message_loop_unittest.cc revision 3f50c38dc070f4bb515c1b64450dae14f316474e
1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <vector>
6
7#include "base/eintr_wrapper.h"
8#include "base/logging.h"
9#include "base/message_loop.h"
10#include "base/ref_counted.h"
11#include "base/task.h"
12#include "base/threading/platform_thread.h"
13#include "base/threading/thread.h"
14#include "testing/gtest/include/gtest/gtest.h"
15
16#if defined(OS_WIN)
17#include "base/message_pump_win.h"
18#include "base/win/scoped_handle.h"
19#endif
20#if defined(OS_POSIX)
21#include "base/message_pump_libevent.h"
22#endif
23
24using base::PlatformThread;
25using base::Thread;
26using base::Time;
27using base::TimeDelta;
28
29// TODO(darin): Platform-specific MessageLoop tests should be grouped together
30// to avoid chopping this file up with so many #ifdefs.
31
32namespace {
33
34class MessageLoopTest : public testing::Test {};
35
36class Foo : public base::RefCounted<Foo> {
37 public:
38  Foo() : test_count_(0) {
39  }
40
41  void Test0() {
42    ++test_count_;
43  }
44
45  void Test1ConstRef(const std::string& a) {
46    ++test_count_;
47    result_.append(a);
48  }
49
50  void Test1Ptr(std::string* a) {
51    ++test_count_;
52    result_.append(*a);
53  }
54
55  void Test1Int(int a) {
56    test_count_ += a;
57  }
58
59  void Test2Ptr(std::string* a, std::string* b) {
60    ++test_count_;
61    result_.append(*a);
62    result_.append(*b);
63  }
64
65  void Test2Mixed(const std::string& a, std::string* b) {
66    ++test_count_;
67    result_.append(a);
68    result_.append(*b);
69  }
70
71  int test_count() const { return test_count_; }
72  const std::string& result() const { return result_; }
73
74 private:
75  friend class base::RefCounted<Foo>;
76
77  ~Foo() {}
78
79  int test_count_;
80  std::string result_;
81};
82
83class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
84 public:
85  void QuitNow() {
86    MessageLoop::current()->Quit();
87  }
88
89 private:
90  friend class base::RefCounted<QuitMsgLoop>;
91
92  ~QuitMsgLoop() {}
93};
94
95void RunTest_PostTask(MessageLoop::Type message_loop_type) {
96  MessageLoop loop(message_loop_type);
97
98  // Add tests to message loop
99  scoped_refptr<Foo> foo(new Foo());
100  std::string a("a"), b("b"), c("c"), d("d");
101  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
102      foo.get(), &Foo::Test0));
103  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
104    foo.get(), &Foo::Test1ConstRef, a));
105  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
106      foo.get(), &Foo::Test1Ptr, &b));
107  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
108      foo.get(), &Foo::Test1Int, 100));
109  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
110      foo.get(), &Foo::Test2Ptr, &a, &c));
111  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
112    foo.get(), &Foo::Test2Mixed, a, &d));
113
114  // After all tests, post a message that will shut down the message loop
115  scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
116  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
117      quit.get(), &QuitMsgLoop::QuitNow));
118
119  // Now kick things off
120  MessageLoop::current()->Run();
121
122  EXPECT_EQ(foo->test_count(), 105);
123  EXPECT_EQ(foo->result(), "abacad");
124}
125
126void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
127  MessageLoop loop(message_loop_type);
128
129  // Add tests to message loop
130  scoped_refptr<Foo> foo(new Foo());
131  std::string a("a"), b("b"), c("c"), d("d");
132  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
133      foo.get(), &Foo::Test0));
134  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
135      foo.get(), &Foo::Test1ConstRef, a));
136  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
137      foo.get(), &Foo::Test1Ptr, &b));
138  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
139      foo.get(), &Foo::Test1Int, 100));
140  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
141      foo.get(), &Foo::Test2Ptr, &a, &c));
142  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
143      foo.get(), &Foo::Test2Mixed, a, &d));
144
145  // After all tests, post a message that will shut down the message loop
146  scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
147  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
148      quit.get(), &QuitMsgLoop::QuitNow));
149
150  // Now kick things off with the SEH block active.
151  MessageLoop::current()->set_exception_restoration(true);
152  MessageLoop::current()->Run();
153  MessageLoop::current()->set_exception_restoration(false);
154
155  EXPECT_EQ(foo->test_count(), 105);
156  EXPECT_EQ(foo->result(), "abacad");
157}
158
159// This class runs slowly to simulate a large amount of work being done.
160class SlowTask : public Task {
161 public:
162  SlowTask(int pause_ms, int* quit_counter)
163      : pause_ms_(pause_ms), quit_counter_(quit_counter) {
164  }
165  virtual void Run() {
166    PlatformThread::Sleep(pause_ms_);
167    if (--(*quit_counter_) == 0)
168      MessageLoop::current()->Quit();
169  }
170 private:
171  int pause_ms_;
172  int* quit_counter_;
173};
174
175// This class records the time when Run was called in a Time object, which is
176// useful for building a variety of MessageLoop tests.
177class RecordRunTimeTask : public SlowTask {
178 public:
179  RecordRunTimeTask(Time* run_time, int* quit_counter)
180      : SlowTask(10, quit_counter), run_time_(run_time) {
181  }
182  virtual void Run() {
183    *run_time_ = Time::Now();
184    // Cause our Run function to take some time to execute.  As a result we can
185    // count on subsequent RecordRunTimeTask objects running at a future time,
186    // without worry about the resolution of our system clock being an issue.
187    SlowTask::Run();
188  }
189 private:
190  Time* run_time_;
191};
192
193void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
194  MessageLoop loop(message_loop_type);
195
196  // Test that PostDelayedTask results in a delayed task.
197
198  const int kDelayMS = 100;
199
200  int num_tasks = 1;
201  Time run_time;
202
203  loop.PostDelayedTask(
204      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);
205
206  Time time_before_run = Time::Now();
207  loop.Run();
208  Time time_after_run = Time::Now();
209
210  EXPECT_EQ(0, num_tasks);
211  EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
212}
213
214void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
215  MessageLoop loop(message_loop_type);
216
217  // Test that two tasks with different delays run in the right order.
