message_pump_glib_unittest.cc revision 3345a6884c488ff3a535c2c9acdd33d74b37e311
1// Copyright (c) 2010 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/message_pump_glib.h"
6
7#include <gtk/gtk.h>
8#include <math.h>
9
10#include <algorithm>
11#include <vector>
12
13#include "base/message_loop.h"
14#include "base/platform_thread.h"
15#include "base/ref_counted.h"
16#include "base/thread.h"
17#include "testing/gtest/include/gtest/gtest.h"
18
19namespace {
20
21// This class injects dummy "events" into the GLib loop. When "handled" these
22// events can run tasks. This is intended to mock gtk events (the corresponding
23// GLib source runs at the same priority).
24class EventInjector {
25 public:
26  EventInjector() : processed_events_(0) {
27    source_ = static_cast<Source*>(g_source_new(&SourceFuncs, sizeof(Source)));
28    source_->injector = this;
29    g_source_attach(source_, NULL);
30    g_source_set_can_recurse(source_, TRUE);
31  }
32
33  ~EventInjector() {
34    g_source_destroy(source_);
35    g_source_unref(source_);
36  }
37
38  int HandlePrepare() {
39    // If the queue is empty, block.
40    if (events_.empty())
41      return -1;
42    base::TimeDelta delta = events_[0].time - base::Time::NowFromSystemTime();
43    return std::max(0, static_cast<int>(ceil(delta.InMillisecondsF())));
44  }
45
46  bool HandleCheck() {
47    if (events_.empty())
48      return false;
49    Event event = events_[0];
50    return events_[0].time <= base::Time::NowFromSystemTime();
51  }
52
53  void HandleDispatch() {
54    if (events_.empty())
55      return;
56    Event event = events_[0];
57    events_.erase(events_.begin());
58    ++processed_events_;
59    if (event.task) {
60      event.task->Run();
61      delete event.task;
62    }
63  }
64
65  // Adds an event to the queue. When "handled", executes |task|.
66  // delay_ms is relative to the last event if any, or to Now() otherwise.
67  void AddEvent(int delay_ms, Task* task) {
68    base::Time last_time;
69    if (!events_.empty()) {
70      last_time = (events_.end()-1)->time;
71    } else {
72      last_time = base::Time::NowFromSystemTime();
73    }
74    base::Time future = last_time + base::TimeDelta::FromMilliseconds(delay_ms);
75    EventInjector::Event event = { future, task };
76    events_.push_back(event);
77  }
78
79  void Reset() {
80    processed_events_ = 0;
81    events_.clear();
82  }
83
84  int processed_events() const { return processed_events_; }
85
86 private:
87  struct Event {
88    base::Time time;
89    Task* task;
90  };
91
92  struct Source : public GSource {
93    EventInjector* injector;
94  };
95
96  static gboolean Prepare(GSource* source, gint* timeout_ms) {
97    *timeout_ms = static_cast<Source*>(source)->injector->HandlePrepare();
98    return FALSE;
99  }
100
101  static gboolean Check(GSource* source) {
102    return static_cast<Source*>(source)->injector->HandleCheck();
103  }
104
105  static gboolean Dispatch(GSource* source,
106                           GSourceFunc unused_func,
107                           gpointer unused_data) {
108    static_cast<Source*>(source)->injector->HandleDispatch();
109    return TRUE;
110  }
111
112  Source* source_;
113  std::vector<Event> events_;
114  int processed_events_;
115  static GSourceFuncs SourceFuncs;
116  DISALLOW_COPY_AND_ASSIGN(EventInjector);
117};
118
119GSourceFuncs EventInjector::SourceFuncs = {
120  EventInjector::Prepare,
121  EventInjector::Check,
122  EventInjector::Dispatch,
123  NULL
124};
125
126// Does nothing. This function can be called from a task.
127void DoNothing() {
128}
129
130void IncrementInt(int *value) {
131  ++*value;
132}
133
134// Checks how many events have been processed by the injector.
135void ExpectProcessedEvents(EventInjector* injector, int count) {
136  EXPECT_EQ(injector->processed_events(), count);
137}
138
139// Quits the current message loop.
140void QuitMessageLoop() {
141  MessageLoop::current()->Quit();
142}
143
144// Returns a new task that quits the main loop.
145Task* NewQuitTask() {
146  return NewRunnableFunction(QuitMessageLoop);
147}
148
149// Posts a task on the current message loop.
150void PostMessageLoopTask(const tracked_objects::Location& from_here,
151                         Task* task) {
152  MessageLoop::current()->PostTask(from_here, task);
153}
154
155// Test fixture.
