() on these, and in theory
1546 * you could also call pthread_key_delete() as well, though this would
1547 * probably break some apps.
1548 *
1549 * The 'tlsmap_t' type defined below implements a shared global map of
1550 * currently created/allocated TLS keys and the destructors associated
1551 * with them. You should use tlsmap_lock/unlock to access it to avoid
1552 * any race condition.
1553 *
1554 * the global TLS map simply contains a bitmap of allocated keys, and
1555 * an array of destructors.
1556 *
1557 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1558 * pointers. the TLS area of the main thread is stack-allocated in
1559 * __libc_init_common, while the TLS area of other threads is placed at
1560 * the top of their stack in pthread_create.
1561 *
1562 * when pthread_key_create() is called, it finds the first free key in the
1563 * bitmap, then set it to 1, saving the destructor altogether
1564 *
1565 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1566 * and its destructor, and will also clear the key data in the TLS area of
1567 * all created threads. As mandated by Posix, it is the responsability of
1568 * the caller of pthread_key_delete() to properly reclaim the objects that
1569 * were pointed to by these data fields (either before or after the call).
1570 *
1571 */
1572
1573/* TLS Map implementation
1574 */
1575
1576#define TLSMAP_START      (TLS_SLOT_MAX_WELL_KNOWN+1)
1577#define TLSMAP_SIZE       BIONIC_TLS_SLOTS
1578#define TLSMAP_BITS       32
1579#define TLSMAP_WORDS      ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1580#define TLSMAP_WORD(m,k)  (m)->map[(k)/TLSMAP_BITS]
1581#define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
1582
1583/* this macro is used to quickly check that a key belongs to a reasonable range */
1584#define TLSMAP_VALIDATE_KEY(key)  \
1585    ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1586
1587/* the type of tls key destructor functions */
1588typedef void (*tls_dtor_t)(void*);
1589
1590typedef struct {
1591    int         init;                  /* see comment in tlsmap_lock() */
1592    uint32_t    map[TLSMAP_WORDS];     /* bitmap of allocated keys */
1593    tls_dtor_t  dtors[TLSMAP_SIZE];    /* key destructors */
1594} tlsmap_t;
1595
1596static pthread_mutex_t  _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1597static tlsmap_t         _tlsmap;
1598
1599/* lock the global TLS map lock and return a handle to it */
1600static __inline__ tlsmap_t* tlsmap_lock(void)
1601{
1602    tlsmap_t*   m = &_tlsmap;
1603
1604    pthread_mutex_lock(&_tlsmap_lock);
1605    /* we need to initialize the first entry of the 'map' array
1606     * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1607     * when declaring _tlsmap is a bit awkward and is going to
1608     * produce warnings, so do it the first time we use the map
1609     * instead
1610     */
1611    if (__unlikely(!m->init)) {
1612        TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1613        m->init          = 1;
1614    }
1615    return m;
1616}
1617
1618/* unlock the global TLS map */
1619static __inline__ void tlsmap_unlock(tlsmap_t*  m)
1620{
1621    pthread_mutex_unlock(&_tlsmap_lock);
1622    (void)m;  /* a good compiler is a happy compiler */
1623}
1624
1625/* test to see wether a key is allocated */
1626static __inline__ int tlsmap_test(tlsmap_t*  m, int  key)
1627{
1628    return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1629}
1630
1631/* set the destructor and bit flag on a newly allocated key */
1632static __inline__ void tlsmap_set(tlsmap_t*  m, int  key, tls_dtor_t  dtor)
1633{
1634    TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1635    m->dtors[key]       = dtor;
1636}
1637
1638/* clear the destructor and bit flag on an existing key */
1639static __inline__ void  tlsmap_clear(tlsmap_t*  m, int  key)
1640{
1641    TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1642    m->dtors[key]       = NULL;
1643}
1644
1645/* allocate a new TLS key, return -1 if no room left */
1646static int tlsmap_alloc(tlsmap_t*  m, tls_dtor_t  dtor)
1647{
1648    int  key;
1649
1650    for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1651        if ( !tlsmap_test(m, key) ) {
1652            tlsmap_set(m, key, dtor);
1653            return key;
1654        }
1655    }
1656    return -1;
1657}
1658
1659
1660int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1661{
1662    uint32_t   err = ENOMEM;
1663    tlsmap_t*  map = tlsmap_lock();
1664    int        k   = tlsmap_alloc(map, destructor_function);
1665
1666    if (k >= 0) {
1667        *key = k;
1668        err  = 0;
1669    }
1670    tlsmap_unlock(map);
1671    return err;
1672}
1673
1674
1675/* This deletes a pthread_key_t. note that the standard mandates that this does
1676 * not call the destructor of non-NULL key values. Instead, it is the
1677 * responsability of the caller to properly dispose of the corresponding data
1678 * and resources, using any mean it finds suitable.
1679 *
1680 * On the other hand, this function will clear the corresponding key data
1681 * values in all known threads. this prevents later (invalid) calls to
1682 * pthread_getspecific() to receive invalid/stale values.
1683 */
1684int pthread_key_delete(pthread_key_t key)
1685{
1686    uint32_t             err;
1687    pthread_internal_t*  thr;
1688    tlsmap_t*            map;
1689
1690    if (!TLSMAP_VALIDATE_KEY(key)) {
1691        return EINVAL;
1692    }
1693
1694    map = tlsmap_lock();
1695
1696    if (!tlsmap_test(map, key)) {
1697        err = EINVAL;
1698        goto err1;
1699    }
1700
1701    /* clear value in all threads */
1702    pthread_mutex_lock(&gThreadListLock);
1703    for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1704        /* avoid zombie threads with a negative 'join_count'. these are really
1705         * already dead and don't have a TLS area anymore.
