hash.c revision cea198a11f15a2eb071d98491ca9a8bc8cebfbc4
1/* hash - hashing table processing.
2
3   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
4   Software Foundation, Inc.
5
6   Written by Jim Meyering, 1992.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2, or (at your option)
11   any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software Foundation,
20   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
21
22/* A generic hash table package.  */
23
24/* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead
25   of malloc.  If you change USE_OBSTACK, you have to recompile!  */
26
27#ifdef HAVE_CONFIG_H
28# include <config.h>
29#endif
30
31#include "hash.h"
32#include "xalloc.h"
33
34#include <limits.h>
35#include <stdio.h>
36#include <stdlib.h>
37
38#if USE_OBSTACK
39# include "obstack.h"
40# ifndef obstack_chunk_alloc
41#  define obstack_chunk_alloc malloc
42# endif
43# ifndef obstack_chunk_free
44#  define obstack_chunk_free free
45# endif
46#endif
47
48#ifndef SIZE_MAX
49# define SIZE_MAX ((size_t) -1)
50#endif
51
52struct hash_table
53  {
54    /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,
55       for a possibility of N_BUCKETS.  Among those, N_BUCKETS_USED buckets
56       are not empty, there are N_ENTRIES active entries in the table.  */
57    struct hash_entry *bucket;
58    struct hash_entry const *bucket_limit;
59    size_t n_buckets;
60    size_t n_buckets_used;
61    size_t n_entries;
62
63    /* Tuning arguments, kept in a physicaly separate structure.  */
64    const Hash_tuning *tuning;
65
66    /* Three functions are given to `hash_initialize', see the documentation
67       block for this function.  In a word, HASHER randomizes a user entry
68       into a number up from 0 up to some maximum minus 1; COMPARATOR returns
69       true if two user entries compare equally; and DATA_FREER is the cleanup
70       function for a user entry.  */
71    Hash_hasher hasher;
72    Hash_comparator comparator;
73    Hash_data_freer data_freer;
74
75    /* A linked list of freed struct hash_entry structs.  */
76    struct hash_entry *free_entry_list;
77
78#if USE_OBSTACK
79    /* Whenever obstacks are used, it is possible to allocate all overflowed
80       entries into a single stack, so they all can be freed in a single
81       operation.  It is not clear if the speedup is worth the trouble.  */
82    struct obstack entry_stack;
83#endif
84  };
85
86/* A hash table contains many internal entries, each holding a pointer to
87   some user provided data (also called a user entry).  An entry indistinctly
88   refers to both the internal entry and its associated user entry.  A user
89   entry contents may be hashed by a randomization function (the hashing
90   function, or just `hasher' for short) into a number (or `slot') between 0
91   and the current table size.  At each slot position in the hash table,
92   starts a linked chain of entries for which the user data all hash to this
93   slot.  A bucket is the collection of all entries hashing to the same slot.
94
95   A good `hasher' function will distribute entries rather evenly in buckets.
96   In the ideal case, the length of each bucket is roughly the number of
97   entries divided by the table size.  Finding the slot for a data is usually
98   done in constant time by the `hasher', and the later finding of a precise
99   entry is linear in time with the size of the bucket.  Consequently, a
100   larger hash table size (that is, a larger number of buckets) is prone to
101   yielding shorter chains, *given* the `hasher' function behaves properly.
