message_loop.h revision c7f5f8508d98d5952d42ed7648c2a8f30a4da156
1// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef BASE_MESSAGE_LOOP_H_
6#define BASE_MESSAGE_LOOP_H_
7
8#include <queue>
9#include <string>
10
11#include "base/histogram.h"
12#include "base/message_pump.h"
13#include "base/observer_list.h"
14#include "base/ref_counted.h"
15#include "base/scoped_ptr.h"
16#include "base/task.h"
17
18#if defined(OS_WIN)
19// We need this to declare base::MessagePumpWin::Dispatcher, which we should
20// really just eliminate.
21#include "base/message_pump_win.h"
22#elif defined(OS_POSIX)
23#include "base/message_pump_libevent.h"
24#if !defined(OS_MACOSX)
25#include "base/message_pump_glib.h"
26#endif
27#endif
28
29// A MessageLoop is used to process events for a particular thread.  There is
30// at most one MessageLoop instance per thread.
31//
32// Events include at a minimum Task instances submitted to PostTask or those
33// managed by TimerManager.  Depending on the type of message pump used by the
34// MessageLoop other events such as UI messages may be processed.  On Windows
35// APC calls (as time permits) and signals sent to a registered set of HANDLEs
36// may also be processed.
37//
38// NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
39// on the thread where the MessageLoop's Run method executes.
40//
41// NOTE: MessageLoop has task reentrancy protection.  This means that if a
42// task is being processed, a second task cannot start until the first task is
43// finished.  Reentrancy can happen when processing a task, and an inner
44// message pump is created.  That inner pump then processes native messages
45// which could implicitly start an inner task.  Inner message pumps are created
46// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
47// (DoDragDrop), printer functions (StartDoc) and *many* others.
48//
49// Sample workaround when inner task processing is needed:
50//   bool old_state = MessageLoop::current()->NestableTasksAllowed();
51//   MessageLoop::current()->SetNestableTasksAllowed(true);
52//   HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here.
53//   MessageLoop::current()->SetNestableTasksAllowed(old_state);
54//   // Process hr  (the result returned by DoDragDrop().
55//
56// Please be SURE your task is reentrant (nestable) and all global variables
57// are stable and accessible before calling SetNestableTasksAllowed(true).
58//
59class MessageLoop : public base::MessagePump::Delegate {
60 public:
61  static void EnableHistogrammer(bool enable_histogrammer);
62
63  // A DestructionObserver is notified when the current MessageLoop is being
64  // destroyed.  These obsevers are notified prior to MessageLoop::current()
65  // being changed to return NULL.  This gives interested parties the chance to
66  // do final cleanup that depends on the MessageLoop.
67  //
68  // NOTE: Any tasks posted to the MessageLoop during this notification will
69  // not be run.  Instead, they will be deleted.
70  //
71  class DestructionObserver {
72   public:
73    virtual ~DestructionObserver() {}
74    virtual void WillDestroyCurrentMessageLoop() = 0;
75  };
76
77  // Add a DestructionObserver, which will start receiving notifications
78  // immediately.
79  void AddDestructionObserver(DestructionObserver* destruction_observer);
80
81  // Remove a DestructionObserver.  It is safe to call this method while a
82  // DestructionObserver is receiving a notification callback.
83  void RemoveDestructionObserver(DestructionObserver* destruction_observer);
84
85  // The "PostTask" family of methods call the task's Run method asynchronously
86  // from within a message loop at some point in the future.
87  //
88  // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
89  // with normal UI or IO event processing.  With the PostDelayedTask variant,
90  // tasks are called after at least approximately 'delay_ms' have elapsed.
91  //
92  // The NonNestable variants work similarly except that they promise never to
93  // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
94  // such tasks get deferred until the top-most MessageLoop::Run is executing.
95  //
96  // The MessageLoop takes ownership of the Task, and deletes it after it has
97  // been Run().
98  //
99  // NOTE: These methods may be called on any thread.  The Task will be invoked
100  // on the thread that executes MessageLoop::Run().