218
219  int num_tasks = 2;
220  Time run_time1, run_time2;
221
222  loop.PostDelayedTask(
223      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
224  // If we get a large pause in execution (due to a context switch) here, this
225  // test could fail.
226  loop.PostDelayedTask(
227      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
228
229  loop.Run();
230  EXPECT_EQ(0, num_tasks);
231
232  EXPECT_TRUE(run_time2 < run_time1);
233}
234
235void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
236  MessageLoop loop(message_loop_type);
237
238  // Test that two tasks with the same delay run in the order in which they
239  // were posted.
240  //
241  // NOTE: This is actually an approximate test since the API only takes a
242  // "delay" parameter, so we are not exactly simulating two tasks that get
243  // posted at the exact same time.  It would be nice if the API allowed us to
244  // specify the desired run time.
245
246  const int kDelayMS = 100;
247
248  int num_tasks = 2;
249  Time run_time1, run_time2;
250
251  loop.PostDelayedTask(
252      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
253  loop.PostDelayedTask(
254      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);
255
256  loop.Run();
257  EXPECT_EQ(0, num_tasks);
258
259  EXPECT_TRUE(run_time1 < run_time2);
260}
261
262void RunTest_PostDelayedTask_InPostOrder_2(
263    MessageLoop::Type message_loop_type) {
264  MessageLoop loop(message_loop_type);
265
266  // Test that a delayed task still runs after a normal tasks even if the
267  // normal tasks take a long time to run.
268
269  const int kPauseMS = 50;
270
271  int num_tasks = 2;
272  Time run_time;
273
274  loop.PostTask(
275      FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
276  loop.PostDelayedTask(
277      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);
278
279  Time time_before_run = Time::Now();
280  loop.Run();
281  Time time_after_run = Time::Now();
282
283  EXPECT_EQ(0, num_tasks);
284
285  EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
286}
287
288void RunTest_PostDelayedTask_InPostOrder_3(
289    MessageLoop::Type message_loop_type) {
290  MessageLoop loop(message_loop_type);
291
292  // Test that a delayed task still runs after a pile of normal tasks.  The key
293  // difference between this test and the previous one is that here we return
294  // the MessageLoop a lot so we give the MessageLoop plenty of opportunities
295  // to maybe run the delayed task.  It should know not to do so until the
296  // delayed task's delay has passed.
297
298  int num_tasks = 11;
299  Time run_time1, run_time2;
300
301  // Clutter the ML with tasks.
302  for (int i = 1; i < num_tasks; ++i)
303    loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));
304
305  loop.PostDelayedTask(
306      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);
307
308  loop.Run();
309  EXPECT_EQ(0, num_tasks);
310
311  EXPECT_TRUE(run_time2 > run_time1);
312}
313
314void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) {
315  MessageLoop loop(message_loop_type);
316
317  // Test that the interval of the timer, used to run the next delayed task, is
318  // set to a value corresponding to when the next delayed task should run.
319
320  // By setting num_tasks to 1, we ensure that the first task to run causes the
321  // run loop to exit.
322  int num_tasks = 1;
323  Time run_time1, run_time2;
324
325  loop.PostDelayedTask(
326      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000);
327  loop.PostDelayedTask(
328      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
329
330  Time start_time = Time::Now();
331
332  loop.Run();
333  EXPECT_EQ(0, num_tasks);
334
335  // Ensure that we ran in far less time than the slower timer.
336  TimeDelta total_time = Time::Now() - start_time;
337  EXPECT_GT(5000, total_time.InMilliseconds());
338
339  // In case both timers somehow run at nearly the same time, sleep a little
340  // and then run all pending to force them both to have run.  This is just
341  // encouraging flakiness if there is any.
342  PlatformThread::Sleep(100);
343  loop.RunAllPending();
344
345  EXPECT_TRUE(run_time1.is_null());
346  EXPECT_FALSE(run_time2.is_null());
347}
348
349#if defined(OS_WIN)
350
351class SubPumpTask : public Task {
352 public:
353  virtual void Run() {
354    MessageLoop::current()->SetNestableTasksAllowed(true);
355    MSG msg;
356    while (GetMessage(&msg, NULL, 0, 0)) {
357      TranslateMessage(&msg);
358      DispatchMessage(&msg);
359    }
360    MessageLoop::current()->Quit();
361  }
362};
363
364class SubPumpQuitTask : public Task {
365 public:
366  SubPumpQuitTask() {
367  }
368  virtual void Run() {
369    PostQuitMessage(0);
370  }
371};
372
373void RunTest_PostDelayedTask_SharedTimer_SubPump() {
374  MessageLoop loop(MessageLoop::TYPE_UI);
375
376  // Test that the interval of the timer, used to run the next delayed task, is
377  // set to a value corresponding to when the next delayed task should run.
378
379  // By setting num_tasks to 1, we ensure that the first task to run causes the
380  // run loop to exit.
381  int num_tasks = 1;
382  Time run_time;
383
384  loop.PostTask(FROM_HERE, new SubPumpTask());
385
386  // This very delayed task should never run.
387  loop.PostDelayedTask(
388      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000);
389
390  // This slightly delayed task should run from within SubPumpTask::Run().
391  loop.PostDelayedTask(
392      FROM_HERE, new SubPumpQuitTask(), 10);
393
394  Time start_time = Time::Now();
395
396  loop.Run();
397  EXPECT_EQ(1, num_tasks);
398
399  // Ensure that we ran in far less time than the slower timer.
400  TimeDelta total_time = Time::Now() - start_time;
401  EXPECT_GT(5000, total_time.InMilliseconds());
402
403  // In case both timers somehow run at nearly the same time, sleep a little
404  // and then run all pending to force them both to have run.  This is just
405  // encouraging flakiness if there is any.