102
103   Long buckets slow down the lookup algorithm.  One might use big hash table
104   sizes in hope to reduce the average length of buckets, but this might
105   become inordinate, as unused slots in the hash table take some space.  The
106   best bet is to make sure you are using a good `hasher' function (beware
107   that those are not that easy to write! :-), and to use a table size
108   larger than the actual number of entries.  */
109
110/* If an insertion makes the ratio of nonempty buckets to table size larger
111   than the growth threshold (a number between 0.0 and 1.0), then increase
112   the table size by multiplying by the growth factor (a number greater than
113   1.0).  The growth threshold defaults to 0.8, and the growth factor
114   defaults to 1.414, meaning that the table will have doubled its size
115   every second time 80% of the buckets get used.  */
116#define DEFAULT_GROWTH_THRESHOLD 0.8
117#define DEFAULT_GROWTH_FACTOR 1.414
118
119/* If a deletion empties a bucket and causes the ratio of used buckets to
120   table size to become smaller than the shrink threshold (a number between
121   0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
122   number greater than the shrink threshold but smaller than 1.0).  The shrink
123   threshold and factor default to 0.0 and 1.0, meaning that the table never
124   shrinks.  */
125#define DEFAULT_SHRINK_THRESHOLD 0.0
126#define DEFAULT_SHRINK_FACTOR 1.0
127
128/* Use this to initialize or reset a TUNING structure to
129   some sensible values. */
130static const Hash_tuning default_tuning =
131  {
132    DEFAULT_SHRINK_THRESHOLD,
133    DEFAULT_SHRINK_FACTOR,
134    DEFAULT_GROWTH_THRESHOLD,
135    DEFAULT_GROWTH_FACTOR,
136    false
137  };
138
139/* Information and lookup.  */
140
141/* The following few functions provide information about the overall hash
142   table organization: the number of entries, number of buckets and maximum
143   length of buckets.  */
144
145/* Return the number of buckets in the hash table.  The table size, the total
146   number of buckets (used plus unused), or the maximum number of slots, are
147   the same quantity.  */
148
149size_t
150hash_get_n_buckets (const Hash_table *table)
151{
152  return table->n_buckets;
153}
154
155/* Return the number of slots in use (non-empty buckets).  */
156
157size_t
158hash_get_n_buckets_used (const Hash_table *table)
159{
160  return table->n_buckets_used;
161}
162
163/* Return the number of active entries.  */
164
165size_t
166hash_get_n_entries (const Hash_table *table)
167{
168  return table->n_entries;
169}
170
171/* Return the length of the longest chain (bucket).  */
172
173size_t
174hash_get_max_bucket_length (const Hash_table *table)
175{
176  struct hash_entry const *bucket;
177  size_t max_bucket_length = 0;
178
179  for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
180    {
181      if (bucket->data)
182	{
183	  struct hash_entry const *cursor = bucket;
184	  size_t bucket_length = 1;
185
186	  while (cursor = cursor->next, cursor)
187	    bucket_length++;
188
189	  if (bucket_length > max_bucket_length)
190	    max_bucket_length = bucket_length;
191	}
192    }
193
194  return max_bucket_length;
195}
196
197/* Do a mild validation of a hash table, by traversing it and checking two
198   statistics.  */
199
200bool
201hash_table_ok (const Hash_table *table)
202{
203  struct hash_entry const *bucket;
204  size_t n_buckets_used = 0;
205  size_t n_entries = 0;
206
207  for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
208    {
209      if (bucket->data)
210	{
211	  struct hash_entry const *cursor = bucket;
212
213	  /* Count bucket head.  */
214	  n_buckets_used++;
215	  n_entries++;
216
217	  /* Count bucket overflow.  */
218	  while (cursor = cursor->next, cursor)
219	    n_entries++;
220	}
221    }
222
223  if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)
224    return true;
225
226  return false;
227}
228
229void
230hash_print_statistics (const Hash_table *table, FILE *stream)
231{
232  size_t n_entries = hash_get_n_entries (table);
233  size_t n_buckets = hash_get_n_buckets (table);
234  size_t n_buckets_used = hash_get_n_buckets_used (table);
235  size_t max_bucket_length = hash_get_max_bucket_length (table);
236
237  fprintf (stream, "# entries:         %lu\n", (unsigned long int) n_entries);
238  fprintf (stream, "# buckets:         %lu\n", (unsigned long int) n_buckets);
239  fprintf (stream, "# buckets used:    %lu (%.2f%%)\n",