101
102  void PostTask(
103      const tracked_objects::Location& from_here, Task* task);
104
105  void PostDelayedTask(
106      const tracked_objects::Location& from_here, Task* task, int64 delay_ms);
107
108  void PostNonNestableTask(
109      const tracked_objects::Location& from_here, Task* task);
110
111  void PostNonNestableDelayedTask(
112      const tracked_objects::Location& from_here, Task* task, int64 delay_ms);
113
114  // A variant on PostTask that deletes the given object.  This is useful
115  // if the object needs to live until the next run of the MessageLoop (for
116  // example, deleting a RenderProcessHost from within an IPC callback is not
117  // good).
118  //
119  // NOTE: This method may be called on any thread.  The object will be deleted
120  // on the thread that executes MessageLoop::Run().  If this is not the same
121  // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
122  // from RefCountedThreadSafe<T>!
123  template <class T>
124  void DeleteSoon(const tracked_objects::Location& from_here, T* object) {
125    PostNonNestableTask(from_here, new DeleteTask<T>(object));
126  }
127
128  // A variant on PostTask that releases the given reference counted object
129  // (by calling its Release method).  This is useful if the object needs to
130  // live until the next run of the MessageLoop, or if the object needs to be
131  // released on a particular thread.
132  //
133  // NOTE: This method may be called on any thread.  The object will be
134  // released (and thus possibly deleted) on the thread that executes
135  // MessageLoop::Run().  If this is not the same as the thread that calls
136  // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
137  // RefCountedThreadSafe<T>!
138  template <class T>
139  void ReleaseSoon(const tracked_objects::Location& from_here, T* object) {
140    PostNonNestableTask(from_here, new ReleaseTask<T>(object));
141  }
142
143  // Run the message loop.
144  void Run();
145
146  // Process all pending tasks, windows messages, etc., but don't wait/sleep.
147  // Return as soon as all items that can be run are taken care of.
148  void RunAllPending();
149
150  // Signals the Run method to return after it is done processing all pending
151  // messages.  This method may only be called on the same thread that called
152  // Run, and Run must still be on the call stack.
153  //
154  // Use QuitTask if you need to Quit another thread's MessageLoop, but note
155  // that doing so is fairly dangerous if the target thread makes nested calls
156  // to MessageLoop::Run.  The problem being that you won't know which nested
157  // run loop you are quiting, so be careful!
158  //
159  void Quit();
160
161  // Invokes Quit on the current MessageLoop when run.  Useful to schedule an
162  // arbitrary MessageLoop to Quit.
163  class QuitTask : public Task {
164   public:
165    virtual void Run() {
166      MessageLoop::current()->Quit();
167    }
168  };
169
170  // A MessageLoop has a particular type, which indicates the set of
171  // asynchronous events it may process in addition to tasks and timers.
172  //
173  // TYPE_DEFAULT
174  //   This type of ML only supports tasks and timers.
175  //
176  // TYPE_UI
177  //   This type of ML also supports native UI events (e.g., Windows messages).
178  //   See also MessageLoopForUI.
179  //
180  // TYPE_IO
181  //   This type of ML also supports asynchronous IO.  See also
182  //   MessageLoopForIO.
183  //
184  enum Type {
185    TYPE_DEFAULT,
186    TYPE_UI,
187    TYPE_IO
188  };
189
190  // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
191  // is typical to make use of the current thread's MessageLoop instance.
192  explicit MessageLoop(Type type = TYPE_DEFAULT);
193  ~MessageLoop();
194
195  // Returns the type passed to the constructor.
196  Type type() const { return type_; }
197
198  // Optional call to connect the thread name with this loop.
199  void set_thread_name(const std::string& thread_name) {
200    DCHECK(thread_name_.empty()) << "Should not rename this thread!";
201    thread_name_ = thread_name;
202  }
203  const std::string& thread_name() const { return thread_name_; }
204
205  // Returns the MessageLoop object for the current thread, or null if none.
206  static MessageLoop* current();
207
208  // Enables or disables the recursive task processing. This happens in the case
209  // of recursive message loops. Some unwanted message loop may occurs when
210  // using common controls or printer functions. By default, recursive task
211  // processing is disabled.
212  //
213  // The specific case where tasks get queued is:
214  // - The thread is running a message loop.
