message_loop.h revision 9639f9bb6f038fcff8d26463ba0ac698357eee46
1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef BASE_MESSAGE_LOOP_H_
6#define BASE_MESSAGE_LOOP_H_
7#pragma once
8
9#include <queue>
10#include <string>
11
12#include "base/base_api.h"
13#include "base/basictypes.h"
14#include "base/memory/ref_counted.h"
15#include "base/message_pump.h"
16#include "base/observer_list.h"
17#include "base/synchronization/lock.h"
18#include "base/task.h"
19
20#if defined(OS_WIN)
21// We need this to declare base::MessagePumpWin::Dispatcher, which we should
22// really just eliminate.
23#include "base/message_pump_win.h"
24#elif defined(OS_POSIX)
25#include "base/message_pump_libevent.h"
26#if !defined(OS_MACOSX)
27#include "base/message_pump_glib.h"
28typedef struct _XDisplay Display;
29#endif
30#endif
31#if defined(TOUCH_UI)
32#include "base/message_pump_glib_x_dispatch.h"
33#endif
34
35namespace base {
36class Histogram;
37}
38
39// A MessageLoop is used to process events for a particular thread.  There is
40// at most one MessageLoop instance per thread.
41//
42// Events include at a minimum Task instances submitted to PostTask or those
43// managed by TimerManager.  Depending on the type of message pump used by the
44// MessageLoop other events such as UI messages may be processed.  On Windows
45// APC calls (as time permits) and signals sent to a registered set of HANDLEs
46// may also be processed.
47//
48// NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
49// on the thread where the MessageLoop's Run method executes.
50//
51// NOTE: MessageLoop has task reentrancy protection.  This means that if a
52// task is being processed, a second task cannot start until the first task is
53// finished.  Reentrancy can happen when processing a task, and an inner
54// message pump is created.  That inner pump then processes native messages
55// which could implicitly start an inner task.  Inner message pumps are created
56// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
57// (DoDragDrop), printer functions (StartDoc) and *many* others.
58//
59// Sample workaround when inner task processing is needed:
60//   bool old_state = MessageLoop::current()->NestableTasksAllowed();
61//   MessageLoop::current()->SetNestableTasksAllowed(true);
62//   HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here.
63//   MessageLoop::current()->SetNestableTasksAllowed(old_state);
64//   // Process hr  (the result returned by DoDragDrop().
65//
66// Please be SURE your task is reentrant (nestable) and all global variables
67// are stable and accessible before calling SetNestableTasksAllowed(true).
68//
69class BASE_API MessageLoop : public base::MessagePump::Delegate {
70 public:
71#if defined(OS_WIN)
72  typedef base::MessagePumpWin::Dispatcher Dispatcher;
73  typedef base::MessagePumpForUI::Observer Observer;
74#elif !defined(OS_MACOSX)
75#if defined(TOUCH_UI)
76  typedef base::MessagePumpGlibXDispatcher Dispatcher;
77#else
78  typedef base::MessagePumpForUI::Dispatcher Dispatcher;
79#endif
80  typedef base::MessagePumpForUI::Observer Observer;
81#endif
82
83  // A MessageLoop has a particular type, which indicates the set of
84  // asynchronous events it may process in addition to tasks and timers.
85  //
86  // TYPE_DEFAULT
87  //   This type of ML only supports tasks and timers.
88  //
89  // TYPE_UI
90  //   This type of ML also supports native UI events (e.g., Windows messages).
91  //   See also MessageLoopForUI.
92  //
93  // TYPE_IO
94  //   This type of ML also supports asynchronous IO.  See also
95  //   MessageLoopForIO.
96  //
97  enum Type {
98    TYPE_DEFAULT,
99    TYPE_UI,
100    TYPE_IO
101  };
102
103  // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
104  // is typical to make use of the current thread's MessageLoop instance.
105  explicit MessageLoop(Type type = TYPE_DEFAULT);
106  ~MessageLoop();
107
108  // Returns the MessageLoop object for the current thread, or null if none.
