message_pump_win.cc revision 3345a6884c488ff3a535c2c9acdd33d74b37e311
1// Copyright (c) 2010 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/message_pump_win.h"
6
7#include <math.h>
8
9#include "base/histogram.h"
10
11using base::Time;
12
13namespace base {
14
15static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
16
17// Message sent to get an additional time slice for pumping (processing) another
18// task (a series of such messages creates a continuous task pump).
19static const int kMsgHaveWork = WM_USER + 1;
20
21//-----------------------------------------------------------------------------
22// MessagePumpWin public:
23
24void MessagePumpWin::AddObserver(Observer* observer) {
25  observers_.AddObserver(observer);
26}
27
28void MessagePumpWin::RemoveObserver(Observer* observer) {
29  observers_.RemoveObserver(observer);
30}
31
32void MessagePumpWin::WillProcessMessage(const MSG& msg) {
33  FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
34}
35
36void MessagePumpWin::DidProcessMessage(const MSG& msg) {
37  FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
38}
39
40void MessagePumpWin::RunWithDispatcher(
41    Delegate* delegate, Dispatcher* dispatcher) {
42  RunState s;
43  s.delegate = delegate;
44  s.dispatcher = dispatcher;
45  s.should_quit = false;
46  s.run_depth = state_ ? state_->run_depth + 1 : 1;
47
48  RunState* previous_state = state_;
49  state_ = &s;
50
51  DoRunLoop();
52
53  state_ = previous_state;
54}
55
56void MessagePumpWin::Quit() {
57  DCHECK(state_);
58  state_->should_quit = true;
59}
60
61//-----------------------------------------------------------------------------
62// MessagePumpWin protected:
63
64int MessagePumpWin::GetCurrentDelay() const {
65  if (delayed_work_time_.is_null())
66    return -1;
67
68  // Be careful here.  TimeDelta has a precision of microseconds, but we want a
69  // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
70  // 6?  It should be 6 to avoid executing delayed work too early.
71  double timeout = ceil((delayed_work_time_ - Time::Now()).InMillisecondsF());
72
73  // If this value is negative, then we need to run delayed work soon.
74  int delay = static_cast<int>(timeout);
75  if (delay < 0)
76    delay = 0;
77
78  return delay;
79}
80
81//-----------------------------------------------------------------------------
82// MessagePumpForUI public:
83
84MessagePumpForUI::MessagePumpForUI() {
85  InitMessageWnd();
86}
87
88MessagePumpForUI::~MessagePumpForUI() {
89  DestroyWindow(message_hwnd_);
90  UnregisterClass(kWndClass, GetModuleHandle(NULL));
91}
92
93void MessagePumpForUI::ScheduleWork() {
94  if (InterlockedExchange(&have_work_, 1))
95    return;  // Someone else continued the pumping.
96
97  // Make sure the MessagePump does some work for us.
98  PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
99}
100
101void MessagePumpForUI::ScheduleDelayedWork(const Time& delayed_work_time) {
102  //
103  // We would *like* to provide high resolution timers.  Windows timers using
104  // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
105  // mechanism because the application can enter modal windows loops where it
106  // is not running our MessageLoop; the only way to have our timers fire in
107  // these cases is to post messages there.
108  //
109  // To provide sub-10ms timers, we process timers directly from our run loop.
110  // For the common case, timers will be processed there as the run loop does
111  // its normal work.  However, we *also* set the system timer so that WM_TIMER
112  // events fire.  This mops up the case of timers not being able to work in
113  // modal message loops.  It is possible for the SetTimer to pop and have no
114  // pending timers, because they could have already been processed by the
115  // run loop itself.
116  //
117  // We use a single SetTimer corresponding to the timer that will expire
118  // soonest.  As new timers are created and destroyed, we update SetTimer.
119  // Getting a spurrious SetTimer event firing is benign, as we'll just be
120  // processing an empty timer queue.
121  //
122  delayed_work_time_ = delayed_work_time;
123
124  int delay_msec = GetCurrentDelay();
125  DCHECK(delay_msec >= 0);
126  if (delay_msec < USER_TIMER_MINIMUM)
127    delay_msec = USER_TIMER_MINIMUM;
128
129  // Create a WM_TIMER event that will wake us up to check for any pending
130  // timers (in case we are running within a nested, external sub-pump).
131  SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
132}
133
134void MessagePumpForUI::PumpOutPendingPaintMessages() {
135  // If we are being called outside of the context of Run, then don't try to do
136  // any work.
137  if (!state_)
138    return;
139
140  // Create a mini-message-pump to force immediate processing of only Windows
141  // WM_PAINT messages.  Don't provide an infinite loop, but do enough peeking
142  // to get the job done.  Actual common max is 4 peeks, but we'll be a little
143  // safe here.