240	   (unsigned long int) n_buckets_used,
241	   (100.0 * n_buckets_used) / n_buckets);
242  fprintf (stream, "max bucket length: %lu\n",
243	   (unsigned long int) max_bucket_length);
244}
245
246/* If ENTRY matches an entry already in the hash table, return the
247   entry from the table.  Otherwise, return NULL.  */
248
249void *
250hash_lookup (const Hash_table *table, const void *entry)
251{
252  struct hash_entry const *bucket
253    = table->bucket + table->hasher (entry, table->n_buckets);
254  struct hash_entry const *cursor;
255
256  if (! (bucket < table->bucket_limit))
257    abort ();
258
259  if (bucket->data == NULL)
260    return NULL;
261
262  for (cursor = bucket; cursor; cursor = cursor->next)
263    if (table->comparator (entry, cursor->data))
264      return cursor->data;
265
266  return NULL;
267}
268
269/* Walking.  */
270
271/* The functions in this page traverse the hash table and process the
272   contained entries.  For the traversal to work properly, the hash table
273   should not be resized nor modified while any particular entry is being
274   processed.  In particular, entries should not be added or removed.  */
275
276/* Return the first data in the table, or NULL if the table is empty.  */
277
278void *
279hash_get_first (const Hash_table *table)
280{
281  struct hash_entry const *bucket;
282
283  if (table->n_entries == 0)
284    return NULL;
285
286  for (bucket = table->bucket; ; bucket++)
287    if (! (bucket < table->bucket_limit))
288      abort ();
289    else if (bucket->data)
290      return bucket->data;
291}
292
293/* Return the user data for the entry following ENTRY, where ENTRY has been
294   returned by a previous call to either `hash_get_first' or `hash_get_next'.
295   Return NULL if there are no more entries.  */
296
297void *
298hash_get_next (const Hash_table *table, const void *entry)
299{
300  struct hash_entry const *bucket
301    = table->bucket + table->hasher (entry, table->n_buckets);
302  struct hash_entry const *cursor;
303
304  if (! (bucket < table->bucket_limit))
305    abort ();
306
307  /* Find next entry in the same bucket.  */
308  for (cursor = bucket; cursor; cursor = cursor->next)
309    if (cursor->data == entry && cursor->next)
310      return cursor->next->data;
311
312  /* Find first entry in any subsequent bucket.  */
313  while (++bucket < table->bucket_limit)
314    if (bucket->data)
315      return bucket->data;
316
317  /* None found.  */
318  return NULL;
319}
320
321/* Fill BUFFER with pointers to active user entries in the hash table, then
322   return the number of pointers copied.  Do not copy more than BUFFER_SIZE
323   pointers.  */
324
325size_t
326hash_get_entries (const Hash_table *table, void **buffer,
327		  size_t buffer_size)
328{
329  size_t counter = 0;
330  struct hash_entry const *bucket;
331  struct hash_entry const *cursor;
332
333  for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
334    {
335      if (bucket->data)
336	{
337	  for (cursor = bucket; cursor; cursor = cursor->next)
338	    {
339	      if (counter >= buffer_size)
340		return counter;
341	      buffer[counter++] = cursor->data;
342	    }
343	}
344    }
345
346  return counter;
347}
348
349/* Call a PROCESSOR function for each entry of a hash table, and return the
350   number of entries for which the processor function returned success.  A
351   pointer to some PROCESSOR_DATA which will be made available to each call to
352   the processor function.  The PROCESSOR accepts two arguments: the first is
353   the user entry being walked into, the second is the value of PROCESSOR_DATA
354   as received.  The walking continue for as long as the PROCESSOR function
355   returns nonzero.  When it returns zero, the walking is interrupted.  */
356
357size_t
358hash_do_for_each (const Hash_table *table, Hash_processor processor,
359		  void *processor_data)
360{
361  size_t counter = 0;
362  struct hash_entry const *bucket;
363  struct hash_entry const *cursor;
364
365  for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
366    {
367      if (bucket->data)
368	{
369	  for (cursor = bucket; cursor; cursor = cursor->next)
370	    {
371	      if (!(*processor) (cursor->data, processor_data))
372		return counter;
373	      counter++;
374	    }
375	}
376    }
377
378  return counter;
379}
380
381/* Allocation and clean-up.  */
382
383/* Return a hash index for a NUL-terminated STRING between 0 and N_BUCKETS-1.