406  PlatformThread::Sleep(100);
407  loop.RunAllPending();
408
409  EXPECT_TRUE(run_time.is_null());
410}
411
412#endif  // defined(OS_WIN)
413
414class RecordDeletionTask : public Task {
415 public:
416  RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
417      : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
418  }
419  ~RecordDeletionTask() {
420    *was_deleted_ = true;
421    if (post_on_delete_)
422      MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
423  }
424  virtual void Run() {}
425 private:
426  Task* post_on_delete_;
427  bool* was_deleted_;
428};
429
430void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
431  bool a_was_deleted = false;
432  bool b_was_deleted = false;
433  {
434    MessageLoop loop(message_loop_type);
435    loop.PostTask(
436        FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
437    loop.PostDelayedTask(
438        FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
439  }
440  EXPECT_TRUE(a_was_deleted);
441  EXPECT_TRUE(b_was_deleted);
442}
443
444void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
445  bool a_was_deleted = false;
446  bool b_was_deleted = false;
447  bool c_was_deleted = false;
448  {
449    MessageLoop loop(message_loop_type);
450    RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
451    RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
452    RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
453    loop.PostTask(FROM_HERE, c);
454  }
455  EXPECT_TRUE(a_was_deleted);
456  EXPECT_TRUE(b_was_deleted);
457  EXPECT_TRUE(c_was_deleted);
458}
459
460class NestingTest : public Task {
461 public:
462  explicit NestingTest(int* depth) : depth_(depth) {
463  }
464  void Run() {
465    if (*depth_ > 0) {
466      *depth_ -= 1;
467      MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));
468
469      MessageLoop::current()->SetNestableTasksAllowed(true);
470      MessageLoop::current()->Run();
471    }
472    MessageLoop::current()->Quit();
473  }
474 private:
475  int* depth_;
476};
477
478#if defined(OS_WIN)
479
480LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
481  ADD_FAILURE() << "bad exception handler";
482  ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
483  return EXCEPTION_EXECUTE_HANDLER;
484}
485
486// This task throws an SEH exception: initially write to an invalid address.
487// If the right SEH filter is installed, it will fix the error.
488class CrasherTask : public Task {
489 public:
490  // Ctor. If trash_SEH_handler is true, the task will override the unhandled
491  // exception handler with one sure to crash this test.
492  explicit CrasherTask(bool trash_SEH_handler)
493      : trash_SEH_handler_(trash_SEH_handler) {
494  }
495  void Run() {
496    PlatformThread::Sleep(1);
497    if (trash_SEH_handler_)
498      ::SetUnhandledExceptionFilter(&BadExceptionHandler);
499    // Generate a SEH fault. We do it in asm to make sure we know how to undo
500    // the damage.
501
502#if defined(_M_IX86)
503
504    __asm {
505      mov eax, dword ptr [CrasherTask::bad_array_]
506      mov byte ptr [eax], 66
507    }
508
509#elif defined(_M_X64)
510
511    bad_array_[0] = 66;
512
513#else
514#error "needs architecture support"
515#endif
516
517    MessageLoop::current()->Quit();
518  }
519  // Points the bad array to a valid memory location.
520  static void FixError() {
521    bad_array_ = &valid_store_;
522  }
523
524 private:
525  bool trash_SEH_handler_;
526  static volatile char* bad_array_;
527  static char valid_store_;
528};
529
530volatile char* CrasherTask::bad_array_ = 0;
531char CrasherTask::valid_store_ = 0;
532
533// This SEH filter fixes the problem and retries execution. Fixing requires
534// that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
535// so we move the instruction pointer 5 bytes back.
536LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
537  if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
538    return EXCEPTION_EXECUTE_HANDLER;
539
540  CrasherTask::FixError();
541
542#if defined(_M_IX86)
543
544  ex_info->ContextRecord->Eip -= 5;
545
546#elif defined(_M_X64)
547
548  ex_info->ContextRecord->Rip -= 5;
549
550#endif
551
552  return EXCEPTION_CONTINUE_EXECUTION;
553}
554
555void RunTest_Crasher(MessageLoop::Type message_loop_type) {
556  MessageLoop loop(message_loop_type);
557
558  if (::IsDebuggerPresent())
559    return;
560
561  LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
562      ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
563
564  MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
565  MessageLoop::current()->set_exception_restoration(true);
566  MessageLoop::current()->Run();
567  MessageLoop::current()->set_exception_restoration(false);
568
569  ::SetUnhandledExceptionFilter(old_SEH_filter);
570}
571
572void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
573  MessageLoop loop(message_loop_type);
574
575  if (::IsDebuggerPresent())
576    return;
577
578  LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
579      ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
580
581  MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
582  MessageLoop::current()->set_exception_restoration(true);
583  MessageLoop::current()->Run();
584  MessageLoop::current()->set_exception_restoration(false);
585
586  ::SetUnhandledExceptionFilter(old_SEH_filter);
587}
588
589#endif  // defined(OS_WIN)
590
591void RunTest_Nesting(MessageLoop::Type message_loop_type) {
592  MessageLoop loop(message_loop_type);
593
594  int depth = 100;
595  MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
596  MessageLoop::current()->Run();
597  EXPECT_EQ(depth, 0);
598}
599
600const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
601
602enum TaskType {
603  MESSAGEBOX,
604  ENDDIALOG,
605  RECURSIVE,
606  TIMEDMESSAGELOOP,
607  QUITMESSAGELOOP,
608  ORDERERD,
609  PUMPS,
610  SLEEP,
611};
612
613// Saves the order in which the tasks executed.
614struct TaskItem {
615  TaskItem(TaskType t, int c, bool s)
616      : type(t),
617        cookie(c),
618        start(s) {
619  }
620
621  TaskType type;
622  int cookie;
623  bool start;
624
625  bool operator == (const TaskItem& other) const {
626    return type == other.type && cookie == other.cookie && start == other.start;
627  }
628};
629
630typedef std::vector<TaskItem> TaskList;
631
632std::ostream& operator <<(std::ostream& os, TaskType type) {
633  switch (type) {
634  case MESSAGEBOX:        os << "MESSAGEBOX"; break;
635  case ENDDIALOG:         os << "ENDDIALOG"; break;
636  case RECURSIVE:         os << "RECURSIVE"; break;
637  case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
638  case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
639  case ORDERERD:          os << "ORDERERD"; break;
640  case PUMPS:             os << "PUMPS"; break;
641  case SLEEP:             os << "SLEEP"; break;
642  default:
643    NOTREACHED();
644    os << "Unknown TaskType";
645    break;
646  }
647  return os;
648}
649
650std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
651  if (item.start)
652    return os << item.type << " " << item.cookie << " starts";
653  else
654    return os << item.type << " " << item.cookie << " ends";
655}
656
657// Saves the order the tasks ran.