144  const int kMaxPeekCount = 20;
145  int peek_count;
146  for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
147    MSG msg;
148    if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
149      break;
150    ProcessMessageHelper(msg);
151    if (state_->should_quit)  // Handle WM_QUIT.
152      break;
153  }
154  // Histogram what was really being used, to help to adjust kMaxPeekCount.
155  DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count);
156}
157
158//-----------------------------------------------------------------------------
159// MessagePumpForUI private:
160
161// static
162LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
163    HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
164  switch (message) {
165    case kMsgHaveWork:
166      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
167      break;
168    case WM_TIMER:
169      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
170      break;
171  }
172  return DefWindowProc(hwnd, message, wparam, lparam);
173}
174
175void MessagePumpForUI::DoRunLoop() {
176  // IF this was just a simple PeekMessage() loop (servicing all possible work
177  // queues), then Windows would try to achieve the following order according
178  // to MSDN documentation about PeekMessage with no filter):
179  //    * Sent messages
180  //    * Posted messages
181  //    * Sent messages (again)
182  //    * WM_PAINT messages
183  //    * WM_TIMER messages
184  //
185  // Summary: none of the above classes is starved, and sent messages has twice
186  // the chance of being processed (i.e., reduced service time).
187
188  for (;;) {
189    // If we do any work, we may create more messages etc., and more work may
190    // possibly be waiting in another task group.  When we (for example)
191    // ProcessNextWindowsMessage(), there is a good chance there are still more
192    // messages waiting.  On the other hand, when any of these methods return
193    // having done no work, then it is pretty unlikely that calling them again
194    // quickly will find any work to do.  Finally, if they all say they had no
195    // work, then it is a good time to consider sleeping (waiting) for more
196    // work.
197
198    bool more_work_is_plausible = ProcessNextWindowsMessage();
199    if (state_->should_quit)
200      break;
201
202    more_work_is_plausible |= state_->delegate->DoWork();
203    if (state_->should_quit)
204      break;
205
206    more_work_is_plausible |=
207        state_->delegate->DoDelayedWork(&delayed_work_time_);
208    // If we did not process any delayed work, then we can assume that our
209    // existing WM_TIMER if any will fire when delayed work should run.  We
210    // don't want to disturb that timer if it is already in flight.  However,
211    // if we did do all remaining delayed work, then lets kill the WM_TIMER.
212    if (more_work_is_plausible && delayed_work_time_.is_null())
213      KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
214    if (state_->should_quit)
215      break;
216
217    if (more_work_is_plausible)
218      continue;
219
220    more_work_is_plausible = state_->delegate->DoIdleWork();
221    if (state_->should_quit)
222      break;
223
224    if (more_work_is_plausible)
225      continue;
226
227    WaitForWork();  // Wait (sleep) until we have work to do again.
228  }
229}
230
231void MessagePumpForUI::InitMessageWnd() {
232  HINSTANCE hinst = GetModuleHandle(NULL);
233
234  WNDCLASSEX wc = {0};
235  wc.cbSize = sizeof(wc);
236  wc.lpfnWndProc = WndProcThunk;
237  wc.hInstance = hinst;
238  wc.lpszClassName = kWndClass;
239  RegisterClassEx(&wc);
240
241  message_hwnd_ =
242      CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
243  DCHECK(message_hwnd_);
244}
245
246void MessagePumpForUI::WaitForWork() {
247  // Wait until a message is available, up to the time needed by the timer
248  // manager to fire the next set of timers.
249  int delay = GetCurrentDelay();
250  if (delay < 0)  // Negative value means no timers waiting.
251    delay = INFINITE;
252
253  DWORD result;
254  result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
255                                       MWMO_INPUTAVAILABLE);
256
257  if (WAIT_OBJECT_0 == result) {
258    // A WM_* message is available.
259    // If a parent child relationship exists between windows across threads
260    // then their thread inputs are implicitly attached.
261    // This causes the MsgWaitForMultipleObjectsEx API to return indicating
262    // that messages are ready for processing (specifically mouse messages
263    // intended for the child window. Occurs if the child window has capture)
264    // The subsequent PeekMessages call fails to return any messages thus
265    // causing us to enter a tight loop at times.
266    // The WaitMessage call below is a workaround to give the child window
267    // sometime to process its input messages.
