message_loop_unittest.cc revision dc0f95d653279beabeb9817299e2902918ba123e
1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <vector>
6
7#include "base/eintr_wrapper.h"
8#include "base/logging.h"
9#include "base/message_loop.h"
10#include "base/ref_counted.h"
11#include "base/task.h"
12#include "base/threading/platform_thread.h"
13#include "base/threading/thread.h"
14#include "testing/gtest/include/gtest/gtest.h"
15
16#if defined(OS_WIN)
17#include "base/message_pump_win.h"
18#include "base/win/scoped_handle.h"
19#endif
20#if defined(OS_POSIX)
21#include "base/message_pump_libevent.h"
22#endif
23
24using base::PlatformThread;
25using base::Thread;
26using base::Time;
27using base::TimeDelta;
28
29// TODO(darin): Platform-specific MessageLoop tests should be grouped together
30// to avoid chopping this file up with so many #ifdefs.
31
32namespace {
33
34class MessageLoopTest : public testing::Test {};
35
36class Foo : public base::RefCounted<Foo> {
37 public:
38  Foo() : test_count_(0) {
39  }
40
41  void Test0() {
42    ++test_count_;
43  }
44
45  void Test1ConstRef(const std::string& a) {
46    ++test_count_;
47    result_.append(a);
48  }
49
50  void Test1Ptr(std::string* a) {
51    ++test_count_;
52    result_.append(*a);
53  }
54
55  void Test1Int(int a) {
56    test_count_ += a;
57  }
58
59  void Test2Ptr(std::string* a, std::string* b) {
60    ++test_count_;
61    result_.append(*a);
62    result_.append(*b);
63  }
64
65  void Test2Mixed(const std::string& a, std::string* b) {
66    ++test_count_;
67    result_.append(a);
68    result_.append(*b);
69  }
70
71  int test_count() const { return test_count_; }
72  const std::string& result() const { return result_; }
73
74 private:
75  friend class base::RefCounted<Foo>;
76
77  ~Foo() {}
78
79  int test_count_;
80  std::string result_;
81};
82
83class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
84 public:
85  void QuitNow() {
86    MessageLoop::current()->Quit();
87  }
88
89 private:
90  friend class base::RefCounted<QuitMsgLoop>;
91
92  ~QuitMsgLoop() {}
93};
94
95void RunTest_PostTask(MessageLoop::Type message_loop_type) {
96  MessageLoop loop(message_loop_type);
97
98  // Add tests to message loop
99  scoped_refptr<Foo> foo(new Foo());
100  std::string a("a"), b("b"), c("c"), d("d");
101  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
102      foo.get(), &Foo::Test0));
103  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
104    foo.get(), &Foo::Test1ConstRef, a));
105  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
106      foo.get(), &Foo::Test1Ptr, &b));
107  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
108      foo.get(), &Foo::Test1Int, 100));
109  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
110      foo.get(), &Foo::Test2Ptr, &a, &c));
111  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
112    foo.get(), &Foo::Test2Mixed, a, &d));
113
114  // After all tests, post a message that will shut down the message loop
115  scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
116  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
117      quit.get(), &QuitMsgLoop::QuitNow));
118
119  // Now kick things off
120  MessageLoop::current()->Run();
121
122  EXPECT_EQ(foo->test_count(), 105);
123  EXPECT_EQ(foo->result(), "abacad");
124}
125
126void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
127  MessageLoop loop(message_loop_type);
128
129  // Add tests to message loop
130  scoped_refptr<Foo> foo(new Foo());
131  std::string a("a"), b("b"), c("c"), d("d");
132  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
133      foo.get(), &Foo::Test0));
134  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
135      foo.get(), &Foo::Test1ConstRef, a));
136  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
137      foo.get(), &Foo::Test1Ptr, &b));
138  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
139      foo.get(), &Foo::Test1Int, 100));
140  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
141      foo.get(), &Foo::Test2Ptr, &a, &c));
142  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
143      foo.get(), &Foo::Test2Mixed, a, &d));
144
145  // After all tests, post a message that will shut down the message loop
146  scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
147  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
148      quit.get(), &QuitMsgLoop::QuitNow));
149
150  // Now kick things off with the SEH block active.
151  MessageLoop::current()->set_exception_restoration(true);
152  MessageLoop::current()->Run();
153  MessageLoop::current()->set_exception_restoration(false);
154
155  EXPECT_EQ(foo->test_count(), 105);
156  EXPECT_EQ(foo->result(), "abacad");
157}
158
159// This class runs slowly to simulate a large amount of work being done.
160class SlowTask : public Task {
161 public:
162  SlowTask(int pause_ms, int* quit_counter)
163      : pause_ms_(pause_ms), quit_counter_(quit_counter) {
164  }
165  virtual void Run() {
166    PlatformThread::Sleep(pause_ms_);
167    if (--(*quit_counter_) == 0)
168      MessageLoop::current()->Quit();
169  }
170 private:
171  int pause_ms_;
172  int* quit_counter_;
173};
174
175// This class records the time when Run was called in a Time object, which is
176// useful for building a variety of MessageLoop tests.
177class RecordRunTimeTask : public SlowTask {
178 public:
179  RecordRunTimeTask(Time* run_time, int* quit_counter)
180      : SlowTask(10, quit_counter), run_time_(run_time) {
181  }
182  virtual void Run() {
183    *run_time_ = Time::Now();
184    // Cause our Run function to take some time to execute.  As a result we can
185    // count on subsequent RecordRunTimeTask objects running at a future time,
186    // without worry about the resolution of our system clock being an issue.
187    SlowTask::Run();
188  }
189 private:
190  Time* run_time_;
191};
192
193void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
194  MessageLoop loop(message_loop_type);
195
196  // Test that PostDelayedTask results in a delayed task.
197
198  const int kDelayMS = 100;
199
200  int num_tasks = 1;
201  Time run_time;
202
203  loop.PostDelayedTask(
204      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);
205
206  Time time_before_run = Time::Now();
207  loop.Run();
208  Time time_after_run = Time::Now();
209
210  EXPECT_EQ(0, num_tasks);
211  EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
212}
213
214void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
215  MessageLoop loop(message_loop_type);
216
217  // Test that two tasks with different delays run in the right order.
218
219  int num_tasks = 2;
220  Time run_time1, run_time2;
221
222  loop.PostDelayedTask(
223      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
224  // If we get a large pause in execution (due to a context switch) here, this
225  // test could fail.