215  // - It receives a task #1 and execute it.
216  // - The task #1 implicitly start a message loop, like a MessageBox in the
217  //   unit test. This can also be StartDoc or GetSaveFileName.
218  // - The thread receives a task #2 before or while in this second message
219  //   loop.
220  // - With NestableTasksAllowed set to true, the task #2 will run right away.
221  //   Otherwise, it will get executed right after task #1 completes at "thread
222  //   message loop level".
223  void SetNestableTasksAllowed(bool allowed);
224  bool NestableTasksAllowed() const;
225
226  // Enables nestable tasks on |loop| while in scope.
227  class ScopedNestableTaskAllower {
228   public:
229    explicit ScopedNestableTaskAllower(MessageLoop* loop)
230        : loop_(loop),
231          old_state_(loop_->NestableTasksAllowed()) {
232      loop_->SetNestableTasksAllowed(true);
233    }
234    ~ScopedNestableTaskAllower() {
235      loop_->SetNestableTasksAllowed(old_state_);
236    }
237
238   private:
239    MessageLoop* loop_;
240    bool old_state_;
241  };
242
243  // Enables or disables the restoration during an exception of the unhandled
244  // exception filter that was active when Run() was called. This can happen
245  // if some third party code call SetUnhandledExceptionFilter() and never
246  // restores the previous filter.
247  void set_exception_restoration(bool restore) {
248    exception_restoration_ = restore;
249  }
250
251  // Returns true if we are currently running a nested message loop.
252  bool IsNested();
253
254#if defined(OS_WIN)
255  typedef base::MessagePumpWin::Dispatcher Dispatcher;
256  typedef base::MessagePumpWin::Observer Observer;
257#elif !defined(OS_MACOSX)
258  typedef base::MessagePumpForUI::Dispatcher Dispatcher;
259  typedef base::MessagePumpForUI::Observer Observer;
260#endif
261
262  //----------------------------------------------------------------------------
263 protected:
264  struct RunState {
265    // Used to count how many Run() invocations are on the stack.
266    int run_depth;
267
268    // Used to record that Quit() was called, or that we should quit the pump
269    // once it becomes idle.
270    bool quit_received;
271
272#if !defined(OS_MACOSX)
273    Dispatcher* dispatcher;
274#endif
275  };
276
277  class AutoRunState : RunState {
278   public:
279    explicit AutoRunState(MessageLoop* loop);
280    ~AutoRunState();
281   private:
282    MessageLoop* loop_;
283    RunState* previous_state_;
284  };
285
286  // This structure is copied around by value.
287  struct PendingTask {
288    Task* task;                   // The task to run.
289    base::Time delayed_run_time;  // The time when the task should be run.
290    int sequence_num;             // Used to facilitate sorting by run time.
291    bool nestable;                // True if OK to dispatch from a nested loop.
292
293    PendingTask(Task* task, bool nestable)
294        : task(task), sequence_num(0), nestable(nestable) {
295    }
296
297    // Used to support sorting.
298    bool operator<(const PendingTask& other) const;
299  };
300
301  class TaskQueue : public std::queue<PendingTask> {
302   public:
303    void Swap(TaskQueue* queue) {
304      c.swap(queue->c);  // Calls std::deque::swap
305    }
306  };
307
308  typedef std::priority_queue<PendingTask> DelayedTaskQueue;
309
310#if defined(OS_WIN)
311  base::MessagePumpWin* pump_win() {
312    return static_cast<base::MessagePumpWin*>(pump_.get());
313  }
314#elif defined(OS_POSIX)
315  base::MessagePumpLibevent* pump_libevent() {
316    return static_cast<base::MessagePumpLibevent*>(pump_.get());
317  }
318#endif
319
320  // A function to encapsulate all the exception handling capability in the
321  // stacks around the running of a main message loop.  It will run the message
322  // loop in a SEH try block or not depending on the set_SEH_restoration()
323  // flag invoking respectively RunInternalInSEHFrame() or RunInternal().
324  void RunHandler();
325
326#if defined(OS_WIN)
327  __declspec(noinline) void RunInternalInSEHFrame();
328#endif
329
330  // A surrounding stack frame around the running of the message loop that
331  // supports all saving and restoring of state, as is needed for any/all (ugly)
332  // recursive calls.
