Gen.cpp revision c1a4ab9c313d8a3d12007f2dbef7b5a6fa4ac2ef
1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This file contains codegen for the Thumb2 ISA and is intended to be
19 * includes by:
20 *
21 *        Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 */
24
25/*
26 * Reserve 6 bytes at the beginning of the trace
27 *        +----------------------------+
28 *        | prof count addr (4 bytes)  |
29 *        +----------------------------+
30 *        | chain cell offset (2 bytes)|
31 *        +----------------------------+
32 *
33 * ...and then code to increment the execution
34 *
35 * For continuous profiling (10 bytes)
36 *       ldr   r0, [pc-8]   @ get prof count addr    [4 bytes]
37 *       ldr   r1, [r0]     @ load counter           [2 bytes]
38 *       add   r1, #1       @ increment              [2 bytes]
39 *       str   r1, [r0]     @ store                  [2 bytes]
40 *
41 * For periodic profiling (4 bytes)
42 *       call  TEMPLATE_PERIODIC_PROFILING
43 *
44 * and return the size (in bytes) of the generated code.
45 */
46
47static int genTraceProfileEntry(CompilationUnit *cUnit)
48{
49    intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
50    assert(__BYTE_ORDER == __LITTLE_ENDIAN);
51    newLIR1(cUnit, kArm16BitData, addr & 0xffff);
52    newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
53    cUnit->chainCellOffsetLIR =
54        (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
55    cUnit->headerSize = 6;
56    if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
57        (gDvmJit.profileMode == kTraceProfilingDisabled)) {
58        /* Thumb[2] instruction used directly here to ensure correct size */
59        newLIR2(cUnit, kThumb2LdrPcReln12, r0, 8);
60        newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
61        newLIR2(cUnit, kThumbAddRI8, r1, 1);
62        newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
63        return 10;
64    } else {
65        int opcode = TEMPLATE_PERIODIC_PROFILING;
66        newLIR2(cUnit, kThumbBlx1,
67            (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
68            (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
69        newLIR2(cUnit, kThumbBlx2,
70            (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
71            (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
72        return 4;
73    }
74}
75
76static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
77                        RegLocation rlSrc)
78{
79    RegLocation rlResult;
80    rlSrc = loadValue(cUnit, rlSrc, kFPReg);
81    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
82    newLIR2(cUnit, kThumb2Vnegs, rlResult.lowReg, rlSrc.lowReg);
83    storeValue(cUnit, rlDest, rlResult);
84}
85
86static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
87                         RegLocation rlSrc)
88{
89    RegLocation rlResult;
90    rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
91    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
92    newLIR2(cUnit, kThumb2Vnegd, S2D(rlResult.lowReg, rlResult.highReg),
93            S2D(rlSrc.lowReg, rlSrc.highReg));
94    storeValueWide(cUnit, rlDest, rlResult);
95}
96
97/*
98 * To avoid possible conflicts, we use a lot of temps here.  Note that
99 * our usage of Thumb2 instruction forms avoids the problems with register
100 * reuse for multiply instructions prior to arm6.