658class OrderedTasks : public Task {
659 public:
660  OrderedTasks(TaskList* order, int cookie)
661      : order_(order),
662        type_(ORDERERD),
663        cookie_(cookie) {
664  }
665  OrderedTasks(TaskList* order, TaskType type, int cookie)
666      : order_(order),
667        type_(type),
668        cookie_(cookie) {
669  }
670
671  void RunStart() {
672    TaskItem item(type_, cookie_, true);
673    DVLOG(1) << item;
674    order_->push_back(item);
675  }
676  void RunEnd() {
677    TaskItem item(type_, cookie_, false);
678    DVLOG(1) << item;
679    order_->push_back(item);
680  }
681
682  virtual void Run() {
683    RunStart();
684    RunEnd();
685  }
686
687 protected:
688  TaskList* order() const {
689    return order_;
690  }
691
692  int cookie() const {
693    return cookie_;
694  }
695
696 private:
697  TaskList* order_;
698  TaskType type_;
699  int cookie_;
700};
701
702#if defined(OS_WIN)
703
704// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
705// common controls (like OpenFile) and StartDoc printing function can cause
706// implicit message loops.
707class MessageBoxTask : public OrderedTasks {
708 public:
709  MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
710      : OrderedTasks(order, MESSAGEBOX, cookie),
711        is_reentrant_(is_reentrant) {
712  }
713
714  virtual void Run() {
715    RunStart();
716    if (is_reentrant_)
717      MessageLoop::current()->SetNestableTasksAllowed(true);
718    MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
719    RunEnd();
720  }
721
722 private:
723  bool is_reentrant_;
724};
725
726// Will end the MessageBox.
727class EndDialogTask : public OrderedTasks {
728 public:
729  EndDialogTask(TaskList* order, int cookie)
730      : OrderedTasks(order, ENDDIALOG, cookie) {
731  }
732
733  virtual void Run() {
734    RunStart();
735    HWND window = GetActiveWindow();
736    if (window != NULL) {
737      EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
738      // Cheap way to signal that the window wasn't found if RunEnd() isn't
739      // called.
740      RunEnd();
741    }
742  }
743};
744
745#endif  // defined(OS_WIN)
746
747class RecursiveTask : public OrderedTasks {
748 public:
749  RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
750      : OrderedTasks(order, RECURSIVE, cookie),
751        depth_(depth),
752        is_reentrant_(is_reentrant) {
753  }
754
755  virtual void Run() {
756    RunStart();
757    if (depth_ > 0) {
758      if (is_reentrant_)
759        MessageLoop::current()->SetNestableTasksAllowed(true);
760      MessageLoop::current()->PostTask(FROM_HERE,
761          new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
762    }
763    RunEnd();
764  }
765
766 private:
767  int depth_;
768  bool is_reentrant_;
769};
770
771class QuitTask : public OrderedTasks {
772 public:
773  QuitTask(TaskList* order, int cookie)
774      : OrderedTasks(order, QUITMESSAGELOOP, cookie) {
775  }
776
777  virtual void Run() {
778    RunStart();
779    MessageLoop::current()->Quit();
780    RunEnd();
781  }
782};
783
784class SleepTask : public OrderedTasks {
785 public:
786  SleepTask(TaskList* order, int cookie, int ms)
787      : OrderedTasks(order, SLEEP, cookie), ms_(ms) {
788  }
789
790  virtual void Run() {
791    RunStart();
792    PlatformThread::Sleep(ms_);
793    RunEnd();
794  }
795
796 private:
797  int ms_;
798};
799
800#if defined(OS_WIN)
801
802class Recursive2Tasks : public Task {
803 public:
804  Recursive2Tasks(MessageLoop* target,
805                  HANDLE event,
806                  bool expect_window,
807                  TaskList* order,
808                  bool is_reentrant)
809      : target_(target),
810        event_(event),
811        expect_window_(expect_window),
812        order_(order),
813        is_reentrant_(is_reentrant) {
814  }
815
816  virtual void Run() {
817    target_->PostTask(FROM_HERE,
818                      new RecursiveTask(2, order_, 1, is_reentrant_));
819    target_->PostTask(FROM_HERE,
820                      new MessageBoxTask(order_, 2, is_reentrant_));
821    target_->PostTask(FROM_HERE,
822                      new RecursiveTask(2, order_, 3, is_reentrant_));
823    // The trick here is that for recursive task processing, this task will be
824    // ran _inside_ the MessageBox message loop, dismissing the MessageBox
825    // without a chance.
826    // For non-recursive task processing, this will be executed _after_ the
827    // MessageBox will have been dismissed by the code below, where
828    // expect_window_ is true.
829    target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
830    target_->PostTask(FROM_HERE, new QuitTask(order_, 5));
831
832    // Enforce that every tasks are sent before starting to run the main thread
833    // message loop.
834    ASSERT_TRUE(SetEvent(event_));
835
836    // Poll for the MessageBox. Don't do this at home! At the speed we do it,
837    // you will never realize one MessageBox was shown.
838    for (; expect_window_;) {
839      HWND window = FindWindow(L"#32770", kMessageBoxTitle);
840      if (window) {
841        // Dismiss it.
842        for (;;) {
843          HWND button = FindWindowEx(window, NULL, L"Button", NULL);
844          if (button != NULL) {
845            EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
846            EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
847            break;
848          }
849        }
850        break;
851      }
852    }
853  }
854
855 private:
856  MessageLoop* target_;
857  HANDLE event_;
858  TaskList* order_;
859  bool expect_window_;
860  bool is_reentrant_;
861};
862
863#endif  // defined(OS_WIN)
864
865void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
866  MessageLoop loop(message_loop_type);
867
868  EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
869  TaskList order;
870  MessageLoop::current()->PostTask(FROM_HERE,
871                                   new RecursiveTask(2, &order, 1, false));
872  MessageLoop::current()->PostTask(FROM_HERE,
873                                   new RecursiveTask(2, &order, 2, false));
874  MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
875
876  MessageLoop::current()->Run();
877
878  // FIFO order.
879  ASSERT_EQ(14U, order.size());
880  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
881  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
882  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
883  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
884  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
885  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
886  EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
887  EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
888  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
889  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
890  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
891  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
892  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
893  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
894}
895
896void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
897  MessageLoop loop(message_loop_type);
898
899  TaskList order;
900  MessageLoop::current()->PostTask(FROM_HERE,
901                                   new RecursiveTask(2, &order, 1, true));
902  MessageLoop::current()->PostTask(FROM_HERE,
903                                   new RecursiveTask(2, &order, 2, true));
904  MessageLoop::current()->PostTask(FROM_HERE,
905                                   new QuitTask(&order, 3));
906
907  MessageLoop::current()->Run();
908
909  // FIFO order.