109  static MessageLoop* current();
110
111  static void EnableHistogrammer(bool enable_histogrammer);
112
113  // A DestructionObserver is notified when the current MessageLoop is being
114  // destroyed.  These obsevers are notified prior to MessageLoop::current()
115  // being changed to return NULL.  This gives interested parties the chance to
116  // do final cleanup that depends on the MessageLoop.
117  //
118  // NOTE: Any tasks posted to the MessageLoop during this notification will
119  // not be run.  Instead, they will be deleted.
120  //
121  class BASE_API DestructionObserver {
122   public:
123    virtual void WillDestroyCurrentMessageLoop() = 0;
124
125   protected:
126    virtual ~DestructionObserver();
127  };
128
129  // Add a DestructionObserver, which will start receiving notifications
130  // immediately.
131  void AddDestructionObserver(DestructionObserver* destruction_observer);
132
133  // Remove a DestructionObserver.  It is safe to call this method while a
134  // DestructionObserver is receiving a notification callback.
135  void RemoveDestructionObserver(DestructionObserver* destruction_observer);
136
137  // The "PostTask" family of methods call the task's Run method asynchronously
138  // from within a message loop at some point in the future.
139  //
140  // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
141  // with normal UI or IO event processing.  With the PostDelayedTask variant,
142  // tasks are called after at least approximately 'delay_ms' have elapsed.
143  //
144  // The NonNestable variants work similarly except that they promise never to
145  // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
146  // such tasks get deferred until the top-most MessageLoop::Run is executing.
147  //
148  // The MessageLoop takes ownership of the Task, and deletes it after it has
149  // been Run().
150  //
151  // NOTE: These methods may be called on any thread.  The Task will be invoked
152  // on the thread that executes MessageLoop::Run().
153
154  void PostTask(
155      const tracked_objects::Location& from_here, Task* task);
156
157  void PostDelayedTask(
158      const tracked_objects::Location& from_here, Task* task, int64 delay_ms);
159
160  void PostNonNestableTask(
161      const tracked_objects::Location& from_here, Task* task);
162
163  void PostNonNestableDelayedTask(
164      const tracked_objects::Location& from_here, Task* task, int64 delay_ms);
165
166  // A variant on PostTask that deletes the given object.  This is useful
167  // if the object needs to live until the next run of the MessageLoop (for
168  // example, deleting a RenderProcessHost from within an IPC callback is not
169  // good).
170  //
171  // NOTE: This method may be called on any thread.  The object will be deleted
172  // on the thread that executes MessageLoop::Run().  If this is not the same
173  // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
174  // from RefCountedThreadSafe<T>!
175  template <class T>
176  void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
177    PostNonNestableTask(from_here, new DeleteTask<T>(object));
178  }
179
180  // A variant on PostTask that releases the given reference counted object
181  // (by calling its Release method).  This is useful if the object needs to
182  // live until the next run of the MessageLoop, or if the object needs to be
183  // released on a particular thread.
184  //
185  // NOTE: This method may be called on any thread.  The object will be
186  // released (and thus possibly deleted) on the thread that executes
187  // MessageLoop::Run().  If this is not the same as the thread that calls
188  // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
189  // RefCountedThreadSafe<T>!
190  template <class T>
191  void ReleaseSoon(const tracked_objects::Location& from_here,
192                   const T* object) {
193    PostNonNestableTask(from_here, new ReleaseTask<T>(object));
194  }
195
196  // Run the message loop.
197  void Run();
198
199  // Process all pending tasks, windows messages, etc., but don't wait/sleep.
200  // Return as soon as all items that can be run are taken care of.
201  void RunAllPending();
202
203  // Signals the Run method to return after it is done processing all pending
204  // messages.  This method may only be called on the same thread that called
205  // Run, and Run must still be on the call stack.
206  //
207  // Use QuitTask if you need to Quit another thread's MessageLoop, but note
208  // that doing so is fairly dangerous if the target thread makes nested calls
209  // to MessageLoop::Run.  The problem being that you won't know which nested
210  // run loop you are quiting, so be careful!