384   This is a convenience routine for constructing other hashing functions.  */
385
386#if USE_DIFF_HASH
387
388/* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see
389   B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,
390   Software--practice & experience 20, 2 (Feb 1990), 209-224.  Good hash
391   algorithms tend to be domain-specific, so what's good for [diffutils'] io.c
392   may not be good for your application."  */
393
394size_t
395hash_string (const char *string, size_t n_buckets)
396{
397# define ROTATE_LEFT(Value, Shift) \
398  ((Value) << (Shift) | (Value) >> ((sizeof (size_t) * CHAR_BIT) - (Shift)))
399# define HASH_ONE_CHAR(Value, Byte) \
400  ((Byte) + ROTATE_LEFT (Value, 7))
401
402  size_t value = 0;
403  unsigned char ch;
404
405  for (; (ch = *string); string++)
406    value = HASH_ONE_CHAR (value, ch);
407  return value % n_buckets;
408
409# undef ROTATE_LEFT
410# undef HASH_ONE_CHAR
411}
412
413#else /* not USE_DIFF_HASH */
414
415/* This one comes from `recode', and performs a bit better than the above as
416   per a few experiments.  It is inspired from a hashing routine found in the
417   very old Cyber `snoop', itself written in typical Greg Mansfield style.
418   (By the way, what happened to this excellent man?  Is he still alive?)  */
419
420size_t
421hash_string (const char *string, size_t n_buckets)
422{
423  size_t value = 0;
424  unsigned char ch;
425
426  for (; (ch = *string); string++)
427    value = (value * 31 + ch) % n_buckets;
428  return value;
429}
430
431#endif /* not USE_DIFF_HASH */
432
433/* Return true if CANDIDATE is a prime number.  CANDIDATE should be an odd
434   number at least equal to 11.  */
435
436static bool
437is_prime (size_t candidate)
438{
439  size_t divisor = 3;
440  size_t square = divisor * divisor;
441
442  while (square < candidate && (candidate % divisor))
443    {
444      divisor++;
445      square += 4 * divisor;
446      divisor++;
447    }
448
449  return (candidate % divisor ? true : false);
450}
451
452/* Round a given CANDIDATE number up to the nearest prime, and return that
453   prime.  Primes lower than 10 are merely skipped.  */
454
455static size_t
456next_prime (size_t candidate)
457{
458  /* Skip small primes.  */
459  if (candidate < 10)
460    candidate = 10;
461
462  /* Make it definitely odd.  */
463  candidate |= 1;
464
465  while (!is_prime (candidate))
466    candidate += 2;
467
468  return candidate;
469}
470
471void
472hash_reset_tuning (Hash_tuning *tuning)
473{
474  *tuning = default_tuning;
475}
476
477/* For the given hash TABLE, check the user supplied tuning structure for
478   reasonable values, and return true if there is no gross error with it.
479   Otherwise, definitively reset the TUNING field to some acceptable default
480   in the hash table (that is, the user loses the right of further modifying
481   tuning arguments), and return false.  */
482
483static bool
484check_tuning (Hash_table *table)
485{
486  const Hash_tuning *tuning = table->tuning;
487
488  /* Be a bit stricter than mathematics would require, so that
489     rounding errors in size calculations do not cause allocations to
490     fail to grow or shrink as they should.  The smallest allocation
491     is 11 (due to next_prime's algorithm), so an epsilon of 0.1
492     should be good enough.  */
493  float epsilon = 0.1f;
494
495  if (epsilon < tuning->growth_threshold
496      && tuning->growth_threshold < 1 - epsilon
497      && 1 + epsilon < tuning->growth_factor
498      && 0 <= tuning->shrink_threshold
499      && tuning->shrink_threshold + epsilon < tuning->shrink_factor
500      && tuning->shrink_factor <= 1
501      && tuning->shrink_threshold + epsilon < tuning->growth_threshold)
502    return true;
503
504  table->tuning = &default_tuning;
505  return false;
506}
507
508/* Allocate and return a new hash table, or NULL upon failure.  The initial
509   number of buckets is automatically selected so as to _guarantee_ that you
510   may insert at least CANDIDATE different user entries before any growth of
511   the hash table size occurs.  So, if have a reasonably tight a-priori upper
512   bound on the number of entries you intend to insert in the hash table, you
513   may save some table memory and insertion time, by specifying it here.  If
514   the IS_N_BUCKETS field of the TUNING structure is true, the CANDIDATE
515   argument has its meaning changed to the wanted number of buckets.