226  loop.PostDelayedTask(
227      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
228
229  loop.Run();
230  EXPECT_EQ(0, num_tasks);
231
232  EXPECT_TRUE(run_time2 < run_time1);
233}
234
235void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
236  MessageLoop loop(message_loop_type);
237
238  // Test that two tasks with the same delay run in the order in which they
239  // were posted.
240  //
241  // NOTE: This is actually an approximate test since the API only takes a
242  // "delay" parameter, so we are not exactly simulating two tasks that get
243  // posted at the exact same time.  It would be nice if the API allowed us to
244  // specify the desired run time.
245
246  const int kDelayMS = 100;
247
248  int num_tasks = 2;
249  Time run_time1, run_time2;
250
251  loop.PostDelayedTask(
252      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
253  loop.PostDelayedTask(
254      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);
255
256  loop.Run();
257  EXPECT_EQ(0, num_tasks);
258
259  EXPECT_TRUE(run_time1 < run_time2);
260}
261
262void RunTest_PostDelayedTask_InPostOrder_2(
263    MessageLoop::Type message_loop_type) {
264  MessageLoop loop(message_loop_type);
265
266  // Test that a delayed task still runs after a normal tasks even if the
267  // normal tasks take a long time to run.
268
269  const int kPauseMS = 50;
270
271  int num_tasks = 2;
272  Time run_time;
273
274  loop.PostTask(
275      FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
276  loop.PostDelayedTask(
277      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);
278
279  Time time_before_run = Time::Now();
280  loop.Run();
281  Time time_after_run = Time::Now();
282
283  EXPECT_EQ(0, num_tasks);
284
285  EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
286}
287
288void RunTest_PostDelayedTask_InPostOrder_3(
289    MessageLoop::Type message_loop_type) {
290  MessageLoop loop(message_loop_type);
291
292  // Test that a delayed task still runs after a pile of normal tasks.  The key
293  // difference between this test and the previous one is that here we return
294  // the MessageLoop a lot so we give the MessageLoop plenty of opportunities
295  // to maybe run the delayed task.  It should know not to do so until the
296  // delayed task's delay has passed.
297
298  int num_tasks = 11;
299  Time run_time1, run_time2;
300
301  // Clutter the ML with tasks.
302  for (int i = 1; i < num_tasks; ++i)
303    loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));
304
305  loop.PostDelayedTask(
306      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);
307
308  loop.Run();
309  EXPECT_EQ(0, num_tasks);
310
311  EXPECT_TRUE(run_time2 > run_time1);
312}
313
314void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) {
315  MessageLoop loop(message_loop_type);
316
317  // Test that the interval of the timer, used to run the next delayed task, is
318  // set to a value corresponding to when the next delayed task should run.
319
320  // By setting num_tasks to 1, we ensure that the first task to run causes the
321  // run loop to exit.
322  int num_tasks = 1;
323  Time run_time1, run_time2;
324
325  loop.PostDelayedTask(
326      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000);
327  loop.PostDelayedTask(
328      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
329
330  Time start_time = Time::Now();
331
332  loop.Run();
333  EXPECT_EQ(0, num_tasks);
334
335  // Ensure that we ran in far less time than the slower timer.
336  TimeDelta total_time = Time::Now() - start_time;
337  EXPECT_GT(5000, total_time.InMilliseconds());
338
339  // In case both timers somehow run at nearly the same time, sleep a little
340  // and then run all pending to force them both to have run.  This is just
341  // encouraging flakiness if there is any.
342  PlatformThread::Sleep(100);
343  loop.RunAllPending();
344
345  EXPECT_TRUE(run_time1.is_null());
346  EXPECT_FALSE(run_time2.is_null());
347}
348
349#if defined(OS_WIN)
350
351class SubPumpTask : public Task {
352 public:
353  virtual void Run() {
354    MessageLoop::current()->SetNestableTasksAllowed(true);
355    MSG msg;
356    while (GetMessage(&msg, NULL, 0, 0)) {
357      TranslateMessage(&msg);
358      DispatchMessage(&msg);
359    }
360    MessageLoop::current()->Quit();
361  }
362};
363
364class SubPumpQuitTask : public Task {
365 public:
366  SubPumpQuitTask() {
367  }
368  virtual void Run() {
369    PostQuitMessage(0);
370  }
371};
372
373void RunTest_PostDelayedTask_SharedTimer_SubPump() {
374  MessageLoop loop(MessageLoop::TYPE_UI);
375
376  // Test that the interval of the timer, used to run the next delayed task, is
377  // set to a value corresponding to when the next delayed task should run.
378
379  // By setting num_tasks to 1, we ensure that the first task to run causes the
380  // run loop to exit.
381  int num_tasks = 1;
382  Time run_time;
383
384  loop.PostTask(FROM_HERE, new SubPumpTask());
385
386  // This very delayed task should never run.
387  loop.PostDelayedTask(
388      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000);
389
390  // This slightly delayed task should run from within SubPumpTask::Run().
391  loop.PostDelayedTask(
392      FROM_HERE, new SubPumpQuitTask(), 10);
393
394  Time start_time = Time::Now();
395
396  loop.Run();
397  EXPECT_EQ(1, num_tasks);
398
399  // Ensure that we ran in far less time than the slower timer.
400  TimeDelta total_time = Time::Now() - start_time;
401  EXPECT_GT(5000, total_time.InMilliseconds());
402
403  // In case both timers somehow run at nearly the same time, sleep a little
404  // and then run all pending to force them both to have run.  This is just
405  // encouraging flakiness if there is any.
406  PlatformThread::Sleep(100);
407  loop.RunAllPending();
408
409  EXPECT_TRUE(run_time.is_null());
410}
411
412#endif  // defined(OS_WIN)
413
414class RecordDeletionTask : public Task {
415 public:
416  RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
417      : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
418  }
419  ~RecordDeletionTask() {
420    *was_deleted_ = true;
421    if (post_on_delete_)
422      MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
423  }
424  virtual void Run() {}
425 private:
426  Task* post_on_delete_;
427  bool* was_deleted_;
428};
429
430void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
431  bool a_was_deleted = false;
432  bool b_was_deleted = false;
433  {
434    MessageLoop loop(message_loop_type);
435    loop.PostTask(
436        FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
437    loop.PostDelayedTask(
438        FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
439  }
440  EXPECT_TRUE(a_was_deleted);
441  EXPECT_TRUE(b_was_deleted);
442}
443
444void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
445  bool a_was_deleted = false;
446  bool b_was_deleted = false;
447  bool c_was_deleted = false;
448  {
449    MessageLoop loop(message_loop_type);
450    RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
451    RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
452    RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
453    loop.PostTask(FROM_HERE, c);
454  }
455  EXPECT_TRUE(a_was_deleted);
456  EXPECT_TRUE(b_was_deleted);
457  EXPECT_TRUE(c_was_deleted);
458}
459
460class NestingTest : public Task {
461 public:
462  explicit NestingTest(int* depth) : depth_(depth) {
463  }
464  void Run() {
465    if (*depth_ > 0) {
466      *depth_ -= 1;
467      MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));
468
469      MessageLoop::current()->SetNestableTasksAllowed(true);
470      MessageLoop::current()->Run();
471    }
472    MessageLoop::current()->Quit();
473  }
474 private:
475  int* depth_;
476};
477
478#if defined(OS_WIN)
479
480LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
481  ADD_FAILURE() << "bad exception handler";
482  ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
483  return EXCEPTION_EXECUTE_HANDLER;
484}
485
486// This task throws an SEH exception: initially write to an invalid address.