211  //
212  void Quit();
213
214  // This method is a variant of Quit, that does not wait for pending messages
215  // to be processed before returning from Run.
216  void QuitNow();
217
218  // Invokes Quit on the current MessageLoop when run.  Useful to schedule an
219  // arbitrary MessageLoop to Quit.
220  class QuitTask : public Task {
221   public:
222    virtual void Run() {
223      MessageLoop::current()->Quit();
224    }
225  };
226
227  // Returns the type passed to the constructor.
228  Type type() const { return type_; }
229
230  // Optional call to connect the thread name with this loop.
231  void set_thread_name(const std::string& thread_name) {
232    DCHECK(thread_name_.empty()) << "Should not rename this thread!";
233    thread_name_ = thread_name;
234  }
235  const std::string& thread_name() const { return thread_name_; }
236
237  // Enables or disables the recursive task processing. This happens in the case
238  // of recursive message loops. Some unwanted message loop may occurs when
239  // using common controls or printer functions. By default, recursive task
240  // processing is disabled.
241  //
242  // The specific case where tasks get queued is:
243  // - The thread is running a message loop.
244  // - It receives a task #1 and execute it.
245  // - The task #1 implicitly start a message loop, like a MessageBox in the
246  //   unit test. This can also be StartDoc or GetSaveFileName.
247  // - The thread receives a task #2 before or while in this second message
248  //   loop.
249  // - With NestableTasksAllowed set to true, the task #2 will run right away.
250  //   Otherwise, it will get executed right after task #1 completes at "thread
251  //   message loop level".
252  void SetNestableTasksAllowed(bool allowed);
253  bool NestableTasksAllowed() const;
254
255  // Enables nestable tasks on |loop| while in scope.
256  class ScopedNestableTaskAllower {
257   public:
258    explicit ScopedNestableTaskAllower(MessageLoop* loop)
259        : loop_(loop),
260          old_state_(loop_->NestableTasksAllowed()) {
261      loop_->SetNestableTasksAllowed(true);
262    }
263    ~ScopedNestableTaskAllower() {
264      loop_->SetNestableTasksAllowed(old_state_);
265    }
266
267   private:
268    MessageLoop* loop_;
269    bool old_state_;
270  };
271
272  // Enables or disables the restoration during an exception of the unhandled
273  // exception filter that was active when Run() was called. This can happen
274  // if some third party code call SetUnhandledExceptionFilter() and never
275  // restores the previous filter.
276  void set_exception_restoration(bool restore) {
277    exception_restoration_ = restore;
278  }
279
280  // Returns true if we are currently running a nested message loop.
281  bool IsNested();
282
283  // A TaskObserver is an object that receives task notifications from the
284  // MessageLoop.
285  //
286  // NOTE: A TaskObserver implementation should be extremely fast!
287  class BASE_API TaskObserver {
288   public:
289    TaskObserver();
290
291    // This method is called before processing a task.
292    virtual void WillProcessTask(const Task* task) = 0;
293
294    // This method is called after processing a task.
295    virtual void DidProcessTask(const Task* task) = 0;
296
297   protected:
298    virtual ~TaskObserver();
299  };
300
301  // These functions can only be called on the same thread that |this| is
302  // running on.
303  void AddTaskObserver(TaskObserver* task_observer);
304  void RemoveTaskObserver(TaskObserver* task_observer);
305
306  // Returns true if the message loop has high resolution timers enabled.
307  // Provided for testing.
308  bool high_resolution_timers_enabled() {
309#if defined(OS_WIN)
310    return !high_resolution_timer_expiration_.is_null();
311#else
312    return true;
313#endif
314  }
315
316  // When we go into high resolution timer mode, we will stay in hi-res mode
317  // for at least 1s.
318  static const int kHighResolutionTimerModeLeaseTimeMs = 1000;
319
320  // Asserts that the MessageLoop is "idle".