516
517   TUNING points to a structure of user-supplied values, in case some fine
518   tuning is wanted over the default behavior of the hasher.  If TUNING is
519   NULL, the default tuning parameters are used instead.
520
521   The user-supplied HASHER function should be provided.  It accepts two
522   arguments ENTRY and TABLE_SIZE.  It computes, by hashing ENTRY contents, a
523   slot number for that entry which should be in the range 0..TABLE_SIZE-1.
524   This slot number is then returned.
525
526   The user-supplied COMPARATOR function should be provided.  It accepts two
527   arguments pointing to user data, it then returns true for a pair of entries
528   that compare equal, or false otherwise.  This function is internally called
529   on entries which are already known to hash to the same bucket index.
530
531   The user-supplied DATA_FREER function, when not NULL, may be later called
532   with the user data as an argument, just before the entry containing the
533   data gets freed.  This happens from within `hash_free' or `hash_clear'.
534   You should specify this function only if you want these functions to free
535   all of your `data' data.  This is typically the case when your data is
536   simply an auxiliary struct that you have malloc'd to aggregate several
537   values.  */
538
539Hash_table *
540hash_initialize (size_t candidate, const Hash_tuning *tuning,
541		 Hash_hasher hasher, Hash_comparator comparator,
542		 Hash_data_freer data_freer)
543{
544  Hash_table *table;
545
546  if (hasher == NULL || comparator == NULL)
547    return NULL;
548
549  table = malloc (sizeof *table);
550  if (table == NULL)
551    return NULL;
552
553  if (!tuning)
554    tuning = &default_tuning;
555  table->tuning = tuning;
556  if (!check_tuning (table))
557    {
558      /* Fail if the tuning options are invalid.  This is the only occasion
559	 when the user gets some feedback about it.  Once the table is created,
560	 if the user provides invalid tuning options, we silently revert to
561	 using the defaults, and ignore further request to change the tuning
562	 options.  */
563      goto fail;
564    }
565
566  if (!tuning->is_n_buckets)
567    {
568      float new_candidate = candidate / tuning->growth_threshold;
569      if (SIZE_MAX <= new_candidate)
570	goto fail;
571      candidate = new_candidate;
572    }
573
574  if (xalloc_oversized (candidate, sizeof *table->bucket))
575    goto fail;
576  table->n_buckets = next_prime (candidate);
577  if (xalloc_oversized (table->n_buckets, sizeof *table->bucket))
578    goto fail;
579
580  table->bucket = calloc (table->n_buckets, sizeof *table->bucket);
581  table->bucket_limit = table->bucket + table->n_buckets;
582  table->n_buckets_used = 0;
583  table->n_entries = 0;
584
585  table->hasher = hasher;
586  table->comparator = comparator;
587  table->data_freer = data_freer;
588
589  table->free_entry_list = NULL;
590#if USE_OBSTACK
591  obstack_init (&table->entry_stack);
592#endif
593  return table;
594
595 fail:
596  free (table);
597  return NULL;
598}
599
600/* Make all buckets empty, placing any chained entries on the free list.