101 */
102static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
103                       RegLocation rlSrc1, RegLocation rlSrc2)
104{
105    RegLocation rlResult;
106    int resLo = dvmCompilerAllocTemp(cUnit);
107    int resHi = dvmCompilerAllocTemp(cUnit);
108    int tmp1 = dvmCompilerAllocTemp(cUnit);
109
110    rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
111    rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
112
113    newLIR3(cUnit, kThumb2MulRRR, tmp1, rlSrc2.lowReg, rlSrc1.highReg);
114    newLIR4(cUnit, kThumb2Umull, resLo, resHi, rlSrc2.lowReg, rlSrc1.lowReg);
115    newLIR4(cUnit, kThumb2Mla, tmp1, rlSrc1.lowReg, rlSrc2.highReg, tmp1);
116    newLIR4(cUnit, kThumb2AddRRR, resHi, tmp1, resHi, 0);
117    dvmCompilerFreeTemp(cUnit, tmp1);
118
119    rlResult = dvmCompilerGetReturnWide(cUnit);  // Just as a template, will patch
120    rlResult.lowReg = resLo;
121    rlResult.highReg = resHi;
122    storeValueWide(cUnit, rlDest, rlResult);
123}
124
125static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
126                         OpKind secondOp, RegLocation rlDest,
127                         RegLocation rlSrc1, RegLocation rlSrc2)
128{
129    RegLocation rlResult;
130    rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
131    rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
132    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
133    opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
134    opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg,
135                rlSrc2.highReg);
136    storeValueWide(cUnit, rlDest, rlResult);
137}
138
139void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
140{
141    int numTemps = sizeof(coreTemps)/sizeof(int);
142    int numFPTemps = sizeof(fpTemps)/sizeof(int);
143    RegisterPool *pool = (RegisterPool *)dvmCompilerNew(sizeof(*pool), true);
144    cUnit->regPool = pool;
145    pool->numCoreTemps = numTemps;
146    pool->coreTemps = (RegisterInfo *)
147            dvmCompilerNew(numTemps * sizeof(*cUnit->regPool->coreTemps), true);
148    pool->numFPTemps = numFPTemps;
149    pool->FPTemps = (RegisterInfo *)
150            dvmCompilerNew(numFPTemps * sizeof(*cUnit->regPool->FPTemps), true);
151    dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
152    dvmCompilerInitPool(pool->FPTemps, fpTemps, pool->numFPTemps);
153    pool->nullCheckedRegs =
154        dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
155}
156
157/*
158 * Generate a Thumb2 IT instruction, which can nullify up to
159 * four subsequent instructions based on a condition and its
160 * inverse.  The condition applies to the first instruction, which
161 * is executed if the condition is met.  The string "guide" consists
162 * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
163 * A "T" means the instruction is executed if the condition is
164 * met, and an "E" means the instruction is executed if the condition
165 * is not met.
166 */
167static ArmLIR *genIT(CompilationUnit *cUnit, ArmConditionCode code,
168                     const char *guide)
169{
170    int mask;
171    int condBit = code & 1;
172    int altBit = condBit ^ 1;
173    int mask3 = 0;
174    int mask2 = 0;
175    int mask1 = 0;
176
177    //Note: case fallthroughs intentional
178    switch(strlen(guide)) {
179        case 3:
180            mask1 = (guide[2] == 'T') ? condBit : altBit;
181        case 2:
182            mask2 = (guide[1] == 'T') ? condBit : altBit;
183        case 1:
184            mask3 = (guide[0] == 'T') ? condBit : altBit;
185            break;
186        case 0:
187            break;
188        default:
189            ALOGE("Jit: bad case in genIT");
190            dvmCompilerAbort(cUnit);
191    }
192    mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
193           (1 << (3 - strlen(guide)));
194    return newLIR2(cUnit, kThumb2It, code, mask);
195}
196
197/* Export the Dalvik PC assicated with an instruction to the StackSave area */
198static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
199{
200    ArmLIR *res;
201    int offset = offsetof(StackSaveArea, xtra.currentPc);
202    int rDPC = dvmCompilerAllocTemp(cUnit);
203    res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
204    newLIR3(cUnit, kThumb2StrRRI8Predec, rDPC, r5FP,
205            sizeof(StackSaveArea) - offset);
206    dvmCompilerFreeTemp(cUnit, rDPC);
207    return res;
208}
209
210/*
211 * Handle simple case (thin lock) inline.  If it's complicated, bail
212 * out to the heavyweight lock/unlock routines.  We'll use dedicated
213 * registers here in order to be in the right position in case we
214 * to bail to dvm[Lock/Unlock]Object(self, object)
215 *
216 * r0 -> self pointer [arg0 for dvm[Lock/Unlock]Object
217 * r1 -> object [arg1 for dvm[Lock/Unlock]Object
218 * r2 -> intial contents of object->lock, later result of strex
219 * r3 -> self->threadId
220 * r7 -> temp to hold new lock value [unlock only]
221 * r4 -> allow to be used by utilities as general temp
222 *
223 * The result of the strex is 0 if we acquire the lock.
224 *
225 * See comments in Sync.c for the layout of the lock word.
226 * Of particular interest to this code is the test for the
227 * simple case - which we handle inline.  For monitor enter, the
228 * simple case is thin lock, held by no-one.  For monitor exit,
229 * the simple case is thin lock, held by the unlocking thread with
230 * a recurse count of 0.