487// If the right SEH filter is installed, it will fix the error.
488class CrasherTask : public Task {
489 public:
490  // Ctor. If trash_SEH_handler is true, the task will override the unhandled
491  // exception handler with one sure to crash this test.
492  explicit CrasherTask(bool trash_SEH_handler)
493      : trash_SEH_handler_(trash_SEH_handler) {
494  }
495  void Run() {
496    PlatformThread::Sleep(1);
497    if (trash_SEH_handler_)
498      ::SetUnhandledExceptionFilter(&BadExceptionHandler);
499    // Generate a SEH fault. We do it in asm to make sure we know how to undo
500    // the damage.
501
502#if defined(_M_IX86)
503
504    __asm {
505      mov eax, dword ptr [CrasherTask::bad_array_]
506      mov byte ptr [eax], 66
507    }
508
509#elif defined(_M_X64)
510
511    bad_array_[0] = 66;
512
513#else
514#error "needs architecture support"
515#endif
516
517    MessageLoop::current()->Quit();
518  }
519  // Points the bad array to a valid memory location.
520  static void FixError() {
521    bad_array_ = &valid_store_;
522  }
523
524 private:
525  bool trash_SEH_handler_;
526  static volatile char* bad_array_;
527  static char valid_store_;
528};
529
530volatile char* CrasherTask::bad_array_ = 0;
531char CrasherTask::valid_store_ = 0;
532
533// This SEH filter fixes the problem and retries execution. Fixing requires
534// that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
535// so we move the instruction pointer 5 bytes back.
536LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
537  if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
538    return EXCEPTION_EXECUTE_HANDLER;
539
540  CrasherTask::FixError();
541
542#if defined(_M_IX86)
543
544  ex_info->ContextRecord->Eip -= 5;
545
546#elif defined(_M_X64)
547
548  ex_info->ContextRecord->Rip -= 5;
549
550#endif
551
552  return EXCEPTION_CONTINUE_EXECUTION;
553}
554
555void RunTest_Crasher(MessageLoop::Type message_loop_type) {
556  MessageLoop loop(message_loop_type);
557
558  if (::IsDebuggerPresent())
559    return;
560
561  LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
562      ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
563
564  MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
565  MessageLoop::current()->set_exception_restoration(true);
566  MessageLoop::current()->Run();
567  MessageLoop::current()->set_exception_restoration(false);
568
569  ::SetUnhandledExceptionFilter(old_SEH_filter);
570}
571
572void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
573  MessageLoop loop(message_loop_type);
574
575  if (::IsDebuggerPresent())
576    return;
577
578  LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
579      ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
580
581  MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
582  MessageLoop::current()->set_exception_restoration(true);
583  MessageLoop::current()->Run();
584  MessageLoop::current()->set_exception_restoration(false);
585
586  ::SetUnhandledExceptionFilter(old_SEH_filter);
587}
588
589#endif  // defined(OS_WIN)
590
591void RunTest_Nesting(MessageLoop::Type message_loop_type) {
592  MessageLoop loop(message_loop_type);
593
594  int depth = 100;
595  MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
596  MessageLoop::current()->Run();
597  EXPECT_EQ(depth, 0);
598}
599
600const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
601
602enum TaskType {
603  MESSAGEBOX,
604  ENDDIALOG,
605  RECURSIVE,
606  TIMEDMESSAGELOOP,
607  QUITMESSAGELOOP,
608  ORDERERD,
609  PUMPS,
610  SLEEP,
611};
612
613// Saves the order in which the tasks executed.
614struct TaskItem {
615  TaskItem(TaskType t, int c, bool s)
616      : type(t),
617        cookie(c),
618        start(s) {
619  }
620
621  TaskType type;
622  int cookie;
623  bool start;
624
625  bool operator == (const TaskItem& other) const {
626    return type == other.type && cookie == other.cookie && start == other.start;
627  }
628};
629
630typedef std::vector<TaskItem> TaskList;
631
632std::ostream& operator <<(std::ostream& os, TaskType type) {
633  switch (type) {
634  case MESSAGEBOX:        os << "MESSAGEBOX"; break;
635  case ENDDIALOG:         os << "ENDDIALOG"; break;
636  case RECURSIVE:         os << "RECURSIVE"; break;
637  case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
638  case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
639  case ORDERERD:          os << "ORDERERD"; break;
640  case PUMPS:             os << "PUMPS"; break;
641  case SLEEP:             os << "SLEEP"; break;
642  default:
643    NOTREACHED();
644    os << "Unknown TaskType";
645    break;
646  }
647  return os;
648}
649
650std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
651  if (item.start)
652    return os << item.type << " " << item.cookie << " starts";
653  else
654    return os << item.type << " " << item.cookie << " ends";
655}
656
657// Saves the order the tasks ran.
658class OrderedTasks : public Task {
659 public:
660  OrderedTasks(TaskList* order, int cookie)
661      : order_(order),
662        type_(ORDERERD),
663        cookie_(cookie) {
664  }
665  OrderedTasks(TaskList* order, TaskType type, int cookie)
666      : order_(order),
667        type_(type),
668        cookie_(cookie) {
669  }
670
671  void RunStart() {
672    TaskItem item(type_, cookie_, true);
673    DVLOG(1) << item;
674    order_->push_back(item);
675  }
676  void RunEnd() {
677    TaskItem item(type_, cookie_, false);
678    DVLOG(1) << item;
679    order_->push_back(item);
680  }
681
682  virtual void Run() {
683    RunStart();
684    RunEnd();
685  }
686
687 protected:
688  TaskList* order() const {
689    return order_;
690  }
691
692  int cookie() const {
693    return cookie_;
694  }
695
696 private:
697  TaskList* order_;
698  TaskType type_;
699  int cookie_;
700};
701
702#if defined(OS_WIN)
703
704// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
705// common controls (like OpenFile) and StartDoc printing function can cause
706// implicit message loops.