601   Apply the user-specified function data_freer (if any) to the datas of any
602   affected entries.  */
603
604void
605hash_clear (Hash_table *table)
606{
607  struct hash_entry *bucket;
608
609  for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
610    {
611      if (bucket->data)
612	{
613	  struct hash_entry *cursor;
614	  struct hash_entry *next;
615
616	  /* Free the bucket overflow.  */
617	  for (cursor = bucket->next; cursor; cursor = next)
618	    {
619	      if (table->data_freer)
620		(*table->data_freer) (cursor->data);
621	      cursor->data = NULL;
622
623	      next = cursor->next;
624	      /* Relinking is done one entry at a time, as it is to be expected
625		 that overflows are either rare or short.  */
626	      cursor->next = table->free_entry_list;
627	      table->free_entry_list = cursor;
628	    }
629
630	  /* Free the bucket head.  */
631	  if (table->data_freer)
632	    (*table->data_freer) (bucket->data);
633	  bucket->data = NULL;
634	  bucket->next = NULL;
635	}
636    }
637
638  table->n_buckets_used = 0;
639  table->n_entries = 0;
640}
641
642/* Reclaim all storage associated with a hash table.  If a data_freer
643   function has been supplied by the user when the hash table was created,
644   this function applies it to the data of each entry before freeing that
645   entry.  */
646
647void
648hash_free (Hash_table *table)
649{
650  struct hash_entry *bucket;
651  struct hash_entry *cursor;
652  struct hash_entry *next;
653
654  /* Call the user data_freer function.  */
655  if (table->data_freer && table->n_entries)
656    {
657      for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
658	{
659	  if (bucket->data)
660	    {
661	      for (cursor = bucket; cursor; cursor = cursor->next)
662		{
663		  (*table->data_freer) (cursor->data);
664		}
665	    }
666	}
667    }
668
669#if USE_OBSTACK
670
671  obstack_free (&table->entry_stack, NULL);
672
673#else
674
675  /* Free all bucket overflowed entries.  */
676  for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
677    {
678      for (cursor = bucket->next; cursor; cursor = next)
679	{
680	  next = cursor->next;
681	  free (cursor);
682	}
683    }
684
685  /* Also reclaim the internal list of previously freed entries.  */
686  for (cursor = table->free_entry_list; cursor; cursor = next)
687    {
688      next = cursor->next;
689      free (cursor);
690    }
691
692#endif
693
694  /* Free the remainder of the hash table structure.  */
695  free (table->bucket);
696  free (table);
697}
698
699/* Insertion and deletion.  */
700
701/* Get a new hash entry for a bucket overflow, possibly by reclying a
702   previously freed one.  If this is not possible, allocate a new one.  */
703
704static struct hash_entry *
705allocate_entry (Hash_table *table)
706{
707  struct hash_entry *new;
708
709  if (table->free_entry_list)
710    {
711      new = table->free_entry_list;
712      table->free_entry_list = new->next;
713    }
714  else
715    {
716#if USE_OBSTACK
717      new = obstack_alloc (&table->entry_stack, sizeof *new);
718#else
719      new = malloc (sizeof *new);
720#endif
721    }
722
723  return new;
724}
725
726/* Free a hash entry which was part of some bucket overflow,
727   saving it for later recycling.  */
728
729static void
730free_entry (Hash_table *table, struct hash_entry *entry)
731{
732  entry->data = NULL;
733  entry->next = table->free_entry_list;
734  table->free_entry_list = entry;
735}
736
737/* This private function is used to help with insertion and deletion.  When
738   ENTRY matches an entry in the table, return a pointer to the corresponding
739   user data and set *BUCKET_HEAD to the head of the selected bucket.
740   Otherwise, return NULL.  When DELETE is true and ENTRY matches an entry in
741   the table, unlink the matching entry.  */
742
743static void *
744hash_find_entry (Hash_table *table, const void *entry,
745		 struct hash_entry **bucket_head, bool delete)
746{
747  struct hash_entry *bucket
748    = table->bucket + table->hasher (entry, table->n_buckets);
749  struct hash_entry *cursor;
750
751  if (! (bucket < table->bucket_limit))
752    abort ();
753
754  *bucket_head = bucket;
755
756  /* Test for empty bucket.  */
757  if (bucket->data == NULL)
758    return NULL;
759
760  /* See if the entry is the first in the bucket.  */