156class MessagePumpGLibTest : public testing::Test {
157 public:
158  MessagePumpGLibTest() : loop_(NULL), injector_(NULL) { }
159
160  virtual void SetUp() {
161    loop_ = new MessageLoop(MessageLoop::TYPE_UI);
162    injector_ = new EventInjector();
163  }
164
165  virtual void TearDown() {
166    delete injector_;
167    injector_ = NULL;
168    delete loop_;
169    loop_ = NULL;
170  }
171
172  MessageLoop* loop() const { return loop_; }
173  EventInjector* injector() const { return injector_; }
174
175 private:
176  MessageLoop* loop_;
177  EventInjector* injector_;
178  DISALLOW_COPY_AND_ASSIGN(MessagePumpGLibTest);
179};
180
181}  // namespace
182
183// EventInjector is expected to always live longer than the runnable methods.
184DISABLE_RUNNABLE_METHOD_REFCOUNT(EventInjector);
185
186TEST_F(MessagePumpGLibTest, TestQuit) {
187  // Checks that Quit works and that the basic infrastructure is working.
188
189  // Quit from a task
190  loop()->PostTask(FROM_HERE, NewQuitTask());
191  loop()->Run();
192  EXPECT_EQ(0, injector()->processed_events());
193
194  injector()->Reset();
195  // Quit from an event
196  injector()->AddEvent(0, NewQuitTask());
197  loop()->Run();
198  EXPECT_EQ(1, injector()->processed_events());
199}
200
201TEST_F(MessagePumpGLibTest, TestEventTaskInterleave) {
202  // Checks that tasks posted by events are executed before the next event if
203  // the posted task queue is empty.
204  // MessageLoop doesn't make strong guarantees that it is the case, but the
205  // current implementation ensures it and the tests below rely on it.
206  // If changes cause this test to fail, it is reasonable to change it, but
207  // TestWorkWhileWaitingForEvents and TestEventsWhileWaitingForWork have to be
208  // changed accordingly, otherwise they can become flaky.
209  injector()->AddEvent(0, NewRunnableFunction(DoNothing));
210  Task* check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 2);
211  Task* posted_task = NewRunnableFunction(PostMessageLoopTask,
212                                          FROM_HERE, check_task);
213  injector()->AddEvent(0, posted_task);
214  injector()->AddEvent(0, NewRunnableFunction(DoNothing));
215  injector()->AddEvent(0, NewQuitTask());
216  loop()->Run();
217  EXPECT_EQ(4, injector()->processed_events());
218
219  injector()->Reset();
220  injector()->AddEvent(0, NewRunnableFunction(DoNothing));
221  check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 2);
222  posted_task = NewRunnableFunction(PostMessageLoopTask, FROM_HERE, check_task);
223  injector()->AddEvent(0, posted_task);
224  injector()->AddEvent(10, NewRunnableFunction(DoNothing));
225  injector()->AddEvent(0, NewQuitTask());
226  loop()->Run();
227  EXPECT_EQ(4, injector()->processed_events());
228}
229
230TEST_F(MessagePumpGLibTest, TestWorkWhileWaitingForEvents) {
231  int task_count = 0;
232  // Tests that we process tasks while waiting for new events.
233  // The event queue is empty at first.
234  for (int i = 0; i < 10; ++i) {
235    loop()->PostTask(FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
236  }
237  // After all the previous tasks have executed, enqueue an event that will
238  // quit.
239  loop()->PostTask(
240      FROM_HERE, NewRunnableMethod(injector(), &EventInjector::AddEvent,
241                                   0, NewQuitTask()));
242  loop()->Run();
243  ASSERT_EQ(10, task_count);
244  EXPECT_EQ(1, injector()->processed_events());
245
246  // Tests that we process delayed tasks while waiting for new events.
247  injector()->Reset();
248  task_count = 0;
249  for (int i = 0; i < 10; ++i) {
250    loop()->PostDelayedTask(
251        FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 10*i);
252  }
253  // After all the previous tasks have executed, enqueue an event that will
254  // quit.
255  // This relies on the fact that delayed tasks are executed in delay order.
256  // That is verified in message_loop_unittest.cc.
257  loop()->PostDelayedTask(
258      FROM_HERE, NewRunnableMethod(injector(), &EventInjector::AddEvent,
259                                   10, NewQuitTask()), 150);
260  loop()->Run();
261  ASSERT_EQ(10, task_count);
262  EXPECT_EQ(1, injector()->processed_events());
263}
264
265TEST_F(MessagePumpGLibTest, TestEventsWhileWaitingForWork) {
266  // Tests that we process events while waiting for work.
267  // The event queue is empty at first.