910  ASSERT_EQ(14U, order.size());
911  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
912  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
913  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
914  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
915  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
916  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
917  EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
918  EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
919  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
920  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
921  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
922  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
923  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
924  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
925}
926
927#if defined(OS_WIN)
928// TODO(darin): These tests need to be ported since they test critical
929// message loop functionality.
930
931// A side effect of this test is the generation a beep. Sorry.
932void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
933  MessageLoop loop(message_loop_type);
934
935  Thread worker("RecursiveDenial2_worker");
936  Thread::Options options;
937  options.message_loop_type = message_loop_type;
938  ASSERT_EQ(true, worker.StartWithOptions(options));
939  TaskList order;
940  base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
941  worker.message_loop()->PostTask(FROM_HERE,
942                                  new Recursive2Tasks(MessageLoop::current(),
943                                                      event,
944                                                      true,
945                                                      &order,
946                                                      false));
947  // Let the other thread execute.
948  WaitForSingleObject(event, INFINITE);
949  MessageLoop::current()->Run();
950
951  ASSERT_EQ(order.size(), 17);
952  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
953  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
954  EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
955  EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
956  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
957  EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
958  // When EndDialogTask is processed, the window is already dismissed, hence no
959  // "end" entry.
960  EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
961  EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
962  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
963  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
964  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
965  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
966  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
967  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
968  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
969  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
970  EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
971}
972
973// A side effect of this test is the generation a beep. Sorry.  This test also
974// needs to process windows messages on the current thread.
975void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
976  MessageLoop loop(message_loop_type);
977
978  Thread worker("RecursiveSupport2_worker");
979  Thread::Options options;
980  options.message_loop_type = message_loop_type;
981  ASSERT_EQ(true, worker.StartWithOptions(options));
982  TaskList order;
983  base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
984  worker.message_loop()->PostTask(FROM_HERE,
985                                  new Recursive2Tasks(MessageLoop::current(),
986                                                      event,
987                                                      false,
988                                                      &order,
989                                                      true));
990  // Let the other thread execute.
991  WaitForSingleObject(event, INFINITE);
992  MessageLoop::current()->Run();
993
994  ASSERT_EQ(order.size(), 18);
995  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
996  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
997  EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
998  // Note that this executes in the MessageBox modal loop.
999  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
1000  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
1001  EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
1002  EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
1003  EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
1004  /* The order can subtly change here. The reason is that when RecursiveTask(1)
1005     is called in the main thread, if it is faster than getting to the
1006     PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
1007     change. We don't care anyway that the order isn't correct.
1008  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
1009  EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
1010  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
1011  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
1012  */
1013  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
1014  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
1015  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
1016  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
1017  EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
1018  EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
1019}
1020
1021#endif  // defined(OS_WIN)
1022
1023class TaskThatPumps : public OrderedTasks {
1024 public:
1025  TaskThatPumps(TaskList* order, int cookie)
1026      : OrderedTasks(order, PUMPS, cookie) {
1027  }
1028
1029  virtual void Run() {
1030    RunStart();
1031    bool old_state = MessageLoop::current()->NestableTasksAllowed();
1032    MessageLoop::current()->SetNestableTasksAllowed(true);
1033    MessageLoop::current()->RunAllPending();
1034    MessageLoop::current()->SetNestableTasksAllowed(old_state);
1035    RunEnd();
1036  }
1037};
1038
1039// Tests that non nestable tasks run in FIFO if there are no nested loops.
1040void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
1041  MessageLoop loop(message_loop_type);
1042
1043  TaskList order;
1044
1045  Task* task = new OrderedTasks(&order, 1);
1046  MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
1047  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
1048  MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
1049  MessageLoop::current()->Run();
1050
1051  // FIFO order.
1052  ASSERT_EQ(6U, order.size());
1053  EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
1054  EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
1055  EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
1056  EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
1057  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
1058  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
1059}
1060
1061// Tests that non nestable tasks don't run when there's code in the call stack.
1062void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
1063                                     bool use_delayed) {
1064  MessageLoop loop(message_loop_type);
1065
1066  TaskList order;
1067
1068  MessageLoop::current()->PostTask(FROM_HERE,
1069                                   new TaskThatPumps(&order, 1));
1070  Task* task = new OrderedTasks(&order, 2);
1071  if (use_delayed) {
1072    MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, task, 1);
1073  } else {
1074    MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
1075  }
1076  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
1077  MessageLoop::current()->PostTask(FROM_HERE, new SleepTask(&order, 4, 50));
1078  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 5));
1079  Task* non_nestable_quit = new QuitTask(&order, 6);
1080  if (use_delayed) {
1081    MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE,
1082                                                       non_nestable_quit,
1083                                                       2);
1084  } else {
1085    MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);
1086  }
1087
1088  MessageLoop::current()->Run();
1089
1090  // FIFO order.
1091  ASSERT_EQ(12U, order.size());
1092  EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
1093  EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
1094  EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
1095  EXPECT_EQ(order[ 3], TaskItem(SLEEP, 4, true));
1096  EXPECT_EQ(order[ 4], TaskItem(SLEEP, 4, false));
1097  EXPECT_EQ(order[ 5], TaskItem(ORDERERD, 5, true));
1098  EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 5, false));
1099  EXPECT_EQ(order[ 7], TaskItem(PUMPS, 1, false));
1100  EXPECT_EQ(order[ 8], TaskItem(ORDERERD, 2, true));
1101  EXPECT_EQ(order[ 9], TaskItem(ORDERERD, 2, false));
1102  EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 6, true));
1103  EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 6, false));
1104}
1105
1106#if defined(OS_WIN)
1107
1108class DispatcherImpl : public MessageLoopForUI::Dispatcher {
1109 public:
1110  DispatcherImpl() : dispatch_count_(0) {}
1111
1112  virtual bool Dispatch(const MSG& msg) {
1113    ::TranslateMessage(&msg);
1114    ::DispatchMessage(&msg);
1115    // Do not count WM_TIMER since it is not what we post and it will cause
1116    // flakiness.
1117    if (msg.message != WM_TIMER)
1118      ++dispatch_count_;
1119    // We treat WM_LBUTTONUP as the last message.