707class MessageBoxTask : public OrderedTasks {
708 public:
709  MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
710      : OrderedTasks(order, MESSAGEBOX, cookie),
711        is_reentrant_(is_reentrant) {
712  }
713
714  virtual void Run() {
715    RunStart();
716    if (is_reentrant_)
717      MessageLoop::current()->SetNestableTasksAllowed(true);
718    MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
719    RunEnd();
720  }
721
722 private:
723  bool is_reentrant_;
724};
725
726// Will end the MessageBox.
727class EndDialogTask : public OrderedTasks {
728 public:
729  EndDialogTask(TaskList* order, int cookie)
730      : OrderedTasks(order, ENDDIALOG, cookie) {
731  }
732
733  virtual void Run() {
734    RunStart();
735    HWND window = GetActiveWindow();
736    if (window != NULL) {
737      EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
738      // Cheap way to signal that the window wasn't found if RunEnd() isn't
739      // called.
740      RunEnd();
741    }
742  }
743};
744
745#endif  // defined(OS_WIN)
746
747class RecursiveTask : public OrderedTasks {
748 public:
749  RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
750      : OrderedTasks(order, RECURSIVE, cookie),
751        depth_(depth),
752        is_reentrant_(is_reentrant) {
753  }
754
755  virtual void Run() {
756    RunStart();
757    if (depth_ > 0) {
758      if (is_reentrant_)
759        MessageLoop::current()->SetNestableTasksAllowed(true);
760      MessageLoop::current()->PostTask(FROM_HERE,
761          new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
762    }
763    RunEnd();
764  }
765
766 private:
767  int depth_;
768  bool is_reentrant_;
769};
770
771class RecursiveSlowTask : public RecursiveTask {
772 public:
773  RecursiveSlowTask(int depth, TaskList* order, int cookie, bool is_reentrant)
774      : RecursiveTask(depth, order, cookie, is_reentrant) {
775  }
776
777  virtual void Run() {
778    RecursiveTask::Run();
779    PlatformThread::Sleep(10);  // milliseconds
780  }
781};
782
783class QuitTask : public OrderedTasks {
784 public:
785  QuitTask(TaskList* order, int cookie)
786      : OrderedTasks(order, QUITMESSAGELOOP, cookie) {
787  }
788
789  virtual void Run() {
790    RunStart();
791    MessageLoop::current()->Quit();
792    RunEnd();
793  }
794};
795
796class SleepTask : public OrderedTasks {
797 public:
798  SleepTask(TaskList* order, int cookie, int ms)
799      : OrderedTasks(order, SLEEP, cookie), ms_(ms) {
800  }
801
802  virtual void Run() {
803    RunStart();
804    PlatformThread::Sleep(ms_);
805    RunEnd();
806  }
807
808 private:
809  int ms_;
810};
811
812#if defined(OS_WIN)
813
814class Recursive2Tasks : public Task {
815 public:
816  Recursive2Tasks(MessageLoop* target,
817                  HANDLE event,
818                  bool expect_window,
819                  TaskList* order,
820                  bool is_reentrant)
821      : target_(target),
822        event_(event),
823        expect_window_(expect_window),
824        order_(order),
825        is_reentrant_(is_reentrant) {
826  }
827
828  virtual void Run() {
829    target_->PostTask(FROM_HERE,
830                      new RecursiveTask(2, order_, 1, is_reentrant_));
831    target_->PostTask(FROM_HERE,
832                      new MessageBoxTask(order_, 2, is_reentrant_));
833    target_->PostTask(FROM_HERE,
834                      new RecursiveTask(2, order_, 3, is_reentrant_));
835    // The trick here is that for recursive task processing, this task will be
836    // ran _inside_ the MessageBox message loop, dismissing the MessageBox
837    // without a chance.
838    // For non-recursive task processing, this will be executed _after_ the
839    // MessageBox will have been dismissed by the code below, where
840    // expect_window_ is true.
841    target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
842    target_->PostTask(FROM_HERE, new QuitTask(order_, 5));
843
844    // Enforce that every tasks are sent before starting to run the main thread
845    // message loop.
846    ASSERT_TRUE(SetEvent(event_));
847
848    // Poll for the MessageBox. Don't do this at home! At the speed we do it,
849    // you will never realize one MessageBox was shown.
850    for (; expect_window_;) {
851      HWND window = FindWindow(L"#32770", kMessageBoxTitle);
852      if (window) {
853        // Dismiss it.
854        for (;;) {
855          HWND button = FindWindowEx(window, NULL, L"Button", NULL);
856          if (button != NULL) {
857            EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
858            EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
859            break;
860          }
861        }
862        break;
863      }
864    }
865  }
866
867 private:
868  MessageLoop* target_;
869  HANDLE event_;
870  TaskList* order_;
871  bool expect_window_;
872  bool is_reentrant_;
873};
874
875#endif  // defined(OS_WIN)
876
877void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
878  MessageLoop loop(message_loop_type);
879
880  EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
881  TaskList order;
882  MessageLoop::current()->PostTask(FROM_HERE,
883                                   new RecursiveTask(2, &order, 1, false));
884  MessageLoop::current()->PostTask(FROM_HERE,
885                                   new RecursiveTask(2, &order, 2, false));
886  MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
887
888  MessageLoop::current()->Run();
889
890  // FIFO order.
891  ASSERT_EQ(14U, order.size());
892  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
893  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
894  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
895  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
896  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
897  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
898  EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
899  EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
900  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
901  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
902  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
903  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
904  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
905  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
906}
907
908void RunTest_RecursiveDenial3(MessageLoop::Type message_loop_type) {
909  MessageLoop loop(message_loop_type);
910
911  EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
912  TaskList order;
913  MessageLoop::current()->PostTask(FROM_HERE,
914                                   new RecursiveSlowTask(2, &order, 1, false));
915  MessageLoop::current()->PostTask(FROM_HERE,
916                                   new RecursiveSlowTask(2, &order, 2, false));
917  MessageLoop::current()->PostDelayedTask(FROM_HERE,
918                                          new OrderedTasks(&order, 3), 5);
919  MessageLoop::current()->PostDelayedTask(FROM_HERE,
920                                          new QuitTask(&order, 4), 5);
921
922  MessageLoop::current()->Run();
923
924  // FIFO order.