268  for (int i = 0; i < 10; ++i) {
269    injector()->AddEvent(0, NULL);
270  }
271  // After all the events have been processed, post a task that will check that
272  // the events have been processed (note: the task executes after the event
273  // that posted it has been handled, so we expect 11 at that point).
274  Task* check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 11);
275  Task* posted_task = NewRunnableFunction(PostMessageLoopTask,
276                                          FROM_HERE, check_task);
277  injector()->AddEvent(10, posted_task);
278
279  // And then quit (relies on the condition tested by TestEventTaskInterleave).
280  injector()->AddEvent(10, NewQuitTask());
281  loop()->Run();
282
283  EXPECT_EQ(12, injector()->processed_events());
284}
285
286namespace {
287
288// This class is a helper for the concurrent events / posted tasks test below.
289// It will quit the main loop once enough tasks and events have been processed,
290// while making sure there is always work to do and events in the queue.
291class ConcurrentHelper : public base::RefCounted<ConcurrentHelper>  {
292 public:
293  explicit ConcurrentHelper(EventInjector* injector)
294      : injector_(injector),
295        event_count_(kStartingEventCount),
296        task_count_(kStartingTaskCount) {
297  }
298
299  void FromTask() {
300    if (task_count_ > 0) {
301      --task_count_;
302    }
303    if (task_count_ == 0 && event_count_ == 0) {
304        MessageLoop::current()->Quit();
305    } else {
306      MessageLoop::current()->PostTask(
307          FROM_HERE, NewRunnableMethod(this, &ConcurrentHelper::FromTask));
308    }
309  }
310
311  void FromEvent() {
312    if (event_count_ > 0) {
313      --event_count_;
314    }
315    if (task_count_ == 0 && event_count_ == 0) {
316        MessageLoop::current()->Quit();
317    } else {
318      injector_->AddEvent(
319          0, NewRunnableMethod(this, &ConcurrentHelper::FromEvent));
320    }
321  }
322
323  int event_count() const { return event_count_; }
324  int task_count() const { return task_count_; }
325
326 private:
327  friend class base::RefCounted<ConcurrentHelper>;
328
329  ~ConcurrentHelper() {}
330
331  static const int kStartingEventCount = 20;
332  static const int kStartingTaskCount = 20;
333
334  EventInjector* injector_;
335  int event_count_;
336  int task_count_;
337};
338
339}  // namespace
340
341TEST_F(MessagePumpGLibTest, TestConcurrentEventPostedTask) {
342  // Tests that posted tasks don't starve events, nor the opposite.
343  // We use the helper class above. We keep both event and posted task queues
344  // full, the helper verifies that both tasks and events get processed.
345  // If that is not the case, either event_count_ or task_count_ will not get
346  // to 0, and MessageLoop::Quit() will never be called.
347  scoped_refptr<ConcurrentHelper> helper = new ConcurrentHelper(injector());
348
349  // Add 2 events to the queue to make sure it is always full (when we remove
350  // the event before processing it).
351  injector()->AddEvent(
352      0, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromEvent));
353  injector()->AddEvent(
354      0, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromEvent));
355
356  // Similarly post 2 tasks.
357  loop()->PostTask(
358      FROM_HERE, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromTask));
359  loop()->PostTask(
360      FROM_HERE, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromTask));
361
362  loop()->Run();
363  EXPECT_EQ(0, helper->event_count());
364  EXPECT_EQ(0, helper->task_count());
365}
366
367namespace {
368
369void AddEventsAndDrainGLib(EventInjector* injector) {
370  // Add a couple of dummy events
371  injector->AddEvent(0, NULL);
372  injector->AddEvent(0, NULL);
373  // Then add an event that will quit the main loop.
374  injector->AddEvent(0, NewQuitTask());
375
376  // Post a couple of dummy tasks
377  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
378  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
379
380  // Drain the events
381  while (g_main_context_pending(NULL)) {
382    g_main_context_iteration(NULL, FALSE);
383  }
384}
385
386}  // namespace
387
388TEST_F(MessagePumpGLibTest, TestDrainingGLib) {
389  // Tests that draining events using GLib works.
390  loop()->PostTask(
391      FROM_HERE, NewRunnableFunction(AddEventsAndDrainGLib, injector()));
392  loop()->Run();
393
394  EXPECT_EQ(3, injector()->processed_events());
395}
396
397
398namespace {
399
400void AddEventsAndDrainGtk(EventInjector* injector) {
401  // Add a couple of dummy events
402  injector->AddEvent(0, NULL);
403  injector->AddEvent(0, NULL);
404  // Then add an event that will quit the main loop.