1120    return msg.message != WM_LBUTTONUP;
1121  }
1122
1123  int dispatch_count_;
1124};
1125
1126void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
1127  MessageLoop loop(message_loop_type);
1128
1129  class MyTask : public Task {
1130  public:
1131    virtual void Run() {
1132      PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
1133      PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
1134    }
1135  };
1136  Task* task = new MyTask();
1137  MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
1138  DispatcherImpl dispatcher;
1139  MessageLoopForUI::current()->Run(&dispatcher);
1140  ASSERT_EQ(2, dispatcher.dispatch_count_);
1141}
1142
1143LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
1144  if (code == base::MessagePumpForUI::kMessageFilterCode) {
1145    MSG* msg = reinterpret_cast<MSG*>(lparam);
1146    if (msg->message == WM_LBUTTONDOWN)
1147      return TRUE;
1148  }
1149  return FALSE;
1150}
1151
1152void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
1153  MessageLoop loop(message_loop_type);
1154
1155  class MyTask : public Task {
1156  public:
1157    virtual void Run() {
1158      PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
1159      PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
1160    }
1161  };
1162  Task* task = new MyTask();
1163  MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
1164  HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
1165                                    MsgFilterProc,
1166                                    NULL,
1167                                    GetCurrentThreadId());
1168  DispatcherImpl dispatcher;
1169  MessageLoopForUI::current()->Run(&dispatcher);
1170  ASSERT_EQ(1, dispatcher.dispatch_count_);
1171  UnhookWindowsHookEx(msg_hook);
1172}
1173
1174class TestIOHandler : public MessageLoopForIO::IOHandler {
1175 public:
1176  TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
1177
1178  virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
1179                             DWORD bytes_transfered, DWORD error);
1180
1181  void Init();
1182  void WaitForIO();
1183  OVERLAPPED* context() { return &context_.overlapped; }
1184  DWORD size() { return sizeof(buffer_); }
1185
1186 private:
1187  char buffer_[48];
1188  MessageLoopForIO::IOContext context_;
1189  HANDLE signal_;
1190  base::win::ScopedHandle file_;
1191  bool wait_;
1192};
1193
1194TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
1195    : signal_(signal), wait_(wait) {
1196  memset(buffer_, 0, sizeof(buffer_));
1197  memset(&context_, 0, sizeof(context_));
1198  context_.handler = this;
1199
1200  file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
1201                       FILE_FLAG_OVERLAPPED, NULL));
1202  EXPECT_TRUE(file_.IsValid());
1203}
1204
1205void TestIOHandler::Init() {
1206  MessageLoopForIO::current()->RegisterIOHandler(file_, this);
1207
1208  DWORD read;
1209  EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
1210  EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
1211  if (wait_)
1212    WaitForIO();
1213}
1214
1215void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
1216                                  DWORD bytes_transfered, DWORD error) {
1217  ASSERT_TRUE(context == &context_);
1218  ASSERT_TRUE(SetEvent(signal_));
1219}
1220
1221void TestIOHandler::WaitForIO() {
1222  EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
1223  EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
1224}
1225
1226class IOHandlerTask : public Task {
1227 public:
1228  explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {}
1229  virtual void Run() {
1230    handler_->Init();
1231  }
1232
1233 private:
1234  TestIOHandler* handler_;
1235};
1236
1237void RunTest_IOHandler() {
1238  base::win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
1239  ASSERT_TRUE(callback_called.IsValid());
1240
1241  const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
1242  base::win::ScopedHandle server(
1243      CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1244  ASSERT_TRUE(server.IsValid());
1245
1246  Thread thread("IOHandler test");
1247  Thread::Options options;
1248  options.message_loop_type = MessageLoop::TYPE_IO;
1249  ASSERT_TRUE(thread.StartWithOptions(options));
1250
1251  MessageLoop* thread_loop = thread.message_loop();
1252  ASSERT_TRUE(NULL != thread_loop);
1253
1254  TestIOHandler handler(kPipeName, callback_called, false);
1255  IOHandlerTask* task = new IOHandlerTask(&handler);
1256  thread_loop->PostTask(FROM_HERE, task);
1257  Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
1258
1259  const char buffer[] = "Hello there!";
1260  DWORD written;
1261  EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
1262
1263  DWORD result = WaitForSingleObject(callback_called, 1000);
1264  EXPECT_EQ(WAIT_OBJECT_0, result);
1265
1266  thread.Stop();
1267}
1268
1269void RunTest_WaitForIO() {
1270  base::win::ScopedHandle callback1_called(
1271      CreateEvent(NULL, TRUE, FALSE, NULL));
1272  base::win::ScopedHandle callback2_called(
1273      CreateEvent(NULL, TRUE, FALSE, NULL));
1274  ASSERT_TRUE(callback1_called.IsValid());
1275  ASSERT_TRUE(callback2_called.IsValid());
1276
1277  const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
1278  const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
1279  base::win::ScopedHandle server1(
1280      CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1281  base::win::ScopedHandle server2(
1282      CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1283  ASSERT_TRUE(server1.IsValid());
1284  ASSERT_TRUE(server2.IsValid());
1285
1286  Thread thread("IOHandler test");
1287  Thread::Options options;
1288  options.message_loop_type = MessageLoop::TYPE_IO;
1289  ASSERT_TRUE(thread.StartWithOptions(options));
1290
1291  MessageLoop* thread_loop = thread.message_loop();
1292  ASSERT_TRUE(NULL != thread_loop);
1293
1294  TestIOHandler handler1(kPipeName1, callback1_called, false);
1295  TestIOHandler handler2(kPipeName2, callback2_called, true);
1296  IOHandlerTask* task1 = new IOHandlerTask(&handler1);
1297  IOHandlerTask* task2 = new IOHandlerTask(&handler2);
1298  thread_loop->PostTask(FROM_HERE, task1);
1299  Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
1300  thread_loop->PostTask(FROM_HERE, task2);
1301  Sleep(100);
1302
1303  // At this time handler1 is waiting to be called, and the thread is waiting
1304  // on the Init method of handler2, filtering only handler2 callbacks.