925  ASSERT_EQ(16U, order.size());
926  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
927  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
928  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
929  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
930  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 1, true));
931  EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 1, false));
932  EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 3, true));
933  EXPECT_EQ(order[ 7], TaskItem(ORDERERD, 3, false));
934  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
935  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
936  EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 4, true));
937  EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 4, false));
938  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 1, true));
939  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, false));
940  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 2, true));
941  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 2, false));
942}
943
944void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
945  MessageLoop loop(message_loop_type);
946
947  TaskList order;
948  MessageLoop::current()->PostTask(FROM_HERE,
949                                   new RecursiveTask(2, &order, 1, true));
950  MessageLoop::current()->PostTask(FROM_HERE,
951                                   new RecursiveTask(2, &order, 2, true));
952  MessageLoop::current()->PostTask(FROM_HERE,
953                                   new QuitTask(&order, 3));
954
955  MessageLoop::current()->Run();
956
957  // FIFO order.
958  ASSERT_EQ(14U, order.size());
959  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
960  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
961  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
962  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
963  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
964  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
965  EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
966  EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
967  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
968  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
969  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
970  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
971  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
972  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
973}
974
975#if defined(OS_WIN)
976// TODO(darin): These tests need to be ported since they test critical
977// message loop functionality.
978
979// A side effect of this test is the generation a beep. Sorry.
980void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
981  MessageLoop loop(message_loop_type);
982
983  Thread worker("RecursiveDenial2_worker");
984  Thread::Options options;
985  options.message_loop_type = message_loop_type;
986  ASSERT_EQ(true, worker.StartWithOptions(options));
987  TaskList order;
988  base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
989  worker.message_loop()->PostTask(FROM_HERE,
990                                  new Recursive2Tasks(MessageLoop::current(),
991                                                      event,
992                                                      true,
993                                                      &order,
994                                                      false));
995  // Let the other thread execute.
996  WaitForSingleObject(event, INFINITE);
997  MessageLoop::current()->Run();
998
999  ASSERT_EQ(order.size(), 17);
1000  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
1001  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
1002  EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
1003  EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
1004  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
1005  EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
1006  // When EndDialogTask is processed, the window is already dismissed, hence no
1007  // "end" entry.
1008  EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
1009  EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
1010  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
1011  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
1012  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
1013  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
1014  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
1015  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
1016  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
1017  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
1018  EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
1019}
1020
1021// A side effect of this test is the generation a beep. Sorry.  This test also
1022// needs to process windows messages on the current thread.
1023void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
1024  MessageLoop loop(message_loop_type);
1025
1026  Thread worker("RecursiveSupport2_worker");
1027  Thread::Options options;
1028  options.message_loop_type = message_loop_type;
1029  ASSERT_EQ(true, worker.StartWithOptions(options));
1030  TaskList order;
1031  base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
1032  worker.message_loop()->PostTask(FROM_HERE,
1033                                  new Recursive2Tasks(MessageLoop::current(),
1034                                                      event,
1035                                                      false,
1036                                                      &order,
1037                                                      true));
1038  // Let the other thread execute.
1039  WaitForSingleObject(event, INFINITE);
1040  MessageLoop::current()->Run();
1041
1042  ASSERT_EQ(order.size(), 18);
1043  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
1044  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
1045  EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
1046  // Note that this executes in the MessageBox modal loop.
1047  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
1048  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
1049  EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
1050  EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
1051  EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
1052  /* The order can subtly change here. The reason is that when RecursiveTask(1)
1053     is called in the main thread, if it is faster than getting to the
1054     PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
1055     change. We don't care anyway that the order isn't correct.
1056  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
1057  EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
1058  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
1059  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
1060  */
1061  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
1062  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
1063  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
1064  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
1065  EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
1066  EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
1067}
1068
1069#endif  // defined(OS_WIN)
1070
1071class TaskThatPumps : public OrderedTasks {
1072 public:
1073  TaskThatPumps(TaskList* order, int cookie)
1074      : OrderedTasks(order, PUMPS, cookie) {
1075  }
1076
1077  virtual void Run() {
1078    RunStart();
1079    bool old_state = MessageLoop::current()->NestableTasksAllowed();
1080    MessageLoop::current()->SetNestableTasksAllowed(true);
1081    MessageLoop::current()->RunAllPending();
1082    MessageLoop::current()->SetNestableTasksAllowed(old_state);
1083    RunEnd();
1084  }
1085};
1086
1087// Tests that non nestable tasks run in FIFO if there are no nested loops.
1088void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
1089  MessageLoop loop(message_loop_type);
1090
1091  TaskList order;
1092
1093  Task* task = new OrderedTasks(&order, 1);
1094  MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
1095  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
1096  MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
1097  MessageLoop::current()->Run();
1098
1099  // FIFO order.
1100  ASSERT_EQ(6U, order.size());
1101  EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
1102  EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
1103  EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
1104  EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
1105  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
1106  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
1107}
1108
1109// Tests that non nestable tasks don't run when there's code in the call stack.
1110void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
1111                                     bool use_delayed) {
1112  MessageLoop loop(message_loop_type);
1113
1114  TaskList order;
1115
1116  MessageLoop::current()->PostTask(FROM_HERE,
1117                                   new TaskThatPumps(&order, 1));
1118  Task* task = new OrderedTasks(&order, 2);
1119  if (use_delayed) {
1120    MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, task, 1);
1121  } else {
1122    MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
1123  }
1124  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
1125  MessageLoop::current()->PostTask(FROM_HERE, new SleepTask(&order, 4, 50));
1126  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 5));
1127  Task* non_nestable_quit = new QuitTask(&order, 6);
1128  if (use_delayed) {
1129    MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE,
1130                                                       non_nestable_quit,
1131                                                       2);
1132  } else {
1133    MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);
1134  }
1135
1136  MessageLoop::current()->Run();
1137
1138  // FIFO order.
1139  ASSERT_EQ(12U, order.size());
1140  EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
1141  EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
1142  EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
1143  EXPECT_EQ(order[ 3], TaskItem(SLEEP, 4, true));
1144  EXPECT_EQ(order[ 4], TaskItem(SLEEP, 4, false));
1145  EXPECT_EQ(order[ 5], TaskItem(ORDERERD, 5, true));
1146  EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 5, false));
1147  EXPECT_EQ(order[ 7], TaskItem(PUMPS, 1, false));
1148  EXPECT_EQ(order[ 8], TaskItem(ORDERERD, 2, true));
1149  EXPECT_EQ(order[ 9], TaskItem(ORDERERD, 2, false));
1150  EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 6, true));
1151  EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 6, false));
1152}
1153
1154#if defined(OS_WIN)
1155
1156class DispatcherImpl : public MessageLoopForUI::Dispatcher {
1157 public:
1158  DispatcherImpl() : dispatch_count_(0) {}
1159
1160  virtual bool Dispatch(const MSG& msg) {
1161    ::TranslateMessage(&msg);
1162    ::DispatchMessage(&msg);
1163    // Do not count WM_TIMER since it is not what we post and it will cause
1164    // flakiness.