321  void AssertIdle() const;
322
323#if defined(OS_WIN)
324  void set_os_modal_loop(bool os_modal_loop) {
325    os_modal_loop_ = os_modal_loop;
326  }
327
328  bool os_modal_loop() const {
329    return os_modal_loop_;
330  }
331#endif  // OS_WIN
332
333  //----------------------------------------------------------------------------
334 protected:
335  struct RunState {
336    // Used to count how many Run() invocations are on the stack.
337    int run_depth;
338
339    // Used to record that Quit() was called, or that we should quit the pump
340    // once it becomes idle.
341    bool quit_received;
342
343#if !defined(OS_MACOSX)
344    Dispatcher* dispatcher;
345#endif
346  };
347
348  class AutoRunState : RunState {
349   public:
350    explicit AutoRunState(MessageLoop* loop);
351    ~AutoRunState();
352   private:
353    MessageLoop* loop_;
354    RunState* previous_state_;
355  };
356
357  // This structure is copied around by value.
358  struct PendingTask {
359    PendingTask(Task* task, bool nestable)
360        : task(task), sequence_num(0), nestable(nestable) {
361    }
362
363    // Used to support sorting.
364    bool operator<(const PendingTask& other) const;
365
366    Task* task;                        // The task to run.
367    base::TimeTicks delayed_run_time;  // The time when the task should be run.
368    int sequence_num;                  // Secondary sort key for run time.
369    bool nestable;                     // OK to dispatch from a nested loop.
370  };
371
372  class TaskQueue : public std::queue<PendingTask> {
373   public:
374    void Swap(TaskQueue* queue) {
375      c.swap(queue->c);  // Calls std::deque::swap
376    }
377  };
378
379  typedef std::priority_queue<PendingTask> DelayedTaskQueue;
380
381#if defined(OS_WIN)
382  base::MessagePumpWin* pump_win() {
383    return static_cast<base::MessagePumpWin*>(pump_.get());
384  }
385#elif defined(OS_POSIX)
386  base::MessagePumpLibevent* pump_libevent() {
387    return static_cast<base::MessagePumpLibevent*>(pump_.get());
388  }
389#endif
390
391  // A function to encapsulate all the exception handling capability in the
392  // stacks around the running of a main message loop.  It will run the message
393  // loop in a SEH try block or not depending on the set_SEH_restoration()
394  // flag invoking respectively RunInternalInSEHFrame() or RunInternal().
395  void RunHandler();
396
397#if defined(OS_WIN)
398  __declspec(noinline) void RunInternalInSEHFrame();
399#endif
400
401  // A surrounding stack frame around the running of the message loop that
402  // supports all saving and restoring of state, as is needed for any/all (ugly)
403  // recursive calls.
404  void RunInternal();
405
406  // Called to process any delayed non-nestable tasks.
407  bool ProcessNextDelayedNonNestableTask();
408
409  // Runs the specified task and deletes it.
410  void RunTask(Task* task);
411
412  // Calls RunTask or queues the pending_task on the deferred task list if it
413  // cannot be run right now.  Returns true if the task was run.
414  bool DeferOrRunPendingTask(const PendingTask& pending_task);
415
416  // Adds the pending task to delayed_work_queue_.
417  void AddToDelayedWorkQueue(const PendingTask& pending_task);
418
419  // Load tasks from the incoming_queue_ into work_queue_ if the latter is
420  // empty.  The former requires a lock to access, while the latter is directly
421  // accessible on this thread.
422  void ReloadWorkQueue();
423
424  // Delete tasks that haven't run yet without running them.  Used in the
425  // destructor to make sure all the task's destructors get called.  Returns
426  // true if some work was done.
427  bool DeletePendingTasks();
428
429  // Post a task to our incomming queue.
430  void PostTask_Helper(const tracked_objects::Location& from_here, Task* task,
431                       int64 delay_ms, bool nestable);
432
433  // Start recording histogram info about events and action IF it was enabled
434  // and IF the statistics recorder can accept a registration of our histogram.