333  void RunInternal();
334
335  // Called to process any delayed non-nestable tasks.
336  bool ProcessNextDelayedNonNestableTask();
337
338  //----------------------------------------------------------------------------
339  // Run a work_queue_ task or new_task, and delete it (if it was processed by
340  // PostTask). If there are queued tasks, the oldest one is executed and
341  // new_task is queued. new_task is optional and can be NULL. In this NULL
342  // case, the method will run one pending task (if any exist). Returns true if
343  // it executes a task.  Queued tasks accumulate only when there is a
344  // non-nestable task currently processing, in which case the new_task is
345  // appended to the list work_queue_.  Such re-entrancy generally happens when
346  // an unrequested message pump (typical of a native dialog) is executing in
347  // the context of a task.
348  bool QueueOrRunTask(Task* new_task);
349
350  // Runs the specified task and deletes it.
351  void RunTask(Task* task);
352
353  // Calls RunTask or queues the pending_task on the deferred task list if it
354  // cannot be run right now.  Returns true if the task was run.
355  bool DeferOrRunPendingTask(const PendingTask& pending_task);
356
357  // Adds the pending task to delayed_work_queue_.
358  void AddToDelayedWorkQueue(const PendingTask& pending_task);
359
360  // Load tasks from the incoming_queue_ into work_queue_ if the latter is
361  // empty.  The former requires a lock to access, while the latter is directly
362  // accessible on this thread.
363  void ReloadWorkQueue();
364
365  // Delete tasks that haven't run yet without running them.  Used in the
366  // destructor to make sure all the task's destructors get called.  Returns
367  // true if some work was done.
368  bool DeletePendingTasks();
369
370  // Post a task to our incomming queue.
371  void PostTask_Helper(const tracked_objects::Location& from_here, Task* task,
372                       int64 delay_ms, bool nestable);
373
374  // base::MessagePump::Delegate methods:
375  virtual bool DoWork();
376  virtual bool DoDelayedWork(base::Time* next_delayed_work_time);
377  virtual bool DoIdleWork();
378
379  // Start recording histogram info about events and action IF it was enabled
380  // and IF the statistics recorder can accept a registration of our histogram.
381  void StartHistogrammer();
382
383  // Add occurence of event to our histogram, so that we can see what is being
384  // done in a specific MessageLoop instance (i.e., specific thread).
385  // If message_histogram_ is NULL, this is a no-op.
386  void HistogramEvent(int event);
387
388  static const LinearHistogram::DescriptionPair event_descriptions_[];
389  static bool enable_histogrammer_;
390
391  Type type_;
392
393  // A list of tasks that need to be processed by this instance.  Note that
394  // this queue is only accessed (push/pop) by our current thread.
395  TaskQueue work_queue_;
396
397  // Contains delayed tasks, sorted by their 'delayed_run_time' property.
398  DelayedTaskQueue delayed_work_queue_;
399
400  // A queue of non-nestable tasks that we had to defer because when it came
401  // time to execute them we were in a nested message loop.  They will execute
402  // once we're out of nested message loops.
403  TaskQueue deferred_non_nestable_work_queue_;
404
405  scoped_refptr<base::MessagePump> pump_;
406
407  ObserverList<DestructionObserver> destruction_observers_;
408
409  // A recursion block that prevents accidentally running additonal tasks when
410  // insider a (accidentally induced?) nested message pump.
411  bool nestable_tasks_allowed_;
412
413  bool exception_restoration_;
414
415  std::string thread_name_;
416  // A profiling histogram showing the counts of various messages and events.
417  scoped_refptr<Histogram> message_histogram_;
418
419  // A null terminated list which creates an incoming_queue of tasks that are
420  // aquired under a mutex for processing on this instance's thread. These tasks
421  // have not yet been sorted out into items for our work_queue_ vs items that
422  // will be handled by the TimerManager.
423  TaskQueue incoming_queue_;
424  // Protect access to incoming_queue_.