1305
1306  const char buffer[] = "Hello there!";
1307  DWORD written;
1308  EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
1309  Sleep(200);
1310  EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
1311      "handler1 has not been called";
1312
1313  EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
1314
1315  HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
1316  DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
1317  EXPECT_EQ(WAIT_OBJECT_0, result);
1318
1319  thread.Stop();
1320}
1321
1322#endif  // defined(OS_WIN)
1323
1324}  // namespace
1325
1326//-----------------------------------------------------------------------------
1327// Each test is run against each type of MessageLoop.  That way we are sure
1328// that message loops work properly in all configurations.  Of course, in some
1329// cases, a unit test may only be for a particular type of loop.
1330
1331TEST(MessageLoopTest, PostTask) {
1332  RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
1333  RunTest_PostTask(MessageLoop::TYPE_UI);
1334  RunTest_PostTask(MessageLoop::TYPE_IO);
1335}
1336
1337TEST(MessageLoopTest, PostTask_SEH) {
1338  RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
1339  RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
1340  RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
1341}
1342
1343TEST(MessageLoopTest, PostDelayedTask_Basic) {
1344  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
1345  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
1346  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
1347}
1348
1349TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
1350  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
1351  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
1352  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
1353}
1354
1355TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
1356  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
1357  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
1358  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
1359}
1360
1361TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
1362  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
1363  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
1364  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
1365}
1366
1367TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
1368  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
1369  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
1370  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
1371}
1372
1373TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
1374  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
1375  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
1376  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
1377}
1378
1379#if defined(OS_WIN)
1380TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
1381  RunTest_PostDelayedTask_SharedTimer_SubPump();
1382}
1383#endif
1384
1385// TODO(darin): MessageLoop does not support deleting all tasks in the
1386// destructor.
1387// Fails, http://crbug.com/50272.
1388TEST(MessageLoopTest, FAILS_EnsureTaskDeletion) {
1389  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
1390  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
1391  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
1392}
1393
1394// TODO(darin): MessageLoop does not support deleting all tasks in the
1395// destructor.
1396// Fails, http://crbug.com/50272.
1397TEST(MessageLoopTest, FAILS_EnsureTaskDeletion_Chain) {
1398  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
1399  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
1400  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
1401}
1402
1403#if defined(OS_WIN)
1404TEST(MessageLoopTest, Crasher) {
1405  RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
1406  RunTest_Crasher(MessageLoop::TYPE_UI);
1407  RunTest_Crasher(MessageLoop::TYPE_IO);
1408}
1409
1410TEST(MessageLoopTest, CrasherNasty) {
1411  RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
1412  RunTest_CrasherNasty(MessageLoop::TYPE_UI);
1413  RunTest_CrasherNasty(MessageLoop::TYPE_IO);
1414}
1415#endif  // defined(OS_WIN)
1416
1417TEST(MessageLoopTest, Nesting) {
1418  RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
1419  RunTest_Nesting(MessageLoop::TYPE_UI);
1420  RunTest_Nesting(MessageLoop::TYPE_IO);
1421}
1422
1423TEST(MessageLoopTest, RecursiveDenial1) {
1424  RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
1425  RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
1426  RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
1427}
1428
1429TEST(MessageLoopTest, RecursiveSupport1) {
1430  RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
1431  RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
1432  RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
1433}
1434
1435#if defined(OS_WIN)
1436// This test occasionally hangs http://crbug.com/44567
1437TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
1438  RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
1439  RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
1440  RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
1441}
1442
1443TEST(MessageLoopTest, RecursiveSupport2) {
1444  // This test requires a UI loop
1445  RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
1446}
1447#endif  // defined(OS_WIN)
1448
1449TEST(MessageLoopTest, NonNestableWithNoNesting) {
1450  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
1451  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
1452  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
1453}
1454
1455TEST(MessageLoopTest, NonNestableInNestedLoop) {
1456  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
1457  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
1458  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
1459}
1460
1461TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
1462  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
1463  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
1464  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
1465}
1466
1467class DummyTask : public Task {
1468 public:
1469  explicit DummyTask(int num_tasks) : num_tasks_(num_tasks) {}
1470
1471  virtual void Run() {
1472    if (num_tasks_ > 1) {
1473      MessageLoop::current()->PostTask(
1474          FROM_HERE,
1475          new DummyTask(num_tasks_ - 1));
1476    } else {
1477      MessageLoop::current()->Quit();
1478    }
1479  }
1480
1481 private:
1482  const int num_tasks_;
1483};
1484
1485class DummyTaskObserver : public MessageLoop::TaskObserver {
1486 public:
1487  explicit DummyTaskObserver(int num_tasks)
1488      : num_tasks_started_(0),
1489        num_tasks_processed_(0),
1490        num_tasks_(num_tasks) {}
1491
1492  virtual ~DummyTaskObserver() {}
1493
1494  virtual void WillProcessTask(const Task* task) {
1495    num_tasks_started_++;
1496    EXPECT_TRUE(task != NULL);
1497    EXPECT_LE(num_tasks_started_, num_tasks_);
1498    EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
1499  }
1500
1501  virtual void DidProcessTask(const Task* task) {
1502    num_tasks_processed_++;
1503    EXPECT_TRUE(task != NULL);
1504    EXPECT_LE(num_tasks_started_, num_tasks_);
1505    EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
1506  }
1507
1508  int num_tasks_started() const { return num_tasks_started_; }
1509  int num_tasks_processed() const { return num_tasks_processed_; }
1510
1511 private:
1512  int num_tasks_started_;
1513  int num_tasks_processed_;
1514  const int num_tasks_;
1515
1516  DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
1517};
1518
1519TEST(MessageLoopTest, TaskObserver) {
1520  const int kNumTasks = 6;
1521  DummyTaskObserver observer(kNumTasks);
1522
1523  MessageLoop loop;
1524  loop.AddTaskObserver(&observer);
1525  loop.PostTask(FROM_HERE, new DummyTask(kNumTasks));
1526  loop.Run();
1527  loop.RemoveTaskObserver(&observer);
1528
1529  EXPECT_EQ(kNumTasks, observer.num_tasks_started());
1530  EXPECT_EQ(kNumTasks, observer.num_tasks_processed());
1531}
1532
1533#if defined(OS_WIN)
1534TEST(MessageLoopTest, Dispatcher) {
1535  // This test requires a UI loop
1536  RunTest_Dispatcher(MessageLoop::TYPE_UI);
1537}
1538
1539TEST(MessageLoopTest, DispatcherWithMessageHook) {
1540  // This test requires a UI loop
1541  RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
1542}
1543
1544TEST(MessageLoopTest, IOHandler) {
1545  RunTest_IOHandler();
1546}
1547
1548TEST(MessageLoopTest, WaitForIO) {
1549  RunTest_WaitForIO();
1550}
1551
1552TEST(MessageLoopTest, HighResolutionTimer) {
1553  MessageLoop loop;
1554
1555  const int kFastTimerMs = 5;
1556  const int kSlowTimerMs = 100;
1557
1558  EXPECT_EQ(false, loop.high_resolution_timers_enabled());
1559
1560  // Post a fast task to enable the high resolution timers.