761  if ((*table->comparator) (entry, bucket->data))
762    {
763      void *data = bucket->data;
764
765      if (delete)
766	{
767	  if (bucket->next)
768	    {
769	      struct hash_entry *next = bucket->next;
770
771	      /* Bump the first overflow entry into the bucket head, then save
772		 the previous first overflow entry for later recycling.  */
773	      *bucket = *next;
774	      free_entry (table, next);
775	    }
776	  else
777	    {
778	      bucket->data = NULL;
779	    }
780	}
781
782      return data;
783    }
784
785  /* Scan the bucket overflow.  */
786  for (cursor = bucket; cursor->next; cursor = cursor->next)
787    {
788      if ((*table->comparator) (entry, cursor->next->data))
789	{
790	  void *data = cursor->next->data;
791
792	  if (delete)
793	    {
794	      struct hash_entry *next = cursor->next;
795
796	      /* Unlink the entry to delete, then save the freed entry for later
797		 recycling.  */
798	      cursor->next = next->next;
799	      free_entry (table, next);
800	    }
801
802	  return data;
803	}
804    }
805
806  /* No entry found.  */
807  return NULL;
808}
809
810/* For an already existing hash table, change the number of buckets through
811   specifying CANDIDATE.  The contents of the hash table are preserved.  The
812   new number of buckets is automatically selected so as to _guarantee_ that
813   the table may receive at least CANDIDATE different user entries, including
814   those already in the table, before any other growth of the hash table size
815   occurs.  If TUNING->IS_N_BUCKETS is true, then CANDIDATE specifies the
816   exact number of buckets desired.  */
817
818bool
819hash_rehash (Hash_table *table, size_t candidate)
820{
821  Hash_table *new_table;
822  struct hash_entry *bucket;
823  struct hash_entry *cursor;
824  struct hash_entry *next;
825
826  new_table = hash_initialize (candidate, table->tuning, table->hasher,
827			       table->comparator, table->data_freer);
828  if (new_table == NULL)
829    return false;
830
831  /* Merely reuse the extra old space into the new table.  */
832#if USE_OBSTACK
833  obstack_free (&new_table->entry_stack, NULL);
834  new_table->entry_stack = table->entry_stack;
835#endif
836  new_table->free_entry_list = table->free_entry_list;
837
838  for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
839    if (bucket->data)
840      for (cursor = bucket; cursor; cursor = next)
841	{
842	  void *data = cursor->data;
843	  struct hash_entry *new_bucket
844	    = (new_table->bucket
845	       + new_table->hasher (data, new_table->n_buckets));
846
847	  if (! (new_bucket < new_table->bucket_limit))
848	    abort ();
849
850	  next = cursor->next;
851
852	  if (new_bucket->data)
853	    {
854	      if (cursor == bucket)
855		{
856		  /* Allocate or recycle an entry, when moving from a bucket
857		     header into a bucket overflow.  */
858		  struct hash_entry *new_entry = allocate_entry (new_table);
859
860		  if (new_entry == NULL)
861		    return false;
862
863		  new_entry->data = data;
864		  new_entry->next = new_bucket->next;
865		  new_bucket->next = new_entry;
866		}
867	      else
868		{
869		  /* Merely relink an existing entry, when moving from a
870		     bucket overflow into a bucket overflow.  */
871		  cursor->next = new_bucket->next;
872		  new_bucket->next = cursor;
873		}
874	    }
875	  else
876	    {
877	      /* Free an existing entry, when moving from a bucket
878		 overflow into a bucket header.  Also take care of the
879		 simple case of moving from a bucket header into a bucket
880		 header.  */
881	      new_bucket->data = data;
882	      new_table->n_buckets_used++;
883	      if (cursor != bucket)
884		free_entry (new_table, cursor);
885	    }
886	}
887
888  free (table->bucket);
889  table->bucket = new_table->bucket;
890  table->bucket_limit = new_table->bucket_limit;
891  table->n_buckets = new_table->n_buckets;
892  table->n_buckets_used = new_table->n_buckets_used;
893  table->free_entry_list = new_table->free_entry_list;
894  /* table->n_entries already holds its value.  */
895#if USE_OBSTACK
896  table->entry_stack = new_table->entry_stack;
897#endif
898  free (new_table);
899
900  return true;
901}
902
903/* If ENTRY matches an entry already in the hash table, return the pointer
904   to the entry from the table.  Otherwise, insert ENTRY and return ENTRY.