405  injector->AddEvent(0, NewQuitTask());
406
407  // Post a couple of dummy tasks
408  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
409  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing));
410
411  // Drain the events
412  while (gtk_events_pending()) {
413    gtk_main_iteration();
414  }
415}
416
417}  // namespace
418
419TEST_F(MessagePumpGLibTest, TestDrainingGtk) {
420  // Tests that draining events using Gtk works.
421  loop()->PostTask(
422      FROM_HERE, NewRunnableFunction(AddEventsAndDrainGtk, injector()));
423  loop()->Run();
424
425  EXPECT_EQ(3, injector()->processed_events());
426}
427
428namespace {
429
430// Helper class that lets us run the GLib message loop.
431class GLibLoopRunner : public base::RefCounted<GLibLoopRunner> {
432 public:
433  GLibLoopRunner() : quit_(false) { }
434
435  void RunGLib() {
436    while (!quit_) {
437      g_main_context_iteration(NULL, TRUE);
438    }
439  }
440
441  void RunGtk() {
442    while (!quit_) {
443      gtk_main_iteration();
444    }
445  }
446
447  void Quit() {
448    quit_ = true;
449  }
450
451  void Reset() {
452    quit_ = false;
453  }
454
455 private:
456  friend class base::RefCounted<GLibLoopRunner>;
457
458  ~GLibLoopRunner() {}
459
460  bool quit_;
461};
462
463void TestGLibLoopInternal(EventInjector* injector) {
464  // Allow tasks to be processed from 'native' event loops.
465  MessageLoop::current()->SetNestableTasksAllowed(true);
466  scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
467
468  int task_count = 0;
469  // Add a couple of dummy events
470  injector->AddEvent(0, NULL);
471  injector->AddEvent(0, NULL);
472  // Post a couple of dummy tasks
473  MessageLoop::current()->PostTask(
474      FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
475  MessageLoop::current()->PostTask(
476      FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
477  // Delayed events
478  injector->AddEvent(10, NULL);
479  injector->AddEvent(10, NULL);
480  // Delayed work
481  MessageLoop::current()->PostDelayedTask(
482      FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 30);
483  MessageLoop::current()->PostDelayedTask(
484      FROM_HERE, NewRunnableMethod(runner.get(), &GLibLoopRunner::Quit), 40);
485
486  // Run a nested, straight GLib message loop.
487  runner->RunGLib();
488
489  ASSERT_EQ(3, task_count);
490  EXPECT_EQ(4, injector->processed_events());
491  MessageLoop::current()->Quit();
492}
493
494void TestGtkLoopInternal(EventInjector* injector) {
495  // Allow tasks to be processed from 'native' event loops.
496  MessageLoop::current()->SetNestableTasksAllowed(true);
497  scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
498
499  int task_count = 0;
500  // Add a couple of dummy events
501  injector->AddEvent(0, NULL);
502  injector->AddEvent(0, NULL);
503  // Post a couple of dummy tasks
504  MessageLoop::current()->PostTask(
505      FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
506  MessageLoop::current()->PostTask(
507      FROM_HERE, NewRunnableFunction(IncrementInt, &task_count));
508  // Delayed events
509  injector->AddEvent(10, NULL);
510  injector->AddEvent(10, NULL);
511  // Delayed work
512  MessageLoop::current()->PostDelayedTask(
513      FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 30);
514  MessageLoop::current()->PostDelayedTask(
515      FROM_HERE, NewRunnableMethod(runner.get(), &GLibLoopRunner::Quit), 40);
516
517  // Run a nested, straight Gtk message loop.
518  runner->RunGtk();
519
520  ASSERT_EQ(3, task_count);
521  EXPECT_EQ(4, injector->processed_events());
522  MessageLoop::current()->Quit();
523}
524
525}  // namespace
526
527TEST_F(MessagePumpGLibTest, TestGLibLoop) {
528  // Tests that events and posted tasks are correctly exectuted if the message
529  // loop is not run by MessageLoop::Run() but by a straight GLib loop.
530  // Note that in this case we don't make strong guarantees about niceness
531  // between events and posted tasks.
532  loop()->PostTask(FROM_HERE,
533                   NewRunnableFunction(TestGLibLoopInternal, injector()));
534  loop()->Run();
535}
536
537TEST_F(MessagePumpGLibTest, TestGtkLoop) {
538  // Tests that events and posted tasks are correctly exectuted if the message
539  // loop is not run by MessageLoop::Run() but by a straight Gtk loop.
540  // Note that in this case we don't make strong guarantees about niceness
541  // between events and posted tasks.
542  loop()->PostTask(FROM_HERE,
543                   NewRunnableFunction(TestGtkLoopInternal, injector()));
544  loop()->Run();
545}
546