1165    if (msg.message != WM_TIMER)
1166      ++dispatch_count_;
1167    // We treat WM_LBUTTONUP as the last message.
1168    return msg.message != WM_LBUTTONUP;
1169  }
1170
1171  int dispatch_count_;
1172};
1173
1174void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
1175  MessageLoop loop(message_loop_type);
1176
1177  class MyTask : public Task {
1178  public:
1179    virtual void Run() {
1180      PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
1181      PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
1182    }
1183  };
1184  Task* task = new MyTask();
1185  MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
1186  DispatcherImpl dispatcher;
1187  MessageLoopForUI::current()->Run(&dispatcher);
1188  ASSERT_EQ(2, dispatcher.dispatch_count_);
1189}
1190
1191LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
1192  if (code == base::MessagePumpForUI::kMessageFilterCode) {
1193    MSG* msg = reinterpret_cast<MSG*>(lparam);
1194    if (msg->message == WM_LBUTTONDOWN)
1195      return TRUE;
1196  }
1197  return FALSE;
1198}
1199
1200void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
1201  MessageLoop loop(message_loop_type);
1202
1203  class MyTask : public Task {
1204  public:
1205    virtual void Run() {
1206      PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
1207      PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
1208    }
1209  };
1210  Task* task = new MyTask();
1211  MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
1212  HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
1213                                    MsgFilterProc,
1214                                    NULL,
1215                                    GetCurrentThreadId());
1216  DispatcherImpl dispatcher;
1217  MessageLoopForUI::current()->Run(&dispatcher);
1218  ASSERT_EQ(1, dispatcher.dispatch_count_);
1219  UnhookWindowsHookEx(msg_hook);
1220}
1221
1222class TestIOHandler : public MessageLoopForIO::IOHandler {
1223 public:
1224  TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
1225
1226  virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
1227                             DWORD bytes_transfered, DWORD error);
1228
1229  void Init();
1230  void WaitForIO();
1231  OVERLAPPED* context() { return &context_.overlapped; }
1232  DWORD size() { return sizeof(buffer_); }
1233
1234 private:
1235  char buffer_[48];
1236  MessageLoopForIO::IOContext context_;
1237  HANDLE signal_;
1238  base::win::ScopedHandle file_;
1239  bool wait_;
1240};
1241
1242TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
1243    : signal_(signal), wait_(wait) {
1244  memset(buffer_, 0, sizeof(buffer_));
1245  memset(&context_, 0, sizeof(context_));
1246  context_.handler = this;
1247
1248  file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
1249                       FILE_FLAG_OVERLAPPED, NULL));
1250  EXPECT_TRUE(file_.IsValid());
1251}
1252
1253void TestIOHandler::Init() {
1254  MessageLoopForIO::current()->RegisterIOHandler(file_, this);
1255
1256  DWORD read;
1257  EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
1258  EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
1259  if (wait_)
1260    WaitForIO();
1261}
1262
1263void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
1264                                  DWORD bytes_transfered, DWORD error) {
1265  ASSERT_TRUE(context == &context_);
1266  ASSERT_TRUE(SetEvent(signal_));
1267}
1268
1269void TestIOHandler::WaitForIO() {
1270  EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
1271  EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
1272}
1273
1274class IOHandlerTask : public Task {
1275 public:
1276  explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {}
1277  virtual void Run() {
1278    handler_->Init();
1279  }
1280
1281 private:
1282  TestIOHandler* handler_;
1283};
1284
1285void RunTest_IOHandler() {
1286  base::win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
1287  ASSERT_TRUE(callback_called.IsValid());
1288
1289  const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
1290  base::win::ScopedHandle server(
1291      CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1292  ASSERT_TRUE(server.IsValid());
1293
1294  Thread thread("IOHandler test");
1295  Thread::Options options;
1296  options.message_loop_type = MessageLoop::TYPE_IO;
1297  ASSERT_TRUE(thread.StartWithOptions(options));
1298
1299  MessageLoop* thread_loop = thread.message_loop();
1300  ASSERT_TRUE(NULL != thread_loop);
1301
1302  TestIOHandler handler(kPipeName, callback_called, false);
1303  IOHandlerTask* task = new IOHandlerTask(&handler);
1304  thread_loop->PostTask(FROM_HERE, task);
1305  Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
1306
1307  const char buffer[] = "Hello there!";
1308  DWORD written;
1309  EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
1310
1311  DWORD result = WaitForSingleObject(callback_called, 1000);
1312  EXPECT_EQ(WAIT_OBJECT_0, result);
1313
1314  thread.Stop();
1315}
1316
1317void RunTest_WaitForIO() {
1318  base::win::ScopedHandle callback1_called(
1319      CreateEvent(NULL, TRUE, FALSE, NULL));
1320  base::win::ScopedHandle callback2_called(
1321      CreateEvent(NULL, TRUE, FALSE, NULL));
1322  ASSERT_TRUE(callback1_called.IsValid());
1323  ASSERT_TRUE(callback2_called.IsValid());
1324
1325  const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
1326  const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
1327  base::win::ScopedHandle server1(
1328      CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1329  base::win::ScopedHandle server2(
1330      CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1331  ASSERT_TRUE(server1.IsValid());
1332  ASSERT_TRUE(server2.IsValid());
1333
1334  Thread thread("IOHandler test");
1335  Thread::Options options;
1336  options.message_loop_type = MessageLoop::TYPE_IO;
1337  ASSERT_TRUE(thread.StartWithOptions(options));
1338
1339  MessageLoop* thread_loop = thread.message_loop();
1340  ASSERT_TRUE(NULL != thread_loop);
1341
1342  TestIOHandler handler1(kPipeName1, callback1_called, false);
1343  TestIOHandler handler2(kPipeName2, callback2_called, true);
1344  IOHandlerTask* task1 = new IOHandlerTask(&handler1);
1345  IOHandlerTask* task2 = new IOHandlerTask(&handler2);
1346  thread_loop->PostTask(FROM_HERE, task1);
1347  Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
1348  thread_loop->PostTask(FROM_HERE, task2);
1349  Sleep(100);
1350
1351  // At this time handler1 is waiting to be called, and the thread is waiting
1352  // on the Init method of handler2, filtering only handler2 callbacks.