435  void StartHistogrammer();
436
437  // Add occurence of event to our histogram, so that we can see what is being
438  // done in a specific MessageLoop instance (i.e., specific thread).
439  // If message_histogram_ is NULL, this is a no-op.
440  void HistogramEvent(int event);
441
442  // base::MessagePump::Delegate methods:
443  virtual bool DoWork();
444  virtual bool DoDelayedWork(base::TimeTicks* next_delayed_work_time);
445  virtual bool DoIdleWork();
446
447  Type type_;
448
449  // A list of tasks that need to be processed by this instance.  Note that
450  // this queue is only accessed (push/pop) by our current thread.
451  TaskQueue work_queue_;
452
453  // Contains delayed tasks, sorted by their 'delayed_run_time' property.
454  DelayedTaskQueue delayed_work_queue_;
455
456  // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
457  base::TimeTicks recent_time_;
458
459  // A queue of non-nestable tasks that we had to defer because when it came
460  // time to execute them we were in a nested message loop.  They will execute
461  // once we're out of nested message loops.
462  TaskQueue deferred_non_nestable_work_queue_;
463
464  scoped_refptr<base::MessagePump> pump_;
465
466  ObserverList<DestructionObserver> destruction_observers_;
467
468  // A recursion block that prevents accidentally running additonal tasks when
469  // insider a (accidentally induced?) nested message pump.
470  bool nestable_tasks_allowed_;
471
472  bool exception_restoration_;
473
474  std::string thread_name_;
475  // A profiling histogram showing the counts of various messages and events.
476  base::Histogram* message_histogram_;
477
478  // A null terminated list which creates an incoming_queue of tasks that are
479  // acquired under a mutex for processing on this instance's thread. These
480  // tasks have not yet been sorted out into items for our work_queue_ vs
481  // items that will be handled by the TimerManager.
482  TaskQueue incoming_queue_;
483  // Protect access to incoming_queue_.
484  mutable base::Lock incoming_queue_lock_;
485
486  RunState* state_;
487
488#if defined(OS_WIN)
489  base::TimeTicks high_resolution_timer_expiration_;
490  // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
491  // which enter a modal message loop.
492  bool os_modal_loop_;
493#endif
494
495  // The next sequence number to use for delayed tasks.
496  int next_sequence_num_;
497
498  ObserverList<TaskObserver> task_observers_;
499
500 private:
501  DISALLOW_COPY_AND_ASSIGN(MessageLoop);
502};
503
504//-----------------------------------------------------------------------------
505// MessageLoopForUI extends MessageLoop with methods that are particular to a
506// MessageLoop instantiated with TYPE_UI.
507//
508// This class is typically used like so:
509//   MessageLoopForUI::current()->...call some method...
510//
511class BASE_API MessageLoopForUI : public MessageLoop {
512 public:
513  MessageLoopForUI() : MessageLoop(TYPE_UI) {
514  }
515
516  // Returns the MessageLoopForUI of the current thread.
517  static MessageLoopForUI* current() {
518    MessageLoop* loop = MessageLoop::current();
519#ifdef ANDROID
520    DCHECK_EQ(static_cast<int>(MessageLoop::TYPE_UI),
521              static_cast<int>(loop->type()));
522#else
523    DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
524#endif
525    return static_cast<MessageLoopForUI*>(loop);
526  }
527
528#if defined(OS_WIN)
529  void DidProcessMessage(const MSG& message);
530#endif  // defined(OS_WIN)
531
532#if defined(USE_X11)
533  // Returns the Xlib Display that backs the MessagePump for this MessageLoop.
534  //
535  // This allows for raw access to the X11 server in situations where our
536  // abstractions do not provide enough power.
537  //
538  // Be careful how this is used. The MessagePump in general expects
539  // exclusive access to the Display. Calling things like XNextEvent() will
540  // likely break things in subtle, hard to detect, ways.