425  Lock incoming_queue_lock_;
426
427  RunState* state_;
428
429  // The next sequence number to use for delayed tasks.
430  int next_sequence_num_;
431
432  DISALLOW_COPY_AND_ASSIGN(MessageLoop);
433};
434
435//-----------------------------------------------------------------------------
436// MessageLoopForUI extends MessageLoop with methods that are particular to a
437// MessageLoop instantiated with TYPE_UI.
438//
439// This class is typically used like so:
440//   MessageLoopForUI::current()->...call some method...
441//
442class MessageLoopForUI : public MessageLoop {
443 public:
444  MessageLoopForUI() : MessageLoop(TYPE_UI) {
445  }
446
447  // Returns the MessageLoopForUI of the current thread.
448  static MessageLoopForUI* current() {
449    MessageLoop* loop = MessageLoop::current();
450    DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
451    return static_cast<MessageLoopForUI*>(loop);
452  }
453
454#if defined(OS_WIN)
455  void WillProcessMessage(const MSG& message);
456  void DidProcessMessage(const MSG& message);
457  void PumpOutPendingPaintMessages();
458#endif
459
460#if !defined(OS_MACOSX)
461  // Please see message_pump_win/message_pump_glib for definitions of these
462  // methods.
463  void AddObserver(Observer* observer);
464  void RemoveObserver(Observer* observer);
465  void Run(Dispatcher* dispatcher);
466
467 protected:
468  // TODO(rvargas): Make this platform independent.
469  base::MessagePumpForUI* pump_ui() {
470    return static_cast<base::MessagePumpForUI*>(pump_.get());
471  }
472#endif  // defined(OS_MACOSX)
473};
474
475// Do not add any member variables to MessageLoopForUI!  This is important b/c
476// MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
477// data that you need should be stored on the MessageLoop's pump_ instance.
478COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
479               MessageLoopForUI_should_not_have_extra_member_variables);
480
481//-----------------------------------------------------------------------------
482// MessageLoopForIO extends MessageLoop with methods that are particular to a
483// MessageLoop instantiated with TYPE_IO.
484//
485// This class is typically used like so:
486//   MessageLoopForIO::current()->...call some method...
487//
488class MessageLoopForIO : public MessageLoop {
489 public:
490  MessageLoopForIO() : MessageLoop(TYPE_IO) {
491  }
492
493  // Returns the MessageLoopForIO of the current thread.
494  static MessageLoopForIO* current() {
495    MessageLoop* loop = MessageLoop::current();
496    DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
497    return static_cast<MessageLoopForIO*>(loop);
498  }
499
500#if defined(OS_WIN)
501  typedef base::MessagePumpForIO::IOHandler IOHandler;
502  typedef base::MessagePumpForIO::IOContext IOContext;
503
504  // Please see MessagePumpWin for definitions of these methods.
505  void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
506  bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
507
508 protected:
509  // TODO(rvargas): Make this platform independent.
510  base::MessagePumpForIO* pump_io() {
511    return static_cast<base::MessagePumpForIO*>(pump_.get());
512  }
513
514#elif defined(OS_POSIX)
515  typedef base::MessagePumpLibevent::Watcher Watcher;
516  typedef base::MessagePumpLibevent::FileDescriptorWatcher
517      FileDescriptorWatcher;
518
519  enum Mode {
520    WATCH_READ = base::MessagePumpLibevent::WATCH_READ,
521    WATCH_WRITE = base::MessagePumpLibevent::WATCH_WRITE,
522    WATCH_READ_WRITE = base::MessagePumpLibevent::WATCH_READ_WRITE
523  };
524
525  // Please see MessagePumpLibevent for definition.
526  bool WatchFileDescriptor(int fd,
527                           bool persistent,
528                           Mode mode,
529                           FileDescriptorWatcher *controller,
530                           Watcher *delegate);
531#endif  // defined(OS_POSIX)
532};
533
534// Do not add any member variables to MessageLoopForIO!  This is important b/c
535// MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
536// data that you need should be stored on the MessageLoop's pump_ instance.
537COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
538               MessageLoopForIO_should_not_have_extra_member_variables);
539
540#endif  // BASE_MESSAGE_LOOP_H_
541