1353
1354  const char buffer[] = "Hello there!";
1355  DWORD written;
1356  EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
1357  Sleep(200);
1358  EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
1359      "handler1 has not been called";
1360
1361  EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
1362
1363  HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
1364  DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
1365  EXPECT_EQ(WAIT_OBJECT_0, result);
1366
1367  thread.Stop();
1368}
1369
1370#endif  // defined(OS_WIN)
1371
1372}  // namespace
1373
1374//-----------------------------------------------------------------------------
1375// Each test is run against each type of MessageLoop.  That way we are sure
1376// that message loops work properly in all configurations.  Of course, in some
1377// cases, a unit test may only be for a particular type of loop.
1378
1379TEST(MessageLoopTest, PostTask) {
1380  RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
1381  RunTest_PostTask(MessageLoop::TYPE_UI);
1382  RunTest_PostTask(MessageLoop::TYPE_IO);
1383}
1384
1385TEST(MessageLoopTest, PostTask_SEH) {
1386  RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
1387  RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
1388  RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
1389}
1390
1391TEST(MessageLoopTest, PostDelayedTask_Basic) {
1392  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
1393  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
1394  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
1395}
1396
1397TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
1398  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
1399  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
1400  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
1401}
1402
1403TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
1404  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
1405  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
1406  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
1407}
1408
1409TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
1410  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
1411  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
1412  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
1413}
1414
1415TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
1416  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
1417  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
1418  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
1419}
1420
1421TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
1422  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
1423  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
1424  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
1425}
1426
1427#if defined(OS_WIN)
1428TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
1429  RunTest_PostDelayedTask_SharedTimer_SubPump();
1430}
1431#endif
1432
1433// TODO(darin): MessageLoop does not support deleting all tasks in the
1434// destructor.
1435// Fails, http://crbug.com/50272.
1436TEST(MessageLoopTest, FAILS_EnsureTaskDeletion) {
1437  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
1438  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
1439  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
1440}
1441
1442// TODO(darin): MessageLoop does not support deleting all tasks in the
1443// destructor.
1444// Fails, http://crbug.com/50272.
1445TEST(MessageLoopTest, FAILS_EnsureTaskDeletion_Chain) {
1446  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
1447  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
1448  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
1449}
1450
1451#if defined(OS_WIN)
1452TEST(MessageLoopTest, Crasher) {
1453  RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
1454  RunTest_Crasher(MessageLoop::TYPE_UI);
1455  RunTest_Crasher(MessageLoop::TYPE_IO);
1456}
1457
1458TEST(MessageLoopTest, CrasherNasty) {
1459  RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
1460  RunTest_CrasherNasty(MessageLoop::TYPE_UI);
1461  RunTest_CrasherNasty(MessageLoop::TYPE_IO);
1462}
1463#endif  // defined(OS_WIN)
1464
1465TEST(MessageLoopTest, Nesting) {
1466  RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
1467  RunTest_Nesting(MessageLoop::TYPE_UI);
1468  RunTest_Nesting(MessageLoop::TYPE_IO);
1469}
1470
1471TEST(MessageLoopTest, RecursiveDenial1) {
1472  RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
1473  RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
1474  RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
1475}
1476
1477TEST(MessageLoopTest, RecursiveDenial3) {
1478  RunTest_RecursiveDenial3(MessageLoop::TYPE_DEFAULT);
1479  RunTest_RecursiveDenial3(MessageLoop::TYPE_UI);
1480  RunTest_RecursiveDenial3(MessageLoop::TYPE_IO);
1481}
1482
1483TEST(MessageLoopTest, RecursiveSupport1) {
1484  RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
1485  RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
1486  RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
1487}
1488
1489#if defined(OS_WIN)
1490// This test occasionally hangs http://crbug.com/44567
1491TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
1492  RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
1493  RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
1494  RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
1495}
1496
1497TEST(MessageLoopTest, RecursiveSupport2) {
1498  // This test requires a UI loop
1499  RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
1500}
1501#endif  // defined(OS_WIN)
1502
1503TEST(MessageLoopTest, NonNestableWithNoNesting) {
1504  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
1505  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
1506  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
1507}
1508
1509TEST(MessageLoopTest, NonNestableInNestedLoop) {
1510  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
1511  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
1512  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
1513}
1514
1515TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
1516  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
1517  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
1518  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
1519}
1520
1521class DummyTask : public Task {
1522 public:
1523  explicit DummyTask(int num_tasks) : num_tasks_(num_tasks) {}
1524
1525  virtual void Run() {
1526    if (num_tasks_ > 1) {
1527      MessageLoop::current()->PostTask(
1528          FROM_HERE,
1529          new DummyTask(num_tasks_ - 1));
1530    } else {
1531      MessageLoop::current()->Quit();
1532    }
1533  }
1534
1535 private:
1536  const int num_tasks_;
1537};
1538
1539class DummyTaskObserver : public MessageLoop::TaskObserver {
1540 public:
1541  explicit DummyTaskObserver(int num_tasks)
1542      : num_tasks_started_(0),
1543        num_tasks_processed_(0),
1544        num_tasks_(num_tasks) {}
1545
1546  virtual ~DummyTaskObserver() {}
1547
1548  virtual void WillProcessTask(const Task* task) {
1549    num_tasks_started_++;
1550    EXPECT_TRUE(task != NULL);
1551    EXPECT_LE(num_tasks_started_, num_tasks_);
1552    EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
1553  }
1554
1555  virtual void DidProcessTask(const Task* task) {
1556    num_tasks_processed_++;
1557    EXPECT_TRUE(task != NULL);
1558    EXPECT_LE(num_tasks_started_, num_tasks_);
1559    EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
1560  }
1561
1562  int num_tasks_started() const { return num_tasks_started_; }
1563  int num_tasks_processed() const { return num_tasks_processed_; }
1564
1565 private:
1566  int num_tasks_started_;
1567  int num_tasks_processed_;
1568  const int num_tasks_;
1569
1570  DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
1571};
1572
1573TEST(MessageLoopTest, TaskObserver) {
1574  const int kNumTasks = 6;
1575  DummyTaskObserver observer(kNumTasks);
1576
1577  MessageLoop loop;
1578  loop.AddTaskObserver(&observer);
1579  loop.PostTask(FROM_HERE, new DummyTask(kNumTasks));
1580  loop.Run();
1581  loop.RemoveTaskObserver(&observer);
1582
1583  EXPECT_EQ(kNumTasks, observer.num_tasks_started());
1584  EXPECT_EQ(kNumTasks, observer.num_tasks_processed());
1585}
1586
1587#if defined(OS_WIN)
1588TEST(MessageLoopTest, Dispatcher) {
1589  // This test requires a UI loop
1590  RunTest_Dispatcher(MessageLoop::TYPE_UI);
1591}
1592
1593TEST(MessageLoopTest, DispatcherWithMessageHook) {
1594  // This test requires a UI loop
1595  RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
1596}
1597
1598TEST(MessageLoopTest, IOHandler) {
1599  RunTest_IOHandler();
1600}
1601
1602TEST(MessageLoopTest, WaitForIO) {
1603  RunTest_WaitForIO();
1604}
1605
1606TEST(MessageLoopTest, HighResolutionTimer) {
1607  MessageLoop loop;
1608
1609  const int kFastTimerMs = 5;
1610  const int kSlowTimerMs = 100;
1611
1612  EXPECT_FALSE(loop.high_resolution_timers_enabled());
1613
1614  // Post a fast task to enable the high resolution timers.