268    MSG msg = {0};
269    DWORD queue_status = GetQueueStatus(QS_MOUSE);
270    if (HIWORD(queue_status) & QS_MOUSE &&
271       !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
272      WaitMessage();
273    }
274    return;
275  }
276
277  DCHECK_NE(WAIT_FAILED, result) << GetLastError();
278}
279
280void MessagePumpForUI::HandleWorkMessage() {
281  // If we are being called outside of the context of Run, then don't try to do
282  // any work.  This could correspond to a MessageBox call or something of that
283  // sort.
284  if (!state_) {
285    // Since we handled a kMsgHaveWork message, we must still update this flag.
286    InterlockedExchange(&have_work_, 0);
287    return;
288  }
289
290  // Let whatever would have run had we not been putting messages in the queue
291  // run now.  This is an attempt to make our dummy message not starve other
292  // messages that may be in the Windows message queue.
293  ProcessPumpReplacementMessage();
294
295  // Now give the delegate a chance to do some work.  He'll let us know if he
296  // needs to do more work.
297  if (state_->delegate->DoWork())
298    ScheduleWork();
299}
300
301void MessagePumpForUI::HandleTimerMessage() {
302  KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
303
304  // If we are being called outside of the context of Run, then don't do
305  // anything.  This could correspond to a MessageBox call or something of
306  // that sort.
307  if (!state_)
308    return;
309
310  state_->delegate->DoDelayedWork(&delayed_work_time_);
311  if (!delayed_work_time_.is_null()) {
312    // A bit gratuitous to set delayed_work_time_ again, but oh well.
313    ScheduleDelayedWork(delayed_work_time_);
314  }
315}
316
317bool MessagePumpForUI::ProcessNextWindowsMessage() {
318  // If there are sent messages in the queue then PeekMessage internally
319  // dispatches the message and returns false. We return true in this
320  // case to ensure that the message loop peeks again instead of calling
321  // MsgWaitForMultipleObjectsEx again.
322  bool sent_messages_in_queue = false;
323  DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
324  if (HIWORD(queue_status) & QS_SENDMESSAGE)
325    sent_messages_in_queue = true;
326
327  MSG msg;
328  if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
329    return ProcessMessageHelper(msg);
330
331  return sent_messages_in_queue;
332}
333
334bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
335  if (WM_QUIT == msg.message) {
336    // Repost the QUIT message so that it will be retrieved by the primary
337    // GetMessage() loop.
338    state_->should_quit = true;
339    PostQuitMessage(static_cast<int>(msg.wParam));
340    return false;
341  }
342
343  // While running our main message pump, we discard kMsgHaveWork messages.
344  if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
345    return ProcessPumpReplacementMessage();
346
347  if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
348    return true;
349
350  WillProcessMessage(msg);
351
352  if (state_->dispatcher) {
353    if (!state_->dispatcher->Dispatch(msg))
354      state_->should_quit = true;
355  } else {
356    TranslateMessage(&msg);
357    DispatchMessage(&msg);
358  }
359
360  DidProcessMessage(msg);
361  return true;
362}
363
364bool MessagePumpForUI::ProcessPumpReplacementMessage() {
365  // When we encounter a kMsgHaveWork message, this method is called to peek
366  // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
367  // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
368  // a continuous stream of such messages are posted.  This method carefully
369  // peeks a message while there is no chance for a kMsgHaveWork to be pending,
370  // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
371  // possibly be posted), and finally dispatches that peeked replacement.  Note
372  // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
373
374  MSG msg;
375  bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
376  DCHECK(!have_message || kMsgHaveWork != msg.message ||
377         msg.hwnd != message_hwnd_);
378
379  // Since we discarded a kMsgHaveWork message, we must update the flag.
380  int old_have_work = InterlockedExchange(&have_work_, 0);
381  DCHECK(old_have_work);
382
383  // We don't need a special time slice if we didn't have_message to process.
384  if (!have_message)
385    return false;
386
387  // Guarantee we'll get another time slice in the case where we go into native
388  // windows code.   This ScheduleWork() may hurt performance a tiny bit when
389  // tasks appear very infrequently, but when the event queue is busy, the
390  // kMsgHaveWork events get (percentage wise) rarer and rarer.
391  ScheduleWork();
392  return ProcessMessageHelper(msg);
393}
394
395//-----------------------------------------------------------------------------
396// MessagePumpForIO public:
397
398MessagePumpForIO::MessagePumpForIO() {
399  port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
400  DCHECK(port_.IsValid());
401}
402
403void MessagePumpForIO::ScheduleWork() {
404  if (InterlockedExchange(&have_work_, 1))
405    return;  // Someone else continued the pumping.
406
407  // Make sure the MessagePump does some work for us.