1706         *
1707         * similarly, it is possible to have thr->tls == NULL for threads that
1708         * were just recently created through pthread_create() but whose
1709         * startup trampoline (__thread_entry) hasn't been run yet by the
1710         * scheduler. so check for this too.
1711         */
1712        if (thr->join_count < 0 || !thr->tls)
1713            continue;
1714
1715        thr->tls[key] = NULL;
1716    }
1717    tlsmap_clear(map, key);
1718
1719    pthread_mutex_unlock(&gThreadListLock);
1720    err = 0;
1721
1722err1:
1723    tlsmap_unlock(map);
1724    return err;
1725}
1726
1727
1728int pthread_setspecific(pthread_key_t key, const void *ptr)
1729{
1730    int        err = EINVAL;
1731    tlsmap_t*  map;
1732
1733    if (TLSMAP_VALIDATE_KEY(key)) {
1734        /* check that we're trying to set data for an allocated key */
1735        map = tlsmap_lock();
1736        if (tlsmap_test(map, key)) {
1737            ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1738            err = 0;
1739        }
1740        tlsmap_unlock(map);
1741    }
1742    return err;
1743}
1744
1745void * pthread_getspecific(pthread_key_t key)
1746{
1747    if (!TLSMAP_VALIDATE_KEY(key)) {
1748        return NULL;
1749    }
1750
1751    /* for performance reason, we do not lock/unlock the global TLS map
1752     * to check that the key is properly allocated. if the key was not
1753     * allocated, the value read from the TLS should always be NULL
1754     * due to pthread_key_delete() clearing the values for all threads.
1755     */
1756    return (void *)(((unsigned *)__get_tls())[key]);
1757}
1758
1759/* Posix mandates that this be defined in <limits.h> but we don't have
1760 * it just yet.
1761 */
1762#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
1763#  define PTHREAD_DESTRUCTOR_ITERATIONS  4
1764#endif
1765
1766/* this function is called from pthread_exit() to remove all TLS key data
1767 * from this thread's TLS area. this must call the destructor of all keys
1768 * that have a non-NULL data value (and a non-NULL destructor).
1769 *
1770 * because destructors can do funky things like deleting/creating other
1771 * keys, we need to implement this in a loop
1772 */
1773static void pthread_key_clean_all(void)
1774{
1775    tlsmap_t*    map;
1776    void**       tls = (void**)__get_tls();
1777    int          rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
1778
1779    map = tlsmap_lock();
1780
1781    for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
1782    {
1783        int  kk, count = 0;
1784
1785        for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
1786            if ( tlsmap_test(map, kk) )
1787            {
1788                void*       data = tls[kk];
1789                tls_dtor_t  dtor = map->dtors[kk];
1790
1791                if (data != NULL && dtor != NULL)
1792                {
1793                   /* we need to clear the key data now, this will prevent the
1794                    * destructor (or a later one) from seeing the old value if
1795                    * it calls pthread_getspecific() for some odd reason
1796                    *
1797                    * we do not do this if 'dtor == NULL' just in case another
1798                    * destructor function might be responsible for manually
1799                    * releasing the corresponding data.
1800                    */
1801                    tls[kk] = NULL;
1802
1803                   /* because the destructor is free to call pthread_key_create
1804                    * and/or pthread_key_delete, we need to temporarily unlock
1805                    * the TLS map
1806                    */
1807                    tlsmap_unlock(map);
1808                    (*dtor)(data);
1809                    map = tlsmap_lock();
1810
1811                    count += 1;
1812                }
1813            }
1814        }
1815
1816        /* if we didn't call any destructor, there is no need to check the
1817         * TLS data again
1818         */
1819        if (count == 0)
1820            break;
1821    }
1822    tlsmap_unlock(map);
1823}
1824
1825// man says this should be in <linux/unistd.h>, but it isn't
1826extern int tkill(int tid, int sig);
1827
1828int pthread_kill(pthread_t tid, int sig)
1829{
1830    int  ret;
1831    int  old_errno = errno;
1832    pthread_internal_t * thread = (pthread_internal_t *)tid;
1833
1834    ret = tkill(thread->kernel_id, sig);
1835    if (ret < 0) {
1836        ret = errno;
1837        errno = old_errno;
1838    }
1839
1840    return ret;
1841}
1842
1843extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
1844
1845int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
1846{
1847    /* pthread_sigmask must return the error code, but the syscall
1848     * will set errno instead and return 0/-1
1849     */
1850    int ret, old_errno = errno;
1851
1852    ret = __rt_sigprocmask(how, set, oset, _NSIG / 8);
1853    if (ret < 0)
1854        ret = errno;
1855
1856    errno = old_errno;
1857    return ret;
1858}
1859
1860
1861int pthread_getcpuclockid(pthread_t  tid, clockid_t  *clockid)
1862{
1863    const int            CLOCK_IDTYPE_BITS = 3;
1864    pthread_internal_t*  thread = (pthread_internal_t*)tid;
1865
1866    if (!thread)
1867        return ESRCH;
1868
1869    *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
1870    return 0;
1871}
1872
1873
1874/* NOTE: this implementation doesn't support a init function that throws a C++ exception
1875 *       or calls fork()
1876 */
1877int  pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
1878{
1879    static pthread_mutex_t   once_lock = PTHREAD_MUTEX_INITIALIZER;
1880
1881    if (*once_control == PTHREAD_ONCE_INIT) {
1882        _normal_lock( &once_lock );
1883        if (*once_control == PTHREAD_ONCE_INIT) {
1884            (*init_routine)();
1885            *once_control = ~PTHREAD_ONCE_INIT;
1886        }
1887        _normal_unlock( &once_lock );
1888    }
1889    return 0;
1890}
1891