1561  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kFastTimerMs);
1562  loop.Run();
1563  EXPECT_EQ(true, loop.high_resolution_timers_enabled());
1564
1565  // Post a slow task and verify high resolution timers
1566  // are still enabled.
1567  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
1568  loop.Run();
1569  EXPECT_EQ(true, loop.high_resolution_timers_enabled());
1570
1571  // Wait for a while so that high-resolution mode elapses.
1572  Sleep(MessageLoop::kHighResolutionTimerModeLeaseTimeMs);
1573
1574  // Post a slow task to disable the high resolution timers.
1575  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
1576  loop.Run();
1577  EXPECT_EQ(false, loop.high_resolution_timers_enabled());
1578}
1579
1580#endif  // defined(OS_WIN)
1581
1582#if defined(OS_POSIX) && !defined(OS_NACL)
1583
1584namespace {
1585
1586class QuitDelegate : public base::MessagePumpLibevent::Watcher {
1587 public:
1588  virtual void OnFileCanWriteWithoutBlocking(int fd) {
1589    MessageLoop::current()->Quit();
1590  }
1591  virtual void OnFileCanReadWithoutBlocking(int fd) {
1592    MessageLoop::current()->Quit();
1593  }
1594};
1595
1596TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
1597  // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
1598  // This could happen when people use the Singleton pattern or atexit.
1599
1600  // Create a file descriptor.  Doesn't need to be readable or writable,
1601  // as we don't need to actually get any notifications.
1602  // pipe() is just the easiest way to do it.
1603  int pipefds[2];
1604  int err = pipe(pipefds);
1605  ASSERT_EQ(0, err);
1606  int fd = pipefds[1];
1607  {
1608    // Arrange for controller to live longer than message loop.
1609    base::MessagePumpLibevent::FileDescriptorWatcher controller;
1610    {
1611      MessageLoopForIO message_loop;
1612
1613      QuitDelegate delegate;
1614      message_loop.WatchFileDescriptor(fd,
1615          true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
1616      // and don't run the message loop, just destroy it.
1617    }
1618  }
1619  if (HANDLE_EINTR(close(pipefds[0])) < 0)
1620    PLOG(ERROR) << "close";
1621  if (HANDLE_EINTR(close(pipefds[1])) < 0)
1622    PLOG(ERROR) << "close";
1623}
1624
1625TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
1626  // Verify that it's ok to call StopWatchingFileDescriptor().
1627  // (Errors only showed up in valgrind.)
1628  int pipefds[2];
1629  int err = pipe(pipefds);
1630  ASSERT_EQ(0, err);
1631  int fd = pipefds[1];
1632  {
1633    // Arrange for message loop to live longer than controller.
1634    MessageLoopForIO message_loop;
1635    {
1636      base::MessagePumpLibevent::FileDescriptorWatcher controller;
1637
1638      QuitDelegate delegate;
1639      message_loop.WatchFileDescriptor(fd,
1640          true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
1641      controller.StopWatchingFileDescriptor();
1642    }
1643  }
1644  if (HANDLE_EINTR(close(pipefds[0])) < 0)
1645    PLOG(ERROR) << "close";
1646  if (HANDLE_EINTR(close(pipefds[1])) < 0)
1647    PLOG(ERROR) << "close";
1648}
1649
1650}  // namespace
1651
1652#endif  // defined(OS_POSIX) && !defined(OS_NACL)
1653
1654namespace {
1655class RunAtDestructionTask : public Task {
1656 public:
1657  RunAtDestructionTask(bool* task_destroyed, bool* destruction_observer_called)
1658      : task_destroyed_(task_destroyed),
1659        destruction_observer_called_(destruction_observer_called) {
1660  }
1661  ~RunAtDestructionTask() {
1662    EXPECT_FALSE(*destruction_observer_called_);
1663    *task_destroyed_ = true;
1664  }
1665  virtual void Run() {
1666    // This task should never run.
1667    ADD_FAILURE();
1668  }
1669 private:
1670  bool* task_destroyed_;
1671  bool* destruction_observer_called_;
1672};
1673
1674class MLDestructionObserver : public MessageLoop::DestructionObserver {
1675 public:
1676  MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
1677      : task_destroyed_(task_destroyed),
1678        destruction_observer_called_(destruction_observer_called),
1679        task_destroyed_before_message_loop_(false) {
1680  }
1681  virtual void WillDestroyCurrentMessageLoop() {
1682    task_destroyed_before_message_loop_ = *task_destroyed_;
1683    *destruction_observer_called_ = true;
1684  }
1685  bool task_destroyed_before_message_loop() const {
1686    return task_destroyed_before_message_loop_;
1687  }
1688 private:
1689  bool* task_destroyed_;
1690  bool* destruction_observer_called_;
1691  bool task_destroyed_before_message_loop_;
1692};
1693
1694}  // namespace
1695
1696TEST(MessageLoopTest, DestructionObserverTest) {
1697  // Verify that the destruction observer gets called at the very end (after
1698  // all the pending tasks have been destroyed).
1699  MessageLoop* loop = new MessageLoop;
1700  const int kDelayMS = 100;
1701
1702  bool task_destroyed = false;
1703  bool destruction_observer_called = false;
1704
1705  MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
1706  loop->AddDestructionObserver(&observer);
1707  loop->PostDelayedTask(
1708      FROM_HERE,
1709      new RunAtDestructionTask(&task_destroyed, &destruction_observer_called),
1710      kDelayMS);
1711  delete loop;
1712  EXPECT_TRUE(observer.task_destroyed_before_message_loop());
1713  // The task should have been destroyed when we deleted the loop.
1714  EXPECT_TRUE(task_destroyed);
1715  EXPECT_TRUE(destruction_observer_called);
1716}
1717