905   Return NULL if the storage required for insertion cannot be allocated.  */
906
907void *
908hash_insert (Hash_table *table, const void *entry)
909{
910  void *data;
911  struct hash_entry *bucket;
912
913  /* The caller cannot insert a NULL entry.  */
914  if (! entry)
915    abort ();
916
917  /* If there's a matching entry already in the table, return that.  */
918  if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)
919    return data;
920
921  /* ENTRY is not matched, it should be inserted.  */
922
923  if (bucket->data)
924    {
925      struct hash_entry *new_entry = allocate_entry (table);
926
927      if (new_entry == NULL)
928	return NULL;
929
930      /* Add ENTRY in the overflow of the bucket.  */
931
932      new_entry->data = (void *) entry;
933      new_entry->next = bucket->next;
934      bucket->next = new_entry;
935      table->n_entries++;
936      return (void *) entry;
937    }
938
939  /* Add ENTRY right in the bucket head.  */
940
941  bucket->data = (void *) entry;
942  table->n_entries++;
943  table->n_buckets_used++;
944
945  /* If the growth threshold of the buckets in use has been reached, increase
946     the table size and rehash.  There's no point in checking the number of
947     entries:  if the hashing function is ill-conditioned, rehashing is not
948     likely to improve it.  */
949
950  if (table->n_buckets_used
951      > table->tuning->growth_threshold * table->n_buckets)
952    {
953      /* Check more fully, before starting real work.  If tuning arguments
954	 became invalid, the second check will rely on proper defaults.  */
955      check_tuning (table);
956      if (table->n_buckets_used
957	  > table->tuning->growth_threshold * table->n_buckets)
958	{
959	  const Hash_tuning *tuning = table->tuning;
960	  float candidate =
961	    (tuning->is_n_buckets
962	     ? (table->n_buckets * tuning->growth_factor)
963	     : (table->n_buckets * tuning->growth_factor
964		* tuning->growth_threshold));
965
966	  if (SIZE_MAX <= candidate)
967	    return NULL;
968
969	  /* If the rehash fails, arrange to return NULL.  */
970	  if (!hash_rehash (table, candidate))
971	    entry = NULL;
972	}
973    }
974
975  return (void *) entry;
976}
977
978/* If ENTRY is already in the table, remove it and return the just-deleted
979   data (the user may want to deallocate its storage).  If ENTRY is not in the
980   table, don't modify the table and return NULL.  */
981
982void *
983hash_delete (Hash_table *table, const void *entry)
984{
985  void *data;
986  struct hash_entry *bucket;
987
988  data = hash_find_entry (table, entry, &bucket, true);
989  if (!data)
990    return NULL;
991
992  table->n_entries--;
993  if (!bucket->data)
994    {
995      table->n_buckets_used--;
996
997      /* If the shrink threshold of the buckets in use has been reached,
998	 rehash into a smaller table.  */
999
1000      if (table->n_buckets_used
1001	  < table->tuning->shrink_threshold * table->n_buckets)
1002	{
1003	  /* Check more fully, before starting real work.  If tuning arguments
1004	     became invalid, the second check will rely on proper defaults.  */
1005	  check_tuning (table);
1006	  if (table->n_buckets_used
1007	      < table->tuning->shrink_threshold * table->n_buckets)
1008	    {
1009	      const Hash_tuning *tuning = table->tuning;
1010	      size_t candidate =
1011		(tuning->is_n_buckets
1012		 ? table->n_buckets * tuning->shrink_factor
1013		 : (table->n_buckets * tuning->shrink_factor
1014		    * tuning->growth_threshold));
1015
1016	      hash_rehash (table, candidate);
1017	    }
1018	}
1019    }
1020
1021  return data;
1022}
1023
1024/* Testing.  */
1025
1026#if TESTING
1027
1028void
1029hash_print (const Hash_table *table)
1030{
1031  struct hash_entry const *bucket;
1032
1033  for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
1034    {
1035      struct hash_entry *cursor;
1036
1037      if (bucket)
1038	printf ("%lu:\n", (unsigned long int) (bucket - table->bucket));
1039
1040      for (cursor = bucket; cursor; cursor = cursor->next)
1041	{
1042	  char const *s = cursor->data;
1043	  /* FIXME */
1044	  if (s)
1045	    printf ("  %s\n", s);
1046	}
1047    }
1048}
1049
1050#endif /* TESTING */
1051