541  Display* GetDisplay();
542#endif  // defined(OS_X11)
543
544#if !defined(OS_MACOSX)
545  // Please see message_pump_win/message_pump_glib for definitions of these
546  // methods.
547  void AddObserver(Observer* observer);
548  void RemoveObserver(Observer* observer);
549  void Run(Dispatcher* dispatcher);
550
551 protected:
552  // TODO(rvargas): Make this platform independent.
553  base::MessagePumpForUI* pump_ui() {
554    return static_cast<base::MessagePumpForUI*>(pump_.get());
555  }
556#endif  // !defined(OS_MACOSX)
557};
558
559// Do not add any member variables to MessageLoopForUI!  This is important b/c
560// MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
561// data that you need should be stored on the MessageLoop's pump_ instance.
562COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
563               MessageLoopForUI_should_not_have_extra_member_variables);
564
565//-----------------------------------------------------------------------------
566// MessageLoopForIO extends MessageLoop with methods that are particular to a
567// MessageLoop instantiated with TYPE_IO.
568//
569// This class is typically used like so:
570//   MessageLoopForIO::current()->...call some method...
571//
572class BASE_API MessageLoopForIO : public MessageLoop {
573 public:
574#if defined(OS_WIN)
575  typedef base::MessagePumpForIO::IOHandler IOHandler;
576  typedef base::MessagePumpForIO::IOContext IOContext;
577  typedef base::MessagePumpForIO::IOObserver IOObserver;
578#elif defined(OS_POSIX)
579  typedef base::MessagePumpLibevent::Watcher Watcher;
580  typedef base::MessagePumpLibevent::FileDescriptorWatcher
581      FileDescriptorWatcher;
582  typedef base::MessagePumpLibevent::IOObserver IOObserver;
583
584  enum Mode {
585    WATCH_READ = base::MessagePumpLibevent::WATCH_READ,
586    WATCH_WRITE = base::MessagePumpLibevent::WATCH_WRITE,
587    WATCH_READ_WRITE = base::MessagePumpLibevent::WATCH_READ_WRITE
588  };
589
590#endif
591
592  MessageLoopForIO() : MessageLoop(TYPE_IO) {
593  }
594
595  // Returns the MessageLoopForIO of the current thread.
596  static MessageLoopForIO* current() {
597    MessageLoop* loop = MessageLoop::current();
598#ifdef ANDROID
599    DCHECK_EQ(static_cast<int>(MessageLoop::TYPE_IO),
600              static_cast<int>(loop->type()));
601#else
602    DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
603#endif
604    return static_cast<MessageLoopForIO*>(loop);
605  }
606
607  void AddIOObserver(IOObserver* io_observer) {
608    pump_io()->AddIOObserver(io_observer);
609  }
610
611  void RemoveIOObserver(IOObserver* io_observer) {
612    pump_io()->RemoveIOObserver(io_observer);
613  }
614
615#if defined(OS_WIN)
616  // Please see MessagePumpWin for definitions of these methods.
617  void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
618  bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
619
620 protected:
621  // TODO(rvargas): Make this platform independent.
622  base::MessagePumpForIO* pump_io() {
623    return static_cast<base::MessagePumpForIO*>(pump_.get());
624  }
625
626#elif defined(OS_POSIX)
627  // Please see MessagePumpLibevent for definition.
628  bool WatchFileDescriptor(int fd,
629                           bool persistent,
630                           Mode mode,
631                           FileDescriptorWatcher *controller,
632                           Watcher *delegate);
633
634 private:
635  base::MessagePumpLibevent* pump_io() {
636    return static_cast<base::MessagePumpLibevent*>(pump_.get());
637  }
638#endif  // defined(OS_POSIX)
639};
640
641// Do not add any member variables to MessageLoopForIO!  This is important b/c
642// MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
643// data that you need should be stored on the MessageLoop's pump_ instance.
644COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
645               MessageLoopForIO_should_not_have_extra_member_variables);
646
647#endif  // BASE_MESSAGE_LOOP_H_
648