408  BOOL ret = PostQueuedCompletionStatus(port_, 0,
409                                        reinterpret_cast<ULONG_PTR>(this),
410                                        reinterpret_cast<OVERLAPPED*>(this));
411  DCHECK(ret);
412}
413
414void MessagePumpForIO::ScheduleDelayedWork(const Time& delayed_work_time) {
415  // We know that we can't be blocked right now since this method can only be
416  // called on the same thread as Run, so we only need to update our record of
417  // how long to sleep when we do sleep.
418  delayed_work_time_ = delayed_work_time;
419}
420
421void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
422                                         IOHandler* handler) {
423  ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
424  HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
425  DCHECK(port == port_.Get());
426}
427
428//-----------------------------------------------------------------------------
429// MessagePumpForIO private:
430
431void MessagePumpForIO::DoRunLoop() {
432  for (;;) {
433    // If we do any work, we may create more messages etc., and more work may
434    // possibly be waiting in another task group.  When we (for example)
435    // WaitForIOCompletion(), there is a good chance there are still more
436    // messages waiting.  On the other hand, when any of these methods return
437    // having done no work, then it is pretty unlikely that calling them
438    // again quickly will find any work to do.  Finally, if they all say they
439    // had no work, then it is a good time to consider sleeping (waiting) for
440    // more work.
441
442    bool more_work_is_plausible = state_->delegate->DoWork();
443    if (state_->should_quit)
444      break;
445
446    more_work_is_plausible |= WaitForIOCompletion(0, NULL);
447    if (state_->should_quit)
448      break;
449
450    more_work_is_plausible |=
451        state_->delegate->DoDelayedWork(&delayed_work_time_);
452    if (state_->should_quit)
453      break;
454
455    if (more_work_is_plausible)
456      continue;
457
458    more_work_is_plausible = state_->delegate->DoIdleWork();
459    if (state_->should_quit)
460      break;
461
462    if (more_work_is_plausible)
463      continue;
464
465    WaitForWork();  // Wait (sleep) until we have work to do again.
466  }
467}
468
469// Wait until IO completes, up to the time needed by the timer manager to fire
470// the next set of timers.
471void MessagePumpForIO::WaitForWork() {
472  // We do not support nested IO message loops. This is to avoid messy
473  // recursion problems.
474  DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!";
475
476  int timeout = GetCurrentDelay();
477  if (timeout < 0)  // Negative value means no timers waiting.
478    timeout = INFINITE;
479
480  WaitForIOCompletion(timeout, NULL);
481}
482
483bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
484  IOItem item;
485  if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
486    // We have to ask the system for another IO completion.
487    if (!GetIOItem(timeout, &item))
488      return false;
489
490    if (ProcessInternalIOItem(item))
491      return true;
492  }
493
494  if (item.context->handler) {
495    if (filter && item.handler != filter) {
496      // Save this item for later
497      completed_io_.push_back(item);
498    } else {
499      DCHECK_EQ(item.context->handler, item.handler);
500      WillProcessIOEvent();
501      item.handler->OnIOCompleted(item.context, item.bytes_transfered,
502                                  item.error);
503      DidProcessIOEvent();
504    }
505  } else {
506    // The handler must be gone by now, just cleanup the mess.
507    delete item.context;
508  }
509  return true;
510}
511
512// Asks the OS for another IO completion result.
513bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
514  memset(item, 0, sizeof(*item));
515  ULONG_PTR key = NULL;
516  OVERLAPPED* overlapped = NULL;
517  if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
518                                 &overlapped, timeout)) {
519    if (!overlapped)
520      return false;  // Nothing in the queue.
521    item->error = GetLastError();
522    item->bytes_transfered = 0;
523  }
524
525  item->handler = reinterpret_cast<IOHandler*>(key);
526  item->context = reinterpret_cast<IOContext*>(overlapped);
527  return true;
528}
529
530bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
531  if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
532      this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
533    // This is our internal completion.
534    DCHECK(!item.bytes_transfered);
535    InterlockedExchange(&have_work_, 0);
536    return true;
537  }
538  return false;
539}
540
541// Returns a completion item that was previously received.
542bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
543  DCHECK(!completed_io_.empty());
544  for (std::list<IOItem>::iterator it = completed_io_.begin();
545       it != completed_io_.end(); ++it) {
546    if (!filter || it->handler == filter) {
547      *item = *it;
548      completed_io_.erase(it);
549      return true;
550    }
551  }
552  return false;
553}
554
555void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
556  io_observers_.AddObserver(obs);
557}
558
559void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
560  io_observers_.RemoveObserver(obs);
561}
562
563void MessagePumpForIO::WillProcessIOEvent() {
564  FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
565}
566
567void MessagePumpForIO::DidProcessIOEvent() {
568  FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
569}
570
571}  // namespace base
572