231 *
232 * A minor complication is that there is a field in the lock word
233 * unrelated to locking: the hash state.  This field must be ignored, but
234 * preserved.
235 *
236 */
237static void genMonitorEnter(CompilationUnit *cUnit, MIR *mir)
238{
239    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
240    ArmLIR *target;
241    ArmLIR *hopTarget;
242    ArmLIR *branch;
243    ArmLIR *hopBranch;
244
245    assert(LW_SHAPE_THIN == 0);
246    loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
247    dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
248    dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
249    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
250    loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
251    newLIR3(cUnit, kThumb2Ldrex, r2, r1,
252            offsetof(Object, lock) >> 2); // Get object->lock
253    opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
254    // Is lock unheld on lock or held by us (==threadId) on unlock?
255    newLIR4(cUnit, kThumb2Bfi, r3, r2, 0, LW_LOCK_OWNER_SHIFT - 1);
256    newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
257            LW_LOCK_OWNER_SHIFT - 1);
258    hopBranch = newLIR2(cUnit, kThumb2Cbnz, r2, 0);
259    newLIR4(cUnit, kThumb2Strex, r2, r3, r1, offsetof(Object, lock) >> 2);
260    dvmCompilerGenMemBarrier(cUnit, kSY);
261    branch = newLIR2(cUnit, kThumb2Cbz, r2, 0);
262
263    hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
264    hopTarget->defMask = ENCODE_ALL;
265    hopBranch->generic.target = (LIR *)hopTarget;
266
267    // Export PC (part 1)
268    loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
269
270    /* Get dPC of next insn */
271    loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
272                 dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
273    // Export PC (part 2)
274    newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
275            sizeof(StackSaveArea) -
276            offsetof(StackSaveArea, xtra.currentPc));
277    /* Call template, and don't return */
278    genRegCopy(cUnit, r0, r6SELF);
279    genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
280    // Resume here
281    target = newLIR0(cUnit, kArmPseudoTargetLabel);
282    target->defMask = ENCODE_ALL;
283    branch->generic.target = (LIR *)target;
284}
285
286/*
287 * For monitor unlock, we don't have to use ldrex/strex.  Once
288 * we've determined that the lock is thin and that we own it with
289 * a zero recursion count, it's safe to punch it back to the
290 * initial, unlock thin state with a store word.
291 */
292static void genMonitorExit(CompilationUnit *cUnit, MIR *mir)
293{
294    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
295    ArmLIR *target;
296    ArmLIR *branch;
297    ArmLIR *hopTarget;
298    ArmLIR *hopBranch;
299
300    assert(LW_SHAPE_THIN == 0);
301    loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
302    dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
303    dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
304    genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
305    loadWordDisp(cUnit, r1, offsetof(Object, lock), r2); // Get object->lock
306    loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
307    // Is lock unheld on lock or held by us (==threadId) on unlock?
308    opRegRegImm(cUnit, kOpAnd, r7, r2,
309                (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
310    opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
311    newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
312            LW_LOCK_OWNER_SHIFT - 1);
313    opRegReg(cUnit, kOpSub, r2, r3);
314    hopBranch = opCondBranch(cUnit, kArmCondNe);
315    dvmCompilerGenMemBarrier(cUnit, kSY);
316    storeWordDisp(cUnit, r1, offsetof(Object, lock), r7);
317    branch = opNone(cUnit, kOpUncondBr);
318
319    hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
320    hopTarget->defMask = ENCODE_ALL;
321    hopBranch->generic.target = (LIR *)hopTarget;
322
323    // Export PC (part 1)
324    loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
325
326    LOAD_FUNC_ADDR(cUnit, r7, (int)dvmUnlockObject);
327    genRegCopy(cUnit, r0, r6SELF);
328    // Export PC (part 2)
329    newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
330            sizeof(StackSaveArea) -
331            offsetof(StackSaveArea, xtra.currentPc));
332    opReg(cUnit, kOpBlx, r7);
333    /* Did we throw? */
334    ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
335    loadConstant(cUnit, r0,
336                 (int) (cUnit->method->insns + mir->offset +
337                 dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
338    genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
339
340    // Resume here
341    target = newLIR0(cUnit, kArmPseudoTargetLabel);
342    target->defMask = ENCODE_ALL;
343    branch->generic.target = (LIR *)target;
344    branchOver->generic.target = (LIR *) target;
345}
346
347static void genMonitor(CompilationUnit *cUnit, MIR *mir)
348{
349    if (mir->dalvikInsn.opcode == OP_MONITOR_ENTER)
350        genMonitorEnter(cUnit, mir);
351    else
352        genMonitorExit(cUnit, mir);
353}
354
355/*
356 * 64-bit 3way compare function.