1615  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kFastTimerMs);
1616  loop.Run();
1617  EXPECT_TRUE(loop.high_resolution_timers_enabled());
1618
1619  // Post a slow task and verify high resolution timers
1620  // are still enabled.
1621  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
1622  loop.Run();
1623  EXPECT_TRUE(loop.high_resolution_timers_enabled());
1624
1625  // Wait for a while so that high-resolution mode elapses.
1626  Sleep(MessageLoop::kHighResolutionTimerModeLeaseTimeMs);
1627
1628  // Post a slow task to disable the high resolution timers.
1629  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
1630  loop.Run();
1631  EXPECT_FALSE(loop.high_resolution_timers_enabled());
1632}
1633
1634#endif  // defined(OS_WIN)
1635
1636#if defined(OS_POSIX) && !defined(OS_NACL)
1637
1638namespace {
1639
1640class QuitDelegate : public base::MessagePumpLibevent::Watcher {
1641 public:
1642  virtual void OnFileCanWriteWithoutBlocking(int fd) {
1643    MessageLoop::current()->Quit();
1644  }
1645  virtual void OnFileCanReadWithoutBlocking(int fd) {
1646    MessageLoop::current()->Quit();
1647  }
1648};
1649
1650TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
1651  // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
1652  // This could happen when people use the Singleton pattern or atexit.
1653
1654  // Create a file descriptor.  Doesn't need to be readable or writable,
1655  // as we don't need to actually get any notifications.
1656  // pipe() is just the easiest way to do it.
1657  int pipefds[2];
1658  int err = pipe(pipefds);
1659  ASSERT_EQ(0, err);
1660  int fd = pipefds[1];
1661  {
1662    // Arrange for controller to live longer than message loop.
1663    base::MessagePumpLibevent::FileDescriptorWatcher controller;
1664    {
1665      MessageLoopForIO message_loop;
1666
1667      QuitDelegate delegate;
1668      message_loop.WatchFileDescriptor(fd,
1669          true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
1670      // and don't run the message loop, just destroy it.
1671    }
1672  }
1673  if (HANDLE_EINTR(close(pipefds[0])) < 0)
1674    PLOG(ERROR) << "close";
1675  if (HANDLE_EINTR(close(pipefds[1])) < 0)
1676    PLOG(ERROR) << "close";
1677}
1678
1679TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
1680  // Verify that it's ok to call StopWatchingFileDescriptor().
1681  // (Errors only showed up in valgrind.)
1682  int pipefds[2];
1683  int err = pipe(pipefds);
1684  ASSERT_EQ(0, err);
1685  int fd = pipefds[1];
1686  {
1687    // Arrange for message loop to live longer than controller.
1688    MessageLoopForIO message_loop;
1689    {
1690      base::MessagePumpLibevent::FileDescriptorWatcher controller;
1691
1692      QuitDelegate delegate;
1693      message_loop.WatchFileDescriptor(fd,
1694          true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
1695      controller.StopWatchingFileDescriptor();
1696    }
1697  }
1698  if (HANDLE_EINTR(close(pipefds[0])) < 0)
1699    PLOG(ERROR) << "close";
1700  if (HANDLE_EINTR(close(pipefds[1])) < 0)
1701    PLOG(ERROR) << "close";
1702}
1703
1704}  // namespace
1705
1706#endif  // defined(OS_POSIX) && !defined(OS_NACL)
1707
1708namespace {
1709class RunAtDestructionTask : public Task {
1710 public:
1711  RunAtDestructionTask(bool* task_destroyed, bool* destruction_observer_called)
1712      : task_destroyed_(task_destroyed),
1713        destruction_observer_called_(destruction_observer_called) {
1714  }
1715  ~RunAtDestructionTask() {
1716    EXPECT_FALSE(*destruction_observer_called_);
1717    *task_destroyed_ = true;
1718  }
1719  virtual void Run() {
1720    // This task should never run.
1721    ADD_FAILURE();
1722  }
1723 private:
1724  bool* task_destroyed_;
1725  bool* destruction_observer_called_;
1726};
1727
1728class MLDestructionObserver : public MessageLoop::DestructionObserver {
1729 public:
1730  MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
1731      : task_destroyed_(task_destroyed),
1732        destruction_observer_called_(destruction_observer_called),
1733        task_destroyed_before_message_loop_(false) {
1734  }
1735  virtual void WillDestroyCurrentMessageLoop() {
1736    task_destroyed_before_message_loop_ = *task_destroyed_;
1737    *destruction_observer_called_ = true;
1738  }
1739  bool task_destroyed_before_message_loop() const {
1740    return task_destroyed_before_message_loop_;
1741  }
1742 private:
1743  bool* task_destroyed_;
1744  bool* destruction_observer_called_;
1745  bool task_destroyed_before_message_loop_;
1746};
1747
1748}  // namespace
1749
1750TEST(MessageLoopTest, DestructionObserverTest) {
1751  // Verify that the destruction observer gets called at the very end (after
1752  // all the pending tasks have been destroyed).
1753  MessageLoop* loop = new MessageLoop;
1754  const int kDelayMS = 100;
1755
1756  bool task_destroyed = false;
1757  bool destruction_observer_called = false;
1758
1759  MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
1760  loop->AddDestructionObserver(&observer);
1761  loop->PostDelayedTask(
1762      FROM_HERE,
1763      new RunAtDestructionTask(&task_destroyed, &destruction_observer_called),
1764      kDelayMS);
1765  delete loop;
1766  EXPECT_TRUE(observer.task_destroyed_before_message_loop());
1767  // The task should have been destroyed when we deleted the loop.
1768  EXPECT_TRUE(task_destroyed);
1769  EXPECT_TRUE(destruction_observer_called);
1770}
1771