357 *     mov   r7, #-1
358 *     cmp   op1hi, op2hi
359 *     blt   done
360 *     bgt   flip
361 *     sub   r7, op1lo, op2lo (treat as unsigned)
362 *     beq   done
363 *     ite   hi
364 *     mov(hi)   r7, #-1
365 *     mov(!hi)  r7, #1
366 * flip:
367 *     neg   r7
368 * done:
369 */
370static void genCmpLong(CompilationUnit *cUnit, MIR *mir,
371                       RegLocation rlDest, RegLocation rlSrc1,
372                       RegLocation rlSrc2)
373{
374    RegLocation rlTemp = LOC_C_RETURN; // Just using as template, will change
375    ArmLIR *target1;
376    ArmLIR *target2;
377    rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
378    rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
379    rlTemp.lowReg = dvmCompilerAllocTemp(cUnit);
380    loadConstant(cUnit, rlTemp.lowReg, -1);
381    opRegReg(cUnit, kOpCmp, rlSrc1.highReg, rlSrc2.highReg);
382    ArmLIR *branch1 = opCondBranch(cUnit, kArmCondLt);
383    ArmLIR *branch2 = opCondBranch(cUnit, kArmCondGt);
384    opRegRegReg(cUnit, kOpSub, rlTemp.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
385    ArmLIR *branch3 = opCondBranch(cUnit, kArmCondEq);
386
387    genIT(cUnit, kArmCondHi, "E");
388    newLIR2(cUnit, kThumb2MovImmShift, rlTemp.lowReg, modifiedImmediate(-1));
389    loadConstant(cUnit, rlTemp.lowReg, 1);
390    genBarrier(cUnit);
391
392    target2 = newLIR0(cUnit, kArmPseudoTargetLabel);
393    target2->defMask = -1;
394    opRegReg(cUnit, kOpNeg, rlTemp.lowReg, rlTemp.lowReg);
395
396    target1 = newLIR0(cUnit, kArmPseudoTargetLabel);
397    target1->defMask = -1;
398
399    storeValue(cUnit, rlDest, rlTemp);
400
401    branch1->generic.target = (LIR *)target1;
402    branch2->generic.target = (LIR *)target2;
403    branch3->generic.target = branch1->generic.target;
404}
405
406static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
407{
408    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
409    RegLocation rlDest = inlinedTarget(cUnit, mir, true);
410    rlSrc = loadValue(cUnit, rlSrc, kFPReg);
411    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
412    newLIR2(cUnit, kThumb2Vabss, rlResult.lowReg, rlSrc.lowReg);
413    storeValue(cUnit, rlDest, rlResult);
414    return false;
415}
416
417static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
418{
419    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
420    RegLocation rlDest = inlinedTargetWide(cUnit, mir, true);
421    rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
422    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
423    newLIR2(cUnit, kThumb2Vabsd, S2D(rlResult.lowReg, rlResult.highReg),
424            S2D(rlSrc.lowReg, rlSrc.highReg));
425    storeValueWide(cUnit, rlDest, rlResult);
426    return false;
427}
428
429static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
430{
431    RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
432    RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
433    rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
434    rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
435    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
436    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
437    opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
438    genIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E");
439    opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg);
440    opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg);
441    genBarrier(cUnit);
442    storeValue(cUnit, rlDest, rlResult);
443    return false;
444}
445
446static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
447        RegLocation rlSrc, RegLocation rlResult, int lit,
448        int firstBit, int secondBit)
449{
450    opRegRegRegShift(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, rlSrc.lowReg,
451                     encodeShift(kArmLsl, secondBit - firstBit));
452    if (firstBit != 0) {
453        opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlResult.lowReg, firstBit);
454    }
455}
456